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a b s t r a c t

In this paper, we study the multiplicity results of positive solutions for a semi-linear
elliptic system involving both concave–convex and critical growth terms. With the help
of the Nehari manifold and the Lusternik–Schnirelmann category, we investigate how the
coefficient h(x) of the critical nonlinearity affects the number of positive solutions of that
problem and get a relationship between the number of positive solutions and the topology
of the global maximum set of h.
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1. Introduction and the main result

This paper is concerned with the multiplicity of positive solutions to the following elliptic system:

(Ef ,g)


−1u = f (x)|u|q−2u +

α

α + β
h(x)|u|α−2u|v|β , inΩ,

−1v = g(x)|v|q−2v +
β

α + β
h(x)|u|α|v|β−2v, inΩ,

u = v = 0, on ∂Ω,

whereΩ is a bounded domain in RN with smooth boundary, α, β > 1 satisfy α + β = 2∗
=

2N
N−2 (N ≥ 3) and 1 < q < 2.

Moreover, we assume that f , g and h satisfy the following conditions.

(H1) f , g ∈ C(Ω).
(H2) There exist a non-empty closed set M = {x ∈ Ω; h(x) = maxx∈Ω h(x) = 1} and a positive number ρ > 2 when

N ≥ 6, ρ > N−2
2 when 3 ≤ N ≤ 5 such that h(z)− h(x) = O(|x − z|ρ) as x → z and uniformly in z ∈ M .

(H3) f (x), g(x) > 0 for x ∈ M .

Remark 1.1. LetMr = {x ∈ RN
; dist(x,M) < r} for r > 0. Then by (H1)–(H3), there exist C0, r0 > 0 such that

f (x), g(x), h(x) > 0 for all x ∈ Mr0 ⊂ Ω

and

h(z)− h(x) ≤ C0|x − z|ρ for all x ∈ Br0(z)

uniformly in z ∈ M , where Br0(z) = {x ∈ RN
; |x − z| < r0}.
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For the systems of semi-linear elliptic equations with concave–convex nonlinearities, various studies concerning the
solution structures have been presented (for example [10,1,15,4,3,8,5]). In particular, for f ≡ λ, g ≡ µ, Hsu [10] proved
that (Ef ,g) permits at least two positive solutions when the pair of parameters (λ, µ) belongs to a certain subset of R2.
Similar results were obtained by Adriouch and El Hamidi [1]. Further studies involving sign-changing weight functions
were taken byWu [15] and Chen andWu [4] for example, where the two positive solutions were obtained for the subcritical
case 2 < α + β < 2∗ in [15] while these for the critical case α + β = 2∗ were obtained in [4]. The tool of them is the
decomposition of the Nehari manifold.

For 2 < q < 2∗, if N > 4, 0 ∈ Ω, f , g and h satisfy the following conditions.

(A1) f , g and h are positive continuous functions inΩ .
(A2) There exist k points a1, a2, . . . , ak inΩ such that

h(ai) = max
x∈Ω

h(x) = 1 for 1 ≤ i ≤ k,

and for some ρ > N, h(x)− h(ai) = O(|x − ai|ρ) as x → ai and uniformly in i.
(A3) Choose ρ0 > 0 such that

Bρ0(ai)


Bρ0(aj) = ∅ for i ≠ j and 1 ≤ i, j ≤ k,

and
k

i=1 Bρ0(ai) ⊂ Ω , where Bρ0(ai) = {x ∈ RN
; |x − z| ≤ ρ0}.

Lin [12] recently proved that (Ef ,g) admits at least k positive solutions when f and g are small enough. A similar result was
obtained in Li and Yang [11].

Motivated by [12,11], we aim to investigate how the coefficient h(x) of the critical nonlinearity affects the number of
positive solutions of (Ef ,g) when 1 < q < 2 in this work. We try to consider the relationship between the number of
positive solutions and the topology of the global maximum set of h by the idea of category. Furthermore, by borrowing
some techniques from [10,1,15,4,3,8,5], we will study (Ef ,g) under the conditions (H1)–(H3), i.e., we do not need to assume
f , g, h are positive solutions and 0 ∈ Ω as [12,11]. The main result of this paper is as follows.

Theorem 1.1. Assume (H1)–(H3) hold. Then for each δ < r0, there exists Λδ > 0 such that if ∥f+∥Lq∗ + ∥g+∥Lq∗ < Λδ, (Ef ,g)
has at least catMδ (M) + 1 distinct positive solutions, where f+ = max{f , 0}, g+ = max{g, 0}, q∗

=
2∗

2∗−q and cat means the
Lusternik–Schnirelmann category (see [13]).

Remark 1.2. Suppose (A1)–(A3) hold. By Theorem 1.1, we obtain that (Ef ,g) has at least k+1 positive solutions when ∥f ∥Lq∗

and ∥g∥Lq∗ are small enough.

This paper is organized as follows. In Section 2, we give some notations and preliminary results. In Section 3, we discuss
some concentration behavior. In Section 4, we prove Theorem 1.1.

2. Notations and preliminaries

We propose to study (Ef ,g) in the framework of the Sobolev space H = H1
0 (Ω)× H1

0 (Ω) using the standard norm

∥(u, v)∥H =


Ω

|∇u|2 + |∇v|2dx
 1

2

.

Denote

Sα,β := inf
(u,v)∈H\{0}


Ω

|∇u|2 + |∇v|2dx
Ω

|u|α|v|βdx
 2
α+β

.

Working as in the proof of [2, Theorem 5], we deduce that

Sα,β =

α
β

 β
α+β

+


β

α

 α
α+β

 S,

where S is the best Sobolev constant, that is

S := inf
u∈H1

0 (Ω)\{0}


Ω

|∇u|2dx
Ω

|u|2∗dx
 2

2∗
.

It is well known that S is independent ofΩ , and for each ε > 0,

vε(x) =
[N(N − 2)ε2](N−2)/4

(ε2 + |x|2)(N−2)/2
(2.1)
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is a positive solution of critical problem

−1u = |u|2
∗
−2u in RN

with


RN |∇vε|
2dx =


RN |vε|

2∗

dx =
1
N S

N/2. Actually, S is never attained on a domainΩ ≠ RN .
Positive solutions to (Ef ,g) will be obtained as critical points of the corresponding energy functional If ,g : H → R given

by

If ,g(u, v) =
1
2
∥(u, v)∥2

H −
1
q


Ω

(fuq
+ + gvq+)dx −

1
α + β


Ω

huα
+
v
β
+dx,

where u+ = max{u, 0} and v+ = max{v, 0}. From the assumption, it is easy to prove that If ,g is well defined in H and
If ,g ∈ C2(H,R).

As If ,g is not bounded below on H , we consider the behaviors of If ,g on the Nehari manifold

Nf ,g = {(u, v) ∈ H \ {0}; I ′f ,g(u, v)(u, v) = 0}.

Clearly, (u, v) ∈ Nf ,g if and only if
Ω

|∇u|2 + |∇v|2dx −


Ω

(fuq
+ + gvq+)dx −


Ω

huα
+
v
β
+dx = 0.

On the Nehari manifold Nf ,g , from the Sobolev embedding theorem and the Young inequality,

If ,g(u, v) =


1
2

−
1
2∗


Ω

|∇u|2 + |∇v|2dx −


1
q

−
1
2∗


Ω

(fuq
+ + gvq+)dx

≥


1
2

−
1
2∗


∥(u, v)∥2

H −


1
q

−
1
2∗


(∥f+∥Lq∗ + ∥g+∥Lq∗ )C∥(u, v)∥q

H (2.2)

≥ −(∥f+∥Lq∗ + ∥g+∥Lq∗ )
2/(2−q)C, (2.3)

where C denotes positive constants (possibly different) independent of (u, v) ∈ H . Let

ψf ,g(u, v) := I ′f ,g(u, v)(u, v)

=


Ω

|∇u|2|∇v|2dx −


Ω

(fuq
+ + gvq+)dx −


Ω

huα
+
v
β
+dx.

Then for (u, v) ∈ Nf ,g ,

ψ ′

f ,g(u, v)(u, v) = (2 − q)∥(u, v)∥2
H − (2∗

− q)

Ω

huα
+
v
β
+dx (2.4)

= (2 − 2∗)∥(u, v)∥2
H + (2∗

− q)

Ω

(fuq
+ + gvq+)dx. (2.5)

Similarly to the method used in [10], we split Nf ,g into three parts:

N+

f ,g = {(u, v) ∈ Nf ,g;ψ
′

f ,g(u, v)(u, v) > 0};

N0
f ,g = {(u, v) ∈ Nf ,g;ψ

′

f ,g(u, v)(u, v) = 0};

N−

f ,g = {(u, v) ∈ Nf ,g;ψ
′

f ,g(u, v)(u, v) < 0}.

In the sequel, we shall useΛ∗ to denote different small parameters. Then we have the following results.

Lemma 2.1. Suppose that (u0, v0) is a local minimum for If ,g on Nf ,g . Then, if (u0, v0) ∉ N0
f ,g , (u0, v0) is a critical point of If ,g .

Lemma 2.2. There existsΛ∗ > 0 such that if ∥f+∥Lq∗ + ∥g+∥Lq∗ ∈ (0,Λ∗),N0
f ,g = ∅.

For the proofs of the two lemmas above, we refer the reader to [4, Lemmas 2.1, 2.2]. By Lemma 2.2, for ∥f+∥Lq∗ +∥g+∥Lq∗ ∈

(0,Λ∗), we write Nf ,g = N+

f ,g


N−

f ,g and define

θ+

f ,g = inf
(u,v)∈N+

f ,g

If ,g(u, v); θ−

f ,g = inf
(u,v)∈N−

f ,g

If ,g(u, v).

For each (u, v) ∈ H with

Ω
huα

+
v
β
+dx > 0, set

tmax =


(2 − q)∥(u, v)∥2

H

(2∗ − q)

Ω
huα+v

β
+dx

 1
α+β−2

> 0.



402 H. Fan / J. Math. Anal. Appl. 409 (2014) 399–408

Then

Lemma 2.3. For each (u, v) ∈ H with

Ω
huα

+
v
β
+dx > 0, we have the following.

(i) If

Ω
(fuq

+ + gvq+)dx ≤ 0, there is a unique t− > tmax such that (t−u, t−v) ∈ N−

f ,g and

If ,g(t−u, t−v) = sup
t≥0

If ,g(tu, tv).

(ii) If

Ω
(fuq

+ + gvq+)dx > 0, there are unique 0 < t+ < tmax < t− such that (t+u, t+v) ∈ N+

f ,g , (t
−u, t−v) ∈ N−

f ,g and

If ,g(t+u, t+v) = inf
0≤t≤tmax

If ,g(tu, tv); If ,g(t−u, t−v) = sup
t≥0

If ,g(tu, tv).

Lemma 2.4. If ∥f+∥Lq∗ + ∥g+∥Lq∗ ∈ (0,Λ∗), then

(i) θ+

f ,g < 0;
(ii) θ−

f ,g ≥ ρ0 for some ρ0 > 0.

For the proofs of Lemmas 2.3 and 2.4, the readers are referred to [4] for similar proofs.

Remark 2.1. From Lemmas 2.3 and 2.4, it is easy to know if (u, v) ∈ N−

f ,g ,
Ω

huα
+
v
β
+dx > 0.

Next we establish that If ,g satisfies the (PS)c-condition for c ∈ (−∞, θ+

f ,g +
1
N S

N/2
α,β ), which was proved in [8] and we

sketch the proof here for reader’s convenience.

Lemma 2.5. For ∥f+∥Lq∗ + ∥g+∥Lq∗ ∈ (0,Λ∗), If ,g satisfies the (PS)c-condition for c ∈ (−∞, θ+

f ,g +
1
N S

N/2
α,β ).

Proof. Let {(uk, vk)} ⊂ H be a (PS)c-sequence for If ,g and c ∈ (−∞, θ+

f ,g +
1
N S

N/2
α,β ). After a standard argument (see [14]),

we know that {(uk, vk)} is bounded in H . Thus, there exist a subsequence still denoted by {(uk, vk)} and (u, v) ∈ H such that
(uk, vk) ⇀ (u, v)weakly in H . By the compactness of Sobolev embedding and [9, Lemma 2.1], we get

•

Ω
(f (uk)

q
+ + g(vk)

q
+)dx =


Ω
(fuq

+ + gvq+)dx + o(1);
• ∥(uk − u, vk − v)∥2

H = ∥(uk, vk)∥
2
H − ∥(u, v)∥2

H + o(1);
•

Ω
h(uk − u)α

+
(vk − v)

β
+dx =


Ω
h(uk)

α
+
(vk)

β
+dx −


Ω
huα

+
v
β
+dx + o(1).

Moreover, we can obtain I ′f ,g(u, v) = 0 in H−1 (the dual space of H). Since If ,g(uk, vk) = c + o(1) and I ′f ,g(uk, vk) = o(1) in
H−1, we deduce that

1
2
∥(uk − u, vk − v)∥2

H −
1
2∗


Ω

h(uk − u)α
+
(vk − v)

β
+dx = c − If ,g(u, v)+ o(1) (2.6)

and

o(1) = I ′f ,g(uk, vk)(uk − u, vk − v) = (I ′f ,g(uk, vk)− I ′f ,g(u, v))(uk − u, vk − v)

= ∥(uk − u, vk − v)∥2
H −


Ω

h(uk − u)α
+
(vk − v)

β
+dx + o(1).

Now we may assume that

∥(uk − u, vk − v)∥2
H → l and


Ω

h(uk − u)α
+
(vk − v)

β
+dx → l as k → ∞,

for some l ∈ [0,+∞).
Suppose l ≠ 0 and notice the fact h ≤ 1, using the Sobolev embedding theorem and passing to the limit as k → ∞, we

have

l ≥ Sα,β l
2
2∗ ,

that is,

l ≥ SN/2α,β . (2.7)
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Then by (2.6), (2.7) and (u, v) ∈ Nf ,g


{0},

c = If ,g(u, v)+
1
N
l ≥ θ+

f ,g +
1
N
SN/2α,β ,

which contradicts the definition of c. Hence l = 0, i.e., (uk, vk) → (u, v) strongly in H . �

Then we obtain the existence of a local minimizer for If ,g on N+

f ,g .

Lemma 2.6. For ∥f+∥Lq∗ + ∥g+∥Lq∗ ∈ (0,Λ∗), the functional If ,g has a minimizer (u+

f ,g , v
+

f ,g) ∈ N+

f ,g and it satisfies:

(i) If ,g(u+

f ,g , v
+

f ,g) = θ+

f ,g ;
(ii) (u+

f ,g , v
+

f ,g) is a positive solution of (Ef ,g);
(iii) If ,g(u+

f ,g , v
+

f ,g) → 0 as ∥f+∥Lq∗ , ∥g+∥Lq∗ → 0;
(iv) ∥(u+

f ,g , v
+

f ,g)∥H → 0 as ∥f+∥Lq∗ , ∥g+∥Lq∗ → 0.

Proof. (i)–(ii) are consequences of [15,4]. Moreover, by (2.3) and Lemma 2.4,

0 > If ,g(u+

f ,g , v
+

f ,g) ≥ −(∥f+∥Lq∗ + ∥g+∥Lq∗ )
2/(2−q)C .

We obtain If ,g(u+

f ,g , v
+

f ,g) → 0 as ∥f+∥Lq∗ , ∥g+∥Lq∗ → 0.
Now we show (iv). By (u+

f ,g , v
+

f ,g) ∈ N+

f ,g and (2.5),

∥(u+

f ,g , v
+

f ,g)∥
2
H ≤

2∗
− q

2∗ − 2


Ω

(f+(u+

f ,g)
q
+ g+(u+

f ,g)
q)dx

≤ C(∥f+∥Lq∗ + ∥g+∥Lq∗ )∥(u
+

f ,g , v
+

f ,g)∥
q
H . (2.8)

Since If ,g is coercive and bounded below on Nf ,g , (u+

f ,g , v
+

f ,g) is bounded in H and so that by (2.8) we know

∥(u+

f ,g , v
+

f ,g)∥
2−q
H ≤ C(∥f+∥Lq∗ + ∥g+∥Lq∗ ).

Then

∥(u+

f ,g , v
+

f ,g)∥H → 0 as ∥f+∥Lq∗ , ∥g+∥Lq∗ → 0. �

3. Concentration behavior

In this section, we will recall and prove some lemmas which are crucial in the proof of the main theorem.
For b > 0, we define

Jb
∞
(u, v) =

1
2
∥(u, v)∥2

H −
b
2∗


Ω

huα
+
v
β
+dx

and

Nb
∞
(u, v) = {(u, v) ∈ H \ {0}; (Jb

∞
)′(u, v)(u, v) = 0}.

Then we have the following.

Lemma 3.1. For each (u, v) ∈ N−

f ,g , we have the following.

(i) There is a unique tb(u,v) such that (tb(u,v)u, t
b
(u,v)v) ∈ Nb

∞
and

max
t≥0

Jb
∞
(tu, tv) = Jb

∞
(tb(u,v)u, t

b
(u,v)v) =

1
N
b

2−N
2


∥(u, v)∥2∗

H
Ω
huα+v

β
+dx

 N−2
2

.

(ii) For µ ∈ (0, 1), there is a unique t1(u,v) such that (t1(u,v)u, t
1
(u,v)v) ∈ N1

∞
. Moreover,

J1
∞
(t1(u,v)u, t

1
(u,v)v) ≤ (1 − µ)−

N
2


If ,g(u, v)+

2 − q
2q

µ
q

q−2 C(∥f+∥Lq∗ + ∥g+∥Lq∗ )
2

2−q


.

Proof. (i) For each u ∈ N−

f ,g , let

h(t) = Jb
∞
(tu, tv) =

1
2
t2∥(u, v)∥2

H −
b
2∗

t2
∗


Ω

huα
+
v
β
+dx.
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Then since Remark 2.1, we have h(t) → −∞ as t → ∞,

h
′
(t) = t∥(u, v)∥2

H − bt2
∗
−1

Ω

huα
+
v
β
+dx

and

h
′′
(t) = t∥(u, v)∥2

H − b(2∗
− 1)t2

∗
−2

Ω

huα
+
v
β
+dx.

Set

tb(u,v) =


∥(u, v)∥2

H
Ω
bhuα+v

β
+dx

 1
2∗−2

> 0.

Then h′(tb(u,v)) = 0, tb(u,v)u ∈ Nb
∞

and h′′(tb(u,v)) = (2 − 2∗)∥(u, v)∥2
H < 0. Hence there is a unique tb(u,v) such that (tb(u,v)u,

tb(u,v)v) ∈ Nb
∞

and

max
t≥0

Jb
∞
(tu, tv) = Jb

∞
(tb(u,v)u, t

b
(u,v)v) =

1
N
b

2−N
2


∥(u, v)∥2∗

H
Ω
huα+v

β
+dx

 N−2
2

.

(ii) For µ ∈ (0, 1), we have
Ω

f+(tb(u,v)u)
q
+ + g+(tb(u,v)v)

q
+dx ≤ (∥f+∥q∗ + ∥g+∥q∗)C∥(tb(u,v)u, t

b
(u,v)v)∥

q
H

≤
2 − q
2


(∥f+∥q∗ + ∥g+∥q∗)Cµ−

q
2

 2
2−q

+
q
2


µ

q
2 ∥(tb(u,v)u, t

b
(u,v)v)∥

q
H

 2
q

=
2 − q
2

µ
q

q−2 C(∥f+∥q∗ + ∥g+∥q∗)
2

2−q +
qµ
2

∥(tb(u,v)u, t
b
(u,v)v)∥

2
H .

Then let b =
1

1−µ and by part (i),

If ,g(u, v) = max
t≥0

If ,g(tu, tv) ≥ If ,g


t

1
1−µ
(u,v)u, t

1
1−µ
(u,v)v


≥

1 − µ

2

t 1
1−µ
(u,v)u, t

1
1−µ
(u,v)v

2
H

−
1
2∗


t

1
1−µ
(u,v)

2∗ 
Ω

huα
+
v
β
+dx −

2 − q
2q

µ
q

q−2 C(∥f+∥q∗ + ∥g+∥q∗)
2

2−q

= (1 − µ)J
1

1−µ
∞


t

1
1−µ
(u,v)u, t

1
1−µ
(u,v)v


−

2 − q
2q

µ
q

q−2 C(∥f+∥q∗ + ∥g+∥q∗)
2

2−q

= (1 − µ)
N
2
1
N


∥(u, v)∥2∗

H
Ω
huα+v

β
+dx

 N−2
2

−
2 − q
2q

µ
q

q−2 C(∥f+∥q∗ + ∥g+∥q∗)
2

2−q

= (1 − µ)
N
2 J1

∞
(t1(u,v)u, t

1
(u,v)v)−

2 − q
2q

µ
q

q−2 C(∥f+∥q∗ + ∥g+∥q∗)
2

2−q .

This completes the proof. �

Following the samemethod as in [4] andRemark 1.1, letη(x) ∈ C∞

0 (R
N)be a radially symmetric functionwith 0 ≤ η ≤ 1,

|∇η| ≤ C , and

η(x) =


1, if |x| ≤

r0
2
,

0, if |x| ≥ r0.

For any z ∈ M , we define

ωε,z(x) = η(x − z)vε(x − z)

where vε(x) is given by (2.1). From the same arguments of [13] we know
Ω

|∇ωε,z |
2dx = S

N
2 + O(εN−2) and


Ω

|ωε,z |
2∗

dx = S
N
2 + O(εN). (3.1)

Moreover, we have the following.
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Lemma 3.2.
Ω

h|ωε,z |2
∗

dx =


SN/2 + o(ε2), if N ≥ 6,
SN/2 + o


ε

N−2
2


, if 3 ≤ N ≤ 5.

Proof. See [4, Lemma 3.2]. �

Then we have the following results.

Lemma 3.3. There exist ε0 > 0 small enough such that for ε ∈ (0, ε0), we have σ(ε0) > 0 and

sup
t≥0

If ,g(u+

f ,g + t
√
αωε,z, v

+

f ,g + t

βωε,z) < θ+

f ,g +
1
N
SN/2α,β − σ(ε0) uniformly in z ∈ M.

Furthermore, there exists t−z > 0 such that

(u+

f ,g + t−z
√
αωε,z, v

+

f ,g + t−z

βωε,z) ∈ N−

f ,g for all z ∈ M.

Proof. Noting the conditions (H1)–(H3) and the compactness ofM , the proof is almost identical to the proof of [4, Lemma3.3]
and is omitted here for brevity. �

Lemma 3.4. We have

inf
(u,v)∈N1

∞

J1
∞
(u, v) = inf

(u,v)∈N∞
J∞(u, v) =

1
N
SN/2α,β ,

where J∞(u, v) =
1
2∥(u, v)∥

2
H −

1
2∗


Ω
uα

+
v
β
+dx and N∞

= {(u, v) ∈ H \ {0}; (J∞)′(u, v)(u, v) = 0}.

Proof. By [12, Lemma 4.4], we see

inf
(u,v)∈N∞

J∞(u, v) =
1
N
SN/2α,β .

Thus it suffices to show that inf(u,v)∈N1
∞

J1
∞
(u, v) =

1
N S

N/2
α,β . Since

max
t≥0


a
2
t2 −

b
2∗

t2
∗


=

1
N

 a
b2/2∗

N/2
for any a > 0 and b > 0,

by (3.1) and Lemma 3.2 we deduce that

sup
t≥0

J1
∞
(t

√
αωε,z, t


βωε,z) =

1
N

 (α + β)

Ω

|∇ωε,z |
2dx

α
α
2 β

β
2

Ω
h|ωε,z |2

∗dx
2/2∗


N/2

=
1
N
SN/2α,β + O(εN−2).

Then we obtain

inf
(u,v)∈N1

∞

J1
∞
(u, v) ≤

1
N
SN/2α,β , as ε → 0+.

Since h ≤ 1, for each (u, v) ∈ H \ {0}, we have

sup
t≥0

J∞(tu, tv) ≤ sup
t≥0

J1
∞
(tu, tv).

Hence
1
N
SN/2α,β = inf

(u,v)∈N∞
J∞(u, v) = inf

(u,v)∈H\{0}
sup
t≥0

J∞(tu, tv)

≤ inf
(u,v)∈H\{0}

sup
t≥0

J1
∞
(tu, tv) = inf

(u,v)∈N1
∞

J1
∞
(u, v) ≤

1
N
SN/2α,β .

This completes the proof. �
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4. Proof of Theorem 1.1

In this section, we use the idea of category to get positive solutions of Ef ,g in H and give the proof of Theorem 1.1.
Initially, we give the following two lemmas related to the category.

Proposition 4.1. Let R be a C1,1 complete Riemannianmanifold (modeled on a Hilbert space) and assume F ∈ C1(R,R) bounded
from below. Let −∞ < infR F < a < b < +∞. Suppose that h satisfies the (PS)-condition on the sublevel {u ∈ R; F(u) ≤ b}
and that a is not a critical level for F . Then

♯{u ∈ F a
; ∇F(u) = 0} ≥ catFa(F a),

where ha
≡ {u ∈ H; h(u) ≤ a}.

Proof. See [6, Theorem 2.1]. �

Proposition 4.2. Let Q ,Ω+ andΩ− be closed sets withΩ−
⊂ Ω+. Let φ : Q → Ω+, ϕ : Ω−

→ Q be two continuous maps
such that φ ◦ ϕ is homotopically equivalent to the embedding j : Ω−

→ Ω+. Then catQ (Q ) ≥ catΩ+(Ω−).

Proof. See [6, Lemma 2.2]. �

The proof of Theorem 1.1 is based on Propositions 4.1 and 4.2. To argue further, we need to introduce the following lemma.

Lemma 4.1. Let {(uk, vk)} ⊂ H be a nonnegative function sequence with

Ω
(uk)

α
+
(vk)

β
+dx = 1 and ∥(uk, vk)∥

2
H → Sα,β . Then

there exists a sequence {(xk, εk)} ∈ RN
× R+ such that

ωk(x) = (ω1
k(x), ω

2
k(x)) := ε

N−2
2

k (uk(εkx + xk), vk(εkx + xk))

contains a convergent subsequence denoted again by {ωk} such that ωk → ω = (ω1, ω2) strongly in D1,2(RN) × D1,2(RN)
with ω1(x) > 0 and ω2(x) > 0 in RN . Moreover, we have εk → 0 and xk → x0 ∈ Ω as k → ∞.

Proof. See [7, Lemma 3.1]. �

Next we define the continuous mapΦ : H \ G → RN by

Φ(u, v) :=


Ω
x(u − u+

f ,g)
α
+
(v − v+

f ,g)
β
+dx

Ω
(u − u+

f ,g)
α
+(v − v+

f ,g)
β
+dx

,

where G = {(u, v) ∈ H;

Ω
(u − u+

f ,g)
α
+
(v − v+

f ,g)
β
+dx = 0}. Then we have the following.

Lemma 4.2. For each 0 < δ < r0, there exist Λδ, δ0 > 0 such that if (u, v) ∈ N1
∞
, J1

∞
(u, v) < 1

N S
N/2
α,β + δ0 and ∥f+∥Lq∗ +

∥g+∥Lq∗ < Λδ , thenΦ(u, v) ∈ Mδ .

Proof. Suppose the contrary. Then there exists a sequence {(uk, vk)} ⊂ N1
∞

such that J1
∞
(uk, vk) =

1
N S

N/2
α,β + o(1), ∥f+∥Lq∗ +

∥g+∥Lq∗ = o(1), and

Φ(uk, vk) ∉ Mδ for all k.

It is easy to show that {(uk, vk)} is bounded in H and there is a sequence {t∞k } ⊂ R+ such that (t∞k uk, t∞k vk) ∈ N∞ and

1
N
SN/2α,β ≤ J∞(t∞k uk, t∞k vk) ≤ J1

∞
(t∞k uk, t∞k vk) ≤ J1

∞
(uk, vk) =

1
N
SN/2α,β + o(1).

We obtain t∞k = 1 + o(1) as k → ∞ and

lim
k→∞

J∞(uk, vk) = lim
k→∞

1
N

∥(uk, vk)∥
2
H = lim

k→∞

1
N


Ω

(uk)
α
+
(vk)

β
+dx

= lim
k→∞

1
N


Ω

h(uk)
α
+
(vk)

β
+dx =

1
N
SN/2α,β + o(1). (4.1)

Define

Uk =

 (uk)+
Ω
(uk)

α
+(vk)

β
+dx

1/(α+β)
,

(vk)+
Ω
(uk)

α
+(vk)

β
+dx

1/(α+β)

 .
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We see that

Ω
(U1

k )
α
+
(U2

k )
β
+dx = 1. It follows from (4.1) and the definition of Sα,β that

lim
k→∞

∥(U1
k ,U

2
k )∥

2
H = Sα,β .

By Lemma 4.3, there is a sequence {(xk, εk)} ∈ RN
× R+ such that εk → 0, xk → x0 ∈ Ω and ωk(x) = ε

N−2
2

k (U1
k (εkx +

xk),U2
k (εkx + xk)) → (ω1, ω2) strongly in D1,2(RN)× D1,2(RN)with ω1 > 0 and ω2 > 0 in RN as k → ∞. Then by (4.1),

1 = o(1)+


Ω

h(U1
k )
α
+
(U2

k )
β
+dx = ε−N

k


Ω

h

ω1

k


x − xk
εk

α
+


ω2

k


x − xk
εk

β
+

dx + o(1) = h(x0),

as k → ∞, which implies x0 ∈ M . By the Lebesgue dominated convergence theorem again, we have

Φ(uk, vk) =


Ω
x(uk − u+

fk,gk
)α
+
(vk − v+

fk,gk
)
β
+dx

Ω
(uk − u+

fk,gk
)α+(vk − v+

fk,gk
)
β
+dx

=


Ω
x(uk)

α
+
(vk)

β
+dx

Ω
(uk)

α
+(vk)

β
+dx

+ o(1), as ∥(fk)+∥Lq∗ , ∥(gk)+∥Lq∗ → 0

=

ε−N
k


Ω
x

ω1

k


x−xk
εk

α
+


ω2

k


x−xk
εk

β
+

dx

ε−N
k


Ω


ω1

k


x−xk
εk

α
+


ω2

k


x−xk
εk

β
+

dx
+ o(1),

→ x0 ∈ M as k → ∞,

which is a contradiction. �

Lemma 4.3. There exists Λδ > 0 small enough such that if ∥f+∥Lq∗ + ∥g+∥Lq∗ < Λδ and (u, v) ∈ N−

f ,g with If ,g(u, v) <
1
N S

N/2
α,β +

δ0
2 (δ0 is given in Lemma 4.2), thenΦ(u, v) ∈ Mδ .

Proof. By Lemma 3.1, for µ ∈ (0, 1), there is a unique t1(u,v) such that (t1(u,v)u, t
1
(u,v)v) ∈ N1

∞
and

J1
∞
(t1(u,v)u, t

1
(u,v)v) ≤ (1 − µ)−

N
2


If ,g(u, v)+

2 − q
2q

µ
q

q−2 C(∥f+∥Lq∗ + ∥g+∥Lq∗ )
2

2−q


.

Thus there existsΛδ > 0 small enough such that if ∥f+∥Lq∗ + ∥g+∥Lq∗ < Λδ and If ,g(u, v) < 1
N S

N/2
α,β +

δ0
2 ,

J1
∞
(t1(u,v)u, t

1
(u,v)v) ≤

1
N
SN/2α,β + δ0.

By Lemma 4.2 and ∥(u+

f ,g , v
+

f ,g)∥H → 0 as ∥(fk)+∥Lq∗ , ∥(gk)+∥Lq∗ → 0, we complete the proof. �

Now we denote cf ,g := θ+

f ,g +
1
N S

N/2
α,β − σ(ε0) and consider the filtration of the manifold of N−

f ,g as follows:

N−

f ,g(cf ,g) := {(u, v) ∈ N−

f ,g; If ,g ≤ cf ,g}.

Then catMδ (M) critical points of If ,g will be obtained from N−

f ,g(cf ,g) in the following.

Lemma 4.4. Let δ,Λδ > 0 be as in Lemmas 4.2 and 4.3. Then for ∥f+∥Lq∗ + ∥g+∥Lq∗ < Λδ, If ,g has at least catMδ (M) critical
points in N−

f ,g(cf ,g).

Proof. For z ∈ M , by Lemma 3.3, we can define

F(z) = (u+

f ,g + t−z
√
αωε,z, v

+

f ,g + t−z

βωε,z) ∈ N−

f ,g(cf ,g).

Furthermore, If ,g satisfies the (PS)-condition on N−

f ,g(cf ,g). Moreover, it follows from Lemma 4.3 thatΦ(N−

f ,g(cf ,g)) ⊂ Mδ for
∥f+∥Lq∗ + ∥g+∥Lq∗ < Λδ . Define ξ : [0, 1] × M → Mδ by

ξ(θ, z) = Φ


u+

f ,g + t−z
√
αω(1−θ)ε,z, v

+

f ,g + t−z

βω(1−θ)ε,z


∈ N−

f ,g(cf ,g).

Then straightforward calculations provide that ξ(0, z) = Φ ◦ F(z) and limθ→1− ξ(θ, z) = z. Hence Φ ◦ F is homotopic to
the inclusion j : M → Mδ . By Propositions 4.1 and 4.2, If ,g has at least catMδ (M) critical points in N−

f ,g(cf ,g). �

Finally we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. Note Lemmas 2.6 and 4.4, and applying N+

f ,g


N−

f ,g = ∅ and the strong maximum principle, we
obtain the conclusion of Theorem 1.1. �
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