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In this paper we study the basic model of viral infections with mitotic transmission
and intracellular delay discrete. The delay corresponds to the time between infection of
uninfected cells and the emission of virus on a cellular level. By means of Volterra-type
Lyapunov functionals, we provide the global stability for this model. Let η be the number
of virus produced per infected cell. If ηcrit , the critical number, satisfies η � ηcrit , then
the virus-free steady state is globally asymptotically stable. On the contrary if η > ηcrit ,
then the infected steady state is globally asymptotically stable if a sufficient condition is
satisfied.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In the mathematics of viral infections usually the mathematical models are written in the form of ordinary differential
equations [4,23–26,30–32]. This class of models assumed that infection could occur instantaneously once a virus contacted
a uninfected cell to infect a target cell.

Other class of virus dynamics models incorporate the delay between the time a cell is infected and the time it starts
producing virus, modeled with discrete time delay [1–3,6,11,16,17,28,22,29,30,33] or distributed time delay [18,21] using
functional differential equations.

The question of global stability in population models is a very interesting mathematical problem. Many authors have
studied the global stability of virus dynamics models without delay using the second Lyapunov method. The Lyapunov
function candidate for population biology models is the Volterra-type function. This function was applied by Korobeinikov
[14] and other authors [3,10,12,13,27] to prove global stability of the steady states of viral infections models.

Recently, McCluskey and other authors study the global stability of the steady states of epidemic models with delay
[9,19,20] and in [8,16,18,21,22] analyzed virus dynamics models with intracellular delay, using the method of Lyapunov
functionals.

In this paper, we consider a viral infection model with mitotic transmission that was presented and studied in [1,7]. It is
a refinement of earlier models (see [6,16,33], for example) that ignores density-dependent proliferation of infected cells and
uninfected cells. The general viral model given in [1,7] without delay, this coincides with the models studied in [4,31] for
which the global stability analysis was completed in [27,31].
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The goal of this paper is study the global stability of a delayed viral infection model with mitotic transmission, assum-
ing that infection is transmitted directly from free virus to target cells and by divisions of infected cells. We present the
construction of Lyapunov functionals for this model, using Volterra-type Lyapunov functionals.

The paper is organized as follows. The delayed model with mitotic transmission is described in Section 2. The global
asymptotic stability of the virus-free steady state is established in Section 3. The global asymptotic stability of the infected
steady state is established in Section 4. The paper ends with a discussion in Section 5.

2. Basic model with mitotic transmission and intracellular delay

In this section, we describe the basic model of viral infections with mitotic transmission and intracellular delay. We use
the convention that x = x(t), y = y(t), v = v(t), xτ = x(t − τ ), and vτ = v(t − τ ), in order to avoid excessive use of paren-
theses in some of the later calculations. The model given in [1,7] is formulated by the following system of delay differential
equations:

dx

dt
= λ + rx

[
1 − x + y

K

]
− μx − βxv,

dy

dt
= βxτ vτ + ry

[
1 − x + y

K

]
− αy,

dv

dt
= αηy − γ v, (1)

where x(t), y(t) and v(t) denote the concentration of uninfected cells, infected cells and free virus, respectively. Here,
uninfected cells are generated at a constant rate λ and die at rate μ per uninfected cell. These cells are infected at rate β

per uninfected cell per virion. τ denotes the lag between the time of the virus contacts the uninfected cell and the time of
the cell becomes actively infected. The model considers that all infected cells survive the latent period, this assumption is
common in delayed HIV pathogenesis models [11,28–30]. Actively infected cells die at rate α per cell by cytopathic effects.
The basic model of viral infections with intracellular delays [6,16,33] assumes a source of uninfected cells but ignores
proliferation of both actively infected cells and uninfected cells. The proliferation of actively infected cells and uninfected
cells due to mitotic division obeys a logistic growth. The mitotic proliferation of uninfected cells described by rx[1 − x+y

K ]
and mitotic transmission occurs at a rate ry[1 − x+y

K ], that is the mitotic division of actively infected cells. Uninfected cells
and actively infected cells growth at a the same constant rate r and K is the maximal number that total cell population
proliferate. Each actively infected cell is assumed to produce η virus particles during its life time, and γ is the clearance
rate of virus particles. All parameters are positive constants with the exception of τ that is non-negative.

The model (1) without delay is developed by Wang and Ellermeyer [31] for describes the dynamics of the infection of
human immunodeficiency virus type 1 (HIV-1) and considers the logistic growth of uninfected and infected lymphocyte T
cells. Independently Dahari, Lo, Ribeiro and Perelson developed in [4] for hepatitis C viral (HCV) the same model without
delay, extending the basic model [23] including density-dependent proliferation terms for both infected and uninfected
hepatocytes.

Huang, Takeuchi and Ma, in [8] constructed Lyapunov functionals and analyzed a class of models in three dimensional
with intracellular delay discrete, that incorporate generalized nonlinear incidence rate. The model (1) does not correspond
to the structures of the equations of the study system in [8].

3. Known results

We begin by presenting some notations that will be used throughout this paper. Let C([−τ ,0],R
3+) be the Banach space

of continuous functions mapping the interval [−τ ,0] into R
3+ , where

R
3+ = {

(x, y, v) ∈ R
3: x � 0, y � 0, v � 0

}
.

It is biologically reasonable to consider the following initial conditions for (1):

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), v(θ) = ϕ3(θ) (−τ � θ � 0), (2)

where ϕ = (ϕ1(0),ϕ2(0),ϕ3(0)) ∈ C . From the fundamental theory of functional differential equations [5] and [15], it is easy
to see that the solution (x(t), y(t), v(t)) of system (1) with the initial condition (2) exists for all t � 0 and is unique.

In [1,7] study the basic mathematical properties of the model (1). The results are presented in the following theorems:

Theorem 3.1. (See [1,7].) For sufficiently large t, all solutions of system (1) with initial conditions (2) are positive and ultimately
bounded.
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Theorem 3.2. (See [1,7].) The critical number ηcrit defined by

ηcrit = γ

αβx◦

(
λ

x◦ + α − μ

)
> 0. (3)

If η � ηcrit , then system (1) has only the virus-free steady state E◦(x◦,0,0), where

x◦ = K

2r

[
(r − μ) +

√
(r − μ)2 + 4rλ

K

]
, (4)

and it has no infected steady state. Whereas if η > ηcrit , then system (1) has two steady states: the virus-free steady state E◦ and the
unique infected steady state E∗(x∗, y∗, v∗).

The infected steady state of (1) satisfies the following algebraic equations:

0 = λ + rx∗
[

1 − x∗ + y∗

K

]
− μx∗ − βx∗v∗,

0 = βx∗v∗ + ry∗
[

1 − x∗ + y∗

K

]
− αy∗,

0 = αηy∗ − γ v∗. (5)

The global stability properties of (1) without delay are obtained by Vargas-De-León and Esteva [27] in the following
results.

Theorem 3.3. (See [27].) If η � ηcrit , then the virus-free steady state E◦ of (1) is globally asymptotically stable when τ = 0.

Theorem 3.4. (See [27].) If η > ηcrit and r � μ+ r
K [x∗ + y∗], then the unique infected steady state E∗ of (1) is globally asymptotically

stable when τ = 0.

The local stability of virus-free and infected steady states (1) with delay are studied in [1,7] and obtained the following
result.

Theorem 3.5. (See [1,7].) If η < ηcrit then E◦ is locally asymptotically stable for any time delay τ � 0. If η > ηcrit then E◦ is unstable.

Theorem 3.6. (See [1,7].) Let

p1 = λ

x∗ + r

K

[
x∗ + y∗] + βx∗v∗

y∗ + γ ,

p2 = λ

x∗

(
βx∗v∗

y∗ + r

K
y∗ + γ

)
+ βγ x∗v∗

y∗ + rβ(x∗)2 v∗

K y∗ + rγ

K

[
x∗ + y∗],

p3 = rβγ x∗v∗

K
+ β2γ x∗(v∗)2

y∗ − βγ x∗v∗

y∗

(
λ

x∗ + r

K
x∗

)
,

p4 = rβx∗v∗

K
− βγ x∗v∗

y∗ ,

p5 = βγ x∗v∗

y∗

(
λ

x∗ + r

K
x∗

)
+ rγ λy∗

K x∗ − rβγ x∗v∗

K
.

Assume η > ηcrit . If (i) p1(p2 + p4) > p3 + p5 , α − r[1 − x∗+y∗
K ] > 0, (ii) p2

1 > 2p1 p5 + p2
4 , p2

5 > p2
3 , then E∗ is locally asymp-

totically stable for any time delay τ > 0.

4. Global stability of virus-free steady state

In this section, we shall consider the global stability of the virus-free steady state of system (1) by means of Lyapunov
functionals.

Theorem 4.1. If η � ηcrit , then the virus-free steady state E◦ of (1) is globally asymptotically stable for any τ � 0.



C. Vargas-De-León / J. Math. Anal. Appl. 381 (2011) 884–890 887
Proof. Define a Lyapunov functional

U =
x∫

x◦

(σ − x◦)
σ

dσ + y + βx◦

γ
v + β

τ∫
0

x(t − ω)v(t − ω)dω.

Then U is defined and continuous for all x(t), y(t), v(t) > 0, and U = 0 at (x◦,0,0). The time derivative of U computed
along solutions of (1), is given by the expression

dU

dt
= (x − x◦)

x

dx

dt
+ dy

dt
+ βx◦

γ

dv

dt
− β

τ∫
0

d

dω
x(t − ω)v(t − ω)dω

= (
x − x◦)(λ

x
+ r

[
1 − x + y

K

]
− μ − βv

)
+ βxτ vτ + ry

[
1 − x + y

K

]
− αy

+ βx◦

γ
(αηy − γ v) − βxτ vτ + βxv.

Using r − μ = r
K x◦ − λ

x◦ , we get

dU

dt
= (

x − x◦)(−λ
(x − x◦)

xx◦ − r

K

(
x − x◦) − r

K
y − βv

)
+ βxτ vτ + ry

(
1 − x◦

K

)

− αy − r

K

(
x − x◦)y − r

K
y2 + αβηx◦

γ
y − βx◦v − βxτ vτ + βxv

= −λ
(x − x◦)2

xx◦ − r

K

(
x − x◦)2 − 2

r

K

(
x − x◦)y + αβηx◦

γ
y + ry

(
1 − x◦

K

)
− αy − r

K
y2

= −λ
(x − x◦)2

xx◦ − r

K

[(
x − x◦) + y

]2 +
[
αβηx◦

γ
+ r

(
1 − x◦

K

)
− α

]
y.

Using r(1 − x◦
K ) = μ − λ

x◦ , we have

dU

dt
= −λ

(x − x◦)2

xx◦ − r

K

[(
x − x◦) + y

]2 − αβx◦

γ

[
γ

αβx◦

(
λ

x◦ + α − μ

)
− η

]
y.

Rewritten dU
dt in terms of the critical number (3), we get

dU

dt
= −λ

(x − x◦)2

xx◦ − r

K

[(
x − x◦) + y

]2 − αβx◦

γ
(ηcrit − η)y.

If η � ηcrit , then dU
dt � 0 any solution is also bounded on [0,+∞). If η < ηcrit , from Corollary 5.2 of [15], E◦ is globally

asymptotically stable. Also, for η = ηcrit , dU
dt = 0 implies that x(t) = x◦ and y(t) = 0. It is easy to show that E◦(x◦,0,0) is

the largest invariant set in {(x(t), y(t), v(t)): dU
dt = 0}. By the classical Lyapunov–LaSalle invariance principle (Theorem 5.3

of [15]), E◦ is globally asymptotically stable. �
5. Global stability of infected steady state

We motivated by the works of McCluskey [19,20], and other authors [8,16,18,21,22], we constructed Volterra-type func-
tionals for established the conditions of the global stability of the infected steady state of (1).

Theorem 5.1. If η > ηcrit and r � μ + r
K [x∗ + y∗], then the unique infected steady state E∗ of (1) is globally asymptotically stable for

any τ � 0.

Proof. Define a Lyapunov functional for E∗ ,

L(t) = L̃(t) + βx∗v∗L+(t),

where

L̃ =
x∫

∗

(σ − x∗)
σ

dσ +
y∫

∗

(σ − y∗)
σ

dσ + βx∗v∗

αηy∗

v∫
∗

(
1 − v∗

σ

)
dσ ,
x y v
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and

L+ =
τ∫

0

(
x(t − ω)v(t − ω)

x∗v∗ − 1 − ln
x(t − ω)v(t − ω)

x∗v∗

)
dω.

At infected steady state, we have

r − μ = − λ

x∗ + βv∗ + r

K

(
x∗ + y∗), (6)

r − α = −β
x∗v∗

y∗ + r

K

(
x∗ + y∗), (7)

γ = αη
y∗

v∗ . (8)

The derivative of L̃ with respect to t along the solutions of (1), we get

d̃L

dt
= (x − x∗)

x

dx

dt
+ (y − y∗)

y

dy

dt
+ βx∗v∗

αηy∗

(
1 − v∗

v

)
dy

dt

= (
x − x∗)(λ

x
− r

K
(x + y) − βv + r − μ

)
+ (

y − y∗)(β
xτ vτ

y
− r

K
(x + y) + r − α

)

+ βx∗v∗

αηy∗

(
1 − v∗

v

)
(αηy − γ v).

Using (6)–(8), we get

d̃L

dt
= (

x − x∗)(−λ
(x − x∗)

xx∗ − r

K

[(
x − x∗) + (

y − y∗)] − β
(

v − v∗))

+ (
y − y∗)(β

(
xτ vτ

y
− x∗v∗

y∗

)
− r

K

[(
x − x∗) + (

y − y∗)]) + βx∗v∗

αηy∗

(
1 − v∗

v

)(
αηy − αηy∗ v

v∗

)
.

Canceling identical terms with opposite signs and collecting terms, yields

d̃L

dt
= −λ

(x − x∗)2

xx∗ − r

K

[(
x − x∗) + (

y − y∗)]2 + βx∗v∗
(

1 + x

x∗ − xv

x∗v∗ + xτ vτ

x∗v∗ − yv∗

y∗v
− xτ y∗vτ

x∗ yv∗

)
.

We can rewrite d̃L
dt as

d̃L

dt
= −λ

(x − x∗)2

xx∗ − r

K

[(
x − x∗) + (

y − y∗)]2 + βx∗v∗
(

3 − x∗

x
− xv

x∗v∗ + xτ vτ

x∗v∗ − yv∗

y∗v
− xτ y∗vτ

x∗ yv∗

)

+ βx∗v∗
(

x∗

x
+ x

x∗ − 2

)
,

replacing the term x
x∗ + x∗

x − 2 by (x−x∗)2

xx∗ ,

d̃L

dt
= −(

λ − βx∗v∗) (x − x∗)2

xx∗ − r

K

[(
x − x∗) + (

y − y∗)]2 + βx∗v∗
(

3 − x∗

x
− xv

x∗v∗ + xτ vτ

x∗v∗ − yv∗

y∗v
− xτ y∗vτ

x∗ yv∗

)
.

Using λ − βx∗v∗ = (μ − r)x∗ + rx∗
K [x∗ + y∗], we get

d̃L

dt
= −

(
μ − r + r

K

[
x∗ + y∗]) (x − x∗)2

x
− r

K

[(
x − x∗) + (

y − y∗)]2

+ βx∗v∗
(

3 − x∗

x
− xv

x∗v∗ + xτ vτ

x∗v∗ − yv∗

y∗v
− xτ y∗vτ

x∗ yv∗

)
.
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Let xω = x(t − ω) and vω = v(t − ω). It is easy to see that

dL+
dt

= d

dt

τ∫
0

(
xωvω

x∗v∗ − 1 − ln
xωvω

x∗v∗

)
dω =

τ∫
0

d

dt

(
xωvω

x∗v∗ − 1 − ln
xωvω

x∗v∗

)
dω

= −
τ∫

0

d

dω

(
xωvω

x∗v∗ − 1 − ln
xωvω

x∗v∗

)
dω = −

[
xωvω

x∗v∗ − 1 − ln
xωvω

x∗v∗

]τ

ω=0

= − xτ vτ

x∗v∗ + xv

x∗v∗ + ln
xτ vτ

x∗v∗ + ln
x∗v∗

xv
= − xτ vτ

x∗v∗ + xv

x∗v∗ + ln
xτ y∗vτ

x∗ yv∗ + ln
x∗

x
+ ln

yv∗

y∗v
.

Since

dL

dt
= d̃L

dt
+ βx∗v∗ dL+

dt
,

we obtain

dL

dt
= −

(
μ − r + r

K

[
x∗ + y∗]) (x − x∗)2

x
− r

K

[(
x − x∗) + (

y − y∗)]2 − βx∗v∗
(

x∗

x
− 1 − ln

x∗

x

)

− βx∗v∗
(

yv∗

y∗v
− 1 − ln

yv∗

y∗v

)
− βx∗v∗

(
xτ y∗vτ

x∗ yv∗ − 1 − ln
xτ y∗vτ

x∗ yv∗

)
.

Thus, r � μ + r
K [x∗ + y∗] implies that dL

dt � 0. By Corollary 5.2 of [15], solutions limit to M, the largest invariant sub-

set of { dL
dt = 0}. Furthermore, dL

dt = 0 if and only if x(t) = x(t − τ ) = x∗ , v(t) = v(t − τ ) = v∗ and y(t) = y∗ . There-
fore the largest compact invariant set in M is the singleton {E∗}, where E∗ is the infected steady state. This shows
that limt→∞(x(t), y(t), v(t)) = (x∗, y∗, v∗). By the classical Lyapunov–LaSalle invariance principle (Theorem 5.3 of [15]),
if r � μ + r

K [x∗ + y∗] then E∗ is globally asymptotically stable. This proves Theorem 5.1. �
6. Discussion

In this paper, our goal is the construction of Lyapunov functionals is to prove the global stability of the steady states of
a virus dynamics model with density-dependent proliferation of infected cells and intracellular delay.

We obtained that if η � ηcrit , will only virus-free steady state, which is globally asymptotically stable; and the virus is
cleared of the cells population irrespective to the initial conditions. In [1,7] proved that if η > ηcrit then virus-free steady
state becomes unstable and a unique infected steady state exists. We proved the global stability of the infected steady state
if the condition r � μ + r

K [x∗ + y∗] is satisfied. In this case, the viral infection is present in the cells population and will
become a persistent infection.

The results show that, for the viral infection model with mitotic transmission, the time delay has no effect on both global
asymptotic properties of the virus-free steady state and global asymptotic properties of the infected steady state.

Our results of model (1) can be used to prove the global stability of the following system:

dx(t)

dt
= λ + rx(t)

[
1 − x(t) + y(t)

K

]
− μx(t) − (1 − ε)βx(t)vi(t),

dy(t)

dt
= (1 − ε)βx(t − τ )vi(t − τ ) + ry(t)

[
1 − x(t) + y(t)

K

]
− αy(t),

dvi(t)

dt
= (1 − ε)αηy(t) − γi vi(t),

dvni(t)

dt
= εαηy(t) − γni vni(t),

that incorporates the combination of two drug therapies [7]. Where vi and vni denote infectious and non-infectious viral
particles, respectively.

Parameters ε and ε are defined as follows: ε efficiency of drug therapy in preventing new infections, and ε efficiency of
drug therapy in inhibiting viral production. With 0 � ε, ε � 1. An efficacy of 0 indicates that there is no inhibition, whereas
an efficacy of 1 (100%) indicates complete inhibition. Values of the efficacy between 0 and 1 indicate partial inhibition.

Note that the first three equations are decoupled from the last one and that this subsystem is essentially similar to (1).
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