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a b s t r a c t

Let B be a homogeneous unit ball in X = Cn. In this paper, we obtain growth and
distortion theorems for linearly invariant families F of locally biholomorphic mappings
on the unit ball B with finite norm-order ∥ord∥e,1F . We use the Euclidean norm for the
target space instead of the norm of X , because we are able to obtain lower bounds in the
two-point distortion theorems for linearly invariant families on any homogeneous unit ball
in Cn. We also obtain similar results for affine and linearly invariant families (A.L.I.F.s) of
pluriharmonic mappings of the unit ball B into Cn. Again, in most of these results, we use
the Euclidean norm for the target space, to obtain lower bounds in the two-point distortion
theorems for A.L.I.F.s on B. These results are generalizations to homogeneous unit balls of
recent results due to Graham, Kohr and Pfaltzgraff, the authors of this paper, and Duren,
Hamada and Kohr. In the last section, we consider two-point distortion theorems for L.I.F.s
and A.L.I.F.s on the unit polydisc Un in Cn.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The notion of a linearly invariant family (L.I.F.) was introduced by Pommerenke [24]. He obtained various properties
of linearly invariant families on the unit disc, including growth, distortion and coefficient bounds of L.I.F.s, which are
generalizations of related results in the theory of univalent functions. Generalizations of this notion to higher dimensions
were obtained by Barnard, FitzGerald and Gong [1], Pfaltzgraff [20], Pfaltzgraff and Suffridge [21–23], Gong (see [10] and the
references therein), Godula, Liczberski and Starkov [9], Hamada and Kohr [15,16], and the authors (see [13,14]). Pfaltzgraff
and Suffridge [23] proved a number of interesting results concerning the norm-order of L.I.F.s on the Euclidean unit ball in
Cn and connections with univalence (starlikeness, convexity).

There are important differences between the theory of linearly invariant families of locally univalent functions on the
unit disc U and that of locally biholomorphic mappings on the unit ball in Cn. Among them, we mention the following:

• In the case of one complex variable, a well known result due to Pommerenke [24] yields that the family K of normalized
convex (univalent) functions on U is a L.I.F. with minimum order 1. In contrast to the one variable case, Pfaltzgraff and
Suffridge [22] proved that the family K(Bn) (n ≥ 2) of normalized convex mappings of the Euclidean unit ball Bn is a
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L.I.F. that does not have the minimum trace-order (n + 1)/2 for L.I.F.s on Bn, i.e. ordK(Bn) > (n + 1)/2, and there exist
L.I.F.s F on Bn of minimum trace-order, which are not contained in K(Bn) for n ≥ 2.

• In dimension n ≥ 2, ordK(Bn) is still unknown (see [22]). However, in the case of the unit polydisc Un of Cn, the family
K(Un) is a L.I.F. of minimum trace-order n (see [22]). Also, there exist L.I.F.s on Un of trace-order n, which are not subsets
of K(Un) (see [22]; cf. [16]).

• The Cayley transform does not provide sharp bounds for the growth of the Jacobian determinant of the L.I.F. K(Bn) for
n ≥ 2 (see [22]). On the other hand, in dimension n ≥ 2, the sharp lower bound in the following distortion result for the
family K(Bn):

1
(1 + ∥z∥e)2

≤ ∥Df (z)∥e ≤
1

(1 − ∥z∥e)2
, z ∈ Bn,

where ∥ · ∥e denotes the Euclidean norm on Cn, is unknown (see [23]; see also [11], and the references therein).
• In contrast with the case n = 1 (ord S(B1) = 2), the L.I.F. S(Bn) (resp. S(Un)) consisting of all normalized biholomorphic

mappings on Bn (resp. Un) has infinite order (both trace-order and norm-order are ∞) for n ≥ 2 (see [23]). Hence, in
higher dimensions it is of interest to study properties of L.I.F.s F such that F ( S(Bn) (resp. F ( S(Un)).

• In dimension n ≥ 2, the exponents in the bounds for the Jacobian determinant for L.I.F.s on the unit balls Bn and Un

are different (see [20,22]). The authors [13] gave a clear explanation for this phenomenon, based on the fact that these
exponents depend on the Bergman metric at the origin. We obtained a unified approach to the above results and proved
a general distortion result for L.I.F.s of finite trace-order on the unit ball of an n-dimensional JB∗-triple.

Recently, Duren, Hamada and Kohr [8] extended the notion of linear invariance on the Euclidean unit ball Bn in Cn to
the case of affine and linearly invariant families of pluriharmonic mappings of Bn into Cn. To this end, they obtained various
results concerning two-point distortion theorems for affine and linearly invariant families of harmonic functions on the
unit disc U and of pluriharmonic mappings of Bn into Cn. Wemention that affine and linearly invariant families of harmonic
functions on the unit disc U were introduced by Sheil-Small [25]. Other results about linearly invariant families in Cn may
be found in [10,11] and the references therein. Also, recent results related to two-point distortion results for harmonic
mappings of the unit disc and necessary and sufficient conditions for univalence of pluriharmonicmappings of the Euclidean
unit ball Bn in Cn may be found in [4,5].

In this paper, we continue the above work on L.I.F.s and we obtain growth and distortion theorems for linearly invariant
families F of locally biholomorphic mappings on the unit ball B of an n-dimensional JB∗-triple X with finite norm-order
∥ord∥e,1F , where

∥ord∥e,1F = sup
f∈F

sup
∥w∥X=1


1
2
∥D2f (0)(w, ·)∥X,e


and

∥A∥X,e = sup{∥Az∥e : ∥z∥X = 1}, A ∈ L(Cn).

Note that the reason for which we use the Euclidean norm ∥ · ∥e for the target space instead of the norm on X is that we are
able to obtain lower bounds in the two-point distortion theorems for linearly invariant families on any homogeneous unit
ball in Cn. Next, we obtain similar results for affine and linearly invariant families (A.L.I.F.s) of pluriharmonic mappings of
the unit ball B into Cn. Various particular cases are also obtained. Again, in most of these results, we use the Euclidean norm
for the target space, to obtain lower bounds in the two-point distortion theorems for A.L.I.F.s on B. We remark that in the
case of the upper bounds in the two-point distortion theorems, we may also obtain similar results to those in Theorems 5.1
and 5.4, by replacing the Euclidean norm ∥ · ∥e by the norm ∥ · ∥X on X . In the last section of this paper, we obtain two-point
distortion theorems for L.I.F.s and A.L.I.F.s on the unit polydisc Un in Cn.

The main results in this paper are generalizations to homogeneous unit balls of recent results obtained in [8,12,13].

2. Preliminaries

Let X, Y be complex Banach spaces. We denote by L(X, Y ) the space of continuous linear operators from X into Y with
the standard operator norm. Let I be the identity operator in L(X), where L(X) = L(X, X).

The set of holomorphic mappings from a domainΩ ⊂ X into Y is denoted by H(Ω, Y ). The set H(Ω, X) is denoted by
H(Ω). A mapping f ∈ H(Ω, Y ) is said to be biholomorphic if f (Ω) is a domain, the inverse f −1 exists and is holomorphic
on f (Ω). WhenΩ contains the origin, we say that a mapping f ∈ H(Ω) is normalized if f (0) = 0 and Df (0) = I .

The family of normalized biholomorphicmappings inH(Ω)will be denoted by S(Ω). In the case of one complex variable,
S(U) is the usual family S of normalized univalent functions on the unit discU . LetLS(Ω) be the family of normalized locally
biholomorphic mappings ofΩ into X . Also, let K(B) be the subfamily of S(B) consisting of convex mappings.

For each z ∈ X \ {0}, let

T (z) = {lz ∈ L(X,C) : lz(z) = ∥z∥X , ∥lz∥X = 1},

where ∥ · ∥X is the norm on X . This set is nonempty by the Hahn–Banach theorem.
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Let Aut(Ω) denote the set of biholomorphic automorphisms ofΩ . A domainΩ is called homogeneous if for any x, y ∈ Ω ,
there exists some mapping f ∈ Aut(Ω) such that f (x) = y.

Definition 2.1. A complex Banach space X is called a JB∗-triple if there exists a triple product {·, ·, ·} : X3
→ X which is

conjugate linear in the middle variable, but linear and symmetric in the other variables, and satisfies

(i) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}};
(ii) the map a�a : x ∈ X → {a, a, x} ∈ X is Hermitian with nonnegative spectrum;
(iii) ∥{a, a, a}∥X = ∥a∥3

X ;

for a, b, x, y, z ∈ X .

Remark 2.2. Every bounded symmetric domain in a complex Banach space is homogeneous. Conversely, the open unit ball
B of a Banach space admits a symmetry s(z) = −z at 0 and if B is homogeneous, then B is a symmetric domain. Banach
spaces with a homogeneous open unit ball are precisely the JB∗-triples (see [18]). We refer to [3,26,27] for relevant details
of JB∗-triples and references.

For every a ∈ X , let Qa : X → X be the conjugate linear operator defined by Qa(z) = {a, z, a}. This operator is called the
quadratic representation and it satisfies the fundamental formula

QQa(b) = QaQbQa

for all a, b ∈ X . For every z, w ∈ X , the Bergman operator B(z, w) ∈ L(X, X) is defined by

B(z, w) = I − 2z�w + QzQw,

where z�w(x) = {z, w, x}. Let B be the unit ball of a JB∗-triple X . Then, for each a ∈ B, the Möbius transformation ga defined
by

ga(z) = a + B(a, a)1/2(I + z�a)−1z, (2.1)

is a biholomorphic mapping of B onto itself with ga(0) = a, ga(−a) = 0, g−a = g−1
a and Dga(0) = B(a, a)1/2.

Let ∥ · ∥X be a norm on X and ∥ · ∥e denote the Euclidean norm on Cn. For A ∈ L(X,Cn), let

∥A∥X,e = sup{∥Az∥e : ∥z∥X = 1}

and if X = Cn, let

∥A∥X = sup{∥Az∥X : ∥z∥X = 1}

and

∥A∥e = sup{∥Az∥e : ∥z∥e = 1}.

3. Linearly invariant families of holomorphic mappings

We begin this section with the notion of linearly invariant families on the unit ball B of a complex Banach space X . Then
we give the notion of norm-order and obtain distortion and growth results for L.I.F.’s on the unit ball of finite dimensional
JB∗-triples (cf. [13,23]).

Definition 3.1. Let B be the unit ball of a complex Banach space X . Then a familyF is called a linearly invariant family (L.I.F.)
if the following conditions hold:

(i) F ⊂ LS(B);
and

(ii) Λφ(f ) ∈ F , for all f ∈ F and φ ∈ Aut(B).

HereΛφ(f ) is the Koebe transform of f given by

Λφ(f )(z) = [Dφ(0)]−1
[Df (φ(0))]−1(f (φ(z))− f (φ(0))), z ∈ B.

Note that the Koebe transform has the group propertyΛψ ◦Λφ = Λφ◦ψ .
If X = Cn and F is a linearly invariant family, we define two types of norm-order of F (cf. [13,23]), given by

∥ord∥e,1F = sup
f∈F

sup
∥w∥X=1


1
2
∥D2f (0)(w, ·)∥X,e


and

∥ord∥e,2F = sup
f∈F

sup
∥w∥X=1


1
2
∥D2f (0)(w,w)∥e


.



H. Hamada et al. / J. Math. Anal. Appl. 407 (2013) 398–412 401

It is clear that ∥ord∥e,1F ≥ ∥ord∥e,2F . On the other hand, since

D2f (0)(z, w) =
1
2


D2f (0)(z + w, z + w)− D2f (0)(z, z)− D2f (0)(w,w)


,

we obtain ∥ord∥e,1F ≤ 3∥ord∥e,2F . Moreover, if X is a finite dimensional complex Hilbert space, then ∥ord∥e,1F =

∥ord∥e,2F by [17, Theorem 4].
We also define the trace-order of F (cf. [14,20]) given by

ordF = sup
f∈F

sup
∥w∥X=1


1
2

tr D2f (0)(w, ·)
 .

We now give some examples of linearly invariant families on the unit ball B of a complex Banach space X (cf. [13,14,22]).

Example 3.2. (i) K(B), the set of convex mappings in LS(B). If X is a finite dimensional complex Hilbert space, then
∥ord∥e,1K(B) = 1 (see [23,15]). On the other hand, it is known that in the case of an n-dimensional complex Hilbert
space with n ≥ 2, ord K(B) > (n + 1)/2 and ord K(B) is unknown (see [22]).

(ii) S(B), the set of all biholomorphic mappings in LS(B). If X is a complex Hilbert space of dimension n, where n > 1, the
linearly invariant family S(B) does not have finite trace-order (see [1]; cf. [20]).

(iii) Uα(B), the union of all linearly invariant families contained in LS(B) with trace-order not greater than α. This is a
generalization of the universal linearly invariant families Uα = Uα(∆) considered in [24].

(iv) If G is a nonempty subset of LS(B), then the linearly invariant family generated by G is the family

Λ[G] = {Λφ(g) : g ∈ G, φ ∈ Aut(B)}.

The linear invariance is a consequence of the group property of the Koebe transform. Obviously,Λ[G] = G if and only if
G is a linearly invariant family. In the cases of the unit Euclidean ball and the unit polydisc of Cn, this example provided
a useful technique for generating many interesting mappings (see [20–22]). For example, we can use a single mapping
f from LS(B) to generate the linearly invariant family Λ[{f }]. The family Λ[{i}], generated by the identity mapping
i(z) = z, consists of all the Koebe transforms of i(z).

In the rest of this paper, unless otherwise stated, let B be the homogeneous unit ball of X = Cn, that is B is the unit ball
of a finite dimensional JB∗-triple X . We also assume that

inf{∥z∥e : z ∈ ∂B} = 1. (3.1)

This assumption is not so strong, because for any unit ball B of a finite dimensional JB∗-triple X , there exists a constant c > 0
such that cB satisfies the equality (3.1). Also, let

C1 = sup{∥z∥e : z ∈ ∂B}. (3.2)

Taking into account the relations (3.1) and (3.2), we deduce that

∥z∥X ≤ ∥z∥e ≤ C1∥z∥X , z ∈ X .

Also, since |tr(A)| ≤ n∥A∥e for all A ∈ L(X,Cn) by (3.1), we have

ordF ≤ n∥ord∥e,1F .

Theorem 3.3. Let B be the unit ball of a finite dimensional JB∗-triple X which satisfies the condition (3.1). Let F be a linearly
invariant family on B. Then ∥ord∥e,1F ≥ 1 holds.

Proof. Let

∥ord∥X,2F = sup
f∈F

sup
∥z∥X=1


1
2
∥D2f (0)(z, z)∥X


.

Then ∥ord∥X,2F ≥ 1 by [13, Theorem 3.9]. Since ∥ord∥e,1F ≥ ∥ord∥X,2F by (3.1), we obtain the theorem. �

Let h0 be the Bergman metric on B at 0 and let

c(B) =
1
2

sup
z,w∈B

|h0(z, w)|.

By [19, Theorem 6.5] (see also [14, Proposition 2.3]), we deduce that c(B) = h0(e, e)/2, where e is an arbitrary maximal
tripotent in X .
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The following result was obtained in [14, Theorem 4.1] (compare [20]).

Theorem 3.4. Let F be a linearly invariant family on the unit ball B of a finite dimensional JB∗-triple X. If ordF = αt < ∞,
then

(1 − ∥z∥X )
αt−c(B)

(1 + ∥z∥X )αt+c(B)
≤ |detDf (z)| ≤

(1 + ∥z∥X )
αt−c(B)

(1 − ∥z∥X )αt+c(B)
, z ∈ B (3.3)

for all f ∈ F . If B is the Euclidean unit ball or the unit polydisc of Cn, then the above estimates are sharp.

In view of Theorem 3.4, wemay prove the lower bound for ∥Df (z)∥X,e, when f belongs to a L.I.F. on the unit ball of a finite
dimensional JB∗-triple X .

Theorem 3.5. Let B be the unit ball of an n-dimensional JB∗-triple X which satisfies the condition (3.1). Let F be a linearly
invariant family on B. If ∥ord∥e,1F = α < ∞, then

(1 − ∥z∥X )
α−c(B)/n

(1 + ∥z∥X )α+c(B)/n
≤ ∥Df (z)∥X,e ≤ C1

(1 + ∥z∥X )
α−1

(1 − ∥z∥X )α+1
, z ∈ B, (3.4)

for all f ∈ F , where C1 is a constant defined by (3.2).

Proof. Let ordF = αt . Since | detDf (z)| ≤ ∥Df (z)∥n
X,e and αt ≤ nα by the condition (3.1), the lower bound in (3.4) follows

from the relation (3.3).
Next, let αX = ∥ord∥X,1F , where

∥ord∥X,1F = sup
f∈F

sup
∥w∥X=1


1
2

D2f (0)(w, ·)

X


.

Then αX ≤ α in view of the relation (3.1), and

∥Df (z)∥X,e ≤ C1∥Df (z)∥X ≤ C1
(1 + ∥z∥X )

αX−1

(1 − ∥z∥X )αX+1
≤ C1

(1 + ∥z∥X )
α−1

(1 − ∥z∥X )α+1
,

by [13, Theorem 4.2]. �

Let Bn be the Euclidean unit ball in Cn. Then Theorem 3.5 yields the following particular case (compare [13,23]). In view
of [23, Theorem 4.1], the upper estimate in (3.5) is sharp and the lower estimate in (3.5) is not sharp.

Corollary 3.6. Let F be a linearly invariant family on Bn. If ∥ord∥e,1F = α < ∞, then

(1 − ∥z∥e)
α−

n+1
2n

(1 + ∥z∥e)
α+

n+1
2n

≤ ∥Df (z)∥e ≤
(1 + ∥z∥e)

α−1

(1 − ∥z∥e)α+1
, z ∈ Bn, (3.5)

for all f ∈ F .

If Un is the unit polydisc in Cn, then we obtain the following corollary, in view of Theorem 3.5 (compare [16] and [22]).

Corollary 3.7. Let F be a linearly invariant family on Un. If ∥ord∥e,1F = α < ∞, then

(1 − ∥z∥∞)
α−1

(1 + ∥z∥∞)α+1
≤ ∥Df (z)∥X,e ≤

√
n
(1 + ∥z∥∞)

α−1

(1 − ∥z∥∞)α+1
, z ∈ Un, (3.6)

for all f ∈ F , where ∥ · ∥∞ denotes the maximum norm on Cn.

Question 3.8. Are the estimates in the inequalities (3.6) sharp?

As in the proof of [23, Theorem 4.2], we may use Theorem 3.5 to deduce the following growth result for L.I.F.’s on the
unit ball of finite dimensional JB∗-triples.

Theorem 3.9. Let B be the unit ball of a finite dimensional JB∗-triple X which satisfies the condition (3.1). Let F ⊂ LS(B) be a
linearly invariant family of norm order ∥ord∥e,1F = α < ∞ and let f ∈ F . Then

∥f (z)∥e ≤
C1

2α


1 + ∥z∥X

1 − ∥z∥X

α
− 1


, z ∈ B, (3.7)

where C1 is a constant defined by (3.2).
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Theorem 3.10. Let B be the unit ball of an n-dimensional JB∗-triple X which satisfies the condition (3.1). Let F be a linearly
invariant family on B. If ∥ord∥e,1F = α < ∞, then

(1 − ∥z∥X )
(2n−1)α+n−1−c(B)

(1 + ∥z∥X )(2n−1)α−n+1+c(B)
∥w∥X ≤ Cn−1

1 ∥Df (z)w∥e , z ∈ B, w ∈ X,

for all f ∈ F , where C1 is a constant defined by (3.2).

Proof. We use an argument similar to that in [23, Theorem 4.1]. If A ∈ L(Cn), then ∥A∥X,e ≥
√
λn, where 0 ≤ λ1 ≤ λ2 ≤

· · · ≤ λn are the eigenvalues of A∗A and
λ1 ≤ inf{∥Aw∥e : ∥w∥X = 1}.

Also, | det A| =
√
λ1 · · · λn ≤

√
λ1λ

(n−1)/2
n . Since αt ≤ nα, we obtain from Theorems 3.4 and 3.5 that

(1 − ∥z∥X )
nα−c(B)

(1 + ∥z∥X )nα+c(B)
≤
(1 − ∥z∥X )

αt−c(B)

(1 + ∥z∥X )αt+c(B)

≤ |detDf (z)| =


λ1 · · · λn

≤


λ1λ

(n−1)/2
n

≤


λ1


C1
(1 + ∥z∥X )

α−1

(1 − ∥z∥X )α+1

n−1

for all z ∈ B. Therefore, we have

(1 − ∥z∥X )
(2n−1)α+n−1−c(B)

(1 + ∥z∥X )(2n−1)α−n+1+c(B)
≤ Cn−1

1


λ1 ≤ Cn−1

1 ∥Df (z)w∥e

for all z ∈ B andw ∈ X with ∥w∥X = 1. This completes the proof. �

In view of Theorem 3.10, we may obtain the following result, which is a generalization of [12, Theorem 5] to the case of
finite dimensional JB∗-triples.

Theorem 3.11. Let B be the unit ball of an n-dimensional JB∗-triple X which satisfies the condition (3.1). Let F be a linearly
invariant family on B. If ∥ord∥e,1F = α < ∞ and f ∈ F is biholomorphic on B, then

∥f (z)∥e ≥ Ψn,α(artanh ∥z∥X ), z ∈ B, (3.8)

where

Ψn,α(v) = C1−n
1

 v

0

e−2(2n−1)αu

(cosh u)2n−2c(B)
du, 0 ≤ v < ∞. (3.9)

Proof. Let δ = ∥ord∥e,1Λ[{f }]. SinceΛ[{f }] ⊆ F by the fact that F is a L.I.F., it is clear that δ ≤ α. Now, fix r ∈ (0, 1) and
let ρ(r) = min{∥f (z)∥e : ∥z∥X = r}. Then, there exists a z0 ∈ ∂Br such that ∥f (z0)∥e = ρ(r). Let Γ = {tf (z0) : 0 ≤ t ≤ 1}.
Then, as in the proof of [12, Theorem 5], we deduce that

ρ(r) ≥


γ

Df (ζ ) dζ
∥dζ∥X


e
d∥ζ∥X ,

where γ = f −1(Γ ). In view of Theorem 3.10, we obtain that

∥f (z)∥e ≥ ρ(r) ≥ C1−n
1

 r

0

(1 − t)(2n−1)δ+n−1−c(B)

(1 + t)(2n−1)δ−n+1+c(B)
dt = Ψn,δ(artanh r),

for ∥z∥X = r . Since Ψn,δ(v) ≥ Ψn,α(v) for v ∈ [0,∞), the result follows, as desired. �

In view of Theorem 3.11, we obtain the following two-point distortion result, which is a generalization of [12, Theorem 7]
to the case of finite dimensional JB∗-triples.

Theorem 3.12. Let B be the unit ball of an n-dimensional JB∗-triple X which satisfies the condition (3.1). Let F ⊂ LS(B) be a
linearly invariant family of norm-order ∥ord∥e,1F = α < ∞ and let f ∈ F be biholomorphic. Then

∥f (a)− f (b)∥e ≥ Ψn,α(CB(a, b))max{Tf (a), Tf (b)}, a, b ∈ B, (3.10)
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where Ψn,α is defined by (3.9), CB(a, b) denotes the Carathéodory metric in B, and

Tf (z) = ∥B(z, z)−1/2
[Df (z)]−1

∥
−1
e , z ∈ B. (3.11)

Conversely, if a locally biholomorphic mapping f on B satisfies the inequality (3.10), for all a, b ∈ B and for some α > 0, then f is
biholomorphic on B.

Proof. We use an argument similar to that in the proof of [12, Theorem 7]. Fix a, b ∈ B and let gb ∈ Aut(B) be given by (2.1).
Also, let

F(z) = [Dgb(0)]−1
[Df (gb(0))]−1(f (gb(z))− f (b)), z ∈ B. (3.12)

Since F is a L.I.F., it follows that F ∈ F . In view of (3.8), we deduce that

∥F(z)∥e ≥ Ψn,α(artanh ∥z∥X ), z ∈ B.

Letting z = g−1
b (a) in the above, we deduce that

∥f (a)− f (b)∥e · ∥[Dgb(0)]−1
[Df (b)]−1

∥e ≥ ∥F(z)∥e ≥ Ψn,α(CB(z, 0)).

Finally, since Dgb(0) = B(b, b)1/2 and CB(z, 0) = CB(a, b), by the fact that the Carathéodory metric is invariant under the
biholomorphic automorphisms of B, we obtain the relation (3.10) by interchanging the roles of a and b, as desired.

For the converse part, it suffices to see that if f is a locally biholomorphic mapping on B, which satisfies (3.10), and if
f (a) = f (b) for a, b ∈ B, then we must have a = b, in view of the fact that the CB is a metric. �

We close this section with the following upper bound for the distortion ∥f (a)− f (b)∥e, when f belongs to a L.I.F. on the
unit ball of a finite dimensional JB∗-triple X (cf. [13, Theorem 4.7] and [2, Lemma 2.7]).

Theorem 3.13. Let B be the unit ball of a finite dimensional JB∗-triple X which satisfies the condition (3.1). Let F ⊂ LS(B) be a
linearly invariant family of norm-order ∥ord∥e,1F = α < ∞ and let f ∈ F . Then

∥f (a)− f (b)∥e ≤
C1

2α
[exp(2αCB(a, b))− 1]min{T̃f (a), T̃f (b)}, a, b ∈ B,

where

T̃f (z) = ∥Df (z)B(z, z)1/2∥e, z ∈ B, (3.13)

and C1 is a constant given by (3.2).

Proof. We use an argument similar to that in the proof of [13, Theorem 4.7]. Fix a, b ∈ B and let gb ∈ Aut(B) be given by
(2.1). In view of the linear invariance of the family F , we deduce that F ∈ F , where F is given by (3.12). Taking into account
the relation (3.7), we deduce that

∥F(z)∥e ≤
C1

2α


1 + ∥z∥X

1 − ∥z∥X

α
− 1


, z ∈ B.

Now, if z = g−1
b (a) in the above, we deduce that

∥f (a)− f (b)∥e = ∥Df (b)Dgb(0)DF(z)∥e

≤ ∥Df (b)Dgb(0)∥e
C1

2α
[exp(2αCB(z, 0))− 1].

Finally, since Dgb(0) = B(b, b)1/2, CB(z, 0) = CB(a, b) and interchanging the roles of a and b in the above relation, the result
follows, as desired. �

4. Families of pluriharmonic mappings

In this section, we define the notions of affine and linear invariance for families of locally univalent pluriharmonic
mappings on the unit ball of a finite dimensional complex Banach space, and we present some basic results related to these
notions. The results will be applied in Section 5 to prove two-point distortion theorems for pluriharmonic mappings.

Let B be the unit ball of a finite dimensional complex Banach space X = Cn. A complex-valued function f of class C2 on
B is said to be pluriharmonic if its restriction to every complex line is harmonic. This happens if and only if ∂2

∂zj∂zk
f (z) ≡ 0

in B for all j, k = 1, 2 . . . , n. A real-valued function f of class C2 on B is pluriharmonic if and only if it is the real part of
some holomorphic function on B. Every real-valued harmonic function on the unit disc U is the real part of a holomorphic
function onU , but this is no longer true for harmonic functions on B. Thus, in dimension n ≥ 2, the family of all pluriharmonic
functions is a proper subclass of the family of all harmonic functions on B. Every pluriharmonic mapping f : B → X can be
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written as f = h+ g , where g and h are holomorphic mappings of B into X, g is the usual complex conjugate of g in X = Cn,
and this representation is unique if g(0) = 0.

Let SH(B) be the family of all univalent pluriharmonic mappings f = h + g on B, where h, g ∈ H(B), g(0) = 0, and
h ∈ LS(B). We remark that a mapping f ∈ SH(B) is not necessarily sense-preserving; that is, its real Jacobian (when f is
regarded as amapping from R2n to R2n) need not be positive. Let S0H(B) be the subfamily ofmappings f = h+g ∈ SH(B) such
that Dg(0) = 0. Also, let LSH(B) be the family of all pluriharmonic mappings f = h + g on Bwith h ∈ LS(B) and g(0) = 0.
In the case of one complex variable, the family SH(U) is a normal family, while S0H(U) is compact (see [6,7]). However, if B is
the n-dimensional Euclidean unit ball with n ≥ 2, the family SH(B) is not normal (see [8]).

We recall that in the case n = 1, a harmonic mapping f = h + g is sense-preserving on the unit disc U if and only if
|g ′(z)| < |h′(z)|, z ∈ U . This condition is equivalent to the statement that h is locally univalent on U and |ωf (z)| < 1 for
z ∈ U , where ωf = g ′/h′. Hence, the analytic function h + ag is locally univalent on U for |a| ≤ 1 (see e.g. [7]).

The following theorems are generalizations of [8, Theorems 5 and 6] to the unit ball of a finite dimensional complex
Banach space. Since the proofs are similar to those in [8, Theorems 5 and 6], we omit them.

Theorem 4.1. Let B be the unit ball of an n-dimensional complex Banach space X = Cn and let f = h + g : B → Cn be a
pluriharmonic mapping such that h is locally biholomorphic on B. If

∥Dg(z)[Dh(z)]−1
∥e < 1, z ∈ B, (4.1)

then h + Ag is locally biholomorphic in B for each A ∈ L(Cn) with ∥A∥e ≤ 1. Furthermore, f is a sense-preserving mapping on B.

The following result provides concrete examples of univalent pluriharmonic mappings on B (see [8, Theorem 6] and [5]).

Theorem 4.2. Let h : B → Cn be a convex (biholomorphic) mapping and let g ∈ H(B) be such that the condition (4.1) holds.
Then f = h + g is a sense-preserving univalent mapping on B.

Remark 4.3. Let h : B → Cn be a locally biholomorphic (resp. biholomorphic) mapping and let A ∈ L(Cn) be such that
∥A∥e < 1. Then it is not difficult to deduce that f = h + Ah is a pluriharmonic sense-preserving locally univalent (resp.
univalent) mapping on B, in view of Theorem 4.1. Moreover, if h is also convex (biholomorphic) on B, then f is a convex
pluriharmonic mapping on B.

For families F ⊂ LSH(B) of pluriharmonic mappings, we introduce the following notions of linear and affine invariance
(cf. [8]; see [25] for n = 1).

Linear invariance. If f = h + g ∈ F then for each ϕ ∈ Aut(B) the mapping

F(z) = [Dϕ(0)]−1
[Dh(ϕ(0))]−1

{f (ϕ(z))− f (ϕ(0))}, z ∈ B,

also belongs to F .
Affine invariance. If f = h + g ∈ F and A ∈ L(Cn) has norm ∥A∥e < 1, and if h + Ag is locally biholomorphic on B, then

the mappingF(z) = [I + ADg(0)]−1
[f (z)+ Af (z)], z ∈ B,

also belongs to F .

Remark 4.4. The familyF of sense-preservingmappings inLSH(B)has the ‘‘affine invariance’’ property. Indeed, if∥A∥e < 1,
then the mapping w → w + Aw is a sense-preserving mapping. Therefore, if f = h + g is sense-preserving and A ∈ L(Cn)
has norm ∥A∥e < 1, and if h + Ag is locally biholomorphic on B, then the mappingF(z) = [I + ADg(0)]−1

[f (z)+ Af (z)], z ∈ B,

is sense-preserving, because it is a composition of sense-preserving mappings.

We now define the order of a linearly invariant family F ⊂ LSH(B) of pluriharmonic mappings by (cf. [8])

α = α(F ) = sup

1
2
∥D2h(0)(w, ·)∥X,e : f = h + g ∈ F , ∥w∥X = 1


.

Note that ifF is a L.I.F. of locally biholomorphic mappings, then α(F ) is the norm-order as introduced in Section 3 (cf. [23]).

Remark 4.5. (i) It is not difficult to deduce that if F ⊂ LSH(B) is a linearly invariant family of order α(F ), then the family
F ⋆

= {h : h + g ∈ F } ⊂ LS(B) is also a linearly invariant family with norm-order α(F ⋆) = α(F ). Since Theorem 3.3
(cf. [13, Theorem 3.9], [23, Theorem 3.1]) yields that α(F ⋆) ≥ 1, we deduce that α(F ) ≥ 1 for every linearly invariant
family F ⊂ LSH(B) of pluriharmonic mappings.
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(ii) The family KH(B) ⊂ SH(B) of pluriharmonic mappings with convex image is affine and linearly invariant. It would be
interesting to estimate α(KH(B)) in dimension n > 1. For n = 1, the family KH of convex mappings in SH has order 2.

5. Distortion of pluriharmonic mappings

In this section, we generalize the results in Section 3 to the case of pluriharmonic mappings on B. The first result is a
generalization of Theorem 3.9 to pluriharmonic mappings (see [8, Theorem 7] in the case of the Euclidean space X = Cn).

Theorem 5.1. Let B be the unit ball of an n-dimensional JB∗-triple X which satisfies the condition (3.1). Let F ⊂ LSH(B) be
an affine and linearly invariant family of order α = α(F ) < ∞. Let f = h + g ∈ F , and suppose that h + Ag is locally
biholomorphic on B for each A ∈ L(Cn) with ∥A∥e < 1. Then

∥f (z)∥e ≤
C1

2α
(1 + ∥Dg(0)∥e)


1 + ∥z∥X

1 − ∥z∥X

α
− 1


, z ∈ B,

where C1 is a constant given by (3.2).

Proof. We shall use arguments similar to those in the proof of [8, Theorem 7]. In view of the hypothesis that h+Ag is locally
biholomorphic on B for A ∈ L(Cn)with ∥A∥e < 1, the affine invariance of the family F shows that

[I + ADg(0)]−1(f + Af ) = [I + ADg(0)]−1
[(h + Ag)+ (Ah + g)]

also belongs to the family F . Hence, in view of Theorem 3.5 and Remark 4.5, we obtain that

∥[I + ADg(0)]−1
[Dh(z)+ ADg(z)]∥X,e ≤ C1

(1 + r)α−1

(1 − r)α+1
, r = ∥z∥X < 1,

and thus

∥Dh(z)+ ADg(z)∥X,e ≤ µ(g)C1
(1 + r)α−1

(1 − r)α+1
,

where µ(g) = 1 + ∥Dg(0)∥e. It follows from this that

∥Dh(z)(w)+ ADg(z)(w)∥e ≤ µ(g)C1
(1 + r)α−1

(1 − r)α+1
∥w∥X ,

for all w ∈ X and A ∈ L(Cn) with ∥A∥e ≤ 1. For fixed z ∈ B and w ∈ X \ {0}, there exists a unitary matrix A such that
ADg(z)(w) = cDh(z)(w) for some c ≥ 0. This implies that

∥Dh(z)(w)∥e + ∥Dg(z)(w)∥e ≤ µ(g)C1
(1 + r)α−1

(1 − r)α+1
∥w∥X (5.1)

for all z ∈ B andw ∈ X , where r = ∥z∥X < 1.
Now fix an arbitrary point z ∈ B. If f (z) = 0, then Theorem 5.1 holds. Sowemay assume that f (z) ≠ 0. Let v : [0, 1] → R

be given by

v(t) = ℜφ(f (tz)), 0 ≤ t ≤ 1,

for φ ∈ T (f (z)). Then v(0) = 0 and

∥f (z)∥e = v(1) =

 1

0
v′(t)dt =

 1

0
ℜφ


Dh(tz)(z)+ Dg(tz)(z)


dt

≤

 1

0
(∥Dh(tz)(z)∥e + ∥Dg(tz)(z)∥e) dt.

Hence, it follows from (5.1) that

∥f (z)∥e ≤ µ(g)C1

 1

0

(1 + rt)α−1

(1 − rt)α+1
rdt = µ(g)

C1

2α


1 + r
1 − r

α
− 1


,

for ∥z∥X = r < 1. This completes the proof. �

The following result is a generalization of Theorem 3.11 to pluriharmonic mappings (see [8, Theorem 8] in the case of
the Euclidean space X = Cn).
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Theorem 5.2. Let B be the unit ball of an n-dimensional JB∗-triple X which satisfies the condition (3.1). Let F ⊂ SH(B) be an
affine and linearly invariant family of pluriharmonic mappings of order α = α(F ) < ∞. Let f = h + g ∈ F and suppose that
∥Dg(0)∥e < 1 and that h + Ag is locally biholomorphic on B for each A ∈ L(Cn) with ∥A∥e < 1. Then

∥f (z)∥e ≥ (1 − ∥Dg(0)∥e)Ψn,α(artanh ∥z∥X ), z ∈ B,

where Ψn,α is defined by (3.9).

Proof. We shall use arguments similar to those in the proof of [8, Theorem 8]. In view of the affine invariance of F ,
Theorem 3.10 and Remark 4.5, we obtain that

∥[I + ADg(0)]−1
[Dh(z)+ ADg(z)](w)∥e ≥ C1−n

1
(1 − r)(2n−1)α+n−1−c(B)

(1 + r)(2n−1)α−n+1+c(B)
∥w∥X ,

for all r = ∥z∥X < 1, w ∈ X and A ∈ L(Cn)with ∥A∥e < 1. It follows that

∥Dh(z)(w)+ ADg(z)(w)∥e ≥ λ(g)C1−n
1

(1 − r)(2n−1)α+n−1−c(B)

(1 + r)(2n−1)α−n+1+c(B)
∥w∥X ,

for all r = ∥z∥X < 1, w ∈ X and A ∈ L(Cn)with ∥A∥e ≤ 1, where

λ(g) = inf
∥A∥e≤1

∥[I + ADg(0)]−1
∥

−1
e .

This implies that

| ∥Dh(z)(w)∥e − ∥Dg(z)(w)∥e| ≥ λ(g)C1−n
1

(1 − r)(2n−1)α+n−1−c(B)

(1 + r)(2n−1)α−n+1+c(B)
∥w∥X , (5.2)

for r = ∥z∥X < 1 andw ∈ X .
Now, fix r ∈ (0, 1) and let ρ(r) = min{∥f (z)∥e : ∥z∥X = r}. Then, there exists a z0 ∈ ∂Br such that ∥f (z0)∥e = ρ(r). Let

Γ = {tf (z0) : 0 ≤ t ≤ 1}. Then, we deduce that

ρ(r) ≥


γ

 Dh(ζ ) dζ
∥dζ∥X


e
−

Dg(ζ ) dζ
∥dζ∥X


e

 d∥ζ∥X ,

where γ = f −1(Γ ). In view of (5.2), we obtain

∥f (z)∥e ≥ λ(g)C1−n
1

 r

0

(1 − t)(2n−1)δ+n−1−c(B)

(1 + t)(2n−1)δ−n+1+c(B)
dt

= λ(g)Ψn,α(artanh r),

for ∥z∥X = r . Since λ(g) = 1 − ∥Dg(0)∥e (see the proof of [8, Theorem 8]), we obtain the theorem. �

We denote by (cf. [8])

S(z) = ∥B(z, z)−1/2
[Dh(z)]−1

∥
−1
e (1 − ∥Dg(z)[Dh(z)]−1

∥e), z ∈ B,

and

ν(g) = inf
∥A∥e≤1


1

∥[In + ADg(0)]−1∥e · ∥In + ADg(0)∥e


, (5.3)

where g ∈ H(B)with ∥Dg(0)∥e < 1 and h is locally biholomorphic on B. Note that ν(g) ≥ (1− ∥Dg(0)∥e)/(1+ ∥Dg(0)∥e).
The following result is a generalization of Theorem 3.12 to pluriharmonic mappings (see [8, Theorem 9] in the case of the
Euclidean space X = Cn).

Theorem 5.3. Let B be the unit ball of an n-dimensional JB∗-triple X which satisfies the condition (3.1). Let F ⊂ LSH(B) be an
affine and linearly invariant family of pluriharmonic mappings of order α = α(F ) < ∞, and let f = h + g ∈ F . Assume that
h + Ag is biholomorphic on B for each A ∈ L(Cn) with ∥A∥e < 1, and the condition (4.1) holds. Then

∥f (a)− f (b)∥e ≥ Φn,α(a, b), a, b ∈ B, (5.4)

where

Φn,α(a, b) = ν(g)Ψn,α(CB(a, b)) max{S(a), S(b)}

and Ψn,α is defined by (3.9). Conversely, let f = h + g be a pluriharmonic mapping on B such that h is locally biholomorphic on
B and ∥Dg(0)∥e < 1. If the relation (4.1) holds and f satisfies the relation (5.4) for some α > 0 and for all a, b ∈ B, then f is a
sense-preserving univalent mapping on B.
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Proof. We shall use arguments similar to those in [8, Theorem 9]. Since f = h + g ∈ F and h + Ag is biholomorphic on B,
it follows that F = [I + ADg(0)]−1(f + Af ) ∈ F for ∥A∥e < 1 by the affine invariance property for F . Let F = H + G. Then

H = [I + ADg(0)]−1(h + Ag) ∈ LS(B)

and in view of Theorem 3.12 and Remark 4.5, we obtain that

∥H(a)− H(b)∥e ≥ Ψn,α(CB(a, b))max{TH(a), TH(b)}, (5.5)

for all a, b ∈ B, where Tf (z) is given by (3.11). On the other hand, we see that

TH(z) ≥
S(z)

∥I + ADg(0)∥e
, z ∈ B.

Combining (5.5) and the above relation, we obtain that

∥h(a)− h(b)+ A(g(a)− g(b))∥e ≥ Φn,α(a, b), a, b ∈ B, (5.6)

for all A ∈ L(Cn)with ∥A∥e ≤ 1.
Finally, fix a, b ∈ B. Then wemay choose a unitary matrix A and some c ≥ 0 such that A(g(a)−g(b)) = −c(h(a)−h(b)).

Then, in view of (5.6) and this equality, we obtain that

∥f (a)− f (b)∥e ≥ | ∥h(a)− h(b)∥e − ∥g(a)− g(b)∥e|

= ∥h(a)− h(b)+ A(g(a)− g(b))∥e

≥ Φn,α(a, b).

This completes the proof. �

The next result provides an upper bound for ∥f (a)− f (b)∥e, where f belongs to an affine and linearly invariant family of
pluriharmonic mappings on B. This result is a generalization of [8, Theorems 1 and 10] to the unit ball of a finite dimensional
JB∗-triple.

If g, h ∈ H(B), let

S̃(a) = ∥B(a, a)1/2∥e(∥Dh(a)∥e + ∥Dg(a)∥e), a ∈ B.

For every g ∈ H(B)with ∥Dg(0)∥e < 1, let (cf. [8])

χ(g) = sup
∥A∥e≤1


∥[I + ADg(0)]−1

∥e · ∥I + ADg(0)∥e


. (5.7)

Theorem 5.4. Let B be the unit ball of an n-dimensional JB∗-triple X which satisfies the condition (3.1). Let F ⊂ LSH(B) be an
affine and linearly invariant family of order α = α(F ) < ∞ and let f = h+ g ∈ F be such that the condition (4.1) holds. Then

∥f (a)− f (b)∥e ≤ χ(g)
C1

2α
[exp(2αCB(a, b))− 1]min{S̃(a), S̃(b)}, a, b ∈ B,

where C1 is a constant given by (3.2).

Proof. We shall use arguments similar to those in [8, Theorem 10]. Since f = h+g ∈ F and h+Ag is locally biholomorphic
on B by Theorem 4.1, it follows that F = [I + ADg(0)]−1(f + Af ) ∈ F for ∥A∥e < 1 by the affine invariance property for F .
Let F = H + G. Then

H = [I + ADg(0)]−1(h + Ag) ∈ LS(B)

and in view of Theorem 3.13 and Remark 4.5, we obtain that

∥H(a)− H(b)∥e ≤
C1

2α
[exp(2αCB(a, b))− 1]min{T̃H(a), T̃H(b)}, (5.8)

for all a, b ∈ B, where T̃f (z) is given by (3.13). On the other hand, it is not difficult to deduce that

T̃H(z) ≤ S̃(z)∥[I + ADg(0)]−1
∥e, z ∈ B.

Combining (5.8) and the above relation, we obtain that

∥h(a)− h(b)+ A(g(a)− g(b))∥e ≤ χ(g)
C1

2α
[exp(2αCB(a, b))− 1]min{S̃(a), S̃(b)}, a, b ∈ B, (5.9)

for all A ∈ L(Cn)with ∥A∥e ≤ 1.



H. Hamada et al. / J. Math. Anal. Appl. 407 (2013) 398–412 409

Finally, fix a, b ∈ B. Then we may choose a unitary matrix A and some c ≥ 0 such that A(g(a)− g(b)) = c(h(a)− h(b)).
Then, in view of (5.9) and this equality, we obtain that

∥f (a)− f (b)∥e ≤ ∥h(a)− h(b)∥e + ∥g(a)− g(b)∥e

= ∥h(a)− h(b)+ A(g(a)− g(b))∥e

≤ χ(g)
C1

2α
[exp(2αCB(a, b))− 1]min{S̃(a), S̃(b)}.

This completes the proof. �

Let F ⊂ LSH(B) and let F 0 be the subset of F consisting of all mappings f = h+ g ∈ F such that Dg(0) = 0. In view of
Theorems 5.3, 5.4 and 4.1, we obtain the following consequence, which is a generalization of [8, Corollary, p. 6216] to finite
dimensional JB∗-triples.

Corollary 5.5. Let B be the unit ball of an n-dimensional JB∗-triple X which satisfies the condition (3.1). Let F ⊂ LSH(B) be an
affine and linearly invariant family of order α = α(F ) < ∞ and let f = h + g ∈ F 0 be such that the condition (4.1) holds.
Then

∥f (a)− f (b)∥e ≤
C1

2α
[exp(2αCB(a, b))− 1]min{S̃(a), S̃(b)}, a, b ∈ B,

where C1 is a constant given by (3.2). In addition, if h + Ag is biholomorphic on B for A ∈ L(Cn) with ∥A∥e < 1, then f is a
sense-preserving univalent mapping on B and

∥f (a)− f (b)∥e ≥ Φ0
n,α(a, b), a, b ∈ B, (5.10)

whereΦ0
n,α(a, b) = Ψn,α(CB(a, b)) max{S(a), S(b)} and Ψn,α is given by the relation (3.9).

Conversely, let f = h + g be a pluriharmonic mapping on B such that h is locally biholomorphic on B and g is holomorphic
on B. If the relation (4.1) holds and f satisfies the relation (5.10) for some α > 0 and for all a, b ∈ B, then f is a sense-preserving
univalent mapping on B.

Remark 5.6. If we define the order of a linearly invariant family F ⊂ LSH(B) of pluriharmonic mappings by

αX = αX (F ) = sup

1
2
∥D2h(0)(w, ·)∥X : f = h + g ∈ F , ∥w∥X = 1


,

and replace the condition ∥A∥e < 1 by ∥A∥X < 1 in the definition of ‘‘affine invariance’’, then we can obtain similar results
to those in Theorems 5.1 and 5.4, by replacing ∥ · ∥e by ∥ · ∥X and the constant C1 by 1.

6. L.I.F.s and A.L.I.F.s on the unit polydisc in Cn

In this section, we consider L.I.F.s and A.L.I.F.s on the unit polydisc Un in Cn. Note that Un is the unit ball of the JB∗-triple
with the triple product

{x, y, z} = (xiyizi)1≤i≤n, x = (xi), y = (yi), z = (zi) ∈ Cn.

Then Qa(z) = (aiziai)1≤i≤n and

B(a, a)z = (zi − 2|ai|2zi + |ai|4zi)1≤i≤n.

Therefore, we have
B(a, a)1/2z = ((1 − |ai|2)zi)1≤i≤n and B(a, a)−1/2z = ((1 − |ai|2)−1zi)1≤i≤n.

Also, since c(Un) = n and C1 =
√
n, we obtain the following results. Theorem 6.1 is a direct consequence of Theorem 3.10,

and Theorem 6.2 may be obtained directly from Theorem 3.11.

Theorem 6.1. Let F be a linearly invariant family on Un. If ∥ord∥e,1F = α < ∞, then

(1 − ∥z∥∞)
(2n−1)α−1

(1 + ∥z∥∞)(2n−1)α+1
∥w∥∞ ≤

√
n
n−1

∥Df (z)w∥e , z ∈ Un, w ∈ Cn,

for all f ∈ F .

Theorem 6.2. Let F be a linearly invariant family on Un. If ∥ord∥e,1F = α < ∞ and f ∈ F is biholomorphic on Un, then

∥f (z)∥e ≥

√
n1−n

2(2n − 1)α


1 −


1 − ∥z∥∞

1 + ∥z∥∞

(2n−1)α

, z ∈ Un. (6.1)

Since Tf (z) ≥ (1 − ∥z∥2
∞
)∥[Df (z)]−1

∥
−1
e , z ∈ Un, we obtain the following two-point distortion theorem from

Theorem 3.12.
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Theorem 6.3. Let F ⊂ LS(Un) be a linearly invariant family of norm-order ∥ord∥e,1F = α < ∞ and let f ∈ F be
biholomorphic. Then

∥f (a)− f (b)∥e ≥

√
n1−n

2(2n − 1)α
[1 − exp(−2(2n − 1)αCUn(a, b))]max{T∞

f (a), T
∞

f (b)}, (6.2)

for a, b ∈ Un, where CUn(a, b) denotes the Carathéodory metric in Un, and

T∞

f (z) = (1 − ∥z∥2
∞
)∥[Df (z)]−1

∥
−1
e .

Conversely, if a locally biholomorphic mapping f on Un satisfies the inequality (6.2), for all a, b ∈ Un and for some α > 0, then f
is biholomorphic on Un.

Since T̃f (z) ≤ (1 − min1≤i≤n |zi|2)∥Df (z)∥e, z ∈ Un, we obtain the following result from Theorem 3.13.

Theorem 6.4. Let F ⊂ LS(Un) be a linearly invariant family of norm-order ∥ord∥e,1F = α < ∞ and let f ∈ F . Then

∥f (a)− f (b)∥e ≤

√
n

2α
[exp(2αCUn(a, b))− 1]min{T̃∞

f (a), T̃
∞

f (b)}, a, b ∈ Un,

where

T̃∞

f (z) =


1 − min

1≤i≤n
|zi|2


∥Df (z)∥e, z ∈ Un. (6.3)

Next, we consider A.L.I.F.s on the unit polydisc in Cn. The following results are particular cases of Theorems 5.2, 5.3, 5.4
and Corollary 5.5.

Theorem 6.5. Let F ⊂ SH(Un) be an affine and linearly invariant family of pluriharmonic mappings of order α = α(F ) < ∞.
Let f = h + g ∈ F and suppose that ∥Dg(0)∥e < 1 and that h + Ag is locally biholomorphic on Un for each A ∈ L(Cn) with
∥A∥e < 1. Then

∥f (z)∥e ≥ (1 − ∥Dg(0)∥e)

√
n1−n

2(2n − 1)α


1 −


1 − ∥z∥∞

1 + ∥z∥∞

(2n−1)α

, z ∈ Un.

Since S(z) ≥ (1 − ∥z∥2
∞
)∥[Dh(z)]−1

∥
−1
e (1 − ∥Dg(z)[Dh(z)]−1

∥e), we obtain the following theorem.

Theorem 6.6. Let F ⊂ LSH(Un) be an affine and linearly invariant family of pluriharmonicmappings of order α = α(F ) < ∞,
and let f = h + g ∈ F . Assume that h + Ag is biholomorphic on Un for each A ∈ L(Cn) with ∥A∥e < 1. If

∥Dg(z)[Dh(z)]−1
∥e < 1, z ∈ Un, (6.4)

then

∥f (a)− f (b)∥e ≥ Φ∞

n,α(a, b), a, b ∈ Un, (6.5)

where

Φ∞

n,α(a, b) =
ν(g)

√
n1−n

2(2n − 1)α
[1 − exp(−2(2n − 1)αCUn(a, b))]max{S∞(a), S∞(b)},

ν(g) is given by (5.3), and

S∞(z) = (1 − ∥z∥2
∞
)∥[Dh(z)]−1

∥
−1
e (1 − ∥Dg(z)[Dh(z)]−1

∥e), z ∈ Un.

Conversely, let f = h+ g be a pluriharmonic mapping on Un such that h is locally biholomorphic on Un and ∥Dg(0)∥e < 1. If the
relation (6.4) holds and f satisfies the relation (6.5) for some α > 0 and for all a, b ∈ Un, then f is a sense-preserving univalent
mapping on Un.

Since S̃(z) ≤ (1 − min1≤i≤n |zi|2)(∥Dh(z)∥e + ∥Dg(z)∥e), we obtain the following theorem.

Theorem 6.7. Let F ⊂ LSH(Un) be an affine and linearly invariant family of order α = α(F ) < ∞ and let f = h + g ∈ F
be such that the condition (6.4) holds. Then

∥f (a)− f (b)∥e ≤ χ(g)
√
n

2α
[exp(2αCUn(a, b))− 1]min{S̃∞(a), S̃∞(b)},
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for a, b ∈ Un, where χ(g) is given by (5.7), and

S̃∞(z) =


1 − min

1≤i≤n
|zi|2


(∥Dh(z)∥e + ∥Dg(z)∥e), z ∈ Un.

Corollary 6.8. Let F ⊂ LSH(Un) be an affine and linearly invariant family of order α = α(F ) < ∞ and let f = h + g ∈ F 0

be such that the condition (6.4) holds. Then

∥f (a)− f (b)∥e ≤

√
n

2α
[exp(2αCUn(a, b))− 1]min{S̃∞(a), S̃∞(b)}, a, b ∈ Un.

In addition, if h + Ag is biholomorphic on Un for A ∈ L(Cn) with ∥A∥e < 1, then f is a sense-preserving univalent mapping on
Un and

∥f (a)− f (b)∥e ≥ Φ0,∞
n,α (a, b), a, b ∈ Un, (6.6)

where

Φ0,∞
n,α (a, b) =

√
n1−n

2(2n − 1)α
[1 − exp(−2(2n − 1)αCUn(a, b))]max{S∞(a), S∞(b)}.

Conversely, let f = h+ g be a pluriharmonic mapping on Un such that h is locally biholomorphic on Un and g is holomorphic
on Un. If the relation (6.4) holds and f satisfies the relation (6.6) for some α > 0 and for all a, b ∈ Un, then f is a sense-preserving
univalent mapping on Un.

For A ∈ L(Cn), let

∥A∥∞ = sup{∥Az∥∞ : ∥z∥∞ = 1}.

If we define the order of a linearly invariant family F ⊂ LSH(Un) of pluriharmonic mappings by

α∞ = α∞(F ) = sup

1
2
∥D2h(0)(w, ·)∥∞ : f = h + g ∈ F , ∥w∥∞ = 1


,

and replace the condition ∥A∥e < 1 by ∥A∥∞ < 1 in the definition of ‘‘affine invariance’’, then we can obtain similar results
to those in Theorems 5.1 and 6.7, by replacing ∥ · ∥e by ∥ · ∥∞ and the constant C1 by 1.

Theorem 6.9. Let F ⊂ LSH(Un) be an affine and linearly invariant family of order α = α(F ) < ∞. Let f = h + g ∈ F , and
suppose that h + Ag is locally biholomorphic on Un for each A ∈ L(Cn) with ∥A∥∞ < 1. Then

∥f (z)∥∞ ≤
1
2α
(1 + ∥Dg(0)∥∞)


1 + ∥z∥∞

1 − ∥z∥∞

α
− 1


, z ∈ Un.

Theorem 6.10. Let F ⊂ LSH(Un) be an affine and linearly invariant family of order α = α(F ) < ∞ and let f = h + g ∈ F
be such that the condition

∥Dg(z)[Dh(z)]−1
∥∞ < 1, z ∈ Un,

holds. Then

∥f (a)− f (b)∥∞ ≤ χ∞(g)
1
2α

[exp(2αCUn(a, b))− 1]min{S̃∞

2 (a), S̃
∞

2 (b)},

for a, b ∈ Un, where

χ∞(g) = sup
∥A∥∞≤1


∥[I + ADg(0)]−1

∥∞ · ∥I + ADg(0)∥∞


,

and

S̃∞

2 (z) =


1 − min

1≤i≤n
|zi|2


(∥Dh(z)∥∞ + ∥Dg(z)∥∞), z ∈ Un.
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