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If (Σ, X) is a measurable space and X a Banach space we investigate the X-inheritance
of copies of �∞ in certain subspaces �(Σ, X) of bvca(Σ, X), the Banach space of all
X-valued countable additive measures of bounded variation equipped with the variation
norm. Among the consequences of our main theorem we get a theorem of J. Mendoza on
the X-inheritance of copies of �∞ in the Bochner space L1(μ, X) and other of the author
on the X-inheritance of copies of �∞ in bvca(Σ, X).
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1. Preliminaries

In what follows (Ω,Σ) will always be a measurable space and X a Banach space over the field K of real or complex
numbers. We shall denote by ca(Σ, X) the Banach space of all countably additive measures F :Σ → X provided with
the semivariation norm ‖F‖Σ , while cca(Σ, X) will stand for the closed subspace of ca(Σ, X) of all those measures with
relatively compact range. We represent by ca+(Σ) the set of positive and finite measures defined on Σ and denote by
bvca(Σ, X) the Banach space of all X-valued countably additive measures F :Σ → X of bounded variation equipped with
the variation norm |F |Σ . If μ ∈ ca+(Σ) then bvcaμ(Σ, X) stands for the subspace of bvca(Σ, X) of all those measures
F ∈ bvca(Σ, X) such that F � μ. A Banach space X is said to have the Radon–Nikodým property (RNP) with respect to
a finite measure space (Ω,Σ,μ) if every F ∈ bvcaμ(Σ, X) has a Bochner μ-integrable X-valued derivative. If X has the
RNP with respect to every finite measure space (Ω,Σ,μ), it is said that X has the RNP [2]. Following [9] we denote by
M1(Σ, X) the (closed) linear subspace of bvca(Σ, X) consisting of all measures F ∈ bvca(Σ, X) with the Radon–Nikodým
property, that is, such that for each μ ∈ ca+(Σ) with F � μ there exists a density f ∈ L1(μ, X) with F (E) = (B)

∫
E f dμ for

every E ∈ Σ . According to [9, Theorem 5.22] the space M1(Σ, X) is linearly isometric to ca(Σ) ⊗̂π X . Thus if F ∈ M1(Σ, X)

then F ∈ cca(Σ, X) = ca(Σ) ⊗̂ε X . If X has the RNP with respect to each μ ∈ ca+(Σ) then clearly M1(Σ, X) = bvca(Σ, X).
Particularly, if X has the RNP then M1(Σ, X) = bvca(Σ, X).

If each μ ∈ ca+(Σ) is purely atomic, then ca(Σ, X) contains a copy of c0 or �∞ if and only if X contains, respectively,
a copy of c0 or �∞ [4]. If X has the Radon–Nikodým property with respect to each μ ∈ ca+(Σ), then bvca(Σ, X) contains
a copy of c0 or �∞ if and only if X does [6]. As a consequence, if each μ ∈ ca+(Σ) is purely atomic, then bvca(Σ, X) contains
a copy of c0 or �∞ if and only if X contains, respectively, a copy of c0 or �∞ . If there exists a nonzero atomless measure
μ ∈ ca+(Σ), the latter statement is no longer true [11]. However, if the range space of the measures is a dual Banach
space X∗ , then bvca(Σ, X∗) has a copy of c0 if and only if X∗ does [10]. For further information about the inheritance of
copies of c0 or �∞ in other spaces of vector-valued functions or operators we refer the reader to the excellent tract [1].
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2. Results

In what follows �(Σ, X) will stand for any closed linear subspace of bvca(Σ, X), i.e. a Banach space of countably additive
measures F :Σ → X of bounded variation equipped with the variation norm |F |Σ . Given �(Σ, X), if Γ is a sub-σ -algebra
of Σ and Y is a closed linear subspace of X we denote by �[Γ, Y ] the linear subspace of bvca(Γ, Y ) consisting of the
Y -valued restrictions to Γ of the elements of �(Σ, X), i.e.

�[Γ, Y ] = {
F |Γ : F ∈ �(Σ, X), F (Γ ) ⊆ Y

}
,

equipped with the norm | · |Γ of bvca(Γ, Y ). If μ ∈ ca+(Σ) we represent by �μ[Γ, Y ] the linear subspace of �[Γ, Y ]
consisting of those G ∈ �[Γ, Y ] with G � μ|Γ .

Theorem 2.1. If �(Σ, X) contains an isomorphic copy of �∞ then either X contains an isomorphic copy of �∞ or there exist a
countably generated sub-σ -algebra Γ of Σ , a scalar measure μ ∈ ca+(Σ) and a closed and separable linear subspace Y of X such
that the closure of �μ[Γ, Y ] in bvcaμ|Γ (Γ, Y ) contains an isomorphic copy of �∞ .

Proof. Let J be an isomorphism from �∞ into �(Σ, X) and denote by {en: n ∈ N} the unit vector sequence of �∞ . For each
pair m,n ∈ N let {Em

n,i: 1 � i � k(m,n)} be a finite partition of Ω by elements of Σ verifying that

| J en|Σ �
k(m,n)∑

i=1

∥∥ J en
(

Em
n,i

)∥∥ + 1

m
.

Let us denote by Λ the algebra generated by the countable family{
Em

n,i: 1 � i � k(m,n); m,n ∈ N
}
.

Observe that Λ is also a countable family [7, 1.5 Theorem C] and denote by Γ the σ -algebra generated by Λ. Since clearly
Ω ∈ Γ , then Γ is a sub-σ -algebra of Σ .

Define T :�(Σ, X) → �[Γ, X] by T F = F |Γ . This map is well defined, linear and bounded since |F |Γ |Γ � |F |Σ for all
F ∈ �(Σ, X). Thus T ◦ J is a bounded map from �∞ into �[Γ, X]. Further, given m ∈ N, by virtue of the definition of Γ one
has

| J en|Σ �
k(m,n)∑

i=1

∥∥ J en
(

Em
n,i

)∥∥ + 1

m
� | J en|Γ |Γ + 1

m
,

which implies that | J en|Σ = | J en|Γ |Γ = |(T ◦ J )en|Γ for every n ∈ N.
Let Y denote the closure in X of the linear cover of the countable subset

⋃∞
n=1 J en(Λ) of X formed by the union of

the images of the countable set Λ by the measures J en . Let us suppose that Λ = {An: n ∈ N}. Then assume that X does
not contain a copy of �∞ and define Jn :�∞ → X by Jnξ = ( Jξ)(An) for each n ∈ N. Since �∞ does not live in X and Jn

is a bounded linear operator for each n ∈ N, all the operators Jn are weakly compact. So, according to [5], there exists an
infinite subset N of N such that

Jnξ =
∞∑

i=1

ξi Jnei

for each n ∈ N and ξ ∈ �∞(N). So one has

Jξ(An) =
∞∑

i=1

ξi J ei(An)

in X for every ξ ∈ �∞(N) and n ∈ N. But since J ei(An) ∈ Y for every i,n ∈ N and Y is closed, we get that Jξ(An) ∈ Y
for every ξ ∈ �∞(N) and n ∈ N, i.e. Jξ(A) ∈ Y for every ξ ∈ �∞(N) and A ∈ Λ. By the classic theorem on monotone
classes [7, 1.6 Theorem B], the family {E ∈ Σ: Jξ(E) ∈ Y ∀ξ ∈ �∞(N)} contains the sub-σ -algebra Γ generated by Λ. So
we conclude that Jξ(A) ∈ Y for every ξ ∈ �∞(N) and A ∈ Γ .

Hence Jξ |Γ ∈ �[Γ, Y ] for ξ ∈ �∞(N), i.e. (T ◦ J )ξ ∈ �[Γ, Y ] for each ξ ∈ �∞(N) or, in other words, T ( J (�∞(N))) ⊆
�[Γ, Y ]. There is no loss of generality by identifying N with N.

If μ := ∑∞
n=1 2−n| J en|Σ then μ ∈ ca+(Σ), and since J en|Γ ∈ bvcaμ|Γ (Γ, Y ) for all n ∈ N, setting ξm = (ξ1, . . . , ξm,0,0, . . .)

one has Jξm|Γ ∈ bvcaμ|Γ (Γ, Y ) for every m ∈ N and ξ ∈ �∞ . Thus Jξm|Γ � μ|Γ for every m ∈ N and ξ ∈ �∞ . But we can go
beyond this. Let us show the following.

Claim. Jξ |Γ � μ|Γ for each ξ ∈ �∞ .
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Proof. Since we are assuming that X does not contain a copy of �∞ the linear operators J E :�∞ → X defined by J Eξ =
Jξ(E) for each E ∈ Σ are weakly compact and consequently a standard argument (see for instance the proof of main
theorem of [6]) shows that E �→ ∑∞

n=1 ξn J E en is an X-valued countable additive measure on Σ of bounded variation and
that the map S :�∞ → bvca(Σ, X) given by Sξ(E) = ∑∞

n=1 ξn J E en is well defined, bounded and verifies that Sξ � μ for all
ξ ∈ �∞ . Fix ξ and note that

Sξ(An) =
∞∑

i=1

ξi J An ei =
∞∑

i=1

ξi J ei(An) = Jξ(An)

for every n ∈ N. Consequently Sξ coincides with Jξ on the algebra Λ. Now assume that A ∈ Γ satisfies that μ(A) = 0. Then
Sξ(A) = 0 since Sξ � μ and hence x∗ Sξ(A) = 0 for every x∗ ∈ X∗ . Given that Λ is an algebra and the countably additive
measure x∗ Jξ |Γ is an extension of the bounded, scalarly valued, countably additive measure x∗ Sξ |Λ to the σ -algebra Γ ,
Hahn’s extension theorem [3, Corollary III.5.9] guarantees that x∗ Jξ |Γ = x∗ Sξ |Γ and, consequently, that x∗ Jξ(A) = 0. Since
this is true for every x∗ ∈ X∗ , it follows that Jξ(A) = 0. So Jξ |Γ � μ|Γ , which completes the proof of the claim. �

Summarizing: first we have seen that (T ◦ J )ξ ∈ �[Γ, Y ] for every ξ ∈ �∞(N), where N is an infinite subset of N,
and then we have proved that (T ◦ J )ξ � μ|Γ for each ξ ∈ �∞(N), so that (T ◦ J )ξ ∈ �μ[Γ, Y ] for every ξ ∈ �∞(N).
Consequently, T ◦ J is a bounded linear operator from �∞(N) into �μ[Γ, Y ]. Since |(T ◦ J )en|Γ = | J en|Σ for every n ∈ N ,
then infn∈N |(T ◦ J )en|Γ > 0 and Rosenthal’s �∞ theorem guarantees that the completion of �μ[Γ, Y ], that is, the closure of
�μ[Γ, Y ] in bvcaμ|Γ (Γ, Y ), contains a copy of �∞ . �
Corollary 2.2. If �μ[Γ, Y ] is separable for every countably generated sub-σ -algebra Γ of Σ , every μ ∈ ca+(Γ ) and every closed and
separable linear subspace Y of X , then X contains a copy of �∞ if �(Σ, X) does.

Proof. If �(Σ, X) contains a copy of �∞ but X does not then Theorem 2.1 provides a countably generated sub-σ -algebra
Γ of Σ , a scalar measure μ ∈ ca+(Σ) and a closed and separable linear subspace Y of X such that the closure of �μ[Γ, Y ]
in bvcaμ|Γ (Γ, Y ) contains a copy of �∞ , contradicting the hypothesis. �
Corollary 2.3. If every closed and separable linear subspace of X has the Radon–Nikodým property, then X contains a copy of �∞ if
�(Σ, X) does.

Proof. If Γ is a sub-σ -algebra of Σ , μ ∈ ca+(Γ ) and Y is a closed linear subspace of X then, by hypothesis, �μ[Γ, Y ]
is linearly isometric to a subspace of L1(Γ,μ|Γ , Y ). Hence, if Γ is a countably generated sub-σ -algebra of Σ and Y is
separable, then �μ[Γ, Y ] is linearly isometric to a linear subspace of the separable Banach space L1(Γ,μ|Γ , Y ). According
to Corollary 2.2 this implies that X contains a copy of �∞ if �(Σ, X) does. �
Corollary 2.4. (See Mendoza [8].) If �(Σ, X) = {F ∈ M1(Σ, X): F � μ} with μ ∈ ca+(Σ), then X contains a copy of �∞ if �(Σ, X)

does.

Proof. First note that if Γ is a sub-σ -algebra of Σ then �[Γ, X] is isomorphic to a subspace of L1(Γ,μ|Γ , X). In fact,
if G ∈ �[Γ, X] there exists F ∈ M1(Σ, X) with F � μ such that F |Γ = G . So there is f ∈ L1(Σ,μ, X) satisfying that
F (E) = ∫

E f dμ for every E ∈ Σ and, according to [2, Chapter V, Theorem 4], there exists a unique E( f | Γ ) ∈ L1(Γ,μ|Γ , X),
the so-called conditional expectation of f relative to Γ , such that G(A) = ∫

A E( f | Γ )dμ|Γ for every A ∈ Γ . Since

|G|Γ =
∫
Ω

∥∥E( f | Γ )(ω)
∥∥dμ|Γ (ω)

the map G �→ E( f | Γ ) is a linear isometry from �[Γ, X] into L1(Γ,μ|Γ , X). Hence, if Γ is a countably generated
sub-σ -algebra of Σ and Y is a closed and separable linear subspace of X then �[Γ, Y ] is linearly isometric to a linear
subspace of L1(Γ,μ|Γ , Y ). Since L1(Γ,μ|Γ , Y ) is separable, we apply Corollary 2.2 to get the conclusion. �
Corollary 2.5. M1(Σ, X) contains a copy of �∞ if and only if X does.

Proof. If J is an isomorphism from �∞ into M1(Σ, X), set μ = ∑∞
n=1 2−n| J en|Σ . Then let �(Σ, X) := {F ∈ M1(Σ, X):

F � μ} be as in Corollary 2.4 and define π : M1(Σ, X) → �(Σ, X) so that π(F ) is the μ-continuous part of F supplied by
the Lebesgue decomposition theorem of F . The fact that F has the Radon–Nikodým property assures that π(F ) ∈ M1(Σ, X)

and hence π(F ) ∈ �(Σ, X). Clearly π is a continuous linear projection and, consequently, T := π ◦ J is a bounded map
from �∞ into �(Σ, X). Since T en = J en for all n ∈ N, Rosenthal’s �∞ theorem ensures that �(Σ, X) contains a copy of �∞ .
So Corollary 2.4 applies. �
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Corollary 2.6. (See Ferrando [6].) If X has the Radon–Nikodým property with respect to each μ ∈ ca+(Σ), then bvca(Σ, X) contains
a copy of c0 or �∞ if and only if X does.

Proof. Just notice that if X has the RNP with respect to each μ ∈ ca+(Σ) then clearly bvca(Σ, X) = M1(Σ, X), so we can
use Corollary 2.5. �
3. Remark

In [8] the containment of a copy of �∞ in L1(Ω,Σ,μ, X) is reduced by means of [3, Lemma III.8.5] to the presence of a
copy of �∞ in a space L1(Ω1,Σ1,μ1, X), where (Ω1,Σ1,μ) is a separable finite measure space (see also [1, Theorem 1.6.2])
and then, assuming that X contains no copy of �∞ , an application of Drewnowski’s lemma [5] allows to locate a copy of �∞
in a space L1(Ω1,Σ1,μ1, X0) with separable X0, getting a contradiction. In the proof of Theorem 2.1 we have followed as
far as possible a similar (but not identical) strategy, working with the measures rather than with the functions.
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