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We study the long time behavior of the energy for wave-type equations with time-
dependent speed and damping:

utt − λ(t)21u + b(t)ut = 0.

We investigate the interaction between the speed of propagation λ(t) and the damping
coefficient b(t), showing how to describe the dissipative effect on the energy. We study a
class of dissipations for which the equation keeps its hyperbolic structure and properties.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider in [0, ∞) × Rn, with space dimension n ≥ 1, the Cauchy problemutt − λ(t)21u + b(t)ut + λ(t)b̃(t) · ∇u + e(t)u = 0,
u(0, x) = u0(x),
ut(0, x) = u1(x),

(1)

where by b̃(t) = (bj(t))j=1,...,n we denote the vector with components bj(t), that is,

b̃(t) · ∇u =

n
j=1

bj(t) uxj .

It is well known that if the coefficients are sufficiently regular and the equation is strictly hyperbolic, that is, λ(t) > 0, then
the Cauchy problem (1) is globally well-posed in C∞ and in all Sobolev spaces with no loss of regularity. However, if we
consider the energy of the solution to (1) given by

Eλ(t) = ∥ut(t, ·)∥2
L2 + λ(t)2∥∇u(t, ·)∥2

L2 , (2)

then we can observe many different effects for the behavior of E(t) as t → ∞, according to the properties of the speed of
propagation λ(t) and of the other coefficients of the equation.
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We first consider the Cauchy problem for the homogeneous equation:

utt − λ(t)21u = 0, u(0, x) = u0(x), ut(0, x) = u1(x). (3)

If 0 < λ0 ≤ λ(t) ≤ λ1 for some λ0, λ1 > 0 then the energy Eλ(t) is equivalent to

E1(t) = ∥ut(t, ·)∥2
L2 + ∥∇u(t, ·)∥2

L2 , (4)

but the oscillations of λ = λ(t) may have a deteriorating influence [1] on the energy behavior for the solution to (3). On the
other hand, if λ ∈ C2 and

|λ(k)(t)| ≤ Ck(1 + t)−k, for k = 1, 2,

then the so-called generalized energy conservation property holds [2], that is,

C0E1(0) ≤ E1(t) ≤ C1E1(0). (5)

If λ(t) ≥ λ0 > 0 and λ(t) → ∞ as t → ∞ in (3) then one can prove the estimate

C0(u0, u1)λ(t) ≤ Eλ(t) ≤ C1λ(t) E(0), where E(0) :=

∥u0∥H1 + ∥u1∥L2


, (6)

for the solution to (3), by assuming sufficient regularity for λ(t) and some kind of control on its oscillations [3]. Referred to
this energy, an increasing speed of propagation can be considered as a dissipative effect (since ∥∇u(t, ·)∥ ≤ C1λ(t)−1 E(0)).
A fundamental difference with (5) is that in the right-hand side term of (6) it appears the H1 norm of u0, not only the L2
norm of its gradient.

We address the interested reader to [4–7] for other results concerning (3).
Let us consider the wave equation with time-dependent damping term b(t)ut , with b(t) > 0:

utt − 1u + b(t)ut = 0. (7)

The dissipation produced by b(t)ut may be classified [8] as non effective if the Eq. (7) has the same asymptotic properties of
the free wave equation, effective if the equation inherits some properties related to the parabolic equation b(t)ut −1u = 0.
In particular, if tb(t) < 1 for large times [9] or in the special case b(t) = µ(1 + t)−1 for µ ∈ (0, 2] (see [10]), the following
estimate holds for Eq. (7):

E1(t) ≤ Cγ (t) E(0), where γ (t) := exp


−

 t

0
b(τ )dτ


. (8)

In this case, the dissipation is non effective for the L2–L2 estimates of the energy.
We will not study effective dissipations in this paper, but we address the interested reader to [11–14]. Neither will we

study Lp–Lq estimates, with (p, q) ≠ (2, 2) (see, for instance, [1,2,15]).
Theorem 2 extends energy estimates (6) and (8) to a more complex situation with a unified approach. In particular, we

prove the energy estimate Eλ(t) ≤ λ(t)γ (t)E(0) for the solution to (1), under suitable assumptions which take into account
the interaction between the speed of propagation λ(t) and the term b(t)ut . In particular, λ′(t) + b(t)λ(t) is almost-positive
(see Definition 1).

Moreover, in Theorem 2 we assume hypotheses which allow us to exclude contributions to the energy behavior coming
from the other coefficients, namely bj(t) and e(t). On the other hand, in Theorem 3 we also include a possible damaging
contribution to the energy estimate coming from the drift terms bj(t)uxj .

The class of dissipationwhichwe study are non effective, in the sense that the damping term b(t)ut produces a factor γ (t)
in the L2–L2 estimate of the energy, with respect to the estimate (6) for (3). In [16], we show how to extend this approach
to higher order equations.

2. Main results

Notation 1. Let f , g : [0, ∞) → (0, ∞) be two strictly positive functions. We use the notation f ≈ g if there exist two
constants C1, C2 > 0 such that C1g(t) ≤ f (t) ≤ C2g(t) for all t ≥ 0. If the inequality is one-sided, namely, if f (t) ≤ Cg(t)
(resp. f (t) ≥ Cg(t)) for all t ≥ 0, then we write f . g (resp. f & g).

In particular f ≈ 1 means that C1 ≤ f (t) ≤ C2 for some constants C1, C2.

Notation 2. Through this paper, we say that a function f : R → R is increasing (resp. strictly increasing, decreasing, strictly
decreasing) if f (x) ≤ f (y) (resp. f (x) < f (y), f (x) ≥ f (y), f (x) > f (y)) for any x, y ∈ R such that x < y.
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2.1. The almost-positivity property

In this paper,wewill dealwith long time integral inequalities to derive energy estimates. In this perspective, the following
definition is useful to state our assumptions.

Definition 1. Let a : [0, ∞) → R be a continuous function. We say that a(t) is almost-zero, and we denote it by a(t) =(a) 0,
if there exists a constant C > 0 such that

− C ≤

 t

0
a(τ ) dτ ≤ C . (9)

We say that a(t) is almost-positive, and we denote it by a(t) ≥(a) 0, (or, respectively, almost-negative, a(t) ≤(a) 0) if there
exists an almost-zero function a1(t) such that a(t) − a1(t) ≥ 0 (or, respectively, ≤ 0).

We say that two functions a1, a2 : [0, ∞) → R are almost-equal and we write a1(t) =(a) a2(t), if a1(t) − a2(t) is almost-
zero, whereas we say that a1(t) is almost-greater than a2(t) and we write a1(t) ≥(a) a2(t), if a1(t) − a2(t) is almost-positive.

Remark 1. Let a : [0, ∞) → R be a continuous function, and let A : [0, ∞) → (0, ∞) be defined by

A(t) := exp
 t

0
a(τ ) dτ


. (10)

Trivially, a(t) =(a) 0 if, and only if, A ≈ 1. Moreover, a(t) is almost-positive (respectively almost-negative) if, and only if,
there exists an increasing (respectively decreasing) function A2 : [0, ∞) → (0, ∞) such that A2 ≈ A. Indeed, a(t) ≥(a) 0
means that there exist a1(t) =(a) 0 and a2(t) ≥ 0 such that a(t) = a1(t) + a2(t). It is clear that A1(t) = exp

 t
0 a1(τ ) dτ

verifies A1 ≈ 1 and that A2(t) = exp
 t
0 a2(τ ) dτ is increasing. Since A(t) = A1(t)A2(t), it follows that A ≈ A2.

Remark 2. Let a(t) ≥(a) 0 and let A : [0, ∞) → (0, ∞) be as in (10). Let f : [0, ∞) → [0, ∞) be a continuous function.
Then, for any s ≤ t , we can estimate t

s
A(τ )f (τ ) dτ . A(t)

 t

s
f (τ ) dτ ; A(s)

 t

s
f (τ ) dτ .

 t

s
A(τ )f (τ ) dτ .

Similarly if a(t) ≤(a) 0 or a(t) =(a) 0.

Example 1. Let a1 : [0, ∞) → (0, ∞) be a continuous, strictly positive, decreasing function with a1 ∉ L1 (in particular,
a1(t) may be constant). Let a2 : [0, ∞) → R be a continuous p-periodic non-constant function and let

a2 :=
1
p

 p

0
a2(τ ) dτ .

Then a1(t)a2(t) =(a) a1(t)a2. Indeed a1(t)(a2(t) − a2) satisfies (9) for

C = max
t∈(0,p)

 t

0
a1(τ )(a2(τ ) − a2) dτ

 .
For instance, a1(t) sin t =(a) 0 with C ≤ 2a1(0).

2.2. Main theorem

To state our assumptions on the coefficients of the equation in (1) we introduce some auxiliary functions.

Definition 2. Let λ ∈ C2 be a strictly positive function, with λ ∉ L1 and λ(0) = 1. We define

Λ(t) := 1 +

 t

0
λ(τ)dτ , η(t) :=

λ(t)
Λ(t)

.

Let b ∈ C1 be a real-valued function. We define

γ (t) := exp


−

 t

0
b(τ )dτ


, 0(t) := 1 +

 t

0
γ (τ) dτ , and 0♯ (s) :=


∞

s
γ (τ) dτ if γ ∈ L1.

Remark 3. The function η(t) has the same regularity as λ(t), it satisfies η(0) = 1, and

η′(t)
η(t)

=
λ′(t)
λ(t)

− η(t). (11)

We are now ready to state our first result, for which we assume bj ≡ 0 and e ≡ 0 in (1).
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Hypothesis 1. We assume that λ(t) and b(t) have very slow oscillationswith respect to λ(t), that is,

|λ(k)(t)|
λ(t)

+ |b(k−1)(t)| . η(t)k, for k = 1, 2. (12)

Hypothesis 2. Following the notation in Definition 1, we assume that

0≤(a)
λ′(t)
λ(t)

+ b(t) ≤(a) 2


η(t) −
γ (t)
0(t)


. (13)

Theorem 1. We assume Hypotheses 1 and 2. Then the solution to the Cauchy problemutt − λ(t)21u + b(t)ut = 0,
u(0, x) = u0(x),
ut(0, x) = u1(x),

(14)

satisfies the energy estimate

Eλ(t) ≤ Cλ(t)γ (t)E(0), (15)

where Eλ(t) is as in (2) and E(0) is as in (6).

Remark 4. In particular, from (15) it follows that

∥∇u(t, ·)∥2
L2 ≤ C

γ (t)
λ(t)

E(0),

that is, the elastic energy ∥∇u(t, ·)∥L2 is bounded by a decreasing function, since γ /λ ≈ g for some decreasing g(t).

Remark 5. The left-hand side and the right-hand side of (13) are the same inequality if, and only if,

γ (t)
0(t)

≈ η(t). (16)

Indeed, thanks to Remark 1 and to (11), it follows that 0ηγ −1
≈ 1 if, and only if,

λ′(t)
λ(t)

+ b(t) =(a) η(t) −
γ (t)
0(t)

. (17)

Remark 6. If γ ∈ L1, i.e. 0(t) is bounded, then γ (t)/0(t) =(a) 0, therefore (13) becomes

0 ≤
λ′(t)
λ(t)

+ b(t) ≤(a) 2η(t). (18)

Remark 7. According to Remark 1, the left-hand side of (13) means that λ(t)γ (t)−1
≈ g(t), for some increasing function

g(t). In particular, γ . λ. On the other hand, the right-hand side of (13) means that η0(λγ )−1/2
≈ g for some decreasing

function g(t). In fact, the right hand side of condition (13) can be weakened: to prove Theorem 1, it is sufficient that
λ′(t) + λ(t)b(t) ≥(a) 0 and that

η(t)0(t)
√

λ(t)γ (t)
≤ C . (19)

Condition (19) is related to the request to have an estimate of the pointwise energy for small frequencies (i.e. pseudo-
differential zone, see the proof of Theorem 2) which is not worse than the estimate obtained for large frequencies
(i.e. hyperbolic zone).

2.3. Estimates from below and scattering results

Estimate (15) can be directly extended to an estimate from below if we restrict the space of initial data.

Definition 3. For any ϵ > 0, we define

Fϵ :=

(u0, u1) ∈ H1

× L2, u0(ξ) = u1(ξ) = 0 for any |ξ | ≤ ϵ

.

For any ϵ > 0, Fϵ is a closed subspace of the energy space H1
× L2.
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We remark that ∪ϵ>0 Fϵ is a dense subset of H1
× L2.

Corollary 1. We assume Hypotheses 1 and 2. Then the solution to the Cauchy problem (14) satisfies the energy estimate from
below

Eλ(t) ≥ C(u0, u1) λ(t)γ (t), (20)

where C(u0, u1) > 0 for nontrivial data. Moreover, if (u0, u1) ∈ Fϵ for some ϵ > 0, then there exist C1,ϵ, C2,ϵ > 0 such that

C1,ϵ λ(t)γ (t) E1(0) ≤ Eλ(t) ≤ C2,ϵ λ(t)γ (t) E1(0), (21)

where E1(0) = ∥∇u0∥L2 + ∥u1∥L2 as in (4).

If the coefficient of the damping term is in L1, then we have the following scattering result.

Corollary 2. We assume Hypothesis 1. Moreover, we assume that b ∈ L1 and that 0≤(a) λ′(t)/λ(t) ≤(a) 2η(t). Then, for any
initial data (u0, u1) ∈ H1

× L2 there exists (v0, v1) ∈ H1
× L2 such that

lim
t→∞

1
λ(t)

λ(t)∇u(t, ·) − λ(t)∇v(t, ·), ut(t, ·) − vt(t, ·)
2

L2 = 0, (22)

where u(t, x) is the solution to the Cauchy problem (14) and v(t, x) is the solution to the Cauchy problem

vtt − λ(t)21v = 0, v(0, x) = v0(x), vt(0, x) = v1(x). (23)

Moreover, for any ϵ > 0 there exists a linear, bounded, invertible operator W ϵ
+

: Fϵ → Fϵ such that

1
λ(t)

λ(t)∇u(t, ·) − λ(t)∇v(t, ·), ut(t, ·) − vt(t, ·)
2

L2 ≤ Cϵ E1(0)


∞

t
|b(τ )| dτ

2

, (24)

for some Cϵ > 0, where u(t, x) is the solution to the Cauchy problem (14)with initial data (u0, u1) ∈ Fϵ , and v(t, x) is the solution
to the Cauchy problem (23) with initial data (v0, v1) = W ϵ

+
(u0, u1).

2.4. Additional terms which bring no contribution to the energy behavior

We can extend Theorem 1 to the complete equation in (1), stating sufficient conditions to exclude contributions to the
energy long time behavior coming from bj(t), e(t).

Hypothesis 3. Let bj ∈ C1 and e ∈ C, possibly complex-valued. Similarly to (12), we assume that

|b(k)
j (t)| . η(t)k+1, for k = 0, 1 and j = 1, . . . , n, and |e(t)| . η(t)2. (25)

Hypothesis 4. We assume that ℜ bj(t) =(a) 0 for any j = 1, . . . , n (see Definition 1).

Hypothesis 5. We assume that there exist two functions g(t) and h(s) such that t

s
γ (τ) dτ ≤ g(t)h(s), with g(t)h(t) ≤ 0(t) and g(t) ≥ 0(t), (26)

where g(t) is an increasing function with g(0) = 1 and h(s) is a positive decreasing function, such that

γ

gh
≈ η, (27)

η(t)g(t)
√

λ(t)γ (t)
exp

 t

0

g(τ )h(τ )

γ (τ )
|e(τ )|dτ


≤ C . (28)

In particular, condition (28) implies (19).

Hypothesis 6. We assume that
γ (t)
λ(t)

 t

0


λ(σ)

γ (σ )

|e(σ )|

η(σ )
dσ ≤ C . (29)

Theorem 2. We assume Hypotheses 1–6. Then the solution to (1) satisfies the energy estimate (15).
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2.5. Perturbation to the energy behavior coming from drift terms

The real part of the lower order terms bj(t) may bring contribution to the energy behavior if Hypothesis 4 does not hold.
In this case, we replace it by the following.

Hypothesis 7. For any j = 1, . . . , n, we assume that ℜbj(t) ≥(a) 0 or ℜbj(t) ≤(a) 0.

Definition 4. From Hypothesis 7 and from Definition 1, it follows that for any j = 1, . . . , n, there exist two real-valued
functions bj,s(t) and bj,w(t) such that ℜbj(t) = bj,s(t) + bj,w(t), where bj,s(t) has a constant sign and bj,w(t) =(a) 0. We
define

γs(t) = exp
 t

0
bs(τ ) dτ


, where bs(t) := max

|ξ |=1

n
j=1

|bj,s(t)| |ξj|,

and we put

d(t) := λ(t)γ (t)γs(t). (30)

In general, the contribution from bs(t) produces an energy estimate for the high frequencies of the pointwise energy worse
than (15), since γs(t) ≥ 1. Indeed, the energy might blow up as t → ∞ (see Example 11).

We need to rewrite our conditions by means of d(t) given in (30), rather than by means of d(t) = λ(t)γ (t) as in
Theorem 2. However, since we now expect an estimate worse than (15), we can relax some assumptions on the coefficients.
In particular, the left-hand side of condition (13) is weakened to the following (31).

Hypothesis 8. We assume that

λ′(t)
λ(t)

+ b(t) + bs(t) ≥(a) 0, (31)

and that there exist g(t), h(s) as in (26) which satisfy (27), and such that

η(t)g(t)
√
d(t)

exp
 t

0

g(τ )h(τ )

γ (τ )
|e(τ )|dτ


≤ C, (32)

γ (t)
√
d(t)

 t

0

√
d(σ )

γ (σ )

|e(σ )|

η(σ )
dσ ≤ C . (33)

Theorem 3. We assume Hypotheses 1 and 3 together with Hypotheses 7 and 8. Then the solution to (1) satisfies the following
energy estimate:

Eλ(t) ≤ Cλ(t)γ (t)γs(t)E(0). (34)

Remark 8. In some cases, it is sufficient to take either g(t) = 0(t) and h(s) = 1, or g(t) = 1 and h(s) = 0♯ (s) if γ ∈ L1
in (26), provided that (27) holds (see Remark 5). Indeed, in this case, (26) is satisfied thanks to (19). On the other hand, in
some cases a different choice for (g, h) may be necessary, or it may be convenient to make condition (28) less restrictive
(see Example 13).

2.6. The general second order equation

Theorem 3 can be applied for studying second-order equations which contain a term utx. For the ease of reading, we
assume n = 1. Let us consider the equation

utt + 2λ1(t)a1(t)utx + λ1(t)2a2(t)uxx + b(t)ut = 0, (35)

assuming that a1(t)2 − a2(t) > 0. Let a(t) :=

a1(t)2 − a2(t) and λ(t) := λ1(t)a(t). Then we can perform the change of

variable y = x −
 t
0 λ1(τ )a1(τ ) dτ obtaining

vtt − λ(t)2vyy + b(t)vt + λ(t)b1(t)vy = 0, (36)

where we put

b1(t) = −
a1(t)
a(t)


b(t) +

λ′

1(t)
λ1(t)

+
a′

1(t)
a1(t)


.
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In general, we cannot expect Hypothesis 4 to be satisfied, but we can use Theorem 3. In such a way, if the assumptions of
Theorem 3 hold, from (34) one can obtain an estimate on the energy Eλ(t) for v(t, y):

Eλ(t) . λ(t)γ (t)γs(t)E(0) . λ(t)γ (t)γs(t)

∥u0∥H1 + ∥u1∥L2


, (37)

since v0 = u0 and v1 = u1 + λ1(0)a1(0)u0. We remark that

Eλ(t) ≡ ∥vt(t, ·)∥2
L2 + λ(t)2∥vy(t, ·)∥2

L2 = ∥ut(t, ·) + λ1(t)a1(t)ux(t, ·)∥2
L2 + λ(t)2∥ux(t, ·)∥2

L2 ,

therefore from (37) we immediately get an estimate for λ(t)2∥ux(t, ·)∥2
L2
. Moreover, by triangle inequality,

∥ut(t, ·)∥2
L2 ≤ ∥vt(t, ·)∥2

L2 + λ1(t)2a1(t)2∥ux(t, ·)∥2
L2 ≡ ∥vt(t, ·)∥2

L2 + λ(t)2(a1(t)/a(t))2∥vy(t, ·)∥2
L2 ,

thus we can roughly estimate

∥ut(t, ·)∥2
L2 + λ(t)2∥ux(t, ·)∥2

L2 . λ(t)γ (t)γs(t)

∥u0∥H1 + ∥u1∥L2


, (38)

provided that |a1(t)| . a(t), the so-called Colombini–Orrú condition [17] (see also [18]).

Example 2. Let us assume that

a1(t) = αa(t) ≡ α

a1(t)2 − a2(t), that is, a2(t) =

α2
− 1

α2
a1(t)2,

for some α ≠ 0, with a ≈ 1, together with λ′(t) + b(t)λ(t) ≥ 0. Then a′

1(t)/a1(t) =(a) 0, hence it follows that

bs(t) =(a) |α|
λ′(τ ) + λ(t)b(t)

λ(τ )
, γs(t) =


λ(t)
γ (t)

|α|

.

If the assumptions of Theorem 3 hold, from (38) we derive for the solution u(t, x) to (35) that:

∥ut(t, ·)∥2
L2 + λ(t)2∥ux(t, ·)∥2

L2 ≤ Cλ(t)1+|α|γ (t)1−|α|

∥u0∥H1 + ∥u1∥L2


. (39)

From (39), we obtain the following estimate on the elastic energy of the solution u(t, x) to (35):

∥ux(t, ·)∥2
L2 ≤ C


γ (t)
λ(t)

1−|α| 
∥u0∥H1 + ∥u1∥L2


.

In particular, ∥ux(t, ·)∥L2 is bounded by a decreasing function if |α| ≤ 1, that is, if a2(t) ≤ 0.

3. Examples

We will present several examples for Theorem 1 and two special examples for Theorem 3. In Appendix we will show
how to apply Theorem 2 if we add a coefficient e(t) in Example 3.

Example 3. Let

b(t) := (1 − κ)
λ(t)
Λ(t)

−
λ′(t)
λ(t)

, (40)

for some κ ∈ [−1, 1]. It follows that

γ (t) = λ(t)/Λ(t)1−κ .

We distinguish three cases. If κ ∈ (0, 1] then

0(t) = 1 + (Λ(t)κ − 1) /κ.

Condition (16) holds, hence Remark 6 is applicable and (13) is satisfied since from κ ≤ 1 it follows that

λ′(t)
λ(t)

+ b(t) = (1 − κ)η(t) ≥ 0.

If κ ∈ [−1, 0) then γ ∈ L1 and condition (18) immediately follows, since κ ≥ −1. We notice that 0♯ (t) = Λ(t)κ/(−κ).
Now let κ = 0, that is, b(t) = −η′(t)/η(t) and γ = η(t). Since 0(t) = 1 + logΛ(t), it is easy to check that condition (13)
holds. We notice that (16) does not hold in this case.

Summarizing, if (40) holds for some κ ∈ [−1, 1], Theorem 1 is applicable. We remark that λ(t)γ (t) = λ(t)η(t)Λ(t)κ in
(15). In particular, Eλ(t) vanishes as t → ∞ if λ(t)η(t)Λ(t)κ → 0 as t → ∞.



322 M. D’Abbicco, M.R. Ebert / J. Math. Anal. Appl. 399 (2013) 315–332

Remark 9. More in general, the reasoning in Example 3 holds if

b(t) =(a)(1 − κ)
λ(t)
Λ(t)

−
λ′(t)
λ(t)

. (41)

Remark 10. We remark that b(t) as in Example 3 means that the equation in (14) may be written in scale-invariant form,
that is, if we put w(τ) ≡ w


Λ(t) |ξ |


:=u(t, ξ), then for any ξ ≠ 0 we obtain

w′′
+ w +

1 − κ

τ
w′

= 0.

Example 4 (The Case b ≡ 0). If b ≡ 0, then γ (t) = 1 and 0(t) = 1 + t , therefore (13) becomes

0≤(a)
λ′(t)
λ(t)

≤(a) 2


η(t) −
1

1 + t


.

More in general, for any b(t) =(a) 0, it holds γ ≈ 1 and condition (19) holds if, and only if,

(1 + t)


λ(t) . Λ(t). (42)

We remark that (42) is a very natural condition (see, for instance, [7]) and it holds for a large class of functions λ(t). Together
with λ′(t)/λ(t) ≥(a) 0, condition (42) is sufficient to apply Theorem 1. It is clear that λ(t)γ (t) ≈ λ(t) in (15).

Remark 11. Let us assume that 0≤(a) b(t) ≤(a) qη(t) for some q ∈ (0, 1). In this case, we can estimate

Λ(t)−q . γ (t) . 1, hence 1 + tΛ(t)−q . 0(t) . 1 + t.

Then we can be sure that (19) holds if we assume a condition stronger than (42):

(1 + t)


λ(t) . Λ(t)1−q. (43)

Example 5. Let

b(t) =
µλ(t)

(e − 1 + Λ(t))(log(e − 1 + Λ(t)))κ
,

for some µ > 0 and κ > 0; then

 t

0
b(τ )dτ =


µ

κ − 1


1 −


1

log(e − 1 + Λ(t))

κ−1


if κ > 1,

µ log log(e − 1 + Λ(t)) if κ = 1,
µ

1 − κ


(log(e − 1 + Λ(t)))1−κ

− 1


if 0 < κ < 1.

If κ > 1 then b ∈ L1, that is, it does not influence the energy behavior (see also Corollary 2). If κ ≤ 1 then we can expect
some influence. For κ = 1, we can easily calculate

γ (t) = (log(e − 1 + Λ(t)))−µ,

whereas for k ∈ (0, 1), we obtain

γ (t) = eC1 exp

− log(e − 1 + Λ(t))C2

1−κ
, where C1 = µ/(1 − k) and C2 = C1/(1−k)

1 .

In particular, in both cases we can follow Remark 11 for q = ϵ for any ϵ > 0. Then (19) holds if

(1 + t)


λ(t) . Λ(t)1−ϵ, for some ϵ > 0. (44)

We may consider many different behaviors for the speed of propagation λ(t). For the sake of brevity we only study
polynomial and exponential growth and we briefly present some other examples.

Example 6. Let λ(t) = (1 + t)p−1 for some p > 0; then the function Λ(t) has a polynomial growth. We obtain:

Λ(t) =
(1 + t)p + (p − 1)

p
,

λ′(t)
λ(t)

=
p − 1
1 + t

,

η(t) =
p

(1 + t)(1 + (p − 1)(1 + t)−p)
=(a)

p
1 + t

.
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Let b(t) = µ/(1 + t), for some µ ∈ R; we remark that the case b ≡ 0 (Example 4) is included. Then b(t) satisfies (41) for
κ = (1−µ)/p, provided that−p+1 ≤ µ ≤ p+1, hence Theorem 1 is applicable. We remark that λ(t)γ (t) = (1+ t)p−1−µ

in (15). In particular, Eλ(t) vanishes as t → ∞ if µ ∈ (p − 1, p + 1].
Similarly to Example 5, now let

b(t) =
µ

(1 + t)(log(e + t))κ
,

for some µ > 0 and κ ∈ (0, 1]. It is easy to check that the left-hand side of (13) holds if, and only if, p ≥ 1. On the other
hand, condition (44) is satisfied for any p > 1.

Example 7. Let λ(t) = ept for some p > 0; then

Λ(t) =
p − 1 + ept

p
,

λ′(t)
λ(t)

= p, η(t) =
pept

p − 1 + ept
=(a) p.

Conditions (12)–(25) are satisfied if b, b′, b1, b′

1, e are bounded. Let b(t) = µ for some µ ≠ 0. Then b(t) satisfies (41)
for κ = (1 − µ)/p, provided that 0 < |µ| ≤ p. Therefore Theorem 1 is applicable, as in Example 3. We remark that
λ(t)γ (t) = e(p−µ)t in (15). In particular, Eλ(t) is bounded if µ = p.

If b ≡ 0, as in Example 4, the left-hand side of condition (13) and condition (42) hold for any p > 0. Now let
b(t) = µ(1 + t)−κ for some µ > 0 and κ ∈ (0, 1], as in Example 5. The left-hand side of (13) and (19) hold for any
p > 0 (see also (44)).

Example 8. Let Λ(t) = ee
t
−1; then

λ(t) = etee
t
−1,

λ′(t)
λ(t)

= et + 1, η(t) = et .

If b(t) =(a) µet for some µ ∈ (0, 1) then 0(t) is bounded and condition (18) holds.
Let λ(t) = qtq−1et

q
+ 1 for some q ∈ (1, ∞); then

Λ(t) = et
q
+ t,

λ′(t)
λ(t)

=(a) qtq−1
+ (q − 1)tq−2, η(t) =(a) qtq−1.

If b(t) =(a) µtq−1 for some µ ∈ (0, q) then 0(t) is bounded and condition (18) holds.
Let λ(t) = r(1 + t)−(1−r)e(1+t)r−1

+ (1 − r) for some r ∈ (0, 1); then

Λ(t) = e(1+t)r−1
+ (1 − r)t,

λ′(t)
λ(t)

=(a)
r

(1 + t)1−r
−

1 − r
1 + t

, η(t) =(a)
r

(1 + t)1−r
.

If b(t) =(a) µ(1 + t)−(1−r) for some µ ∈ (0, r] then 0(t) is bounded and condition (18) holds.

Example 9. Let η & 1 as in Examples 7 and 8. Let us assume that Hypotheses 1 and 2 hold for some b(t). Let a : [0, ∞) → R
be a C1 p-periodic non-constant function, with

 p
0 a(τ ) dτ = 0. Then Hypotheses 1 and 2 also hold if we replace b(t) by

b(t) + a(t). Indeed, a(t) =(a) 0 (see Example 1) and it satisfies (12), since |a′(t)| is bounded.

If we do not exclude the chance that the real parts of bj(t) bring a contribution to the energy behavior, thenwemay apply
Theorem 3 and additional effects may appear.

Example 10. We follow Example 3, but now we take ℜbj(t) =(a) ℓj η(t) for some ℓj ∈ R. Then we obtain

d(t) = λ(t)η(t)Λ(t)κ+ℓ, where ℓ := max
|ξ |=1

n
j=1

|ℓj| |ξj|,

since γs(t) = Λ(t)ℓ. Condition (31) is satisfied if, and only if, |κ| ≤ ℓ + 1. Let us take (g, h) = (0, 1) if κ ∈ (0, 1], (g, h) =

(1, 0♯ ) if κ ∈ [−1, 0), or g(t) = Λ(t)ϵ/ϵ and h(s) = Λ(s)−ϵ for some ϵ ∈ (0, 1] if κ = 0. Then condition (27) holds.
In particular, let n = 1. If b1(t) =(a) µ1/(1+t) forµ1 ≠ 0 in Example 6, then (31) gives 1−(p+|µ1|) ≤ µ ≤ (p+|µ1|)+1

and d(t) = (1 + t)p−1+|µ1|−µ in (34). If b1(t) =(a) µ1 for µ1 ≠ 0 in Example 7 it gives 0 < |µ| ≤ p + |µ1| and
d(t) = e(p+|µ1|−µ)t in (34).

The following example shows that the energy may blow up as t → ∞ if Hypothesis 4 does not hold.
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Example 11. Let n = 1. We consider the Cauchy problem

utt − (1 + t)2uxx − d0ux = 0, u(0, x) = u0(x) ∈ C∞

0 , ∂tu(0, x) ≡ 0,

that is, λ(t) = 1 + t, b ≡ 0, b1(t) = −d0/(1 + t). Here γ (t) ≡ 1 and γs(t) = (1 + t)d0 . Theorem 3 gives

Eλ(t) ≤ C(1 + t)d0+1E(0),

in particular ∥ux(t, ·)∥2
L2 ≤ C(1 + t)d0−1E(0). The same long time asymptotic behavior appears for

vtt − t2vxx − d0vx = 0, v(0, x) = v0(x), vt(0, x) ≡ 0, (45)

where d0 = 4k + 1, with k ∈ N. The unique solution has the form

v(t, x) =

k
j=0

√
π t2j

j!(n − j)!0

j + 1

2

 (∂ j
xv0)(x + t2/2),

where 0 is the Euler Gamma function (see [19]). Therefore ∥vx(t, ·)∥2
L2

≈ t4k = td0−1 as t → ∞ for a suitable choice of
initial data. We remark that in the Example above, loss of regularity of the solution also appears, since the equation in (45)
is weakly hyperbolic at t = 0. Since we are interested in long-time behavior for strictly hyperbolic equations, we replace t2
with (1 + t)2.

4. Proofs

In the following we will use a sharp Gronwall-type integral inequality which plays a fundamental role in our energy
estimates. It follows as corollary of Theorem 1.5 in [20].

Lemma 1. Let u(t) and b(t) be continuous functions in J = [α, β], and let a(t) be a Riemann-integrable function in J. Suppose
that a(t) and b(t) are non negative in J.

If u(t) ≤ a(t) + a(t)
 t

α

b(σ )u(σ ) dσ , (46)

then u(t) ≤ a(t) exp
 t

α

a(τ )b(τ ) dτ


. (47)

Moreover if we replace ≤ with = (or, resp., with ≥) in (46) then (47) still holds by replacing ≤ with = (or, resp., with ≥),
that is, estimate (47) is sharp.

In the following we will prove at the same time Theorems 1 and 2, since only minor changes appear. Later we will prove
Theorem 3.

Notation 3. If v = (v1, . . . , vm) is a vector in Cm, then we denote by diagv or diag(v1, . . . , vm) the m × m diagonal matrix
M = (Mij) with entries Mii = vi and Mij = 0 for any i ≠ j. On the other hand, if M = (Mij) is a square matrix, then we
denote the diagonal part ofM by DiagM , that is, (DiagM)ii = Mii, and (DiagM)ij = 0 if i ≠ j.

Proof of Theorems 1 and 2. We perform the Fourier transform of (1) with respect to x obtainingutt + |ξ |
2λ(t)2u + b(t)ut + i|ξ |λ(t)b♯(t, ξ)u + e(t)u = 0,u(0, ξ),ut(0, ξ)


=
u0(ξ), u1(ξ)


,

(48)

where we put

b♯(t, ξ) :=
1
|ξ |

n
j=1

bj(t)ξj.

We claim that

E(t, ξ) ≤ Cλ(t)γ (t)E0(ξ), (49)

uniformly with respect to ξ ∈ Rn, where E(t, ξ) and E0(ξ) are the pointwise energies given by

E(t, ξ) := |ut(t, ξ)|2 + |ξ |
2λ(t)2|u(t, ξ)|2, (50)

E0(ξ) := |u1(ξ)|2 + (1 + |ξ |
2)|u0(ξ)|2. (51)
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Indeed, by integrating this inequality with respect to ξ and by Plancherel’s Theorem, estimate (15) will follow from (49). In
order to prove (49), for some constant N > 0, we divide the extended phase space [0, ∞) × Rn into the pseudo-differential
zone Zpd(N) and into the hyperbolic zone Zhyp(N), defined by

Zpd(N) = {(t, ξ) ∈ [0, ∞) × R : Λ(t)|ξ | ≤ N},

Zhyp(N) = {(t, ξ) ∈ [0, ∞) × R : Λ(t)|ξ | ≥ N}.

Since Λ : [0, ∞) → [1, ∞) is strictly increasing and surjective, the function which describes the zone boundaries is given
by

θ : (0,N] → [0, ∞), θ|ξ | = Λ−1(N/ |ξ |).

We put also θ0 = ∞, and θ|ξ | = 0 for any |ξ | > N . The pair (t, ξ) in the extended phase space is in Zpd(N) (resp. in Zhyp(N))
if, and only if, t ≤ θ|ξ | (resp. t ≥ θ|ξ |). In Zhyp(N) we put

U = (i|ξ |λ(t)u,ut), U0(ξ) :=

i|ξ |λ(θ|ξ |)u(θ|ξ |, ξ),ut(θ|ξ |, ξ)


,

so that from (48) we derive the system

∂tU =


0 1
1 0


i|ξ |λ(t)U +

 λ′(t)
λ(t)

0

−b♯(t, ξ) −b(t)

U +


0 0

−e(t) 0


(i|ξ |λ(t))−1U, (52)

for t ≥ θ|ξ |, with initial datum U(θ|ξ |, ξ) = U0(ξ). We remark that the pointwise energy E(t, ξ) in (50) is equivalent to
|U(t, ξ)|2 (in particular, E(θ|ξ |, ξ) ≈ |U0(ξ)|2). Moreover, for |ξ | ≥ N , that is, θ|ξ | = 0, it holds

|U0(ξ)|2 = |ξ |
2
|u0(ξ)|2 + |u1(ξ)|2 ≤ C E0(ξ).

Let P be the (constant, unitary) diagonalizer of the principal part of (52), given by

P =
1

√
2


1 1

−1 1


, P−1

=
1

√
2


1 −1
1 1


,

that is, if we put V (t, ξ) = P−1U(t, ξ), then we obtain

∂tV =


−1 0
0 1


i |ξ | λ(t)V + B0(t, ξ) V + B1(t)(i |ξ | λ(t))−1V , (53)

where

B0(t, ξ) =
1
2

λ′(t)
λ(t)


1 1
1 1


−

1
2
b♯(t, ξ)


−1 −1
1 1


−

1
2
b(t)


1 −1

−1 1


, B1(t) = −

e(t)
2


−1 −1
1 1


.

We define the refined diagonalizer which depends on the not diagonal entries of B0(t, ξ):

K(t, ξ) :=

 1
h+(t, ξ)

2i |ξ | λ(t)

−
h−(t, ξ)

2i |ξ | λ(t)
1

 , h± :=
1
2


λ′

λ
+ b ± b♯


. (54)

Thanks to Hypotheses 1 and 3, in Zhyp(N) we have

|h±(t, ξ)|

|ξ | λ(t)
≤

C η(t)
|ξ | λ(t)

=
C

|ξ | Λ(t)
≤

C
N

, (55)

hence |det K | ≥ 1 − C2/N2. Therefore, K(t, ξ), K−1(t, ξ) are bounded for a sufficiently large N , which depends only on the
constants in Hypotheses 1 and 3. We replace V (t, ξ) = K(t, ξ)W (t, ξ) and we get

∂tW =


−1 0
0 1


ϕ(t, ξ)W + f (t)W + J(t, ξ)W , (56)

for t ≥ θ|ξ |, where ϕ(t, ξ) and f (t) are scalar functions given by

ϕ(t, ξ) = i |ξ | λ(t) −
1
2
b♯(t, ξ), f (t) =

1
2


λ′(t)
λ(t)

− b(t)


,
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and the matrix J(t, ξ) = K−1(t, ξ)R(t, ξ) is derived (see Notation 3) by

R = (i |ξ | λ)(D0K − KD0) + B0K − Kt − KDiagB0 + (i |ξ | λ)−1B1K
= −HDiagB0 − Ht + B0H + (i |ξ | λ)−1B1K ,

where we put D0 = diag(−1, 1) and H(t, ξ) = K(t, ξ) − I2. Thanks to Hypotheses 1 and 3, the matrices R(t, ξ) and J(t, ξ),
satisfy the following estimate in Zhyp(N):

∥R(t, ξ)∥, ∥J(t, ξ)∥ .
η(t)2

|ξ | λ(t)
. (57)

Now let

D(t, ξ) := diag


exp

 t

θ|ξ |

ϕ(τ , ξ) dτ


, exp


−

 t

θ|ξ |

ϕ(τ , ξ) dτ


. (58)

Since λ(t) is real-valued and ℜbj(t) =(a) 0 for any j = 1, . . . , n, it holds ∥D(t, ξ)∥, ∥D−1(t, ξ)∥ ≤ C . On the other hand, the
term f (t) brings a scalar contribution, that is,


d(t, ξ) := exp

 t

θ|ξ |

f (τ ) dτ


=


λ(t)γ (t)

λ(θ|ξ |)γ (θ|ξ |)
.

We putW (t, ξ) =
√
d(t, ξ)D(t, ξ)Z(t, ξ) and we obtain in Zhyp(N),

∂tZ =J(t, ξ) Z, t ≥ θ|ξ |,

Z(θ|ξ |, ξ) = K−1(θ|ξ |, ξ)P−1 U(θ|ξ |, ξ),
(59)

where the matrixJ(t, ξ) = D−1(t, ξ)J(t, ξ)D(t, ξ) satisfies again (57). For any s, t ≥ θ|ξ |, we have t

s
∥J(τ , ξ)∥ dτ ≤ C


∞

θ|ξ |

λ(τ)

|ξ | Λ(τ )2
dτ ≤

C ′

|ξ | Λ(θ|ξ |)
=

C ′

N
,

hence |Z(t, ξ)| ≤ C∥Z(θ|ξ |, ξ)∥ and, by using Liouville’s formula, |Z(t, ξ)| ≥ C ′
∥Z(θ|ξ |, ξ)∥. We have proved that in Zhyp(N)

it holds

C1 d(t, ξ) |U(θ|ξ |, ξ)|2 ≤ |U(t, ξ)|2 ≤ C2 d(t, ξ) |U(θ|ξ |, ξ)|2. (60)

We remark that (60) is a two-sided estimatewhere the same function d(t, ξ) appears in both sides, that is, we have a precise
description of the behavior of the energy in Zhyp(N). In particular (60) concludes the proof of our claim (49) in Zhyp(N), and
it gives

E(t, ξ) ≈ d(t, ξ) E(θ|ξ |, ξ), for any t ≥ θ|ξ |, (61)

where E(t, ξ) is the pointwise energy in (50). Now we consider Zpd(N) and we put

V = (iη(t)u,ut), V0(ξ) = (iu0(ξ), u1(ξ)), and V =


λ(t)γ (t)V ,

so that

∂tV = A(t, ξ)V ≡


η′

η
+

b
2

−
λ′

2λ
iη

i |ξ |
2 λ2

− |ξ | λb♯
+ ie

η
−

b
2

−
λ′

2λ

 Ṽ , V (0, ξ) = V0(ξ). (62)

Since we can estimate the pointwise energy E(t, ξ) in (50) by

E(t, ξ) ≡ |ut(t, ξ)|2 + λ(t)2ξ 2
|u(t, ξ)|2 ≤ CN


|ut(t, ξ)|2 + η(t)2|u(t, ξ)|2


,

and, on the other hand, |V0(ξ)|2 ≡ |u0(ξ)|2 + |u1(ξ)|2 ≤ E0(ξ), we have to prove that the fundamental solution E(t, ξ) to
(62), i.e.

∂tE = A(t, ξ)E, E(0, ξ) = I2,
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is bounded. If we put E = (Eij)i,j=1,2, then we can write for j = 1, 2 the following integral equations:

E1j = η(t)
1

√
γ (t)λ(t)


δ1j + i

 t

0


γ (τ)λ(τ)E2j(τ , ξ)dτ


, (63)

E2j =


γ (t)
λ(t)


δ2j +

 t

0


λ(σ)

γ (σ )

a(σ , ξ)

η(σ )
E1j(σ , ξ)dσ


, (64)

where we put

a(σ , ξ) := i |ξ |
2 λ(σ)2 − |ξ | λ(σ)b♯(σ , ξ) + ie(σ ). (65)

By replacing (64) into (63) we obtain

E1j = (I) + (II) + (III) =
η(t)

√
γ (t)λ(t)

δ1j + i
η(t)(0(t) − 1)

√
γ (t)λ(t)

δ2j (66)

+
iη(t)

√
γ (t)λ(t)

 t

0
γ (τ)

 τ

0


λ(σ)

γ (σ )

a(σ , ξ)

η(σ )
E1j(σ , ξ)dσ


dτ . (67)

Thanks to (19) the terms (I) and (II) in (66) are bounded. We consider the term (III) in (67), that is, integrating by parts,

(III) =
iη(t)

√
γ (t)λ(t)

 t

0


λ(σ)

γ (σ )

a(σ , ξ)

η(σ )
E1j(σ , ξ)

 t

σ

γ (τ)dτ

dσ .

To prove that E1j(t, ξ) is bounded we use Lemma 1. Using the left-hand side of (13) and |ξ | Λ(t) ≤ N , by virtue of Remark 2
we can estimate

|ξ |
2 λ(σ)2

 t

σ

γ (τ)dτ ≤ Cγ (σ ) |ξ |
2 λ(σ)

 t

σ

λ(τ)dτ ≤ CNγ (σ )|ξ |λ(σ). (68)

If we are proving Theorem 1, the estimate of E1j(t, ξ) immediately follows from Lemma 1 by virtue of (19), since

|E1j(t, ξ)| ≤
η(t)0(t)

√
γ (t)λ(t)

exp

CN

 t

0
|ξ |λ(σ)dσ


≤ eCN

2 η(t)0(t)
√

γ (t)λ(t)
.

If we are proving Theorem 2 then we have to take into account b♯(t, ξ) and e(t). In this case, we use (26), so that

|E1j(t, ξ)| ≤
η(t)0(t)

√
γ (t)λ(t)

+ CN
η(t)

√
γ (t)λ(t)

 t

0

√
λ(σ)γ (σ )

η(σ )
|ξ |λ(σ) |E1j(σ , ξ)|dσ

+
η(t)g(t)

√
γ (t)λ(t)

 t

0
h(σ )


λ(σ)

γ (σ )

|ξ ||b♯(σ , ξ)|λ(σ) + |e(σ )|

η(σ )
|E1j(σ , ξ)|dσ .

Since 1 ≤ 0(t) ≤ g(t), by applying Lemma 1, thanks to (26), it follows that

|E1j(t, ξ)| ≤
η(t)g(t)

√
γ (t)λ(t)

exp
 t

0
f (σ , ξ)dσ


,

where we take

f (σ , ξ) = CN |ξ |λ(σ) +
g(σ )h(σ )

γ (σ )


|ξ |λ(σ)|b♯(σ , ξ)| + |e(σ )|


.

Since γ /gh ≈ η by virtue of (27) and |b♯(σ , ξ)| ≤ C ′η(σ ) thanks to (25), we can estimate t

0
CN |ξ |λ(σ) dσ +

 t

0
|ξ |λ(σ)

g(σ )h(σ )

γ (σ )
|b♯(σ , ξ)| dσ ≤ CN2

+ C1N.

Thanks to (28), since ηg .
√

γ λ by virtue of (26), it follows that E1j(t, ξ) is bounded. By the boundedness of E1j, using
(12)–(25) and (13) (see Remark 2), together with (29), we can estimate (64) by

|E2j| ≤


γ (t)
λ(t)


1 + C

 t

0


λ(σ)

γ (σ )

|a(σ , ξ)|

η(σ )
dσ


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≤ C1 + C2

 t

0
|ξ |

2 λ(σ)Λ(σ )dσ + C3|ξ |

 t

0
λ(σ)dσ + C


γ (t)
λ(t)

 t

0


λ(σ)

γ (σ )

|e(σ )|

η(σ )
dσ ≤ C ′.

We proved that E(t, ξ) is bounded, that is, |V (t, ξ)| ≤ C |V0(ξ)|, therefore

E(t, ξ) ≤ C ′ λ(t)γ (t) E0(ξ), for any |ξ | ≤ N and t ≤ θ|ξ |. (69)

We remark that (69) is a one-side estimate. By combining (69) with the estimate from above in (61), we conclude the proof
of (49). �

Proof of Theorem 3. With the notation in Definition 4, let

b♯
w(t, ξ) :=

1
|ξ |

n
j=1

bj,w(t)ξj, b♯
s(t, ξ) :=

1
|ξ |

n
j=1

bj,s(t)ξj.

Thanks to Hypothesis 7, it is clear that

bs(t) = max
ξ∈Rn

|b♯
s(t, ξ)|. (70)

We follow the proof of Theorem 2 but we write (56) in the form

∂tW =


−1 0
0 1


ϕw(t, ξ)W + fs(t)W + G(t)W + J(t, ξ)W , (71)

where ϕw(t, ξ) = iλ(t) |ξ | −
1
2
(b♯

w(t, ξ) + iℑb♯(t, ξ)) and fs =
1
2


λ′

λ
− b + bs


.

Thanks to (70), the matrix G(t, ξ) has negative diagonal entries given by

G(t, ξ) =


g+(t, ξ) 0

0 g−(t, ξ)


g±(t, ξ) =

1
2


±b♯

s(t, ξ) − bs(t)


≤ 0.

Similarly to (58), we define

Dw(t, ξ) :=


exp


−

 t

θ|ξ |

ϕw(τ , ξ) dτ


0

0 exp

 t

θ|ξ |

ϕw(τ , ξ) dτ


 . (72)

Since λ(t) is real-valued and bj,w(t) =(a) 0, it holds ∥Dw(t, ξ)∥, ∥D−1
w (t, ξ)∥ ≤ C . Since Dw(t, ξ) is diagonal, it follows

G(t, ξ) ≡ D−1
w (t, ξ)G(t, ξ)Dw(t, ξ). The contribution coming from the term fs(t) is now

ds(t, ξ) = exp

 t

θ|ξ |

fs(τ ) dτ


=


λ(t)γ (t)γs(t)

λ(θ|ξ |)γ (θ|ξ |)γs(θ|ξ |)
.

If we putW (t, ξ) =
√
ds(t, ξ)Dw(t, ξ)Z(t, ξ), the equation in (59) becomes

∂tZ = G(t, ξ) Z +J(t, ξ) Z, t ≥ θ|ξ |, (73)

whereJ(t, ξ) = D−1
w (t, ξ)J(t, ξ)Dw(t, ξ) satisfies again (57). Since G(t, ξ) is a diagonal matrix with negative entries, it is

easy to prove that |Z(t, ξ)| ≤ C |Z(θ|ξ |, ξ)|, thus

|U(t, ξ)|2 ≤ C ds(t, ξ) |U(θ|ξ |, ξ)|2. (74)

In Zpd(N) we will prove the boundedness of

E1j =
η(t)

√
d(t)


δ1j + i

 t

0


d(τ )E2j(τ , ξ)dτ


, (75)

E2j =
γ (t)

√
d(t)


δ2j +

 t

0

√
d(σ )

γ (σ )

a(σ , ξ)

η(σ )
E1j(σ , ξ)dσ


(76)

where a(σ , ξ) is as in (65), but the proof of Theorem 2 can be followed replacing
√

λ(t)γ (t) with the function
√
d(t) =√

λ(t)γ (t)γs(t), which appears in Hypothesis 8, where needed. We just need to pay attention to the part which contains
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λ(t)2 |ξ |
2 in the integral in (67), since (68) is no longer applicable if (13) does not hold. However, thanks to (26), we can

estimate E1j(t, ξ) in (75) by

|E1j(t, ξ)| ≤ C
η(t)0(t)
√
d(t)

+ C
η(t)g(t)
√
d(t)

 t

0
h(σ )

√
d(σ )

γ (σ )

|a(σ , ξ)|

η(σ )
|E1j(σ , ξ)|dσ .

Since 1 ≤ 0(t) ≤ g(t), by applying Lemma 1, thanks to (27) and (32), we are able to prove that E1j(t, ξ) is bounded. In
particular, we used (27) to estimate λ2ξ 2 gh/γ . λΛξ 2

≤ Nλ |ξ |. By the boundedness of E1j, using (12)–(25), (31) and (33),
we can estimate (76) by

|E2j| ≤
γ (t)
√
d(t)


1 + C

 t

0

√
d(σ )

γ (σ )

|a(σ , ξ)|

η(σ )
dσ


≤ C1 + C2

 t

0
|ξ |

2 λ(σ)Λ(σ )dσ + C3|ξ |

 t

0
λ(σ)dσ + C

γ (t)
√
d(t)

 t

0

√
d(σ )

γ (σ )

|e(σ )|

η(σ )
dσ ≤ C ′.

This concludes the proof. �

Proof of Corollary 1. Following the proof of Theorem 1, let E(t, s, ξ) be the fundamental solution to (52) with initial time
s ≥ 0, that is,

∂tE =


0 1
1 0


i|ξ |λ(t)E +

λ′(t)
λ(t)

0

0 −b(t)

 E, E(s, s, ξ) = I2. (77)

In particular, for any ξ ≠ 0 it holds

U(t, ξ) = E(t, θξ , ξ)U(θξ , ξ), for t ≥ θ|ξ |.

From (60) it follows that

∥E(t, θ|ξ |, ξ)∥ ≤ C
√

λ(t) γ (t)
λ(θ|ξ |) γ (θ|ξ |)

, ∥E−1(t, θ|ξ |, ξ)∥ ≤ C


λ(θ|ξ |) γ (θ|ξ |)
√

λ(t) γ (t)
,

for any t ≥ θ|ξ |. Now let |ξ | ≥ ϵ for some ϵ > 0. Then

0 < C1,ϵ ≤ λ(θ|ξ |) γ (θ|ξ |) ≤ C2,ϵ,

since θ|ξ | ∈ [0, θϵ] for |ξ | ≥ ϵ. On the other hand, we can roughly estimate

∥E(θ|ξ |, 0, ξ)∥, ∥E−1(θ|ξ |, 0, ξ)∥ ≤ exp

Λ(θ|ξ |) |ξ | +

 θϵ

0


|b(τ )| + |λ′(τ )/λ(τ)|


dτ


≤ Cϵ,N ,

for any |ξ | ≥ ϵ, since θ|ξ | ≤ θϵ . Combining the two estimates, we obtain

∥E(t, 0, ξ)∥ ≤ C1,ϵ


λ(t) γ (t), ∥E−1(t, 0, ξ)∥ ≤ C2,ϵ

1
√

λ(t) γ (t)
, for any |ξ | ≥ ϵ. (78)

If (u0, u1) ∈ Fϵ , thenu(t, ξ) ≡ 0 for any |ξ | ≤ ϵ and the proof of (21) follows from (78). If (u0, u1) ∈ H1
× L2, then there

exists ϵ > 0 such that
Rn

(1 + |ξ |
2) |u0(ξ)|2 dξ ≤ Cϵ


|ξ |≥ϵ

|ξ |
2
|u0(ξ)|2 dξ,


Rn

|u1(ξ)|2 dξ ≤ 2


|ξ |≥ϵ

|u1(ξ)|2 dξ .

Let us define (uϵ
0, u

ϵ
1) ∈ Fϵ such that

uϵ
j (ξ) :=

uj(ξ) if |ξ | ≥ ϵ,
0 if |ξ | < ϵ,

and let uϵ(t, x) be the solution to (14) with initial data (uϵ
0, u

ϵ
1). The proof of (20) follows from the left-hand side of (21)

thanks to the inequalities:

λ(t) ∥ξu(t, ·)∥L2 ≥ λ(t) ∥ξ uϵ(t, ·)∥L2 ≥ Cϵ


λ(t) γ (t)∥ξ uϵ

0∥L2 ≥ C ′

ϵ


λ(t) γ (t)∥(1 + |ξ |

2)1/2 u0∥L2 ,

∥∂tu(t, ·)∥L2 ≥ ∥∂tuϵ(t, ·)∥L2 ≥ Cϵ


λ(t) γ (t)∥uϵ

1∥L2 ≥ 2Cϵ


λ(t) γ (t)∥u1∥L2 .

We address the interested reader to [21], where a similar technique is used to prove estimates from below for two by two
systems. �
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Proof of Corollary 2. LetE(t, s, ξ) be the fundamental solution to (77) with b ≡ 0. We claim that, for any ξ ≠ 0, there
exists

W+(ξ) := lim
t→∞

E−1(t, 0, ξ)E(t, 0, ξ).

As in [22], we look for E(t, s, ξ) such that

E(t, s, ξ) =E(t, s, ξ) E(t, s, ξ).

For any t ≥ s ≥ 0 and for any ξ ≠ 0, the matrix E(t, s, ξ) is the solution to

∂tE = R(t, s, ξ) E, E(s, s, ξ) = I2, (79)

where

R(t, s, ξ) :=E−1(t, s, ξ)


0 0
0 −b(t)

E(t, s, ξ).

Now let |ξ | ≥ ϵ for some ϵ > 0. Using (78), we obtain ∥R(t, 0, ξ)∥ ≤ Cϵ |b(t)|. Since b ∈ L1, for any ξ ≠ 0 it holds

W+(ξ) = lim
t→∞

E(t, 0, ξ) = I2 +


∞

0
R(τ , 0, ξ) dτ +


∞

0
R(τ , 0, ξ)

 τ

0
R(σ , 0, ξ) dσ dτ + · · · ,

which satisfies ∥W+(ξ)∥, ∥W−1
+ (ξ)∥ ≤ C ′

ϵ for |ξ | ≥ ϵ. More precisely,

∥W+(ξ) − E(t, 0, ξ)∥ ≤


∞

t
∥R(τ , 0, ξ)∥ exp

 τ

0
∥R(σ , 0, ξ)∥ dτ


dτ ≤ Cϵ


∞

t
|b(τ )| dτ .

For any ϵ > 0, let W ϵ
+

: Fϵ → Fϵ be the linear, bounded, invertible, scattering operator which maps (u0, u1) ∈ Fϵ in
(v0, v1) ∈ Fϵ , defined by:

iξ v0(ξ), v1(ξ)


= W+(ξ)

iξ u0(ξ), u1(ξ)


, for any |ξ | ≥ ϵ.

Thanks to (78), we may conclude the proof of (24), sinceiλ(t)ξu(t, ·) − iλ(t)ξv(t, ·),ut(t, ·) −vt(t, ·)


L2 = ∥

E(t, 0, ξ) −E(t, 0, ξ)W+(ξ)


(iξ u0, u1)∥L2

= ∥E(t, 0, ξ)

E(t, 0, ξ) − W+(ξ)


(iξ u0, u1)∥L2

≤ Cϵ


λ(t)


E1(0)


∞

t
|b(τ )| dτ .

By density arguments, estimate (22) holds for any (u0, u1) ∈ H1
× L2. We address the interested reader to [22], where

scattering results are proved for two by two systems with a similar technique. �
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Appendix. Additional remarks on themass term

In this paper we have stated sufficient conditions such that the term e(t) in (1) brings no contribution to the energy
behavior of the equation in (1). In particular, we recall that e(t) may be negative.

On the other hand, if e(t) = m(t)2 is a (sufficiently large) positive mass term, then we may expect to gain some benefit
by replacing our λ-scaled wave type energywith a Klein–Gordon type one.

Remark 12. If one considers the Cauchy problem

vtt − 1v +
ν2

(1 + t)2
v = 0, v(0, x) = v0(x), vt(0, x) = v1(x),

with ν2 > 1/4, then [23] the energy

EKG(t) := ∥vt(t, ·)∥2
L2 + ∥∇v(t, ·)∥2

L2 +
1

1 + t
∥v(t, ·)∥2

L2 ,
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satisfies the estimate

C1
1

1 + t
E(0) ≤ EKG(t) ≤ C2 E(0) (A.1)

with C1, C2 > 0. We remark that E(0) = EKG(0).

The next example shows us which effects may have a positive or negativemass term on the energy behavior.

Example 12. Let us consider the Cauchy problem for the scale-invariant equation

utt − 1u +
µ

1 + t
ut +

m
(1 + t)2

u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (A.2)

for some µ ∈ R and m ≠ 0. We remark that ifm = 0 and µ ∈ [0, 2] then we can apply Theorem 1 and we obtain that

∥∂tu(t, ·)∥2
L2 + ∥∇u(t, ·)∥2

L2 . (1 + t)−µ E(0). (A.3)

If we put u(t, x) = (1 + t)ρv(t, x) for some ρ ≠ 0 then we obtain

vtt − 1v +
2ρ + µ

1 + t
vt +

ρ(ρ − 1) + µρ + m
(1 + t)2

v = 0, v(0, x) = u0(x), vt(0, x) = u1(x) − ρu0(x). (A.4)

First, let us assume that (1 − µ)2 − 4m ≥ 0. If we take 2ρ + µ = 1 +


(1 − µ)2 − 4m, then (A.4) reduces to

vtt − 1v +
2ρ + µ

1 + t
vt = 0, v(0, x) = u0(x), vt(0, x) = u1(x) − ρu0(x). (A.5)

Since 2ρ + µ ≥ 1, we may now apply Theorem 3.4 of [10] to (A.5), obtaining:

∥v(t, ·)∥2
L2 . E(0),

∥vt(t, ·)∥2
L2 + ∥∇v(t, ·)∥2

L2 .


(1 + t)−(2ρ+µ) E(0) if (1 − µ)2 − 4m ≤ 1,
(1 + t)−2 E(0) if (1 − µ)2 − 4m ≥ 1.

The following estimate on the energy for u(t, x) = (1 + t)ρv(t, x) follow:

∥∂tu(t, ·)∥2
L2 + ∥∇u(t, ·)∥2

L2 .


(1 + t)−µ E(0) if (1 − µ)2 − 4m ≤ 1,

(1 + t)−µ+(
√

(1−µ)2−4m−1) E(0) if (1 − µ)2 − 4m ≥ 1.

In particular, if µ ∈ [0, 2] and 4m < −µ(2 − µ), we may expect a loss of decay with respect to (A.3).
Now let (1 − µ)2 − 4m < 0. Setting 2ρ = −µ in (A.4) we get

vtt − 1v +
1 + 4m − (1 − µ)2

4(1 + t)2
v = 0,

to which we can apply the right-hand side of (A.1), since 1 + 4m − (1 − µ)2 > 1. In particular, we obtain

∥v(t, ·)∥2
L2 . (1 + t) E(0), ∥vt(t, ·)∥2

L2 + ∥∇v(t, ·)∥2
L2 . E(0),

from which estimate (A.3) follows.
Summarizing, ifm ≥ −1/4 then energy estimate (A.3) holds for any µ ∈ [1 −

√
1 + 4m, 1 +

√
1 + 4m].

The following remark shows how Hypothesis 6 is automatically verified, exception given for a few critical cases.

Remark 13. By using (25), it follows that (29) is trivially satisfied if

λ′(t)
λ(t)

+ b(t) ≥(a) ϵ η(t), (A.6)

for some ϵ > 0. Indeed, according to Remark 2, if we put A(t) = λ(t)1/2γ (t)−1/2Λ(t)−ϵ/2, then
γ (t)
λ(t)

 t

0


λ(σ)

γ (σ )
η(σ )dσ ≤ Λ(t)−ϵ/2

 t

0
η(σ )Λ(σ )ϵ/2dσ = Λ(t)−ϵ/2

 t

0

λ(σ)

Λ(σ )1−ϵ/2
dσ ≤

2
ϵ
.

We remark that condition (A.6) is stronger than the left-hand side of (13).

Recalling Example 3, we look for a sufficient condition on e(t) in order to satisfy Hypotheses 5 and 6.
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Example 13. Let b(t) be as in (40). First, we consider κ ∈ (0, 1). Thanks to Remark 13, Hypothesis 6 is satisfied. Now we
take g(t) = 0(t) and h(s) = 1 in (26), so that (27) immediately follows, and (28) becomes

1

Λ(t)
1−κ
2

exp
 t

0

1
κ η(τ)

|e(τ )|dτ


≤ C, (A.7)

which is satisfied if

M(e) := lim sup
t→∞

|e(t)|
η(t)2

<
κ(1 − κ)

2
. (A.8)

However, if κ ∈ (0, 1/3), the bound in (A.8) can be improved by taking g(t) = Λ(t)κ+ϵ/(κ + ϵ) and h(s) = Λ(s)−ϵ in (26),
that is, t

s

λ(τ)

Λ(τ )1−κ
≤

1
Λ(s)ϵ

 t

s

λ(τ)

Λ(τ )1−(κ+ϵ)
dτ ≤

1
κ + ϵ

Λ(t)κ+ϵ

Λ(s)ϵ
,

for some ϵ ∈ (0, (1−κ)/2). In such a way (28) holds ifM(e) < (κ + ϵ)(1−κ −2ϵ)/2. It is easy to check that the maximum
is reached for the choice ϵ = (1 − 3κ)/4.

The same conclusion follows in the case κ = 0. On the other hand, if κ = 1 then (A.7) holds if, and only if, e η−1
∈ L1.

Moreover, in this case, Hypothesis 6 is also satisfied.
We may proceed similarly if κ ∈ (−1, 0). Summarizing, Hypotheses 5 and 6 are satisfied ifM(e) < M where

M =


|κ|(1 − |κ|)/2 if |κ| ∈ [1/3, 1),
(1 + |κ|)2/16 if |κ| ∈ [0, 1/3], (A.9)

or e η−1
∈ L1 if |κ| = 1.
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