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a b s t r a c t

We prove the existence of a class of rotopulsators for the n-body problem in spaces of
constant Gaussian curvature of dimension k ≥ 2.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

By n-body problems, we mean problems where we want to find the dynamics of n point particles. If the space in which
such a problem is defined is a space of zero Gaussian curvature, then we call any solution to such a problem for which the
point particles describe the vertices of a polytope that retains its shape over time (but not necessarily its size) a homographic
orbit.

A rotopulsator, also known as a rotopulsating orbit, is a type of solution to an n-body problem for spaces of constant
Gaussian curvature κ ≠ 0 that extends the definition of homographic orbits to spaces of constant Gaussian curvature
(see [7]).

Homographic orbits (and therefore rotopulsators) can be used to determine the geometry of the universe locally (see for
example [4,7]).

In this paper, we will prove the existence of a subclass of rotopulsators that form a natural generalization of orbits found
in [4,6].

While the orbits in [4,6] are referred to as homographic, it has been argued in [7] that using the term ‘homographic orbit’
for spaces of constant Gaussian curvature makes little sense. We will therefore, following [7], speak of rotopulsating orbits
instead.

While this paper mainly builds on results obtained in [4,6,22], research on n-body problems for spaces of constant
Gaussian curvature goes back to Bolyai [1] and Lobachevsky [19], who independently proposed a curved 2-body problem
in hyperbolic space H3 in the 1830s. In later years, n-body problems for spaces of constant Gaussian curvature have been
studied by mathematicians such as Dirichlet, Schering [20,21], Killing [12–14] and Liebmann [16–18]. More recent results
were obtained by Kozlov and Harin [15], but the study of n-body problems in spaces of constant Gaussian curvature for the
case that n ≥ 2 started with [9–11] by Diacu, Pérez-Chavela, and Santoprete. Further results for the n ≥ 2 case were then
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obtained by Cariñena, Rañada, and Santander [2], Diacu [3,4,6], Diacu and Kordlou [7], and Diacu and Pérez-Chavela [8]. For
a more detailed historical overview, please see [4,6,5,7], or [9].

In this paper, we will prove the following two theorems:

Theorem 1.1. For any rotopulsating solution of (2.2) formed by vectors {qi}
n
i=1 as defined in (2.3), the vectors {Qi}

n
i=1 have to

form a regular polygon if ρ is non-constant.

Theorem 1.2. Rotopulsating orbits formed by vectors {qi}
n
i=1 as defined in (2.3) exist if the vectors {Qi}

n
i=1 form a regular polygon.

To prove these theorems, wewill use amethod strongly inspired by [4,6,22]. Specifically, wewill first deduce a necessary
and sufficient criterion for the existence of rotopulsators. This will be done in Section 2. We will then prove Theorems 1.1
and 1.2 in Sections 3 and 4 respectively.

2. A criterion for the existence of rotopulsators

In this section, we will formulate a necessary and sufficient criterion for the existence of rotopulsating orbits of the type
described in (2.3).

Consider the n-body problem in spaces of constant Gaussian curvature κ ≠ 0.
As has been shown in [5], we may assume that κ equals either −1, or 1.
We will denote the masses of its n point particles to be m1,m2, . . . ,mn > 0 and their positions by the k-dimensional

vectors

qT
i = (qi1, qi2, . . . , qik) ∈ Mk−1

κ , i = 1, n

where

Mk−1
κ = {(x1, x2, . . . , xk) ∈ Rk

|κ(x21 + x22 + · · · + x2k−1 + σ x2k) = 1}, k ∈ N

and

σ =


1 for κ > 0
−1 for κ < 0.

Furthermore, consider form-dimensional vectors a = (a1, a2, . . . , am), b = (b1, b2, . . . , bm) the inner product

a⊙m b = a1b1 + a2b2 + · · · + am−1bm−1 + σambm. (2.1)

Then, following [3,4,6,9–11] and the assumption that κ = ±1 from [5], we define the equations of motion for the curved
n-body problem as the dynamical system described by

q̈i =

n
j=1,j≠i

mj[qj − (σqi ⊙k qj)qi]

[σ − (qi ⊙k qj)2]
3
2

− (σ q̇i ⊙k q̇i)qi, i = 1, n. (2.2)

Let

T (t) =


cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))


be a 2 × 2 rotation matrix, where θ(t) is some real valued, twice continuously differentiable, scalar function, for which
θ(0) = 0.

We will consider rotopulsating orbit solutions of (2.2) of the form

qi(t) =


ρ(t)T (t)Qi

Z(t)


(2.3)

where Qi ∈ R2 is a constant vector and Z(t) ∈ Rk−2 is a twice differentiable, vector valued function.
Finally, before formulating our criterion, we need to introduce some notation and a lemma:
Letm ∈ N. Let ⟨·, ·⟩m be the Euclidean inner product onRm and let ∥·∥m be the Euclidean normonRm. Let i, j ∈ {1, . . . , n}.

By construction ∥Qi∥2 = ∥Qj∥2 for all i, j ∈ {1, . . . , n} and we will assume that ∥Qi∥2 = 1. Let βi be the angle between Qi
and the first coordinate axis. The lemma we will need to prove our criterion is:

Lemma 2.1. The functions ρ and θ , are related through the following formula: ρ2(t)θ̇(t) = ρ2(0)θ̇(0).

Proof. In [6], using the wedge product, Diacu proved that
n

i=1

miq̇i ∧ qi = c

where c is a constant bivector.
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If {ei}ki=1 are the standard base vectors in Rk, then we can write c as

c =

k
i=1

k
j=1

cijei ∧ ej (2.4)

where {cij}ki=1,j=1 are constants. As ei ∧ ej = −ej ∧ ei and ei ∧ ei = 0 (see [6]), for i, j ∈ {1, . . . , n}, we can rewrite (2.4) as

c =

k
i=1

k
j=i+1

Cijei ∧ ej (2.5)

where Cij = cij − cji.
Calculating C12 will give us our result:
Note that

T T
= T−1 and Ṫ = θ̇


0 −1
1 0


T (2.6)

and

C12 =

n
i=1

mi (qi1q̇i2 − qi2q̇i1)

=

n
i=1

mi (qi1, qi2)


0 1
−1 0


q̇i1
q̇i2


. (2.7)

Using (2.3) with (2.7) gives

C12 =

n
i=1

miρ
2 (Qi1,Qi2) T T


0 1

−1 0


Ṫ

Qi1
Qi2


+

n
i=1

miρρ̇ (Qi1,Qi2) T T


0 1
−1 0


T

Qi1
Qi2


. (2.8)

Note that

ρρ̇ (Qi1,Qi2) T T


0 1
−1 0


T

Qi1
Qi2


=

ρ̇

ρ
(qi1, qi2)


0 1

−1 0


qi1
qi2


= 0.

So, using (2.6) repeatedly, we get that

C12 =

n
i=1

miρ
2θ̇ (Qi1,Qi2) T T


0 1

−1 0


0 −1
1 0


T

Qi1
Qi1


+ 0

=

n
i=1

miρ
2θ̇ (Qi1,Qi2) T TT


Qi1
Qi2


=

n
i=1

miρ
2θ̇ (Qi1,Qi2)


Qi1
Qi2


which means that

C12 = ρ2θ̇

n
i=1

mi

Q 2
i1 + Q 2

i2


. (2.9)

As, by construction

n
i=1

mi

Q 2
i1 + Q 2

i2


> 0,

we may divide both sides of (2.9) by

n
i=1

mi

Q 2
i1 + Q 2

i2


,
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which gives that

ρ2θ̇ =
C12

n
i=1

mi

Q 2
i1 + Q 2

i2

 ,
which is constant, so ρ2θ̇ = ρ2(0)θ̇(0). �

We now have the following necessary and sufficient criterion for the existence of a rotopulsating orbit, as described in
(2.3):

Criterion 1. Let

bi =

n
j=1,j≠i

mj(1 − cos(βi − βj))
−

1
2

(2 − σρ2(1 − cos(βi − βj)))
3
2
. (2.10)

Then necessary and sufficient conditions for the existence of a rotopulsating orbit of non-constant size are that b1 = b2 =

· · · = bn and

0 =

n
j=1,j≠i

mj sin(βi − βj)

(1 − cos(βi − βj))
3
2 (2 − σρ2(1 − cos(βi − βj)))

3
2

(2.11)

for all i ∈ {1, . . . , n}.

Proof. Note that

Ṫ = θ̇T

0 −1
1 0


(2.12)

and consequently

T̈ = θ̈T

0 −1
1 0


− θ̇2T . (2.13)

Inserting (2.3) into (2.2) and using (2.12) and (2.13) gives for the first and second lines of (2.2) that

T


ρ̈I2 + 2ρ̇θ̇


0 −1
1 0


+ ρ


θ̈


0 −1
1 0


− θ̇2I2


Qi

= ρT


n

j=1,j≠i

mj[Qj − (σqi ⊙k qj)Qi]

[σ − (qi ⊙k qj)2]
3
2

− (σ q̇i ⊙k q̇i)Qi


(2.14)

where I2 is the 2 × 2 identity matrix.
For the last k − 2 lines, we get

Z̈ =


n

j=1,j≠i

mj[1 − (σqi ⊙k qj)]

[σ − (qi ⊙k qj)2]
3
2

− (σ q̇i ⊙k q̇i)


Z . (2.15)

Note that

qi ⊙k qj = ρ2
⟨Qi,Qj⟩2 + Z ⊙k−2 Z . (2.16)

As we have that ⟨Qi,Qi⟩2 = 1 and as by (2.16),

σ−1
= qi ⊙k qi = ρ2

⟨Qi,Qi⟩2 + Z ⊙k−2 Z,

we may rewrite (2.16) as

qi ⊙k qj = σ−1
+ ρ2

⟨Qi,Qj⟩2 − ρ2,

which can, in turn, be written as

qi ⊙k qj = σ−1
+ ρ2(cos(βi − βj) − 1). (2.17)

Furthermore,

q̇i ⊙k q̇i = ⟨ρ̇TQi + ρṪQi, ρ̇TQi + ρṪQi⟩2 + Ż ⊙k−2 Ż . (2.18)
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As T is a rotation in R2, it is a unitary map, meaning that for v, w ∈ R2, ⟨Tv, Tw⟩2 = ⟨v, w⟩2, meaning that (2.18) can be
written as

q̇i ⊙k q̇i = ⟨ρ̇Qi + ρT−1ṪQi, ρ̇Qi + ρT−1ṪQi⟩2 + Ż ⊙k−2 Ż . (2.19)

Using (2.12) with (2.19) gives

q̇i ⊙k q̇i = ρ̇2
+ 2ρρ̇θ̇


Qi,


0 −1
1 0


Qi


2
+ ρ2θ̇2

∥Qi∥
2
+ Ż ⊙k−2 Ż

= ρ̇2
+ 0 + ρ2θ̇2

+ Ż ⊙k−2 Ż . (2.20)

Inserting (2.20) and (2.17) into (2.14) and multiplying both sides by T−1 provides us with
(ρ̈ − ρθ̇2)I2 + (2ρ̇θ̇ + ρθ̈)


0 −1
1 0


Qi

= ρ

n
j=1,j≠i

mj[Qj − (1 − σρ2(1 − cos(βi − βj)))Qi]

[ρ2(1 − cos(βi − βj))(2 − σρ2(1 − cos(βi − βj)))]
3
2

− (σρρ̇2
+ σρ3θ̇2

+ σρŻ ⊙k−2 Ż)Qi. (2.21)

Taking the Euclidean inner product with Qi on both sides of (2.21) and using that ∥Qi∥2 = ∥Qj∥2 = 1 provides us with

ρ̈ − ρθ̇2
+ σρρ̇2

+ σρ3θ̇2
+ σρŻ ⊙k−2 Ż =


σ −

1
ρ2

 n
j=1,j≠i

mj


(1 − cos(βi − βj))

−
1
2


[(2 − σρ2(1 − cos(βi − βj)))]

3
2
. (2.22)

Taking the Euclidean inner product of (2.21) with


0 1
−1 0


Qi and using that ∥Qi∥2 = ∥Qj∥2 = 1 gives us that

2ρ̇θ̇ + ρθ̈ =

n
j=1,j≠i

mj sin(βi − βj)

[(1 − cos(βi − βj))(2 − σρ2(1 − cos(βi − βj)))]
3
2
. (2.23)

Let

bi :=

n
j=1,j≠i

mj


(1 − cos(βi − βj))

−
1
2


[(2 − σρ2(1 − cosαij))]

3
2

and

ci :=

n
j=1,j≠i

−mj sin(βi − βj)

[(1 − cos(βi − βj))(2 − σρ2(1 − cos(βi − βj)))]
3
2
.

Inserting (2.20) and (2.17) into (2.15), combined with (2.22) and (2.23), gives the following system of differential equations:
ρ̈ = ρθ̇2

− σρρ̇2
− σρ3θ̇2

− σρŻ ⊙k−2 Ż +


σ −

1
ρ2


bi

θ̈ =
ci
ρ

− 2
ρ̇

ρ
θ̇

Z̈ =

bi − σ ρ̇2

− σρ2θ̇2
− σ Ż ⊙k−2 Ż


Z .

(2.24)

For (2.24) to make sense, we need that

b1 = · · · = bn and c1 = · · · = cn (2.25)

which shows the necessity of (2.25).
Furthermore, that (2.24) has a global solution holds by the same argument as the argument used in the proof of Criterion 1

in [4] to prove global existence of a solution of (15) and (17). By the uniqueness of solutions to ordinary differential equations
given suitable initial conditions, the solution to (2.24) must be a rotopulsating orbit, as every step from (2.14) and (2.15) to
(2.24) is invertible.

Thus (2.25) is both necessary and sufficient. Finally, as by Lemma 2.1 ρ2θ̇ = ρ2(0)θ̇(0), we have that d
dt (ρ

2θ̇ ) = 0, which
means that the left hand side of (2.23) equals zero, which means that ci = 0. This completes the proof. �
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3. Proof of Theorem 1.1

Criterion 1 in [4] tells us that for n ≥ 3 bodies of masses m1,m2, . . . ,mn > 0 moving on the surface M2
κ , necessary and

sufficient conditions for a rotopulsating orbit as described by (2.3) to be a solution of Eq. (2.2) are given by the equations

δ1 = δ2 = · · · = δn and γ1 = γ2 = · · · = γn,

where

δi =

n
j=1,j≠i

mjµji, γi =

n
j=1,j≠i

mjνji, i = 1, n,

µji =
1

c
1
2
ji (2 − cjiκr2)

3
2

, νji =
sji

c
3
2
ji (2 − cjiκr2)

3
2

sji = sin(αj − αi), cji = 1 − cos(αj − αi), i, j = 1, n, i ≠ j

where αi = βi, r = ρ, δi := bi and γi := ci. Thus the conditions of Criterion 1 are exactly the conditions of Criterion 1 in [4]
with the added bonus that γi = 0. The proof of Theorem 1.1 in [22] is therefore a proof for Theorem 1.1 as well.

Remark 3.1. It should be noted that in [4,22] rotopulsators as described by (2.3) are called ‘polygonal homographic orbits’.
However, as in [7] it was argued that the term ‘homographic’ should be replaced by ‘rotopulsating’, as we did so here.

4. Proof of Theorem 1.2

Let again r := ρ, αi := βi, δi := bi and γi := ci in Criterion 1. Then, as before in the proof of Theorem 1.1, the conditions
of Criterion 1 become exactly the conditions of Criterion 1 in [4] with the added bonus that γi = 0. In [4], Diacu proved that

Theorem 1. Consider the curved n-body problem, n ≥ 3, given by (2.2). If n bodies of equalmasses, m := m1 = m2 = · · · = mn,
lie initially at the vertices of a regular n-gon parallel with the (x, y)-plane, then there is a class of initial velocities for which the
corresponding solutions are rotopulsators. These orbits also satisfy the equalities γ1 = γ2 = · · · = γn = 0.

and

Theorem 2. If the masses m1, . . . ,mn, n ≥ 3, form a rotopulsating solution of the curved n-body problem given by Eq. (2.2),
such that the polygon is regular, then m1 = m2 = · · · = mn.

The proofs in [4] of Theorems 1 and 2 use Criterion 1 of [4] alone, thus as Criterion 1 of [4] and Criterion 1 coincide,
Theorem 1.2 now follows directly from Theorems 1 and 2 in [4].

Remark 4.1. It should be noted that the expressions ‘rotopulsators’ and ‘rotopulsating solution’ as described by (2.3) are
not used in Theorems 1 and 2 in [4]. In [4], the expressions used are ‘homographic’ and ‘polygonal homographic solution’
respectively. However, as in [7] it was argued that the term ‘homographic’ should be replaced by ‘rotopulsating’, as we did
so here.
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