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1. Introduction

Let Ω be an open subset in R
N and consider the following semilinear elliptic problem{−�u = fλ(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(P)

where fλ : Ω × R → R
+ is a Caratheodory mapping with λ a real parameter. The existence, multiplicity, regularity of

solutions of (P) have been extensively investigated, see [1,39] and the references therein.
When fλ is sublinear, for example, fλ(x, u) = λuq , 0 < q < 1, sub-super solutions can easily provide the existence of (P)

for all λ > 0.
When fλ is the sum of a linear term and a superlinear term, such as, fλ(x, u) = λu + up , 1 < p < 2∗ − 1, 2∗ = 2N

N−2 .
[3] showed that (P) has at least one positive solution if 0 < λ < λ1, where λ1 is the first eigenvalue of −� under Dirichlet

boundary condition. When p = 2∗ − 1, say fλ(x, u) = λu + u
N+2
N−2 , the problem becomes delicate because the lack of com-

pactness. However, Brezis and Nirenburg [21] restored the compactness in bounded domain. They proved that the nontrivial
bounded positive solution only exists for 0 < λ < λ1, N > 3, and 0 < λ∗ < λ < λ1, N = 3, still by variational arguments.
On the other hand, the well-known Pohozǎev’s identity showed the nonexistence for (P) with λ � 0 and p � 2∗ − 1, if Ω

is strictly star-shape. While Kazdan and Warner [24] showed the existence for all p > 1 if Ω is an annulus. Furthermore,
Coron [25] used a variational approach to prove the solvability of (P), if Ω exhibits a small hole; while Rey [37] solved
it for Ω exhibiting several small holes. Later, in [4], Bahri and Coron established that “nontrivial topology” (i.e., certain
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homology groups of Ω are nontrivial) guarantees the existence of a solution. Moreover, this nontriviality condition is only
sufficient but not necessary, as some examples in [9,13,52].

When fλ is the sum of a sublinear term and a superlinear term, for example, fλ(x, u) = λuq + up , 0 < q < 1 < p, the
so-called concave–convex nonlinearity. Ambrosetti, Brezis and Cerami [2] showed that, if p > 1, there exists a constant
Λ > 0, such that the problem has a minimal solution if λ ∈ (0,Λ), has no solution if λ > Λ, and has a second solution if
p ∈ (1,2∗ − 1], λ ∈ (0,Λ). For other results about this problem referring to [15,50,53].

When fλ has supercritical growth, the general variational arguments can’t be used directly because the corresponding
functional is not well defined on the Sobolev space H1

0(Ω). So we need some techniques. Merle and Peletier [16] studied
the problem fλ(x, u) = up − λuq , q > p � 2∗ − 1, λ > 0, by defining a functional K on the set H = {v: ∇v ∈ L2(RN ), v ∈
Lq+1(RN )} they proved that the infimum of K on H ∩ ∂ B was achieved where ∂ B = {v ∈ L p+1(RN ):

∫
v p+1 = 1}. This

contributes a solution for λ small enough.
In fact, most researchers solved supercritical problem by other methods. One is to take advantage of ODE techniques in

symmetric domains. In 1973, Joseph and Lundgree [7] showed the first result in this aspect. In 1987, Budd and Norburg [6]
proved for N = 3 the existence of a singular solution and infinite number of positive solutions. Later, Merle and Peletier [17]
extended the singularity results to N > 3 and proved its uniqueness. In [38], Peihao Zhao and Chengkui Zhong considered
the problem (P) for fλ(x, u) = λuq + up , 0 < q < 1, p > 2∗ − 1 in a ball. They proved that there exist respectively unique
constants λ∗, λ∗ > 0, such that (P) has only one positive solution if λ ∈ (0, λ∗); a unique singular solution and infinitely
many positive solutions if λ = λ∗; at least two positive solutions if λ ∈ (λ∗,Λ) (where Λ see [2]). Moreover, other results
about this aspect see [5,29,41] in a ball, [18,40,54] in bounded domains, and [34] in all spaces R N . Also see [22,48,49] for
singular solution.

The other method is to consider the effect of geometry and topology of the domain. According to [4], Rabinowitz raised
that whether there are suitable conditions on the topology of Ω . Some answers are given in [8,10–12].

In fact, nonexistence results of (P) hold for some p > 2∗ −1 in some nontrivial domains (see [10,11]); while an arbitrarily
large number of solutions can be obtained in some contractible domains for all p > 2∗ − 1 (see [8]). In [12], Passaseo
considered the problem (P) for fλ(x, u) = λ|u|p−1u with p > 2∗ − 1 and λ = 1 in bounded domain Ω . Several perturbations
have been used to construct a contractible domain for obtaining the number of positive solutions and nodal solutions.
Later, the result in [42] showed that a unique perturbation can produce an arbitrarily large number of solutions. Also
see [30,31,36] for other perturbed domains. Indeed, existence results have been obtained, even in some “nearly star-shaped”
domains (see the definition introduced in [44]) for p sufficiently close to N+2

N−2 (see [45–47]) or for p large enough (see [43]).
Moreover, a different definition of “nearly star-shaped” domain is used in [14] to extend Pohozǎev’s nonexistence result to
nonstarshaped domains when p is large enough.

Recently, Wenzhi Wang [51] establishes embedding results (see Lemma 2.1) in a cylindrically symmetric domain. He
proves that functions having such symmetry and belonging to H1

0 can be embedded compactly into some weighted L p

spaces, with p superior to the critical Sobolev exponent. Then, variational arguments is appropriate.
In this paper, we consider the semilinear elliptic equation with concave–convex nonlinearity, that is fλ(x, u) =

λuq + h(x)up . Our purpose is to use the embedding theorem in [51] and classical variational tools to solve the problem
with supercritical growth.

This paper is organized as follows. Section 2 contains preliminaries and our main result. Section 3 gives the existence of
two positive solutions for small λ. Section 4 provides the regular property for the two solutions. Section 5 proves the main
result. Section 6 gives a similar existence result for the quasilinear elliptic equation.

2. Preliminary

Let Ω = Ω1 × Ω2 ⊂ R
N , with Ω1 ⊂ R

m , m � 1 being a bounded regular domain, and Ω2 being a k � 2 dimensional ball
with radius R , centered at the origin.

Consider the problem⎧⎪⎨
⎪⎩

−�u = λuq + h(x)up, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(Pλ)

where 0 < q < 1 < p < 2∗ − 1 + τ , and λ, τ are positive real parameters (τ is the constant obtained in [51]). Let h(x) satisfy
the following conditions:

(H1) h(x) is a nonnegative Hölder continuous function in Ω̄ , radially symmetric with respect to x2 ∈ Ω2, satisfying
h(x1,0) = 0.

(H2) lh > 0, where lh = sup{λ > 0: |h(x)|/|x2|λ < ∞, x ∈ Ω}.

Denote that

H1
s (Ω) := {u ∈ H1(Ω) | u(·, x2) = u(·, |x2|)}, with the norm ‖u‖ = (

∫ |∇u|2 dx)1/2.
0 Ω
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L p
h (Ω) := {u ∈ L p(Ω) | ∫

Ω
h|u|p dx < ∞}, with the norm ‖u‖h,p = (

∫
Ω

h|u|p dx)1/p , 1 < p < ∞.
Lq(Ω) is the Banach spaces for the form ‖u‖q = (

∫
Ω

|u|q dx)1/q , 1 < q < ∞.
H−1

s (Ω) is the dual space of H1
s (Ω), 〈,〉 denotes the pairing of H1

s (Ω) and H−1
s (Ω).

c, C, C1, C2, . . . are (possibly different) positive constants.
λ1 is the first eigenvalue of the equation{−�φ = λ,φ x ∈ Ω,

φ = 0, x ∈ ∂Ω,

and φ1 is the positive eigenfunction associated with λ1.

Lemma 2.1. (See [51].) Assume that h(x) satisfies (H1), (H2), then there exists a positive number τ = τ (h,m,k) such that the embed-
ding H1

s (Ω) ↪→ Lr
h(Ω) is compact for all r ∈ (1,2∗ + τ ).

According to Lemma 2.1, the embedding mapping i : H1
s (Ω) ↪→ L p+1

h (Ω) is compact for p + 1 < 2∗ + τ . Hence, for

u ∈ H1
s (Ω), we have u ∈ L p+1

h (Ω).
Let

fλ(x, s) =
{

λsq + h(x)sp, s � 0,

0, s < 0,

and

Fλ(x, u) =
u∫

0

fλ(x, s)ds.

Let u ∈ H1
s (Ω), u+ = maxx∈Ω {u,0}, define

Iλ(u) = 1

2
‖u‖2 −

∫
Ω

Fλ(x, u)dx = 1

2
‖u‖2 − λ

q + 1

∫
Ω

∣∣u+∣∣q+1
dx − 1

p + 1

∫
Ω

h(x)
∣∣u+∣∣p+1

dx.

We know that the energy functional Iλ is well defined in H1
s (Ω) and is of C1.

Definition 2.2. We call u ∈ H1
s (Ω) a weak solution of problem (Pλ), if u is a critical point of Iλ .

Our main result is the following:

Theorem 2.3. Let 0 < q < 1 < p < 2∗ − 1 + τ . If h(x) satisfies (H1), (H2), then there exists Λ ∈ (0,∞) such that

(1) for all λ ∈ (0,Λ), problem (Pλ) has at least two classical solutions;
(2) for λ = Λ, problem (Pλ) has at least one weak solution uΛ ∈ H1

s (Ω) ∩ L p+1
h (Ω);

(3) for all λ > Λ, problem (Pλ) has no solution.

3. Existence of two solutions for λ small

In this section, we show existence of the first solution uλ and the second solution vλ of problem (Pλ) for λ ∈ (0, λ0).
Moreover, we show that uλ is a minimizer of Iλ(u) in H1

s (Ω) and vλ is a mountain-pass type solution.

Lemma 3.1. There exist λ0 > 0 and r0,ρ > 0, such that Iλ(u) � ρ for all u ∈ H1
s (Ω), ‖u‖ = r0 and all λ ∈ (0, λ0).

Proof. Indeed, for u ∈ H1
s (Ω), we have

Iλ(u) = 1

2
‖u‖2 − λ

q + 1

∫
Ω

∣∣u+∣∣q+1
dx − 1

p + 1

∫
Ω

h(x)
∣∣u+∣∣p+1

dx

= 1

2
‖u‖2 − λ

q + 1

∥∥u+∥∥q+1
q+1 − 1

p + 1

∥∥u+∥∥p+1
h,p+1. (3.1)

Since 1 < q + 1 < 2 < p + 1 < 2∗ + τ , it follows from Lemma 2.1 that the embedding H1
s (Ω) ↪→ L p+1

h (Ω) is compact, and
also H1

s (Ω) ↪→ Lq+1(Ω). Thus, there exists a constant C such that
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‖u‖h,p+1 � C‖u‖, (3.2)

‖u‖q+1 � C‖u‖. (3.3)

Using (3.1), (3.2) and (3.3), we infer that

Iλ(u) � 1

2
‖u‖2 − Cλ

q + 1

∥∥u+∥∥q+1 − C

p + 1

∥∥u+∥∥p+1

= 1

2

∥∥u−∥∥2 + 1

2

∥∥u+∥∥2 − λ
(
C
∥∥u+∥∥)q+1 − (

C
∥∥u+∥∥)p+1

= 1

2

∥∥u−∥∥2 + 1

2

∥∥u+∥∥(∥∥u+∥∥ − λ
(
C
∥∥u+∥∥)q − (

C
∥∥u+∥∥)p)

.

Since 0 < q < 1 < p, we can find λ0 such that for all 0 < λ � λ0 there exists M = M(λ) > 0 satisfying

M > λ(C M)q + (C M)p .

As a consequence, there exist r0 > 0 and a small enough constant ρ > 0 such that

Iλ(u) � ρ > 0 for every ‖u‖ = r0. �
Lemma 3.2. For all λ ∈ (0, λ0), Iλ possesses a local minimum close to the origin.

Proof. Let λ ∈ (0, λ0), we note that

Iλ(tu) = 1

2
‖tu‖2 − λ

q + 1

∫
Ω

∣∣tu+∣∣q+1
dx − 1

p + 1

∫
Ω

h(x)
∣∣tu+∣∣p+1

dx

= 1

2
t2‖u‖2 − λ

q + 1
tq+1

∥∥u+∥∥q+1
q+1 − 1

p + 1
t p+1

∥∥u+∥∥p+1
h,p+1.

Clearly, Iλ(tu) < 0 for t > 0 small enough and any u ∈ H1
s (Ω) with ‖u+‖ �= 0. Set

A = {
u ∈ H1

s (Ω)
∣∣ ‖u‖ � r0

}
,

then we have

m := min
u∈A

Iλ(u) < 0.

We claim that this minimum can be achieved at some uλ . To see this, select a minimizing sequence {un}∞n=1, then

Iλ(un) → m.

And let un ⇀ uλ in H1
s (Ω), we have∫

Ω

|∇uλ|2 dx � lim inf
n→∞

∫
Ω

|∇un|2 dx.

By compact embedding theorem (Lemma 2.1), we obtain that∫
Ω

Fλ(x, un)dx →
∫
Ω

Fλ(x, uλ)dx.

Thus,

Iλ(uλ) = 1

2

∫
Ω

|∇uλ|2 dx −
∫
Ω

Fλ(x, uλ)dx

� lim inf
n→∞

∫
Ω

|∇un|2 dx + lim
n→∞

∫
Ω

Fλ(x, un)dx

= lim inf
n→∞ Iλ(un) = m.

Since uλ ∈ A, it follows that

Iλ(uλ) = m = min
u∈A

I(u).

That is, uλ is a minimizer for Iλ in A, and hence Iλ(uλ) is a local minimum. �
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Remark 3.3. Here we get the first solution uλ for 0 < q < 1 < p < 2∗ − 1 + τ and λ ∈ (0, λ0). In fact, applying sub-super
solutions in [2], we can obtain uλ for all 0 < q < 1 < p and λ ∈ (0, λ′

0), where λ′
0 is a small positive constant.

In the sequel, we will show the existence of the second solution vλ by the Mountain Pass Theorem.

Definition 3.4. (See [32,33].) Let c ∈ R. A C1 functional Φ : X → R satisfies the (P S)c condition if every sequence {vk}∞k=1 in
X such that Φ(vk) → c and Φ ′(vk) → 0 has a convergence subsequence.

Lemma 3.5. Iλ satisfies the (P S)c condition.

Proof. We must show that for all sequences {vk}∞k=1 ⊂ H1
s (Ω), which satisfy

Iλ(vk) → c, I ′λ(vk) → 0, (3.4)

there exists a convergence subsequence {vk j }∞k j=1 such that vk j → v in H1
s (Ω).

From (3.4), we can obtain that {vk}∞k=1 satisfy

1

2

∫
Ω

|∇vk|2 dx − λ

q + 1

∫
Ω

∣∣v+
k

∣∣q+1
dx − 1

p + 1

∫
Ω

h(x)
∣∣v+

k

∣∣p+1
dx = c + o(1), (3.5)

and

−�vk − λ
(

v+
k

)q − h(x)
(

v+
k

)p = ξk, ξk → 0 in H−1
s (Ω). (3.6)

Multiplying (3.6) by vk and integrating in Ω , we have∫
Ω

|∇vk|2 dx − λ

∫
Ω

∣∣v+
k

∣∣q+1
dx −

∫
Ω

h(x)
∣∣v+

k

∣∣p+1
dx = 〈ξk, vk〉. (3.7)

Taking a computation with (3.5) and (3.7), we get

λ(q − 1)

2(q + 1)

∫
Ω

∣∣v+
k

∣∣q+1
dx + p − 1

2(p + 1)

∫
Ω

h(x)
∣∣v+

k

∣∣p+1
dx = c − 1

2
〈ξk, vk〉.

Let C1 = p−1
2(p+1)

, C2 = λ(1−q)
2(q+1)

. Clearly C1, C2 > 0 for 0 < q < 1 < p. Thus,

C1

∫
Ω

h(x)
∣∣v+

k

∣∣p+1
dx � C2

∫
Ω

∣∣v+
k

∣∣q+1
dx + c + ‖ξk‖H−1

s
‖vk‖,

that is,∫
Ω

h(x)
∣∣v+

k

∣∣p+1
dx � C

∥∥v+
k

∥∥q+1
q+1 + c + C‖ξk‖H−1

s
‖vk‖. (3.8)

Combining (3.5) and (3.8), we have

1

2
‖vk‖2 = λ

q + 1

∥∥v+
k

∥∥q+1
q+1 + 1

p + 1

∥∥v+
k

∥∥p+1
h,p+1 + c + o(1)

� λ

q + 1

∥∥v+
k

∥∥q+1
q+1 + C

∥∥v+
k

∥∥q+1
q+1 + c + C‖ξk‖H−1

s
‖vk‖

= C
∥∥v+

k

∥∥q+1
q+1 + c + C‖ξk‖H−1

s
‖vk‖.

According to (3.3), it follows that

‖vk‖2 � C
∥∥v+

k

∥∥q+1 + C + C‖ξk‖H−1
s

‖vk‖ � C
∥∥v+

k

∥∥q+1 + C + C‖vk‖.
We deduce that there exists a constant C, such that ‖vk‖ < C . Consequently, {vk}∞k=1 is bounded in H1

s (Ω), and then, there
exists a weakly convergence subsequence {vk j }∞k j=1 ⊂ {vk}∞k=1. Moreover, we have another inequality

∥∥v+∥∥p+1 � C .
k h,p+1



220 J. Gao et al. / J. Math. Anal. Appl. 381 (2011) 215–228
From above, we can deduce the following:

vk j ⇀ v weakly in H1
s (Ω),

vk j → v strongly in Lp+1
h (Ω) for p + 1 < 2∗ + τ ,

vk j → v strongly in Lq(Ω) for q < 2∗,

vk j → v a.e in Ω.

Obviously we have

λvq
k j

+ h(x)v p
k j

→ λvq + v p in H−1
s (Ω).

From the Lax–Milgram Theorem, for each fλ(v) ∈ H−1
s (Ω), the problem

{−�u = fλ(v) in Ω,

u = 0 on ∂Ω

has a unique solution u ∈ H1
s (Ω). Writing u = K ( fλ(v)), so that

K : H−1
s (Ω) → H1

s (Ω) is an isometry.

Therefore, we have

K
[

fλ(vk j )
] → K

[
fλ(v)

]
in H1

s (Ω).

As

I ′λ(vk) = vk − K
(

fλ(vk)
) → 0 in H1

s (Ω),

consequently,

vk j → v in H1
s (Ω).

This completes the proof. �
Lemma 3.6. For all λ ∈ (0, λ0), Iλ has the second solution vλ of mountain-pass type.

Proof. Let v ∈ H1
s (Ω). From Lemma 3.1, we can obtain that for all λ ∈ (0, λ0), there exist constants r0,ρ > 0 such that

Iλ(v) � ρ , for all ‖v‖ = r0.
Next, we verify that Iλ(0) < ρ and there exists v /∈ A such that Iλ(v) < ρ . Clearly, Iλ(0) = 0 < ρ . Now, fix some element

v ∈ H1
s (Ω), v �≡ 0. Write ω := tv for t > 0 to be selected. From (3.1) we have

Iλ(ω) = 1

2
t2‖v‖2 − λ

q + 1
tq+1

∥∥v+∥∥q+1
q+1 − 1

p + 1
t p+1

∥∥v+∥∥p+1
h,p+1.

Since q + 1 < 2 < p + 1, it follows that

Iλ(ω) = Iλ(tv) → −∞, as t → +∞.

Therefore, there exists T > 0 such that

‖ω‖ = ‖T v‖ > r0 (that is v /∈ ∂ A),

Iλ(ω) = Iλ(tv) < ρ.

Consequently, there is a function vλ ∈ H1
s (Ω), vλ �≡ 0, such that Iλ(vλ) = c � ρ > 0, I ′λ(vλ) = 0. That is, vλ is a nontrivial

critical point of (Pλ). For Iλ(uλ) < 0, Iλ(vλ) > 0, vλ is the second solution of the problem (Pλ). �
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4. Regularity

The solutions uλ , vλ we have found in H1
s (Ω) are weak solutions. In the following, we will apply bootstrap iteration [35]

to improve their regularity.

Lemma 4.1. Let v ∈ H1
s (Ω) be a weak solution of problem (Pλ), then v ∈ C2,α(Ω) for some α ∈ (0,1).

Proof. For a solution v ∈ H1
s (Ω) of (Pλ), we denote

fλ(x) = fλ
(
x, v(x)

) = λv(x)q + h(x)v(x)p .

Because of Lemma 2.1,

H1
s (Ω) ↪→ Lr

h(Ω) ⊂ Lr(Ω), r = 2∗ + τ ,

we have,

fλ(x) ∈ Lσ (Ω), with σ = r

p
.

Since 1 < p < 2∗ − 1 + τ , we get

σ >
2∗ + τ

2∗ − 1 + τ
.

Thus,

σ = 2∗ + τ

2∗ − 1 + τ
(1 + ε), for some ε > 0.

We can write the origin equation as a linear nonhomogeneous elliptic equation{−�v = fλ(x), x ∈ Ω,

v = 0, x ∈ ∂Ω.

According to the boundary regularity theorem of linear nonhomogeneous elliptic equation (see [27]), and fλ(x) ∈ Lσ (Ω), we
can obtain that v ∈ W 2,σ

0 (Ω). If 2σ > n, we are done. Otherwise, from Sobolev embedding theorem, we have

W 2,σ
0 (Ω) ↪→ Lr1(Ω), r1 = Nσ

N − 2σ
.

It easily follows that

fλ(x) ∈ Lσ1(Ω), σ1 = r1

p
.

Then, v ∈ W 2,σ1
0 (Ω).

Next, we need to show that the regularity of v has been improved, that is to show that
σ1

σ
= r1

r
> 1.

By computation, we obtain

r1

r
= N(1 + ε)

N(2∗ + τ − 1) − 2(1 + ε)(2∗ + τ )
.

Thus, we only need to check{
N

(
2∗ + τ − 1

) − 2(1 + ε)
(
2∗ + τ

)
> 0 (a),

N(1 + ε) > N
(
2∗ + τ − 1

) − 2(1 + ε)
(
2∗ + τ

)
(b).

We can easily get from (a), (b) that

N(2∗ + τ − 1)

N + 2(2∗ + τ )
− 1 < ε <

N(2∗ + τ − 1)

2(2∗ + τ )
− 1.

Clearly, we can find ε > 0 satisfying (4.1). Consequently, we indeed have
σ1

σ
> 1.

From boundary regularity theorem, not only for σ1 > σ , v ∈ W 2,σ1
0 (Ω), but also for any σk large enough, v ∈ W 2,σk

0 (Ω).
When 2σk > n, from Sobolev embedding theorem, we can obtain that v ∈ C0,θ (Ω), fλ(x) ∈ C0,θ (Ω), then v ∈ C2,θ (Ω) by

Schauder regularity theorem. �
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5. Existence of solutions for λ ∈ (0,Λ)

Lemma 5.1. Let Λ = sup{λ > 0: (Pλ) has a solution}, then Λ ∈ (0,∞).

Proof. Let a > 0 and choose Ω1 ⊂ Ω such that h(x) � a in Ω1. Define

η(x) =
{

φ1(x), x ∈ Ω1,

0, x ∈ Ω \ Ω1.

Multiplying (Pλ) by η(x) and using integrations by parts, we can get∫
Ω1

λ1uφ1 dx =
∫
Ω1

(
λuq + h(x)up)

φ1 dx.

Let λ̄ satisfy

λ1t < λ̄tq + at p for any t > 0.

We can obtain that∫
Ω

(
λuq + aup)

η(x)dx <

∫
Ω1

(
λuq + h(x)up)

φ1 dx =
∫
Ω1

λ1uφ1 dx <

∫
Ω1

(
λ̄uq + aup)

φ1 dx

<

∫
Ω

(
λ̄uq + h(x)up)

η(x)dx.

Clearly, λ < λ̄.
Moreover, we have obtained a solution uλ of (Pλ) for λ ∈ (0, λ0). Hence, 0 < λ0 � Λ � λ̄ < ∞. �

Lemma 5.2. (Pλ) has a solution for all λ ∈ (0,Λ).

Proof. Given 0 < λ < μ < Λ. Let uμ be a solution of (Pμ), then

−�uμ = μuq
μ + h(x)up

μ > λuq
μ + h(x)up

μ,

that is, uμ is a supersolution of (Pλ). Furthermore, εφ1 is a subsolution of (Pλ), and εφ1 < uμ for ε small enough. Therefore,
there exists a solution uλ of (Pλ) satisfying εφ1 � uλ � uμ . Consequently, for all λ ∈ (0,Λ), (Pλ) has a solution. �
Lemma 5.3. For all λ ∈ (0,Λ), (Pλ) has a local minimum in the C1 topology.

Proof. Fix λ ∈ (0,Λ). Choose λ < λ1 < Λ such that (Pλ) has a solution u1. Let u0 be the unique positive solution of{−�u = λuq, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(5.1)

Because

−�u1 = λ1uq
1 + h(x)up

1 > λuq
1,

u1 is a supersolution of (5.1). Moreover, u0 �= u1, so u0 < u1 in Ω .
Set

f̃λ(x, s) =
⎧⎨
⎩

fλ(u0), s � u0,

fλ(x, s), u0 < s < u1,

fλ(u1), s � u1,

F̃λ(x, u) =
u∫

0

f̃λ(x, s)ds,

and the functional Ĩλ : H1
s (Ω) → R is given by

Ĩλ(u) = 1

2
‖u‖2 −

∫
F̃λ(x, u)dx.
Ω
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Clearly, Ĩλ is coercive and bounded below, then it achieve its global minimum at some uλ ∈ H1
s (Ω). Thus,⎧⎪⎨

⎪⎩
−�uλ = f̃λ(x, uλ), x ∈ Ω,

uλ > 0, x ∈ Ω,

uλ = 0, x ∈ ∂Ω.

(5.2)

Since f̃λ(x, uλ) � fλ(u0) � λuq
0, we get u0 < uλ in Ω .

Furthermore, we have{
−�(uλ − u1) = f̃λ(uλ) − fλ(u1) � 0, x ∈ Ω,

uλ − u1 = 0, x ∈ ∂Ω,
(5.3)

the strong maximum principle yields uλ < u1 in Ω . Thus, u0 < uλ < u1 in Ω .
From Lemma 4.1, uλ ∈ C2,α(Ω), α ∈ (0,1). For ‖u − uλ‖C1 = ε with ε > 0 small enough, we have u0 < u < u1 in Ω .

Hence, f̃λ(u) = fλ(u), and also Ĩλ(u) = Iλ(u) for u0 < u < u1. Therefore, uλ is a local minimizer for Iλ in C1 topology. �
Lemma 5.4. Let λ ∈ (0,Λ). uλ is a local minimizer for Iλ in H1

s (Ω).

Proof. Follows from [20]. �
In the sequel we fix λ ∈ (0,Λ), and hope to find a mountain-pass type solution of the form vλ = uλ + v , where uλ is the

local minimizer we have found in Lemma 5.4, and v > 0 in Ω .
Let v satisfy the equation⎧⎪⎨

⎪⎩
−�v = fλ(uλ + v) − fλ(uλ), x ∈ Ω,

v > 0, x ∈ Ω,

v = 0, x ∈ ∂Ω.

(5.4)

Then, we define

gλ(x, s) =
{

fλ(uλ + s) − fλ(uλ), s � 0,

0, s < 0,

and

Gλ(v) =
v∫

0

gλ(x, s)ds,

Jλ(v) = 1

2
‖v‖2 −

∫
Ω

Gλ(v)dx.

Clearly, Jλ : H1
s (Ω) → R

+ is a C1 functional. Moreover, if v is a nontrivial critical point of Jλ , then vλ = uλ + v is a solution
of (Pλ), and vλ �= uλ .

Lemma 5.5. Let λ ∈ (0,Λ). Jλ has a nontrivial critical point.

Proof. Clearly, Jλ(0) = 0. Moreover, it can be easily checked that v = 0 is a local minimizer of Jλ for all λ ∈ (0,Λ). Recalling
Section 3, we can similarly obtain that Jλ satisfies the (P S)c condition, and Jλ(tv) → ∞ as t → ∞. Hence, applying the
Mountain Pass Theorem, we can obtain a critical point v0 ∈ H1

s (Ω) with v0 > 0 in Ω . �
Proof of Theorem 2.3. (i) Lemma 5.4 and Lemma 5.5 prove point 1.

(ii) For all λ ∈ (0,Λ), it is easy to verify that there exists a solution uλ such that Iλ(uλ) < 0. Choose a sequence {λn}
such that λn → Λ as n → ∞. We denote the corresponding solutions to λn be uλn . Then, they satisfy

Iλn (uλn) < 0, I ′λn
(uλ) = 0.

That is

1

2
‖uλn‖2 − λn

q + 1

∥∥u+
λn

∥∥q+1
q+1 − 1

p + 1

∥∥u+
λn

∥∥p+1
h,p+1 < 0, (5.5)

‖uλn‖2 − λn
∥∥u+ ∥∥q+1 − ∥∥u+ ∥∥p+1 = 0. (5.6)
λn q+1 λn h,p+1
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It follows from (5.5), (5.6) that, there exists C > 0 such that

‖uλn‖ < C .

Hence, there exists a convergence subsequence of {uλn }, denoted by {uλm }. Then,

uλm ⇀ uΛ in H1
s (Ω),

uλm → uΛ in Lp+1
h (Ω).

Such a uΛ is a weak solution of (Pλ) for λ = Λ.
(iii) Point 3 follows from the definition of Λ. �

6. Existence results for the p-Laplace equation

Consider the quasilinear elliptic problem⎧⎪⎨
⎪⎩

−�pu ≡ −div
(|∇u|p−2∇u

) = fλ(x, u), x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

( P̄ )

where 1 < p < N , p∗ = Np
N−p ; λ > 0.

When fλ is sublinear, for example, fλ(x, u) = λuα , 0 < α < p − 1, the sub-super solutions still can provide the existence
of a unique solution of ( P̄ ) for all λ > 0, see [55].

When fλ is the concave–convex nonlinearity, for instance, fλ(x, u) = λuα + uβ , 0 < α < p − 1 < β < p∗ − 1, see [56,
23], they showed that the local minimizers of a class of functionals in the C1 topology are still their local minimizers in
W 1,p

0 (Ω). Applying this fact, they obtained that ( P̄ ) has at least two solutions for all λ ∈ (0,Λ), no solution for λ > Λ, at
least one solution for λ = Λ. Such a kind of problems also has been studied in [59] by variational method and genus, in
[28] by sub-super solutions.

When fλ has supercritical growth, there are few papers about this aspect. The papers still take advantage of ODE tech-
niques in balls. Zongming Guo [57,58] considered the problem ( P̄ ) for fλ(x, u) = uα − λuβ , p∗ − 1 � α < β . He obtained
that there are at least two positive radial solutions of ( P̄ ) for λ sufficiently small, and showed their asymptotic behavior
as λ → 0. In [19], the authors studied ( P̄ ) in a ball B R for fλ(x, u) = uα + uβ , where p − 1 < α < p∗ − 1 < β , λ = 1. They
proved that there exists R∗ such that ( P̄ ) has at least two distinct radial solutions provided R > R∗ and at least one radial
solution provided R = R∗ .

In this section, we give the existence result of positive solutions for quasilinear elliptic equation with supercritical growth.
In fact, we can extend the results of semilinear elliptic problem naturally to quasilinear elliptic problem by similar methods.

In the following, we study the p-Laplacian equation⎧⎪⎨
⎪⎩

−�pu = λuα + h(x)uβ, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

( P̄λ)

where 0 < α < p − 1 < β < p∗ − 1 + τ , and λ, τ are positive parameters (τ is the constant obtained in [26]). h(x) satisfies
(H1), (H2).

We denote that

W 1,p
0,s (Ω) = {

u ∈ W 1,p
0 (Ω)

∣∣ u(·, x2) = u
(·, |x2|

)
, ∀x ∈ Ω2

}
,

with the norm ‖u‖p = (
∫
Ω

|∇u|p dx)
1
p .

λ̄1 is the first eigenvalue of −�p in Ω with Dirichlet boundary condition, and φ̄1 is the associated eigenfunction such
that φ̄1 > 0 in Ω .

Lemma 6.1. (See [26].) Assume that h(x) satisfies (H1), (H2), then there exists a positive number τ = τ (h, p,m,k) such that the
embedding W 1,p

0,s (Ω) ↪→ Lr
h(Ω) is compact for all r ∈ (1, p∗ + τ ).

According to Lemma 6.1, the embedding mapping i : W 1,p
0,s (Ω) ↪→ Lβ+1

h (Ω) is compact for β + 1 < p∗ + τ . Hence, for

u ∈ W 1,p
0,s (Ω), we have u ∈ Lβ+1

h (Ω). Then we can define the functional Īλ : W 1,p
0,s (Ω) → R

+ by

Īλ(u) = 1

p
‖∇u‖p

p −
∫

F̄λ(x, u)dx,
Ω
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where

F̄λ(x, u) =
u∫

0

f̄λ(x, s)ds and f̄λ(x, s) =
{

λsα + h(x)sβ, s � 0,

0, s < 0.

We know that the energy functional Īλ is of class C1.
Now, we give the existence result for ( P̄λ):

Theorem 6.2. Let 0 < α < p − 1 < β < p∗ − 1 + τ . If h(x) satisfies (H1), (H2), then there exists Λ̄ ∈ (0,∞), such that

(1) for all λ ∈ (0, Λ̄), problem ( P̄λ) has at least two weak solutions;
(2) for λ = Λ̄, problem ( P̄λ) has at least one weak solution uΛ ∈ W 1,p

0,s (Ω) ∩ Lβ+1
h (Ω);

(3) for all λ > Λ̄, problem ( P̄λ) has no solution.

Lemma 6.3. Let v be a weak solution of ( P̄λ), then v ∈ C1,θ (Ω) for some θ ∈ (0,1).

Proof. v ∈ W 1,p
0,s (Ω) is a solution of ( P̄λ), applying Lemma 6.1, we get

v ∈ W 1,p
0,s (Ω) ↪→ Lr

h(Ω) ⊂ Lr(Ω), r = p∗ + τ .

Then, we obtain

fλ(x) = fλ
(
x, v(x)

) = λv(x)α + h(x)v(x)β ∈ Lσ (Ω), σ = r

β
.

Since 1 < β < p∗ − 1 + τ , we have

σ >
p∗ + τ

p∗ + τ − 1
.

We can denote

σ = p∗ + τ

p∗ + τ − 1
(1 + ε), for some ε > 0.

Clearly, we also have

−div
(|∇v|p−2∇v

) ∈ Lσ (Ω),

and then

|∇v|p−1 ∈ W 1,σ (Ω).

If σ > N , we are done. Otherwise, for 1 < σ < N , we get from the Sobolev embedding theorem that

W 1,σ (Ω) ↪→ Ls(Ω), s = Nσ

N − σ
.

Thus,

|∇v|p−1 ∈ Ls(Ω) and |∇v| ∈ Ls(p−1)(Ω),

where s(p − 1) < N for 1 < p < N and 1 < σ < N . Then, we get

v ∈ W 1,s(p−1)(Ω) ↪→ Lr1(Ω), r1 = Ns(p − 1)

N − s(p − 1)
.

Clearly,

fλ(x) ∈ Lσ1(Ω), σ1 = r1

β
.

We assert that

σ1

σ
> 1.
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Indeed,

σ1

σ
= r1

r
, and r1 > 0, r > 0.

Thus, we only need to check

r1 > r,

that is,

Ns(p − 1)

N − s(p − 1)
> p∗ + τ .

By computation, we get[
N2(p − 1) + Np + p(N − p)τ

]
ε > (N − p)2τ .

Since 1 < p < N , we have

ε >
(N − p)2τ

N2(p − 1) + Np + p(N − p)τ
> 0.

Because of the arbitrary of ε, we conclude r1 > r, and then σ1
σ > 1.

Applying bootstrap argument, we can get fλ(x) ∈ Lσk (Ω) for σk large enough. When σk > n, according to the Sobolev
embedding theorem, we obtain

|∇v|p−1 ∈ W 1,σk (Ω) ↪→ C0,θ (Ω), θ ∈ (0,1).

It follows that

|∇v| ∈ C0,θ (Ω),

and then we conclude

v ∈ C1,θ (Ω). �
Remark 6.4. In fact, the proof of Theorem 6.2 is similar to the proof of Theorem 2.3. Only the following lemma we should
give a different proof. Other proofs we skip them here.

Lemma 6.5. Let Λ̄ = sup{λ > 0: ( P̄λ) has a solution}, then Λ̄ ∈ (0,∞).

Proof. We know that λ̄1 is isolated in bounded domain, that is, there exists δ > 0 such that for every μ ∈ (λ̄1, λ̄1 + δ), the
problem{−�pu = μ|u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(6.1)

has no nontrivial solution.
Suppose that v ∈ W 1,p

0,s (Ω) is a solution of ( P̄λ), then it follows from Lemma 6.3 that v ∈ C1,θ (Ω). And there exists
a small enough ε > 0 such that

0 < εφ̄1 � v in Ω. (6.2)

Denote ψ = εφ̄1, we obtain

−�pψ = λ̄1ψ
p−1 � μψ p−1. (6.3)

However, let λ̃ be large enough such that for all λ > λ̃, we get

(λ̄1 + δ)v p−1 � λvα + h(x)vβ.

Thus, we have

−�p v � (λ̄1 + δ)v p−1 � μv p−1. (6.4)

From (6.2), (6.3) and (6.4), we can construct a solution ψ � u � v of the problem (6.1) by sub-super solutions. But this is
a contradiction. Hence, we conclude that there exists λ̃ such that Λ̄ � λ̃ < ∞.

Moreover, we can also obtain solutions of ( P̄λ) for small λ similar to Section 3, then Λ̄ > 0. So, Λ̄ ∈ (0,∞). �
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