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This work is a continuation of our previous work, in the present paper we study the
generalized nonlinear initial-boundary Riemann problem with small BV data for linearly
degenerate quasilinear hyperbolic systems of conservation laws with nonlinear boundary
conditions in a half space {(t,x) |t > 0, x > 0}. We prove the global existence and
uniqueness of piecewise C! solution containing only contact discontinuities to a class
of the generalized nonlinear initial-boundary Riemann problem, which can be regarded
as a small BV perturbation of the corresponding nonlinear initial-boundary Riemann
problem, for general n xn linearly degenerate quasilinear hyperbolic system of conservation
laws; moreover, this solution has a global structure similar to the one of the self-similar
solution u = U(’[—‘) to the corresponding nonlinear initial-boundary Riemann problem.
Some applications to quasilinear hyperbolic systems of conservation laws arising in the
string theory and high energy physics are also given.
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1. Introduction and main result

Consider the following quasilinear hyperbolic system of conservation laws:

du+xf(u) =0, u=u(t,x)eld CR", (1.1)

where u = (u1, ..., un)T is the unknown vector function of (t, x), f :1{ — R" is a given C3 vector function of u.
It is assumed that system (1.1) is strictly hyperbolic, i.e., for any given u on the domain under consideration, the Jacobian
A(u) =V f(u) has n real distinct eigenvalues

M) < dy(u) <--- < Ap(u).

(12)

Let li(u) = (i1 (u), ..., lin(u)) (resp. ri(u) = (riy(u), ..., rin))T) be a left (resp. right) eigenvector corresponding to A;(u)

i=1,...,n):

L) Au) =rili(u) (resp. A@wri(u) = A (W)ri(u)). (1.3)
We have

det|l;j(u)| #0 (equivalently, det|r;j(u)| # 0). (1.4)
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Without loss of generality, we may assume that on the domain under consideration

li(u)rj(u)E(Sij (i,j:l,...,n) (1.5)

and

Twriw=1 >(=1,...,n), (1.6)

where §;; stands for the Kronecker symbol.
Clearly, all A;(u), ljj(u) and rij(u) (i, j=1,...,n) have the same regularity as A(u), ie., C? regularity.
We assume that on the domain under consideration, each characteristic field is linearly degenerate in the sense of Lax

(cf. [1]):
VAii(wri(u) =0. (1.7)

We are interested in solutions taking values in a small neighborhood of a given state in R" and, without loss of generality,
we can choose this set to be the ball ¢/ := B(n) centered at the origin with suitably small radius 1. We first recall that the
Riemann problem for system (1.1) is a special Cauchy problem with the piecewise constant initial data

up, x<0,
t=0: u= (1.8)
ur, x>0,

where u; and ug are constant states in Y. It is well known that the Riemann problem (1.1) and (1.8) has a unique self-
similar solution composed of n 4+ 1 constant states separated by contact discontinuities, provided that the states are in a
small neighborhood of a given state (cf. [1]). In the following, the set I/ is chosen such that the Riemann problem is always
well posed in this sense.

We assume that on the domain under consideration, the eigenvalues of A(u) = V f(u) satisfy the non-characteristic
condition

M) <0<As(u) (r=1,....m;s=m+1,...,n). (1.9)

We are concerned with the global existence and uniqueness of piecewise C! solutions to the generalized nonlinear
initial-boundary Riemann problem for system (1.1) in a half space

D={(,x|t>0, x>0} (1.10)

with the initial condition

t=0: u=¢kx x=0) (111)
and the nonlinear boundary condition (cf. [2,3])

x=0: vs=Gs(o(t),vi,...,vm) +hs(t) (s=m+1,...,n), (112)
where

vi=hwu @G=1,...,n) (113)

and

at) = (1), ..., o).
Here, Gs e C! (s=m+1,...,n), ¢ = (¢1,...,0n)T, @ and h(-) = (hyy1(), ..., ha(-)) € C! with bounded C! norm, such that

le@ |- |e@® ] [A©O] o < M, (114)

for some M > 0 bounded but possibly large. Also, we assume that the conditions of C? compatibility are not satisfied at the
point (0, 0). Without loss of generality, we assume that

Gs(a(1),0,...,0)=0 (s=m+1,...,n). (1.15)
Now, consider the nonlinear initial-boundary Riemann problem for system (1.1) in a half space
D={tx |t>0, x>0}

with the constant initial data

t=0: u=¢0) *x=0) (1.16)
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and the nonlinear boundary condition (cf. [2])

x=0: vs=Gs(a(0),v1,...,vm) + hs(0)
LGy, ...,vm) (s=m4+1,...,n) (t>=0). (117)

For this problem, Li and Wang [2] obtained the following well-known result.

Theorem 1.1. Let u, = ¢(0) and v;r £ li(up)uy (i=1,...,n) and suppose that the non-characteristic condition (1.9) holds. If |u |
and |vi — (_?s(vf, .., V)| (s=m+1,...,n) are suitably small, then the nonlinear initial-boundary problem (1.1)-(1.16)-(1.17)
(known as Riemann problem) admits a unique small amplitude self-similar solution u = U(’[—‘) composed of n —m + 1 constant states
am g+ (=1 50 =y separated by contact discontinuities, i.e.,

a(m)’ 0 gxg))':m—&-]t,
X P ~ ~ .
u=U<?>= ud, At <x<Ajpt (j=m+1,...,n=1),
a™ x> At,

where x =i]-t stands for the j-th contact discontinuity (j=m+1,...,n).

Remark 1.1. Let u_ £ (0,...,(8),hm+1 (0),...,hy(0)T and suppose that u, and u_ are data in /. Then there exists a
suitably small 7 > 0 such that any Riemann problem (1.1)-(1.16)-(1.17) with data in &/ := B(n) is always well posed in the
sense of Theorem 1.1. In the remainder of this paper we will consider the set I/ to be the ball &/ :=B(n) centered at the
origin with suitably small radius n in the sense of Theorem 1.1.

For the self-similar solution of the Riemann problem of general quasilinear hyperbolic systems of conservation laws,
the local nonlinear structure stability has been proved by Li and Yu [4] for one-dimensional case, and by Majda [5] for
multidimensional case. If each characteristic field with positive velocity is either linearly degenerate or genuinely nonlinear,
Li and Wang [2] proved that the self-similar solution with small amplitude to the nonlinear initial-boundary Riemann
problem has the global structure stability under perturbation (1.11)-(1.12) satisfying (1.16)—(1.17). Precisely speaking, they
obtained the following well-known result.

Theorem 1.2. Suppose that ¢, a, Gs, hs (s=m+1,...,n) are all C! functions with respect to their arguments, satisfying that there
exists a constant . > 0 such that

= sup A+ (le®| + ¢’ ®]) + fgg(l + 0" (| ®] + |h©O)] + o' O] + [ (©)]) < 0. (1.18)

x>

Suppose furthermore that the conditions of CO compatibility are not satisfied at the point (0, 0). Suppose finally that the corresponding
Riemann problem (1.1)-(1.16)-(1.17) admits a unique small amplitude self-similar solution u = U(f) composed of n —m + 1 con-
stant states T MO G0=D 0 =y and n — m small amplitude elementary waves x = Ayt (k=m —+ 1, ...,n) (shocks
corresponding to the genuinely nonlinear characteristics and contact discontinuities corresponding to the linearly degenerate charac-
teristics):

. a™, 0 <x < gt
u:U<E>= a0, t<x<ipatd=m+1,....n—1), (119)
M x> Aut.

Then there exists 6y > 0 so small that for any given 6 € (0, 6p], the generalized nonlinear initial-boundary Riemann problem (1.1)-
(1.11)-(1.12) admits a unique global piecewise C solution

u™(t,x), 0<Xx<Xmy1(0),
u=u(t,x) = ubt,x), xO<x<xp@®)I=m+1,....,n—=1), (1.20)
u™(t,x), x> xa(0),

where, for=m, ..., n, u®(t, x) e C satisfies system (1.1) in the classical sense on the corresponding angular domain. Moreover, for
k=m+1,....,n u®Dt, x) and u®(t, x) are connected to each other by the k-th small amplitude wave x = x(t) with x;.(0) =0
(the k-th shock corresponding to the genuinely nonlinear characteristic or the k-th contact discontinuity corresponding to the linearly
degenerate characteristic). This solution possesses a global structure similar to that of the self-similar solution (1.19) to the nonlinear
initial-boundary Riemann problem (1.1)-(1.16)-(1.17).
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Remark 1.2. Recently, under the assumption that Lax’s Riemann solution of the system (1.1) only contains non-degenerate
shocks and contact discontinuities but no centered rarefaction waves and other weak discontinuities, Kong [6,7] proved the
global structure stability of this kind of Lax’s Riemann solution with small amplitude, Shao [8,9] also studied that the global
structure stability of this kind of Lax’s Riemann solution with small amplitude in a half space.

However, it is well known that the BV space is a suitable framework for one-dimensional Cauchy problem for the
hyperbolic systems of conservation laws (see Bressan [10], Glimm [11]), the result in Bressan [12] suggests that one may
achieve global smoothness even if the C! norm of the initial data is large. So the following question arises naturally: if
the BV norm of the initial and boundary data is suitably small, then can we obtain the global existence and uniqueness
of piecewise C! solution containing only contact discontinuities to a class of the generalized nonlinear initial-boundary
Riemann problem, which can be regarded as a small BV perturbation of the corresponding Riemann problem, for general
n x n linearly degenerate quasilinear hyperbolic system of conservation laws? Here, it is important to mention that the
global existence of weak solutions to a strictly hyperbolic system of conservation laws in one space dimension when the
initial data is a small BV perturbation of a solvable Riemann problem has been proved by Schochet [13], unfortunately his
method is not useful to show that the solutions are still contact discontinuities. An analogous result on stability of contact
discontinuities under perturbations of small bounded variation is stated by Corli and Sable-Tougeron [14]. In this paper we
exploit to some extent the ideas of Bressan [12], we will develop the method of using continuous Glimm'’s functional to
solve this problem globally and to provide a new, concise proof of the above mentioned problem of the stability of contact
discontinuities. The basic idea we will use here is to combine the techniques employed by Li and Kong [15], especially
both the decomposition of waves and the global behavior of waves on the contact discontinuity curves, with the method
of using continuous Glimm'’s functional. However, we must modify Glimm’s functional in order to take care of the presence
of contact discontinuities. This makes our new analysis more complicated than those for the C! solutions of the Cauchy
problem for linearly degenerate quasilinear hyperbolic systems in Bressan [12], Dai and Kong [16], Zhou [17]. Moreover, due
to the presence of a boundary, any waves with negative speed are expected to be reflected at the boundary, some additional
difficulties appear. Therefore new proofs are required to overcome them. This also makes our new analysis more complicated
than that for the Cauchy problem case in Shao [18]. The present paper can be viewed as a development of [12,16,17].

Our main results can be summarized as follows:

Theorem 1.3. Suppose that system (1.1) is strictly hyperbolic and linearly degenerate. Suppose furthermore that ¢, o, Gs and hg
(s=m+1,...,n) are all C! functions with respect to their arguments, satisfying that the conditions of C° compatibility are not
satisfied at the point (0, 0), and the non-characteristic condition (1.9) holds. Suppose finally that u, and u_ are data in U := B(n)
and n > 0 is suitably small. Then for any constant M > 0, there exists a positive constant & so small that if (1.14) holds together with

+00 400 400
/ 190 dx, / o (0] dt. f I'(0)] de <. (121)
0 0 0

then the generalized nonlinear initial-boundary Riemann problem (1.1), (1.11) and (1.12) admits a unique global piecewise C! solution
u = u(t, x) only containing n — m contact discontinuities x = x;(t) (xj(0) =0) (i =m+1,...,n) inahalf space {(t,x) |t >0, x > 0}.
This solution has a global structure similar to the one of the self-similar solution u = U(%) of the corresponding Riemann prob-
lem (1.1), (1.16) and (1.17). Precisely speaking,

u™(t,x), 0<x< Xmy1(t),
u=ut,x)=1ub,x, xO<x<@Od=m+1,...,n—1),
u™(t,x), x=xa(t),

where udt, x) ( =m,...,n)areall C1 solutions to system (1.1) on each corresponding domain respectively and fori=m+1,...,n,
u@=t, x) and u? (t, x) are connected to each other by the i-th contact discontinuity x = x;(t) with x;(0) = 0.

Remark 1.3. Our result indicates that the self-similar solution u = U (%) to the nonlinear initial-boundary Riemann prob-
lem (1.1), (1.17) and (1.18) possesses a global nonlinear structure stability under a small BV perturbation of the initial and
boundary data.

Remark 1.4. Suppose that system (1.1) is non-strictly hyperbolic but each characteristic has a constant multiplicity, say, on
the domain under consideration,

MW < <A <0<Ap) < <App()=---=ipu) (M<p<n). (1.22)

Then the conclusion of Theorem 1.3 still holds (cf. [16]).
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Some of the results related to these topics are listed below. Chen et al. [19-21] investigated the asymptotic stability of
Riemann waves for hyperbolic conservation laws. Hsiao and Tang [22] investigated the construction and qualitative behavior
of the solution of the perturbated Riemann problem for the system of one-dimensional isentropic flow with damping. Xin
et al. [23-25] proved the nonlinear stability of contact discontinuities in systems of conservation laws. Smoller et al. [26]
investigated the instability of rarefaction shocks in systems of conservation laws. For the overcompressive shock waves,
Liu [27] proved the nonlinear stability and instability. Bressan and LeFloch [28] investigated the structural stability and
regularity of entropy solutions to hyperbolic systems of conservation laws. Lions et al. [29] proved the existence and sta-
bility of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates.
Recently, L! stability for systems of hyperbolic conservation laws was investigated by Bressan et al. [30] (cf. [10,31-33]). Liu
and Xin [34] proved the nonlinear stability of discrete shocks for systems of conservation laws. Dafermos [35] studied the
entropy and the stability of classical solutions of hyperbolic systems of conservation laws. For a relaxation system in several
space dimensions, Luo and Xin [36] proved the nonlinear stability of shock fronts. Liu and Xin [37] investigated the nonlin-
ear stability of rarefaction waves for compressible Navier-Stokes equations. Hsiao and Pan [38] investigated the nonlinear
stability of rarefaction waves for a rate-type viscoelastic system. Moreover, the nonlinear stability of an undercompressive
shock for complex Burgers equation was studied by Liu and Zumbrun [39]. For the viscous conservation laws, the theory of
nonlinear stability of shock waves was established (see [40,41] and the references therein).

This paper is organized as follows. For the sake of completeness, in Section 2, we briefly recall John’s formula on the
decomposition of waves with some supplements and give a generalized Hormander Lemma. In Section 3, we first review the
definition of contact discontinuity, and then analyze some properties of waves on the contact discontinuity curves, which
will play an important role in our proof. The main result, Theorem 1.3 is proved in Section 4. Finally, some applications to
quasilinear hyperbolic systems of conservation laws arising in the string theory and high energy physics, particularly to the
system describing the motion of relativistic strings in Minkowski space R1*", are presented in Section 5.

2. John’s formula, generalized Hormander Lemma

For the sake of completeness, in this section we briefly recall John’s formula on the decomposition of waves with some
supplements, which will play an important role in our proof.

Let
wi=Liwuy, (=1,...,n), (2.1)
where [;(u) = (Ij1 (u), ..., lip(u)) denotes the i-th left eigenvector.
By (1.5), it follows from (1.13) and (2.1) that
n
u= Z VT (W) (2.2)
k=1
and
n
Uy = Z Wi (). (2.3)
k=1
Let
4_3 (24)
dit ot X
be the directional derivative along the i-th characteristic. We have [42,6,15,54]
@: i BikW)viw, (i=1,...,n) (2.5)
dt iyt Y J U '
where
Bijie(w) = (A () — A (W)l (w) Vrj(wry (). (2.6)
Hence, we have
Biji(u) =0, Vi, j. (2.7)
On the other hand, we have (cf. [42,6,15,54])
dW,‘ . .
o Z YigWwijwg (i=1,...,n), (2.8)

k=1
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where

Yijk () = {(kj(u) = M)WV )rj(u) — VA rj@)di + (k) }, (2.9)
in which (jlk) denotes all the terms obtained by changing j and k in the previous terms. Hence,

yijj) =0, Vj#id j=1,....n) (2.10)
and

vii() = —-Vari(u) (=1,...,n). (2.11)
When the i-th characteristic A;(u) is linearly degenerate in the sense of Lax, we have

yii(u) = 0. (212)

Noting (2.3), by (2.8) we have (cf. [16,54])
dwi AW def
8—tl + # = Z Tjew)wjwg S Gi(t, %), (213)
j.k=1
equivalently,
n
d[wi(dx — A (u)dt)] = Z TjW)w jwidt Adx = Gi(t, x) dt A dx, (2.14)
j.k=1
where
1

Tjk(u) = (k W) — )W) [Vrieuyrjw) — Vrjrew)]. (2.15)
Hence, we have

jju) =0, Vi, j. (2.16)

Lemma 2.1 (Generalized Hérmander Lemma). Suppose that u = u(t, x) is a piecewise C! solution to system (1.1), T and T are two
C! arcs which are never tangent to the i-th characteristic direction, and D is the domain bounded by t1, T» and two i-th characterlstlc
curves L;” and LJr Suppose furthermore that the domain D contains m C! curves of discontinuity of u, denoted by C] x=x;j(t)

(=1,...,m), Wthh are never tangent to the i-th characteristic direction. Then we have
/|wi(dx—k,'(u)dt)| < /|w,(dx Ai(u) dt) |+Z /![w ldx — [wiri(u)]dt|
T T2 j= 1A
// Z Fj(wywjwy | dt dx, (217)
D ik=1
where I'j.(u) is given by (2.15) and [w;] = — w; denotes the jump of w; over the curve of discontinuity CJ (j=1,...,m),etc

The proof can be found in Li and Kong [15].

Corollary 2.1. If D is the domain bounded by two C! arcs t; and T, which are never tangent to the i-th characteristic direction, and
one i-th characteristic curve L;, then the conclusion of Lemma 2.1 still holds.

Corollary 2.2. If D is the domain bounded by three C! arcs t1, T2 and T3 which are never tangent to the i-th characteristic direction,
and one i-th characteristic curve L;, then we have

/|wi(dx—ki(u)dt)| </|wi(dx—ki(u)dt)| +[|w,~(dx—ki(u)dt)| +Z/|[w,~]dx— [wiri(u)]dt]|
T rz 73 j=1%

n
Z L (W)w jwy

Jj.k=1

dt dx, (218)

where Ijj.(u) is given by (2.15) and [w;] = — w; denotes the jump of w; over the curve of discontinuity Cj (j=1,...,m),etc
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3. Contact discontinuity

In this section, we first review the definition of contact discontinuity, and then analyze some properties of waves on the
contact discontinuity curves, which will play an important role in our proof.

Definition 3.1. A piecewise C! vector function u = u(t, x) defined on R* x R is called a piecewise C! solution containing
a k-th contact discontinuity x = x;(t) (x,(0) =0) for system (1.1), if u = u(t, x) satisfies system (1.1) away from x = x;(t) in
the classical sense and satisfies on x = x(t) the Rankine-Hugoniot condition:

fh)—f)=su*t—-u), (3.1)
and
s = (ut) = (u™), (3.2)

where u® = u®(t, x.(t)) £ u(t, x(t) £0) and s = dxgt(t).

Definition 3.1 can be found in [1] or [15].
The following lemma gives some properties of waves on the contact discontinuity curves.

Lemma 3.1. Suppose that [u®| (u* = u(t, x,(t) £ 0)) are suitably small. Then, on the k-th contact discontinuity x = x (t) we have

vi=vi+0(vE]) =1, k—=1,k+1,...,n) (33)
and
wf:wi’+0<|u+—u‘|-2}wf|) i=1,....k—=1,k+1,...,n), (34)
J#k

where v = (v1,...,vy)T is defined by (1.13) and v* £ v(t, x,(t) £ 0), etc.
The proof can be found in Li and Kong [15].

Corollary 3.1. On the k-th contact discontinuity x = x(t), it holds that

(wiri) " = (wiriw)” + o((u+ —u”| .Z‘wa|> (i=1,....k—1,k+1,...,n), (3.5)
j#k

provided that |u*| is small.

Proof. Noting

(wiri) " = (wiri@) ™ = [wi = wi (@)™ +w (i)’ = (u@w) ], (3.6)
from (3.4), we immediately get (3.5). O

4. Proof of Theorem 1.3

By the existence and uniqueness of local classical discontinuous solutions of quasilinear hyperbolic systems of conserva-
tion laws (see [4]), when 1 > 0 is suitably small, the generalized Riemann problem (1.1), (1.11) and (1.12) admits a unique
piecewise C! solution u = u(t, x) only containing n —m contact discontinuities x = x;(t) (x;(0) =0) (i=m+1,...,n) on the
domain [0, h] x Rt, where h > 0 is a small number; moreover, this solution has a local structure similar to the one of the
self-similar solution to the corresponding Riemann problem. In order to prove Theorem 1.3, it suffices to establish a uniform
a priori estimate for the piecewise C® norm of u and uy on any given domain of existence of the piecewise C! solution
u=u(t,x).

Noting (1.2) and (1.9), we have

A0) <+ <An(0) <0< Apt1(0) < --- < Ap(0). (4.1)

Thus, there exist sufficiently small positive constants § and 8y such that

Aipr (W) —Ai(v) =60, Vul[v[<d(i=1,....,n—1) (4.2)
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and

[2i(0)| >80 (i=1,...,n). (4.3)

For the time being it is supposed that on the domain of existence of the piecewise C! solution u = u(t,x) to the
generalized Riemann problem (1.1), (1.11) and (1.12), we have

u(t, x| <. (4.4)

At the end of the proof of Lemma 4.5, we will explain that this hypothesis is reasonable.
For any fixed T > 0, let

(4.5)
0<t<T xeR+

Voo (T) = (4.6)
0<t<T xeR*

Weo(T) = (4.7)
0<t<T xeRt

W, (T) = max maxsup/|w |dt, (4.8)

i=1,...,
where | - | stands for the Euclidean norm in R?, v = (vq, ..., vn)T and w = (wq, ..., wp)T in which v; and w; are defined

by (1.13) and (2.1) respectively, while C; stands for any given j-th characteristic on the domain [0, T] x R". In (4.4)-(4.7),
on any contact discontinuity curve x = x(t) the values of u(t, x), v(t,x) and w(t, x) are taken to be u=(t, x) = u(t, x,(t) £0),
vE(, X) = v(t, x(t) £0) and w(t, x) = w(t, x¢(t) £ 0). Clearly, Voo (T) is equivalent to Use(T).

First we recall some basic L! estimates. They are essentially due to Schatzman [43,44] and Zhou [17].

Lemma 4.1. Let ¢ = ¢(t, x) € C satisfy

¢e+ (A(t.0¢), =F(t.x), 0<t<T,xeR,  ¢(0.x)=g®X),

where A € C1. Then

T o0

/|¢(t x)|dx < /|g(x)|dx+//|F(t x)|dxdt, Vt<T, (4.9)
0 —o0

provided that the right-hand side of the inequality is bounded.
Lemma 4.2. Let ¢ = ¢ (t, x) and = ¥ (t, x) be C! functions satisfying

¢+ (M6, 08), =F1(t,x), 0<t<T,xeR,  ¢(0,% =g (),

and

Y+ (1t 09), =Fa2(t,x), 0<t<T, xeR, ¥ (0,%) = g2(x),

respectively, where A, i € C' such that there exists a positive constant 8¢ independent of T verifying

M, x) —At,x) =8, 0<t<T,xeR.

Then
T +oo T +o0
//|¢(t,x)|}¢(t,x)\dxdt<c(/|g1(x)|dx+f/yﬂ(t x)|dxdt)

0 —o0 —00 0 —o©

T +oo
</|g2(x)|dx+//|F2(t x)|dxdt) (4.10)

provided that the two factors on the right-hand side of the inequality is bounded.

In the present situation, similar to the above basic L! estimates (4.9)-(4.10), we have
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B(t,0) AT a)/

o C(0,z¢) D(0,zp) x

Fig. 1. The domain ABCD in (t, x)-plane.

Lemma 4.3. Under the assumptions of Theorem 1.3, on any given domain of existence [0, T] x Rt of the piecewise C! solution
u = u(t, x) to the generalized Riemann problem (1.1), (1.11) and (1.12), there exists a positive constant ki independent of &, T and M
such that

+00 +oo
/|w,~(t,x)|dx {/|<p(x)|dx+ /(|a O+ [ ©|)de
0

0

T +o0
+voo(T)v'\71(T)+//|c(t,x)|dxdt] (i=1,....,mVt<T, (411)
0 0
provided that the right-hand side of the inequality is bounded and G = (G1, G2, ..., Gp).

Proof. To estimate [~ |w;(t, x)| dx, we need only to estimate

/|w,-(t,x)]dx (4.12)
0

for any given a > 0 and then let a — +o0.

(i) Fori=1,...,m, for any given t with 0 <t < T, passing through point A(t,a) (a > x,(t)) (resp. B(t,0)), we draw the
i-th backward characteristic which intersects the x-axis at a point D(0, xp) (resp. C(0, xc)), see Fig. 1.

Then, applying (2.17) on the domain ABCD, we have

/|w (t. x)|dx</|w (0,%)|dx + Z /[w 1%, (6) = [wiri(w)] |dt+/ |Gi| dxdt, (4.13)

k=m+1& ABCD

where fk: X = X (t) stands for the k-th contact discontinuity passing through the origin, which is contained in the region
ABCD. Therefore

T +o0

/|w(t x)|dx < /|w(o x)|dx + Z‘ /|[w 1%, (6) — [wiri(w)] |dt—|—/ / |G| dxdt. (4.14)

k= m+1 0

Using (3.4)-(3.5) and (4.4), it is easy to see that

T +oo
/|w(t x)ydx<c1{ f|g0(x)|dx+voo(T)W1(T)+/ [ [ef |dxdt} (4.15)

where here and henceforth, ¢; (i=1,2,...) will denote positive constants independent of ¢, T and M.

Letting a — +o00, we immediately get the assertion in (4.11).

(ii) For i=m+1,...,n, for any given t with 0 <t < T, passing through point A(t,a) (a > x,(t)), we draw the i-th
backward characteristic which intersects the x-axis at a point C(0, x¢), see Fig. 2.
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B(t,0) " A(t,a)

10) (0, zc) T
Fig. 2. The domain ABOC in (t, x)-plane.

Let B denote the point (t, 0). Then, applying (2.18) on the domain ABOC, we have
t

Xc
/|Wi(t,x)]dx</|w,~(0,x)|dx+/ki(u(t,O))|Wi(t,0)|dt
BA

0
+ Z f[w X, (6) — [wiri()] |dt+/ |G| dxdt, (4.16)
k= m+1/~ ABOC

where Ek: X = X, (t) stands for the k-th contact discontinuity passing through the origin, which is contained in the region
ABOC. Thus, noting (3.2), we get

T

a +o00
/\wi(t,x)\dxg /\wi(o,x)]dx+cz/|wi(t,0)|dt+ /y[w,]xk(t)— [wiri(w)]|dt
0 0

0 k=m+1, k;él

T 400

+//|G,~|dxdt. (417)
0 0

Using (3.4)-(3.5) and (4.4), it is easy to see that

a T T 400

/|w (t, x)|dx<63{ /|(p (x)|dx+f{w (t, 0)|dt+VOO(T)W1(T)+/ / |G |dxdt] (4.18)
0 0

Similar to Lemma 3.2 in [3], by differentiating the nonlinear boundary condition (1.12) with respect to t, we get

8‘/3 Z aGS a(t), v1,...,vm)%

— at
k 3G
+> aT;(oe(t), Vi, Vm)af (O + RO (s=m+1,...,n). (419)
i=1 !
By (1.1), (1.3) and (2.3), it is easy to see that
dvi 9 . ,
a—t' = 5 (i) = —2i@wi + > apwwe (=1.....n), (4.20)
k=1
where
ap(u) = — A (Wrf (W) Vi (u)u. (4.21)

Thus, noting (1.9) and (4.4), for sufficiently small § > 0, we easily see from (4.19)-(4.20) that

k

x=0: ws= Zfs,(t wwj+ Y fsit, waj(t) + Z fat.whi@©) (s=m+1,....n), (4.22)

j=1 i=1 I=m+1

where f;, fsi and fg are continuous functions of t and u.
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Noting (4.4), by (4.22) we have

kT T
/|w (t, O)|dt_Z/ fir(t, u(t, 0))wi(t, 0)| dt + Z/ j(t,u(t, 0))a(0)] de + Z /|f,, (¢, u(t,0))hj(0)| dt
r=179 j=1 0 I= m+1(
m T +o00
<C4{Z/\wr(t, 0)|dt + / (Jo’ )| + }h’(r){)dt}. (4.23)
r=1y 0
Then, passing through the point D(T,0), we draw the r-th characteristic C; (r € {1,...,m}) which intersects the x-axis at
point E(0, xg). Applying Corollary 2.1 on the domain DOE, we have
T XE
/|wr(t 0)(— Ar(u))|dt</]wr(0 x)|dx + Z /][Wr]xk(t) [wrar(w)] \dt+f/|cr|dxdt
0 0 k= m+1 DOE
T +oo
[/|g0(x)|dx+ VOO(T)W1(T)+/ / |G, |dxdt] (4.24)
0 0
Noting (4.3) and (4.4), for sufficiently small § > 0, it is easy to see that
|Ar(u)| = %0 (4.25)
Therefore, it follows from (4.24) that
T +oo
[|Wr(t 0)|dt<ce{ /|(p (x)|dx+Voo(T)W1(T)+/ f |G, x)|dxdt] (4.26)
0
Combining (4.18) with (4.23) and (4.26), we obtain
+00
/|w (t, x)]dx<c7{ /|(p ()] dx + /(|oe O]+ |0’ ®)]) de
0
T +oo
+VOO(T)VT/1(T)+/ / |G(t,x)|dxdt}. (4.27)
0 0

Letting a — 400, we immediately get the assertion in (4.11). The proof of Lemma 4.3 is finished. O

Lemma 4.4. Under the assumptions of Theorem 1.3, on any given domain of existence [0, T] x Rt of the piecewise C! solution
u = u(t, x) to the generalized Riemann problem (1.1), (1.11) and (1.12), there exists a positive constant k, independent of &, T and M
such that

T +o0

//|W(t xX)||wj(, x)|dxdt<k2</fqa )| dx +

+ Voo (MW1(T) +

+00

(|e'@ |+ |0 @) dt

o

T +o0

2
/|G(t x)|dxdt> . Vi, j=1,...,n), (4.28)

\

0
provided that the right-hand side of the inequality is bounded and G = (G1, G2, ..., Gp).

Proof. To estimate
T +o0
/ / |wi e, x)||w; (e, )| dxde, (4.29)
0 0
it is enough to estimate
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T L
//|w,-(t, x)||wj(t, x)|dxdt (4.30)
00

for any given L > 0 and then let L — +o0.

(i) Fori,je{m+1,..., n} and i # j, without loss of generality, we suppose that i < j. Let x =x;(t,L) (0 <t <T) be the
i-th forward characteristic passing through point (0, L) (L > x,(T)). Then, we draw the i-th backward characteristic x = s;(t)
(0 <t < T) passing through point (T, a) (a > x;(T, L)).

We introduce the “continuous Glimm'’s functional” (cf. [12,45,17,18])

Q@)= // |wjt, x)||wi(t, y)| dxdy. (4.31)

O<x<y<si(t)

Because of the piecewise C! solution u = u(t, x) containing only n —m contact discontinuities x = x,(t) (x¢(0) =0) (k=
m+1,..., n), we divide the bounded domain 2 £ {(x, y) | 0 < x < y < s;(t)} by the straight lines y = x(t) (k=m+1,..., n)
into some parts. Then, the straightforward calculations on all parts of the domain £2 reveal that

si(t)

% =s;(0)|wi(t, si(D)] / |wjt, x)|dx
0
n X ()
+ Z X, (Of|wi(t, x(t) — 0)| — |wi(t, () + 0) |} / |wjt, x)| dx
k=m+1 0
// |w](t X)|)|wict. y)|dxdy + // |wjt, x)| (|w (t, y)|) dxdy
O<x<y<s,(t) O<x<y<si(t)
si(t)
=s§(t)|wi(t,si(t))|/|wj(t,x)|dx
0
n X ()
+ Y O wit e = 0)| — |wi(t. % (0) +0) |} / |wjt, x)| dx
k=m+1 0
d
// A](u)|w](t X)|)|wit, y)|dxdy — // |wj(t,x)|£()»i(u)|w,-(t,y)|)clxdy
O<x<y<s,(t) O<x<y<si(t)
+ /f sgn(w)Gj(t, x)|wi(t, y)|dxdy + // |wj(t,x)| sgn(w)Gi(t, y)dxdy
O<x<y<si(t) O<x<y<si(t)
si(t)
=— / (2j(ut, 0) = xi(ut, ) |wit, 0| |w;(t, x| dx
0
si(t) si(t)
+ (sj®) — i (u(t, si0))) |wi(t, si®)] / |wj(t, x| dx + 1 (u(t, 0))|wj(t,0)] / |wi(t, x)| dx
0 0
xi(t)
+ (X (t) = Ai(u(t, xi () — 0)))|wi(t, xi(t) — 0)]| / |wj(t, x)|dx
0
Xi(t)
+ (Ai(u(t xi(®) +0)) — x{(©)) | wi(t, % () + 0)| / |wj(t, x)|dx
0

Xk (0)

+ Z xL(t){|wi(t,x/<(t)—0)|—|W,~(t,xk(t)+0)|}/}Wj(t,x)|dx
k=m+1,ks£i 0
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Xk ()

+ Z {Ai(u(t,xk(t)+O))|wi(t,xk(t)+0)|—A,-(u(t,xk(t)—O))|w,~(t,xk(t)—0)|}/|Wj(t,x)|dx
k=m+1,k#i 0
+ // sgn(wj)Gj(t, x)|wi(t, y)|dxdy + // |wj(t, x)| sgn(w)Gi(t, y)dxdy. (4.32)
O<x<y<si(t) O<x<y<si(t)
Noting (3.2) and (4.1) and using (4.2), we get from (4.32) that
d0 () si(t) si(t)
" g—ég/|w,~(t,x)||wj(t,x)|dx+Aj(u(t,0))|wj(t,O)| /|W,~(t,x)|dx
0 0
n X (£)
+ > x;(r){|w,~(t,xk(t)—0)—wi(t,xk(t)+0)|}/|wj(t,x)|dx
k=m+1,k#i 0
n Xk(t)
+ Z {\A,-(u(r,xk(t)+0))wi(t,xk(r)+o)—A,-(u(t,xk(t)—0))wi(t,xk(r)—o)|}/|wj(t,x)|dx
k=m+1,k#i 0
si(t) si(t) si(t) si(t)
+/]Gj(t,x)]dx/.]wi(t,x)‘dx—i-/]Gi(t,x)]dx/‘wj(t,x)‘dx
0 0 0 0
si(t) +00
<—50/|w,-(t,x)||wj(r,x)|dx+xj(u(t,0))|wj(t,0)| /|W,-(t,x)|dx
0
n +00
+ > x;(t){|w,~(t,xk(t)—0)—wi(t,xk(t)+0)|}/|wj(t,x)|dx
k=m+1,k#i 0

n +00
+ >0 {niu (e xe) + 0))wi (e xi (6) + 0) — Ai (u(t, xe(t) — 0))wi (. X (£) — 0) |} / |wj(t, x)|dx
k=m-+1,k£i 0

+00 +o0 +o0 +o0
—|—/|Gj(t,x)|dx/|W,~(t,x)|dx+/|G,~(t,x)|dx/|wj(t,x)|dx. (433)
0 0 0 0

It then follows from Lemma 4.3 that

si(t)
—+80/|w(t x)||wj(t, x| dx
n

<cg (Aj(u(t, 0)|wit.0[+ Y xOf|wi(t. %) — 0) — wi(t, x(t) + 0) |}

k=m+1,ksi

n +00
+ Z {2 (u(t, %0 + 0))wi (£, X () + 0) — A (u(t, X (£) — 0))wi(t, x(£) — 0) |} + / |G(t,x)|dx)
0

k=m+1,k+#i
+00 T +o00

</|(p (x)|dx~|—/(|a GIEALEG)) dt+Vw(T)W1(T)+//]G(t x)|dxdt> (4.34)
0 0

Therefore

si(t) T
8o /|w (. x)||w;jt, x| dxdt < Q(0)+cg</x] u(t,0))|w;(t,0)|dt + Z /\[w 1 (u™
0

0 k=m+1, k;élA

O\-ﬂ
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+

o0

+ > /}[wiki(u)]|dt+ |G(t,x)|dxdt>

o\aﬂ
o

I<=m+1,k;£iA
+00

(/I(p coldc+ [ (@] + @]
0
T +oo

+Voo(T)W1(T)+//|G(t,x)|dxdt>.
0 0

Using (3.4)-(3.5) and noting (4.4), we obtain

T si(t) T 400

8o //|w .0 ||wjt, x| dxdt < Q(O)—G—C]o(/!Wj(t 0)|dt-|—VOO(T)W1(T)—|—/ / |G, x)|dxdt>

0 0
+0o0

(/|¢> oldxt [ (o @] + o

0
T +o0

+voo(T>W1(T>+//|c<r,x)ydxdt>.
0 0

By exploiting the same arguments as in Lemma 4.3, we can deduce that

“+00

T m T
/|w]~(t,0)|dt<cn{Z[|wr(t, 0)|dt + /(|a’(r)| + |h’(t)|)dt}
0 0

r=1 0

+00 T +o0

<c12</}¢ ()| dx + /(|a (t)|+|h(t)|)dt+Voo(T)W1(T)+//|G(t x)|dxdt)
0

0

Then, noting

+oo +0o0
Q) < /|wi(0,x)|dx/|wj(0,x)|dx,
0 0

it follows from (4.36)-(4.37) that

T si(t)
50//|W[(t,X)||Wj(t,X)|dth
0 0

400 +00 T 400 >2

<c13</|<p/(x)|dx+/(|a’(t)|+|h’(t)|)dt+Voo(T)W1(T)+f/|G(t,x)}dxdt
0 0 0 0
It then follows
T si(t)
/ |wi(t, x)||wj(t, x)|dxdt
0

Si

=

o ¥

+00 T +o0
(/\(p(x)\dwr/ (CAGIEIING]) dt—i—Voo(T)W](T)—i—//]G(t x)|dxdt
0 0

Therefore

)2.

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)
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O\aﬂ

L
/|W[(t,X)HWj(t,X)|dth
0

+00 T +oo 2
C]3</\<p(x)\dx+/ |o/(t)|+yh/(t)y)dr+vm(r)W1(T)+//\c(r,x)ydxdt> (4.41)
0 0 0

and the desired conclusion follows by taking L — +oc.

(ii) For i, j € {1,...,m} and i # j, without loss of generality, we suppose that i < j, and passing through point (T, L)
(L > x,(T)), we draw the i-th backward characteristic x = s;(t) (0 <t < T) which intersects the x-axis at a point.

We introduce the “continuous Glimm'’s functional” (cf. [12,45,17,18])

Q)= // |wjt,x)||wi(t, y)| dxdy.

O<x<y<si(t)

The argument in step (ii) is similar to the one in step (i), so instead of giving all the details one can just refer to (i) and
briefly describe the changes one needs to introduce. Instead of formula (4.36) we have (cf. [56])

T
s [
0

T +o0
< Q(0>+c14(voo(T)W1(T)+/ / |G(t,x)\dxdt>

t)
|wi(t, 0)||w;(t, x)| dxdt

Si

=

o ¥

0
+o00 T +o0
</|(p (x)|dx+/(|a o] +|n (r)|)dt+voo(r)w1(r)+f/|G(t x)|dxdt) (4.42)
0 0
Noting
+00 +o00
Q0 < /yw,-(o,x)ydx/|w,-(0,x)\dx, (4.43)
0 0
we get

si(t)

T
80/ / |wi(t, x)||wj(t, x)| dxdt
0 0

+00 +00 T 400 2
<c15(/|<p’(x)|dx+ /(}o/(t)|+|h/(t)|)dt+voo(T)W1(T)+//|G(r,x)|dxdt> . (4.44)
0 0 0 0

It is easy to deduce from (4.44) formula (4.28).

(iii) For ie {m+1,...,n} and j € {1,...,m}, passing through point (T,L) (L > x,(T)), we draw the j-th backward
characteristic x =s;(t) (0 <t < T) which intersects the x-axis at a point.

We introduce the “continuous Glimm'’s functional” (cf. [12,45,17,18])

Q)= // |wi(t, 0)||w;t, y)|dxdy. (4.45)

O<y<x<sj(t)

The argument in step (iii) is similar to the one in step (i), so instead of giving all the details one can just refer to (i) and
briefly describe the changes one needs to introduce. Instead of formula (4.32) we have

sj(t)

=— / (Ri(u(t, 0) = xj(ut, 0))|wit, 0| |w;t, x| dx

0

dQ (t)
dt
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G $j(t)

+(s’j(t)—Aj(u(t,s,»(t))))|w,-(t,s,-(t))|/|w,-(t,x)ydx+x,-(u(t,0))yw,»(t,0)yf|w,-(t,x)|dx
0 0

n X ()
+ Z X (Of|w;(t, %) —0)| — |w;(t, x(t) +0)]} / |wi(t, x)| dx
k=m+1 0
Xk (6)
+ Z (£ 3 () 4 0)) | w (£ xe(6) 4 0) | — . (1 (£, 3¢ () — 0)) | w (£, 3¢ (6) — 0) [} / |wi(t. %] dx
k=m+1 0
+ // sgn(w)Gi(t, x)|wj(t, y)| dxdy + // |wi(t, x)| sgn(w;)Gj(t, y)dxdy. (4.46)
O0<x<y<sj(t) O<x<y<s;(t)
By exploiting the same arguments as in (i), we can deduce that
T sj()
//|w,-(t,x)||wj(t,x)|dxdt
0 0
400 T +oo
</|<p (x)|dx+f(|a (t)|+|h(t)|)dt+voo(r)w1(T)+//|G(t x)|dxdt> : (4.47)
0 0 0

It is easy to deduce from (4.47) formula (4.28).

(iv) Forie {1,..., m}and je{m+1,..., n}, passing through the point (T, L) (L > x,(T)), we draw the i-th backward
characteristic x = s;(t) (0 <t < T) which intersects the x-axis at a point.

We introduce the “continuous Glimm'’s functional” (cf. [12,45,17,18])

Q= // |wi(t, 0)||wit, y)| dxdy.

O<x<y<si(t)

The argument in step (iv) is similar to the one in step (i), so instead of giving all the details one can just refer to (i) and
briefly describe the changes one needs to introduce. Instead of formula (4.32) we have

si(t)
det(t) :—/(Aj(u(t,x))—ki(u(t,x)))|w,-(t,x)ij(t,x)\dx
0
si(t) si(t)
+ (5;@®) — 2i(u(t, si©))) | wi(t, si©®)| /|wj(t,x)|dx+x,-(u(t,0))}wj(t,0)| /|w,-(t,x)|dx
0 0
n Xk (t)
+ Z x,/c(t){}wi(t,xk(t)—0)|—\Wi(t,xk(t)~|—0)|}/|Wj(t,x)|dx
k=m+1 0
Xk (t)
+ Z Ai(u(t, X (6) + 0)) | wi (£, X (6) +0) | — i (u (t,xk(t)—O))|W,-(t,xk(t)—0)|}/|wj(t,x)|dx
k=m+1 0

// sgn(w;)Gj(t, x)|wi(t, y)| dxdy + /[ |wj(t, )| sgn(w)Gi(t, y) dxdy.

O<x<y<si(t) O<x<y<si(t)

By exploiting the same arguments as in (i), we can deduce that
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T si(t)
//ywi(t,x)uwj(t,x)ydxdt
0 0
+00 +00 T +oo 2
<¢:4(/|<p’(x)|dx+/(|a’(t)|+yh’(r)})dt+voo(r)v~\/1(r)+//|G(t,x)|dxdt> . (4.48)
0 0 0 0

It is easy to deduce from (4.48) formula (4.28). The proof of Lemma 4.4 is finished. O

Lemma 4.5. Under the assumptions of Theorem 1.3, for small n > O there exists a constant & > 0 so small that on any given domain of
existence [0, T] x Rt of the piecewise C1 solution u = u(t, x) to the generalized Riemann problem (1.1), (1.11) and (1.12), there exist
positive constants k3, k4 and ks independent of n, €, T and M, such that the following uniform a priori estimates hold:

Wi(T) < kse, (4.49)

Uoo(T), Voo (T) < kan (4.50)
and

Woo(T) < ksM. (4.51)

Proof. We introduce

T +o00

QW(T)ZZZ//\wi(t,x)ij(t,x)\dxdt. (4.52)

=iy g

By (2.13), it follows from Lemma 4.4 that

+00 +0o0 T +oo 2
QW(T)<C1</|¢’(x)|dx+/(|o/(t)|+|h’(t)|)dt+voo(r)v71(r)+/f|c(t,x)|dxdt) , (4.53)
0 0 0 0

where here and henceforth ¢; (i=1,2,...) will denote positive constants independent of 1, ¢, T and M.
Noting (2.16), we have

T +o0

f/|c(t,x)|dxdt<c2QW(T). (4.54)
0 0

Substituting (4.54) into (4.53) and noting (1.21), we obtain

Quw (T) < ¢3(8 + Voo MW (T) + Qu (1) (4.55)

We next estimate W1 (T).
To estimate W1(T), we need to estimate

/|w,~(t,x)|dt,

Cj

where C; stands for any given j-th characteristic on the domain [0, T] x R*. Without loss of generality, we assume that C;
intersects the x-axis with point A(0, ), and intersects the line t = T with point B.

(i) For i =1,...,m, passing through point B, we draw the i-th backward characteristic C; which intersects the x-axis at
a point C(0, B). For fixing the idea, we may suppose that o < 8. Then, applying Corollary 2.1 on the domain ABC, we have

i
flwf(t,X)ij(u)—M(u)ldtgflwf(O,x)ldXJr Z/I([Wi]XL(t)— [wiri(w)]) dt|
C; o I<eS1fC\k

+ [ DI np@yw;wy| dxdt, (4.56)
ABC J7K
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where S stands for the set of all indices k such that the k-th contact discontinuity f,<: X = xi(t) is partly contained in the
domain ABC. Using (1.21), (3.4), (3.5) and (4.4), and noting the fact that i ¢ S1, we obtain

/|wf(t, 0|1 W) — 2| de < cale + Voo TF1(T) + Qu (1)) (457)
Cj

In the definition of W, (T), j #1i, thus we have from (4.2) that

|Aj @) — xi(u)| > 8. (4.58)
Therefore, it follows that
/lwf(t,x)|dt<cs{s+voo(T)Wl(T)Jr Qw(D}. (4.59)
Cj
(ii) For i=m+1,...,n, we draw the i-th backward characteristic C; passing through point B. Here, there are only two
possibilities:

(a) The i-th backward characteristic C; intersects the t-axis at a point C(8, 0). Applying (2.18) on the domain OABC and
noting (3.2), we have

/|w,-(r,x)\|x,-(u) — Aj(w)|dt

Cj

o B
g/[w,-(o,x)ydx+/\A,-(u(r,O))Hwi(t,O)\dr

+ Z /| [wilx, (t) — [wir; (u)])dt|+//Z|njk(u)ijk|drdx, (4.60)

k=m-+1 ket & 0ABC J#k

where fk: X = X (t) stands for the k-th contact discontinuity passing through the origin, which is contained in the region
OABC. Using (1.21), (3.4), (3.5) and (4.4), we obtain

B
/\wi(t,x)HAj(u) — Aw)|dt < cs{s + /\w,-(t, 0)| dt + Voo (T)W1(T) + QW(T)]. (4.61)
Cj 0
Therefore, it follows from (4.58) that
B
f|w,-(t,x)\ dt < C7{€ +/|W,-(t, 0)|dt + Voo (T)W1(T) + QW(T)}. (4.62)
Cj 0

Noting (4.4), by (4.22) we have

B
/|w (t, 0)|dt_2/\f,r(r wywi (¢, 0)|dt+2/|f,,(t et ()] de + Z /|f,,(t wh; ()| dt

0 r=1g j=1p l=m+17
m B +00
<C8[Z/|Wr(t, 0)|dt + / (lo'®)] + |h/(t)|)dt}. (4.63)
r=1y 0
Then, passing through C(8,0), we draw the r-th characteristic C; (r € {1,...,m}) which intersects the x-axis at point

D(0, xp). Applying Corollary 2.1 on the domain COD, we get

B Xp
/|Wr(t,0)(—kr(u)dt)| </}wr(o x)|dx + Z‘ /| (Iwrlx (6) — [wrarw)]) dt | +//Z|rr],<(u)w,wk|dxdr
0 0 k=m+1% cop J7k

<cofe + Voo MW (T) + QW(T)}. (4.64)
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Therefore, noting (4.25), it follows that

B
/lwra, 0)] dt < cr0{e + Voo (W1 (T) + Qu (T} (4.65)
0
Substituting (4.65) into (4.63) and noting (1.21) and (4.62), we have
[Iwite.0lde < cufe + Ve Ta(D) + Qui). (4.66)
Cj

(b) The i-th backward characteristic C; intersects the x-axis at a point (0, 8). By exploiting the same arguments as in (i),
we can deduce that

/|Wi(t, X)|dt < ciafe + Voo (HW1(T) + Qw (D)} (4.67)
Cj

Combining (4.59) with (4.66) and (4.67), we have

W1 (T) < c13]e + Voo (NW1(T) + Quw (D)} (4.68)

We next estimate Uy (T) and Vo (T).
(i) For i =1,...,m, passing through any fixed point (t,x) € [0, T] x RT, we draw the i-th backward characteristic C;
which intersects the x-axis at a point (0, ). Integrating (2.5) along this characteristic C; and noting (2.7) yields

n
Vilt,) =vi0, )+ Y [vilk+ [ Y By widt, (4.69)
keS, G J.k=1k#i

where S, denotes the set of all indices k such that this characteristic C; intersects the k-th contact discontinuity x = x,(t)
at a point (t, Xk (tx)), and [v;]x = vi(tk, xk(tx) + 0) — v;i(tk, Xk (tx) — 0). Noting Remark 1.1 and using (1.21), we have

+00
|(p(x)|<|(p(0)|+/|go’(x)|dx<n+8, Vx eRT. (4.70)
0

Therefore, noting the fact that i ¢ S,, and using (1.13), (3.3) and (4.4), we get from (4.69)-(4.70) that

vitt, 0| < crafn + & + Voo (T)[ Voo (T) + W1 (T)]}. (4.71)

(ii) For i=m+1,...,n, passing through any fixed point (t,x) € [0, T] x R*, we draw the i-th backward characteristic C;:
X =X;(s; t, x). Here, there are only two possibilities:

(a) The i-th backward characteristic C; intersects the t-axis at a point (tp, 0). Integrating (2.5) along this characteristic C;
and noting (2.7) yields

t

n
vilt, ) = vito, 0) + D [vilk+ | Y Bik@)viw(s, xi(s; ¢, x)) ds, (472)
keSs to J.k=1,k#i

where S3 denotes the set of all indices k such that this characteristic C; intersects the k-th contact discontinuity x = x,(t)
at a point (ty, xk(ty)), and [vilx = vi(tk, Xk (tx) + 0) — v;i(t, Xk (tx) — 0). Noting (1.15), by (1.12), it is easy to see that

Vi(to. 0) = > _ gir(to)vr(to. 0) + hi(to), (4.73)
r=1
where
[ 3G
g,-r(to):/a—v'(oc(to),rv1(t0,0),...,rvm(to,O))dr. (4.74)
0

Noting Remark 1.1 and using (1.21), we have

+00
yhs(t)\g|hs(0)|+/|h;(t)ydtgn+e (s=m+1,...,n). (4.75)
0
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Therefore, using (3.3), (4.4) and noting the fact that i ¢ S3, we obtain from (4.71)-(4.72) that

it 0] <cisin+e+ > |[vi(to. 0)] + Voo (T)[ Voo(T) + Wm]}

r=1
<cie{n+&+ Voo (N[Voo(T) + W1 (D]} (4.76)

(b) The i-th backward characteristic C; intersects the x-axis at a point (0, «v). By exploiting the same arguments as in (i)
and noting the fact that i ¢ S;, we can deduce that

Vi(t, 0)| < c17{n + & + Voo (T)[ Voo (T) + W1 (D]} (4.77)
Combining (4.71) and (4.76), (4.77), we have

Voo(T) <618{77+8+Voo(T)[Voo(T)+W1(T)]}- (4.78)
We now prove (4.49)-(4.50) and

Qw (T) < kee?, (4.79)

where kg is a positive constant independent of 1, ¢ and T.
Recalling (4.70), evidently we have

Uxo(0), Vo (0) < C197 (4.80)

and

Qw (0)=W1(0)=0, (4.81)

provided that & <« 7. Thus, by continuity there exist positive constants k3, ks and ke independent of 1, & and T such
that (4.49)-(4.50) and (4.79) hold at least for 0 < T < 79, where tp is a small positive number. Hence, in order to
prove (4.49)-(4.50) and (4.79) it suffices to show that we can choose k3, k4 and kg in such a way that for any fixed Ty
(0 < To < T) such that

W1(To) < 2kse, (4.82)
Voo (To) < 2kan, (4.83)
Qw (To) < 2kee?, (4.84)

we have

W1(To) <kse, (

Vo (To) < kan, (4.86)
(
)

Qw (To) < kee?.

easy to see that, when n > 0 is suitably small, we have

w (To) < 4c3e”, .

Qw (To) < 4c3e? (4.88)
W1 (To) < 2c13¢, (4.89)
Voo (To) < 3c187, (4.90)

provided that &€ < 1.

Hence, if k3 > 2cq13, k4 > 3c1s and kg > 4c3, then we get (4.85)-(4.87), provided that n is suitably small. This
proves (4.49)-(4.50) and (4.79).

We finally estimate W (T).

(i) For i =1,...,m, passing through any fixed point (t,x) € [0, T] x RT, we draw the i-th backward characteristic C;
which intersects the x-axis at a point (0, y). Integrating (2.8) along this characteristic C; and noting (2.10) and (2.12) yields

n
wi(t, ) =wi(0,y)+ Y [wilk+ [ D viw,wdt, (4.91)
keSy ¢ =1
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where S4 denotes the set of all indices k such that this characteristic C; intersects the k-th contact discontinuity x = x(t)
at a point (ty, xk(tx)), and [w;ily = w;(tk, Xk (k) + 0) — w; (tk, Xk (tx) — 0). Using (3.4) and (4.4) and noting the fact that i ¢ Sy,
we have

|Wi(t, )| < Woo (0) + c20{ Voo (T) Woo (T) + Woo(T)W1(T)}- (4.92)
Hence, noting (1.14), (4.49) and (4.50), it is easy to see that

(Wit %)| < ca1{M + nWeo(T) + eWoo (T)}. (4.93)

(ii) For i=m+1,...,n, for any fixed point (t,x) € [0, T] x R, we draw the i-th backward characteristic C; passing

through this point. Here, there are only two possibilities:
(a) The i-th backward characteristic C; intersects the x-axis at a point (0, ). By exploiting the same arguments as in (i)
and noting the fact that i ¢ S4, we can deduce that
|wi(t, )| < c22{M + W (T) + eWoo(T) ). (4.94)

(b) The i-th backward characteristic C; intersects the t-axis at a point (tg, 0). Integrating (2.8) along this characteristic C;
from ¢ty to t and noting (2.10) and (2.12) yields

n
wi(t,x) = wi(to,0)+ > [wilk+ [ Y vipww,wdt, (4.95)
keSs & Ji=1j#

where S5 denotes the set of all indices k such that this characteristic C; intersects the k-th contact discontinuity x = x,(t)
at a point (ty, xk(ty)), and [wily = w;(tg, X (tx) + 0) — wi(tk, Xk (tx) — 0). It follows from (4.22) that

m k n
wi(to.0) =Y _ fir(to. u(to, 0)) wr(to, 0) + Y _ fij(to. utto. 0))eto) + Y Ffuto. uto. 0))h](to). (4.96)
r=1 j=1 I=m+1
Then, noting (1.14), (4.4) and (4.93), we have
|Wi(to, 0)| < c23{M + nWoo(T) + eWoo (T)}. (4.97)

Substituting (4.97) into (4.95) and noting (3.4), (4.4), (4.49), (4.50) and the fact that i ¢ S5, we obtain

(Wit )| < c2a{ M+ nWeo(T) + eWoo(T) }. (4.98)
Combining (4.93) with (4.94) and (4.98) gives
Woo(T) < €25 {M + nWoo(T) + Wao(T) ], (4.99)
which implies (4.51).

Finally, we observe that when 7 > 0 is suitably small, by (4.50) we have

1
Uno(T) < kan < 53. (4.100)

This implies the validity of hypothesis (4.4). The proof of Lemma 4.5 is finished. O

Proof of Theorem 1.3. Under the assumptions of Theorem 1.3, from (4.50) and (4.51), we know that for small > O there
exists & > 0 suitably small such that on any given domain of existence [0, T] x Rt of the piecewise C! solution u = u(t, x)
to the generalized Riemann problem (1.1), (1.11) and (1.12), the piecewise C! norm of the solution possesses a uniform
a priori estimate independent of T. This leads to the conclusion of Theorem 1.3 immediately. The proof of Theorem 1.3 is
finished. O

5. Applications
5.1. System of the planar motion of an elastic string

Consider the following generalized initial-boundary Riemann problem for the system of the planar motion of an elastic
string (cf. [3,15,46])

ur — vy =0,

Vi — (%u) =0 (5.1)
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with the initial condition

t=0: u="1g+upk), v=vo(x) (x=0) (5.2)

and the boundary condition on the fixed end

x=0: v=0. (5.3)

Here, u= (u1,u2)", v=(v1,vo)", r=u|=/u? +u3, U= @9, U7 is a constant vector with 7o = [p| =/ (@92 + @2 > 1,

(uo(x)T, vo(x)T) € C1. Suppose that the conditions of C° compatibility are not satisfied at the point (0, 0).
Let

u
U:(V). (5.4)

It is easy to see that in a neighborhood of Uy = (500), system (5.1) is strictly hyperbolic and has the following four distinct
real eigenvalues:

MU =-1 <)\2(U)=—,/¥ <0<A3(U)=,/$ <MU)=1. (5.5)

The corresponding left and right eigenvectors are

hU) = (u",ul), lz(U):<‘/%w7,wT),

13(U)=( rile,—wT>, la(U) = (u, —uT) (5.6)

u w
T1(U)=<u>, r2(U) = 1, )
—w Ly
r3(U) = =1, | r4(U):( u ) (5.7)

respectively, where

and

w=(—uz,up)’. (5.8)
It is easy to see that all characteristic fields are linearly degenerate, i.e.,
Vra(U)riU)y=0 (@(=1,...,4). (5.9)
Let
Vi=LU)U —-Up) (@(=1,...,4). (5.10)
Then, the boundary condition (5.3) can be rewritten as
x=0: V3=V, Va=Vj. (5.11)

By Theorem 1.3 we get
Theorem 5.1. Suppose that ug, vo are C! functions with respect to their arguments, for which there is a constant M > 0 such that
[uo@ | c1, [vo@ | < M. (5.12)
Suppose furthermore that the conditions of C° compatibility are not satisfied at the point (0, 0). Suppose finally that

12 |(u0(0),vo(0))| > 0 is suitably small. (5.13)

Then for any constant M > 0, there exists a positive constant € so small that if
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+o00 +o00
/|u5(x)\dx, f lvo()|dx <e, (5.14)
0 0

then the generalized Riemann problem (5.1)-(5.3) admits a unique global piecewise C! solution U = U(t, x) containing only two
contact discontinuities x = x;(t) (x;(0) = 0) (i = 3,4) on the domain {(t,x) | t > 0, x > 0}. This solution has a global structure
similar to the one of the self-similar solution to the corresponding Riemann problem.

Suppose, now, that the initial condition (5.2) is replaced by
t=0: u=1p+ugx), v=Vo+vo®) (x>=0) (5.15)
and the boundary condition (5.3) is replaced by the following dissipative boundary condition

r—1
x=0: Tu =av (o > 0isaconstant), (5.16)

where g = (TI?, ﬁg)T and Vg = (V?, V(Z))T are constant vectors such that 7o = |lip| > 1 and

To—1- ~
0" %o = Vo, (5.17)
To

(o) T, vo(x)T) e C1. Suppose that the conditions of C® compatibility are not satisfied at the point (0, 0).
Let

Vi=LU)YWU —-Up) (i=1,...,4), (5.18)
in which
_ (1o
Ug = (Vo)’ (5.19)

Then, the boundary condition (5.16) can be rewritten as

x=0: V3= f3(Vqy, V), Va= fa(Vq, V), (5.20)

where f3 and f, are C! functions with respect to their arguments, which satisfy

f3(0,0) = f4(0,0) =0, (5.21)

see [3].
By Theorem 1.3 we get

Theorem 5.2. Suppose that ug, vo are C! functions with respect to their arguments, for which there is a constant M > 0 such that
H UO(X) Hcl s H VO(X) H ! < M.
Suppose furthermore that the conditions of C° compatibility are not satisfied at the point (0, 0). Suppose finally that

n 2 |(u0(0), vo(0))| > 0 is suitably small.

Then for any constant M > 0, there exists a positive constant & so small that if

+00 +00
/Iué(X)ldx,/lva(x)|dx<e,
0 0

then the generalized Riemann problem (5.1), (5.15) and (5.16) admits a unique global piecewise C! solution U = U (t, x) containing
only two contact discontinuities x = x;(t) (x;j(0) = 0) (i = 3,4) on the domain {(t,x) | t > 0, x > 0}. This solution has a global
structure similar to the one of the self-similar solution to the corresponding Riemann problem.
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5.2. System of the motion of relativistic strings in the Minkowski space R1+"

Consider the following generalized initial-boundary Riemann problem for the system of the motion of relativistic strings
in the Minkowski space R'*" (cf. [47,55]):

( [vI2u — (u, v)v )_( (u, viu— (jul> = v ) o
Vv —(uRr—nvR/c \Vwv)2 =R -nvRe/e (5.22)

vi—ug=0

with the initial condition
t=0: u=up®), v=Vo+vo®) (6=>0) (5.23)
and the boundary condition

0=0: u=0 (t=0), (5.24)

where u = (uy,...,un)", v=(v1,...,v)T, Vo= (¥9,..., V)T is a constant vector with [Vo| = ,/(V)2 +---+ (VD)2 >0,

(wo(®)T, vo(0)T) € C1. Suppose that the conditions of CO compatibility are not satisfied at the point (0, 0).
Let

u
U= (V) (5.25)

We can rewrite system (5.22) as

U+ AU)Up =0, (5.26)

where
2wy, |u|2—11
AU) = vz T ez Ty (5.27)
—Inxn 0

It is easy to see that in a neighborhood of Uy = (VOO)' (5.22) is a hyperbolic system with the following real eigenvalues:

MU)=---=4U)=A- <0< p(U)=---=rp(U) = A4, (5.28)
where

—(u, v+ (u, v)2 — (Julz2 = D|v|?
rp = ZU V) EV W) = (P = DVE (5.29)

[v|2
The corresponding left and right eigenvectors are
liU)=(ej,rpep) (i=1,...,n), Li(U)=(ej_n,reji_p) (=n+1,...,2n) (5.30)
and
ri(U)=(—r_eje)’ (i=1,....,n),  ri(U)=(—rsei_n.ein) (=n+1,...,2n) (531)

respectively, where

(@)
ei=(0,...,0,1,0,...,0) (i=1,....m. (5.32)

When n =1, (5.22) is a strictly hyperbolic system; while, when n > 2, (5.22) is a non-strictly hyperbolic system with
characteristics with constant multiplicity. It is easy to see that all characteristic fields are linearly degenerate in the sense of
Lax, i.e.,

viiUriU)y=0 (i=1,...,2n), (5.33)
see [47].
Let
Vi=LU)YWU —-Up) (i=1,...,2n). (5.34)

Then, the boundary condition (5.24) can be rewritten as

0=0: Vpyi=-V; (i=1,....n). (5.35)
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By Theorem 1.3 we get

Theorem 5.3. Suppose that ug, vo are all C! functions with respect to their arguments, for which there is a constant M > 0 such that

[uo® [ co: [vo® ] co. [uo® o [vo®]lco < M. (5.36)

Suppose furthermore that the conditions of C° compatibility are not satisfied at the point (0, 0). Suppose finally that

12 |(u0(0),vo(0))| > 0 is suitably small. (5.37)

Then for any constant M > 0, there exists a positive constant € so small that if
+o0 ~+00
/|ug(9)yd9, / lvo(0)|do < e, (5.38)
0 0

then the generalized Riemann problem (5.22)—(5.24) admits a unique global piecewise C! solution U = U (t, 0) containing only one
contact discontinuity 6 = 6(t) (6(0) = 0) with constant multiplicity n on the domain {(t,0) | t > 0, 6 > 0}. This solution has a global
structure similar to the one of the self-similar solution to the corresponding Riemann problem.

5.3. The Born-Infeld system

The Born-Infeld model is a nonlinear version of Maxwell’s theory, it was introduced by Born and Infeld [48] in the
1930s to cutoff (in a nonlinear fashion) the singularities created by point particles in classical Electrodynamics. Recently, the
Born-Infeld system has attracted considerable attention because of its new applications in the string theory and high energy
physics. We refer the reader to Boillat et al. [49], Brenier [50] and Serre [51] for mathematical analysis of the BI system and
to Gibbons [52] for its impact in modern high energy physics and string theory. The one-dimensional Born-Infeld system
reads (cf. [50]):

B D,P1 — D41 P
8tD2+8x( 3t Zhl ! 2):0,
—B D3P1— D1 P
Bth—{—ax( 2+ 3h1 1 3)207
—D3 + ByPy — By P
8th+8x< 3+ zh1 1 2)=0’ (5.39)
D, + B3P1 — B1P
8t83+8x< 2+ B3P1 — B 3)2 ’
h
Pu)=D x B, h(u):\/1+|B|2+|D|2+|D><B|2,

where u = (D, D3, B2, B3)T are the unknown variables, By, Dy are real constants and

B=(B1,B2,B3)', D=(D1,D3,D3)",  P=(P1,P2,P3)".
We are interested in the generalized initial-boundary Riemann problem for system (5.39) with the initial condition
t=0: u=u'(x)=(D%+ DI(x), DY+ DI(x), B + BI(x), BS + BI(x)" (x>0) (5.40)
and the boundary condition
x=0: Dy=D3=0 (t=>0), (5.41)
where 1’372), 1’373], Eg, and Eg are real constants, (DJ(x), DJ(x), BY(x), B3(x))T € C!, such that
REC]

DS 1 BY ()|

for some positive constant M (bounded but possibly large). Also, we assume that the conditions of C° compatibility are not
satisfied at the point (0, 0) and

D9BY — D9BY < \/1+ B2 + D? (5.43)

BY®) |1 <M, (5.42)

|c1’ |c1’

holds.
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From Li et al. [53], we know that in a neighborhood of u® = (56, Eg, gg, ’B;g)T, (5.39) is a linearly degenerate hyperbolic
system with the following real eigenvalues:

Py — P
178 0 < as() = ag(u) = 119 (5.44)

AM) =A2(u) = P

The corresponding left eigenvectors are

ll(u):(a’ :31’05 _:33)» lz(u):(_ﬁh’a? ﬂ3»0)7
l3(u):(07 _ﬂZaav :31)9 14(u):(/32507 _ﬂ]sa)v (545)

in which

p1=B1D1, pr=1+B%  p3=1+D] and a=.1+B2+D?>0. (5.46)

Hence, system (5.39) is non-strictly hyperbolic but with characteristics with constant multiplicity. They found that it enjoys
many interesting properties like non-strictly hyperbolicity, constant multiplicity of eigenvalues, linear degeneracy of all
characteristic fields, richness, existence of entropy-entropy flux pairs, etc.

Let
Vi=Lhw(u—-u®) A<i<4a. (5.47)
Then, the boundary condition (5.41) can be rewritten as
a a
x=0: V3:—ﬁV1+—V2, V4:——V]—&V2, t>0. (5.48)
B3 B3 B3 B3

By Theorem 1.3 we get

Theorem 5.4. Suppose that Dg(x), Dg(x), Bg(x) and Bg(x) are C! functions with respect to their arguments, for which there is a
constant M > 0 such that

[D3CO] ¢, | D3CO 1 | BSCO) |

Suppose furthermore that the conditions of CO compatibility are not satisfied at the point (0, 0) and (5.43) holds. Suppose finally that

B |1 <M.

n £ |(D9(0), DY(0), BS(0), BS(0))| > 0 is suitably small. (5.49)
Then for any constant M > 0, there exists a positive constant & so small that if

+o00 +00 +00 +00

/ |DY (%) dx, / |DY (x| dx, / |BY ()| dx, / |BY (0)|dx <, (5.50)

0 0 0 0

then the generalized Riemann problem (5.39)-(5.41) admits a unique global piecewise C! solution u = u(t, x) containing only one
contact discontinuity x = x(t) (x(0) = 0) with constant multiplicity 2 on the domain {(t,x) |t > 0, x > 0}. This solution has a global
structure similar to the one of the self-similar solution to the corresponding Riemann problem.
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