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The p-Laplace equations have some applications in continuum mechanics. On the basis
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operators. Some new criteria are presented that improve the related contributions to the
subject. Several examples are provided to illustrate the relevance of new theorems.
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1. Introduction

In the natural sciences, technology, and population dynamics, differential equations findmany application fields; see [9].
For instance, the p-Laplace equations have some applications in continuum mechanics as seen from [4,5]. Recently, there
has been an increasing interest in studying oscillation and nonoscillation of different classes of differential equations. We
refer the reader to [1–4,6–8,10–27] and the references cited therein.

In this paper, we shall be concerned with the problem of oscillation and asymptotic behavior of a higher-order delay
damped differential equation with p-Laplacian like operators

(a(t)|x(n−1)(t)|p−2x(n−1)(t))′ + r(t)|x(n−1)(t)|p−2x(n−1)(t) + q(t)|x(g(t))|p−2x(g(t)) = 0, (1.1)

where t ≥ t0 > 0, and we will assume that the following assumptions hold:

(H1) p is a real number satisfying p > 1, g ∈ C[t0, ∞), g(t) ≤ t, limt→∞ g(t) = ∞;
(H2) a ∈ C1

[t0, ∞), r, q ∈ C[t0, ∞), a(t) > 0, a′(t) + r(t) ≥ 0, q(t) > 0.

By a solution of (1.1) wemean a function x ∈ Cn−1
[Tx, ∞), Tx ≥ t0, which has the property a|x(n−1)

|
p−2x(n−1)

∈ C1
[Tx, ∞)

and satisfies (1.1) on [Tx, ∞). We consider only those solutions x of (1.1) which satisfy sup{|x(t)| : t ≥ T } > 0 for all T ≥ Tx
and tacitly assume that (1.1) possesses such solutions. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros
on [Tx, ∞); otherwise, it is said to be nonoscillatory. Eq. (1.1) is termed oscillatory if all its solutions are oscillatory.

In what follows, we present some related results that serve and motivate the contents of this paper. Agarwal et al. [3]
studied the higher-order differential equation

(|x(n−1)(t)|α−1x(n−1)(t))′ + q(t)|x(g(t))|α−1x(g(t)) = 0, (1.2)

∗ Corresponding author.
E-mail addresses: zchui@sdu.edu.cn (C. Zhang), agarwal@tamuk.edu (R.P. Agarwal), litongx2007@163.com (T. Li).

0022-247X/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jmaa.2013.07.066

http://dx.doi.org/10.1016/j.jmaa.2013.07.066
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2013.07.066&domain=pdf
mailto:zchui@sdu.edu.cn
mailto:agarwal@tamuk.edu
mailto:litongx2007@163.com
http://dx.doi.org/10.1016/j.jmaa.2013.07.066


1094 C. Zhang et al. / J. Math. Anal. Appl. 409 (2014) 1093–1106

where n ≥ 2 is even,α > 0 is a constant, q, g ∈ C([t0, ∞), R), q(t) > 0, and limt→∞ g(t) = ∞. They obtained the following
criterion (note that some inaccuracies have been corrected).

Theorem 1.1 (See [3, Theorem 2.1]). If there exist functions σ , ρ ∈ C1([t0, ∞), (0, ∞)) such that

σ(t) ≤ inf{t, g(t)}, lim
t→∞

σ(t) = ∞, σ ′(t) > 0 for t ≥ t0,

and 
∞

ρ(t)q(t) − θ

(2(n − 2)!)α

(α + 1)α+1

(ρ ′(t))α+1

(σ n−2(t)σ ′(t)ρ(t))α


dt = ∞

for all constants θ ∈ (1, ∞), then Eq. (1.2) is oscillatory.

Grace and Lalli [8], Karpuz et al. [10], Zafer [21], Zhang and Yan [26], and Zhang et al. [27] considered oscillation of a
higher-order equation

x(n)(t) + q(t)x(g(t)) = 0, (1.3)

where n ≥ 2 is even, q, g ∈ C([t0, ∞), R), q(t) > 0, and limt→∞ g(t) = ∞. They established the following results.

Theorem 1.2 (See [8, Theorems 2 and 3]). If there exist functions σ , ρ ∈ C1([t0, ∞), (0, ∞)) such that

σ(t) ≤ min{t, 2g(t)}, lim
t→∞

σ(t) = ∞, σ ′(t) > 0 for t ≥ t0,

and 
∞

ρ(t)q(t) −

(n − 1)!
23−2n

(ρ ′(t))2

σ n−2(t)σ ′(t)ρ(t)


dt = ∞,

then Eq. (1.3) is oscillatory.

Theorem 1.3 (See [21, Theorem 2]). Let g(t) ≤ t. If

lim inf
t→∞

 t

g(t)
q(s)gn−1(s)ds >

(n − 1)2(n−1)(n−2)

e
,

then Eq. (1.3) is oscillatory.

Theorem 1.4 (See [10, Corollary 1], [26, Corollary 1], and [27, Corollary 1]). Let g(t) ≤ t. If

lim inf
t→∞

 t

g(t)
q(s)gn−1(s)ds >

(n − 1)!
e

,

then Eq. (1.3) is oscillatory.

Theorem 1.5 (See [26,27, Theorem 2]). Assume g(t) ≤ t and define δ(t) = maxt0≤s≤t g(s), δ−1(t) = sup{s ≥ t0 : δ(s) =

t}, δ−(k+1)(t) = δ−1(δ−k(t)) = sup{s ≥ δ−k(t0) : δ−k(s) = t}. Set Q (t) = q(t)gn−1(t)/(n − 1)!. Further, define a sequence
{Qk(t)} of functions as follows: Q1(t) =

 t
δ(t) Q (s)ds, t ≥ δ−1(t0),Qk+1(t) =

 t
δ(t) Q (s)Qk(s)ds, t ≥ δ−(k+1)(t0), k = 1, 2, . . . .

Assume that there exists a positive integer K such that

lim inf
t→∞

QK (t) >
1
eK

.

Then Eq. (1.3) is oscillatory.

Zhang et al. [23] studied the even-order equation

(a(t)(x(n−1)(t))α)′ + q(t)xα(g(t)) = 0, (1.4)

where α is a quotient of odd positive integers, a ∈ C1
[t0, ∞), q, g ∈ C[t0, ∞), a(t) > 0, a′(t) ≥ 0, q(t) ≥ 0, g(t) < t ,

and limt→∞ g(t) = ∞. Assuming that


∞

t0
a−1/α(t)dt < ∞ and x is an eventually positive solution of Eq. (1.4), the authors

considered three possible cases in the proof of [23, Theorem 2.1]. As a matter of fact, they dealt only with the following case
(as in [3,8,10,21,26,27])

x > 0, x′ > 0, x(n−1) > 0, and x(n)
≤ 0 (1.5)

under the assumption that


∞

t0
a−1/α(t)dt = ∞. Therefore, an application of [23, Corollary 2.1] yields the following result

(note that it is also valid in the case where n = 2).



C. Zhang et al. / J. Math. Anal. Appl. 409 (2014) 1093–1106 1095

Theorem 1.6. Let n ≥ 2 be even. If


∞

t0
a−1/α(t)dt = ∞ and

lim inf
t→∞

 t

g(t)

q(s)
a(g(s))

(gn−1(s))αds >
((n − 1)!)α

e
,

then Eq. (1.4) is oscillatory.

Very recently, Liu et al. [14] and Zhang et al. [25] proved several oscillation criteria for Eq. (1.1), some ofwhichwe present
below for the convenience of the reader.

Theorem 1.7 (See [14, Theorem 1]). Assume (H1), (H2), a′(t) ≥ 0, r(t) ≥ 0, and let n ≥ 2 be even, g ∈ C1
[t0, ∞), g ′(t) > 0

for t ≥ t0, and
∞

t0


1

a(s)
exp


−

 s

t0

r(τ )

a(τ )
dτ
 1

p−1

ds = ∞. (1.6)

Suppose that there exists a continuous function

H : D ≡ {(t, s)|t ≥ s ≥ t0} → R

such that

H(t, t) = 0, t ≥ t0; H(t, s) > 0, t > s ≥ t0,

and H has a nonpositive continuous partial derivative with respect to the second variable in D0 ≡ {(t, s)|t > s ≥ t0}. Assume
further that there exist functions h ∈ C(D0, R), K , ρ ∈ C1([t0, ∞), (0, ∞)) such that

−
∂

∂s
(H(t, s)K(s)) − H(t, s)K(s)


ρ ′(s)
ρ(s)

−
r(s)
a(s)


= h(t, s), ∀(t, s) ∈ D0. (1.7)

If for some constant θ ∈ (0, 1) and for all constants M > 0,

lim sup
t→∞

1
H(t, t0)

 t

t0


ρ(s)q(s)H(t, s)K(s) −


|h(t, s)|

p

p
ρ(s)a(s)

(H(t, s)G(s)K(s))p−1


ds = ∞,

where G(s) := θMgn−2(s)g ′(s), then Eq. (1.1) is oscillatory.

As a special case, when H(t, s) = (t − s)λ, λ > p− 1, and K(t) = ρ(t) = 1, Theorem 1.7 reduces to the following result.

Theorem 1.8 (See [25, Theorem 1]). Assume (H1), (H2), (1.6), a′(t) ≥ 0, r(t) ≥ 0, and let n ≥ 2 be even, g ∈ C1
[t0, ∞),

g ′(t) > 0 for t ≥ t0. Suppose also that there exists a constant λ > p − 1 such that

lim sup
t→∞

1
tλ

 t

t0
(t − s)λ−p


(t − s)pq(s) −


λ

p

p

G1−p(s)

1 +

(t − s)r(s)
λa(s)

p

a(s)

ds = ∞

for some constant θ ∈ (0, 1) and for all constants M > 0, where G is as in Theorem 1.7. Then Eq. (1.1) is oscillatory.

If H(t, s) = 1 and K(t) = 1, then we have the following criterion due to Theorem 1.7.

Theorem 1.9 (See [25, Theorem 2]). Assume (H1), (H2), (1.6), a′(t) ≥ 0, r(t) ≥ 0, and let n ≥ 2 be even, g ∈

C1
[t0, ∞), g ′(t) > 0 for t ≥ t0. If there exists a function ρ ∈ C1([t0, ∞), (0, ∞)) such that

lim sup
t→∞

 t

t0
ρ(s)


q(s) −

a(s)
pp

(θMgn−2(s)g ′(s))1−p
ρ ′(s)
ρ(s)

−
r(s)
a(s)

p ds = ∞

for some constant θ ∈ (0, 1) and for all constants M > 0, then Eq. (1.1) is oscillatory.

Theorems 1.7–1.9 gave some interesting ideas for the study of oscillatory properties of trinomial differential equations.
Two unsolved problems for research can be formulated as follows.

(P1) Is it possible to establish oscillation criteria for (1.1) without requiring a′
≥ 0, r ≥ 0, g ′ > 0, and the randomicity of

M?
(P2) Suggest a different method to investigate (1.1) in the case where n is odd.
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Our aim in this paper is to give an affirmative answer to these questions. This paper is organized as follows. In Section 2,we
give some answers to problem (P1) by refining the standard integral averaging technique. In Section 3, we study oscillation
and asymptotic behavior of (1.1) relating these properties of this equation to the existence of positive solutions to associated
first-order delay differential inequalities. The results obtained allow applications to (1.1) with even-order and odd-order.
In Section 4, two selected examples show that the results in Sections 2 and 3 are of independent interest. In Section 5, we
extend results obtained in Section 3 to a more general differential equation. In Section 6, we present some conclusions to
summarize the contents of this paper.

In the sequel, all occurring functional inequalities are assumed to hold eventually, that is, they are satisfied for all t large
enough.

2. Oscillation results via the integral averaging technique

Before stating the main results, we begin with the following lemma.

Lemma 2.1 (See [15]). Let f ∈ Cn([t0, ∞), R+). If f (n)(t) is eventually of one sign for all large t, then there exist a tx ≥ t0 and
an integer l, 0 ≤ l ≤ n with n + l even for f (n)(t) ≥ 0, or n + l odd for f (n)(t) ≤ 0 such that

l > 0 yields f (k)(t) > 0 for t ≥ tx, k = 0, 1, . . . , l − 1, and
l ≤ n − 1 yields (−1)l+kf (k)(t) > 0 for t ≥ tx, k = l, l + 1, . . . , n − 1.

Lemma 2.2 (See [2, Lemma 2.2.3]). Assume that f is as in Lemma 2.1, f (n)(t)f (n−1)(t) ≤ 0 for t ≥ tx, and limt→∞ f (t) ≠ 0.
Then for every constant λ ∈ (0, 1), there exists tλ ∈ [tx, ∞) such that

f (t) ≥
λ

(n − 1)!
tn−1

|f (n−1)(t)|

holds on [tλ, ∞).

Lemma 2.3. Assume (H1), (H2), n ≥ 4 is even, and let x be an eventually positive solution of (1.1). If (1.6) holds, then there
exist two possible cases for t ≥ t1 large enough:

(1) x(t) > 0, x′(t) > 0, x′′(t) > 0, x(n−1)(t) > 0, x(n)(t) < 0;
(2) x(t) > 0, x(j)(t) > 0, x(j+1)(t) < 0 for every odd integer j ∈ {1, 2, . . . , n − 3}, x(n−1)(t) > 0, x(n)(t) < 0.

Proof. Since x is an eventually positive solution of (1.1), there exists a t1 ≥ t0 such that x(t) > 0 and x(g(t)) > 0 for t ≥ t1.
By virtue of (1.1), we have

(a(t)|x(n−1)(t)|p−2x(n−1)(t))′ + r(t)|x(n−1)(t)|p−2x(n−1)(t) < 0,

which yields
a(t) exp

 t

t0

r(τ )

a(τ )
dτ


|x(n−1)(t)|p−2x(n−1)(t)
′

< 0. (2.1)

From the proof of [14, Lemma 4], we have x(n−1) > 0 eventually. Then we can write (2.1) in the form
a(t) exp

 t

t0

r(τ )

a(τ )
dτ


(x(n−1)(t))p−1
′

< 0,

which implies that

exp
 t

t0

r(τ )

a(τ )
dτ
 

a′(t) + r(t)

(x(n−1)(t))p−1

+ (p − 1)a(t) exp
 t

t0

r(τ )

a(τ )
dτ


(x(n−1)(t))p−2x(n)(t) < 0.

Thus, x(n) < 0 eventually. Then by Lemma 2.1, we have two possible cases (1) and (2). This completes the proof. �

Theorem 2.4. Assume (H1), (H2), (1.6), n ≥ 4 is even, r(t) ≥ 0, and let D, D0,H be as in Theorem 1.7. Assume further that
there exist functions h ∈ C(D0, R), K , ρ ∈ C1([t0, ∞), (0, ∞)) such that (1.7) holds and for some constant λ0 ∈ (0, 1),

lim sup
t→∞

1
H(t, t0)

 t

t0

H(t, s)K(s)ρ(s)q(s)

gn−1(s)
sn−1

p−1

−
ρ(s)a(s)

H(t, s)K(s) λ0sn−2

(n−2)!

p−1


|h(t, s)|

p

p

 ds = ∞. (2.2)
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Suppose also that there exists a continuous function H∗ : D → R such that

H∗(t, t) = 0, t ≥ t0; H∗(t, s) > 0, t > s ≥ t0, (2.3)

and H∗ has a nonpositive continuous partial derivative with respect to the second variable in D0. If there exist functions h∗ ∈

C(D0, R), K∗, δ ∈ C1([t0, ∞), (0, ∞)) such that

−
∂

∂s
(H∗(t, s)K∗(s)) − H∗(t, s)K∗(s)

δ′(s)
δ(s)

= h∗(t, s), ∀(t, s) ∈ D0 (2.4)

and

lim sup
t→∞

1
H∗(t, t0)

 t

t0


H∗(t, s)K∗(s)δ(s)Q (s) −

δ(s)|h∗(t, s)|2

4H∗(t, s)K∗(s)


ds = ∞, (2.5)

where

Q (t) :=


∞

t (η − t)n−4

 
∞

η q(s)

g(s)
s

p−1
ds

a(η)

1/(p−1)

dη

(n − 4)!
,

then Eq. (1.1) is oscillatory.

Proof. Assume that (1.1) has a nonoscillatory solution x. Without loss of generality, we may assume that x is eventually
positive. From Lemma 2.3, we have two possible cases (1) and (2). We consider each of two cases separately.

Assume that (1) holds. We see that limt→∞ x′(t) ≠ 0. By virtue of Lemma 2.2, for every constant λ ∈ (0, 1) and for all
large t , we have

x′(t) ≥
λ

(n − 2)!
tn−2x(n−1)(t), by setting f (t) := x′(t). (2.6)

Now we introduce a Riccati substitution

u(t) := ρ(t)
a(t)(x(n−1)(t))p−1

(x(t))p−1
, t ≥ t1. (2.7)

Then u(t) > 0 on [t1, ∞), and we have by (2.6) that

u′(t) = ρ ′(t)
a(t)(x(n−1)(t))p−1

(x(t))p−1
+ ρ(t)

(a(t)(x(n−1)(t))p−1)′

(x(t))p−1
− ρ(t)

(p − 1)a(t)(x(n−1)(t))p−1x′(t)
(x(t))p

≤ −ρ(t)
q(t)xp−1(g(t))

(x(t))p−1
− ρ(t)

r(t)(x(n−1)(t))p−1

(x(t))p−1
+ ρ ′(t)

a(t)(x(n−1)(t))p−1

(x(t))p−1

−
λ(p − 1)
(n − 2)!

tn−2ρ(t)
a(t)(x(n−1)(t))p

(x(t))p
. (2.8)

By the Kiguradze Lemma [11], which shows that if a function y satisfies y(i) > 0, i = 0, 1, 2, . . . , k and y(k+1)
≤ 0, then

y(t)/y′(t) ≥ t/k, we have

x(t)
x′(t)

≥
t

n − 1
.

Thus, we obtain that x/tn−1 is nonincreasing, and so

x(g(t))
x(t)

≥
gn−1(t)
tn−1

. (2.9)

It follows from (2.7)–(2.9) that

ρ(t)q(t)

gn−1(t)
tn−1

p−1

≤ −u′(t) +


ρ ′(t)
ρ(t)

−
r(t)
a(t)


u(t) −

λ(p − 1)tn−2

(n − 2)!(ρ(t)a(t))1/(p−1)
up/(p−1)(t).
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Replacing t by s, multiplying two sides by H(t, s)K(s), and integrating the resulting inequality from t1 to t , we have t

t1
H(t, s)K(s)ρ(s)q(s)


gn−1(s)
sn−1

p−1

ds

≤ −

 t

t1
H(t, s)K(s)u′(s)ds +

 t

t1
H(t, s)K(s)


ρ ′(s)
ρ(s)

−
r(s)
a(s)


u(s)ds

−

 t

t1
H(t, s)K(s)

λ(p − 1)sn−2

(n − 2)!(ρ(s)a(s))1/(p−1)
up/(p−1)(s)ds

= H(t, t1)K(t1)u(t1) −

 t

t1


−

∂

∂s
(H(t, s)K(s)) − H(t, s)K(s)


ρ ′(s)
ρ(s)

−
r(s)
a(s)


u(s)ds

−

 t

t1
H(t, s)K(s)

λ(p − 1)sn−2

(n − 2)!(ρ(s)a(s))1/(p−1)
up/(p−1)(s)ds

≤ H(t, t1)K(t1)u(t1) +

 t

t1
|h(t, s)|u(s)ds −

 t

t1
H(t, s)K(s)

λ(p − 1)sn−2

(n − 2)!(ρ(s)a(s))1/(p−1)
up/(p−1)(s)ds. (2.10)

Set γ := p/(p − 1),

X :=


(p − 1)H(t, s)K(s)

λsn−2

(n − 2)!

 p−1
p u(s)

(ρ(s)a(s))1/p
,

and

Y :=


p − 1
p

p−1

|h(t, s)|p−1

 ρ(s)a(s)
(p − 1)H(t, s)K(s) λsn−2

(n−2)!

p−1


p−1
p

.

Using the inequality

γ XY γ−1
− Xγ

≤ (γ − 1)Y γ , γ > 1, X ≥ 0, Y ≥ 0,

we have

|h(t, s)|u(s) − H(t, s)K(s)
λ(p − 1)sn−2

(n − 2)!(ρ(s)a(s))1/(p−1)
up/(p−1)(s) ≤

ρ(s)a(s)
H(t, s)K(s) λsn−2

(n−2)!

p−1


|h(t, s)|

p

p

.

Putting the resulting inequality into (2.10), we obtain

 t

t1

H(t, s)K(s)ρ(s)q(s)

gn−1(s)
sn−1

p−1

−
ρ(s)a(s)

H(t, s)K(s) λsn−2

(n−2)!

p−1


|h(t, s)|

p

p

 ds

≤ H(t, t1)K(t1)u(t1) ≤ H(t, t0)K(t1)u(t1).

Then

1
H(t, t0)

 t

t0

H(t, s)K(s)ρ(s)q(s)

gn−1(s)
sn−1

p−1

−
ρ(s)a(s)

H(t, s)K(s) λsn−2

(n−2)!

p−1


|h(t, s)|

p

p

 ds

≤ K(t1)u(t1) +

 t1

t0
K(s)ρ(s)q(s)


gn−1(s)
sn−1

p−1

ds < ∞,

which contradicts (2.2).
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Assume that (2) holds. By virtue of x′ > 0 and x′′ < 0, we get x(t) ≥ tx′(t) due to the Kiguradze Lemma [11], and so we
have that x/t is nonincreasing. Hence by (1.1), we obtain

−a(t)(x(n−1))p−1(t) +


∞

t
q(s)xp−1(s)


g(s)
s

p−1

ds ≤ 0.

It follows from x′ > 0 that

−x(n−1)(t) +
x(t)

a1/(p−1)(t)


∞

t
q(s)


g(s)
s

p−1

ds

1/(p−1)

≤ 0.

Integrating the above inequality from t to ∞ for a total of (n − 3) times, we have

x′′(t) +


∞

t (η − t)n−4

 
∞

η q(s)

g(s)
s

p−1
ds

a(η)

1/(p−1)

dη

(n − 4)!
x(t) ≤ 0. (2.11)

Now, we define a Riccati substitution

w(t) := δ(t)
x′(t)
x(t)

, t ≥ t1. (2.12)

Then w(t) > 0 for t ≥ t1, and

w′(t) = δ′(t)
x′(t)
x(t)

+ δ(t)
x′′(t)x(t) − (x′(t))2

x2(t)
.

It follows from (2.11) and (2.12) that

δ(t)Q (t) ≤ −w′(t) +
δ′(t)
δ(t)

w(t) −
1

δ(t)
w2(t).

Replacing t by s, multiplying two sides by H∗(t, s)K∗(s), and integrating the resulting inequality from t1 to t , we have t

t1
H∗(t, s)K∗(s)δ(s)Q (s)ds ≤ −

 t

t1
H∗(t, s)K∗(s)w′(s)ds

+

 t

t1
H∗(t, s)K∗(s)

δ′(s)
δ(s)

w(s)ds −

 t

t1

H∗(t, s)K∗(s)
δ(s)

w2(s)ds

= H∗(t, t1)K∗(t1)w(t1) −

 t

t1

H∗(t, s)K∗(s)
δ(s)

w2(s)ds

−

 t

t1


−

∂

∂s
(H∗(t, s)K∗(s)) − H∗(t, s)K∗(s)

δ′(s)
δ(s)


w(s)ds

≤ H∗(t, t1)K∗(t1)w(t1) +

 t

t1
|h∗(t, s)|w(s)ds −

 t

t1

H∗(t, s)K∗(s)
δ(s)

w2(s)ds.

Hence we have t

t1


H∗(t, s)K∗(s)δ(s)Q (s) −

δ(s)|h∗(t, s)|2

4H∗(t, s)K∗(s)


ds ≤ H∗(t, t1)K∗(t1)w(t1) ≤ H∗(t, t0)K∗(t1)w(t1).

Then

1
H∗(t, t0)

 t

t0


H∗(t, s)K∗(s)δ(s)Q (s) −

δ(s)|h∗(t, s)|2

4H∗(t, s)K∗(s)


ds ≤ K∗(t1)w(t1) +

 t1

t0
K∗(s)δ(s)Q (s)ds < ∞,

which contradicts (2.5). Therefore, every solution of (1.1) is oscillatory. �

Example 2.5. For t ≥ 1, consider a fourth-order delay damped differential equation

x(4)(t) +
1
t2

x(3)(t) +
q0
t4

x


t
3√4


= 0, (2.13)
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where q0 > 0 is a constant. Let n = 4, p = 2, a(t) = 1, r(t) = 1/t2, q(t) = q0/t4, and g(t) = t/ 3√4. It is easy to see that
condition (1.6) is satisfied. Set H(t, s) = (t − s)2, K(t) = 1, and ρ(t) = t3. Then h(t, s) = (t − s)[5 − s−1

+ t(s−2
− 3s−1)],

and so

lim sup
t→∞

1
H(t, t0)

 t

t0

H(t, s)K(s)ρ(s)q(s)

gn−1(s)
sn−1

p−1

−
ρ(s)a(s)

H(t, s)K(s) λ0sn−2

(n−2)!

p−1


|h(t, s)|

p

p

 ds

= lim sup
t→∞

1
(t − 1)2

 t

1


q0
4
t2s−1

+
q0
4
s −

q0
2
t −

s
2λ0

(25 + s−2
− 10s−1

+ t2s−4
+ 9t2s−2

− 6t2s−3
+ 16ts−2

− 2ts−3
− 30ts−1)


ds = ∞,

if q0 > 18/λ0 for some constant λ0 ∈ (0, 1). In particular, we can take q0 ≥ 19 (by letting λ0 ∈ (18/19, 1)). On the other
hand, we see that Q (t) ≥ q0/(12t2). Let δ(t) = t, K∗(t) = 1, and H∗(t, s) = (t − s)2. Then h∗(t, s) = (t − s)(3 − ts−1), and
hence

lim sup
t→∞

1
H∗(t, t0)

 t

t0


H∗(t, s)K∗(s)δ(s)Q (s) −

δ(s)|h∗(t, s)|2

4H∗(t, s)K∗(s)


ds

≥ lim sup
t→∞

1
(t − 1)2

 t

1

 q0
12

t2s−1
+

q0
12

s −
q0
6
t −

s
4
(9 − 6ts−1

+ t2s−2)

ds = ∞,

if q0 > 3. In conclusion, Eq. (2.13) is oscillatory if q0 ≥ 19 when using Theorem 2.4. However, Theorems 1.7–1.9 cannot be
used to get this conclusion due to the arbitrariness ofM .

As a special case, when r(t) = 0, Eq. (1.1) reduces to

(a(t)|x(n−1)(t)|p−2x(n−1)(t))′ + q(t)|x(g(t))|p−2x(g(t)) = 0. (2.14)

Using Theorem 2.4 in Eq. (2.14), we have the following result.

Corollary 2.6. Let all assumptions of Theorem 2.4 be satisfied except that condition r(t) ≥ 0 be replaced with r(t) = 0. Then
Eq. (2.14) is oscillatory.

Consider the binomial differential equation
a(t) exp

 t

t0

r(τ )

a(τ )
dτ


|x(n−1)(t)|p−2x(n−1)(t)
′

+ q(t) exp
 t

t0

r(τ )

a(τ )
dτ


|x(g(t))|p−2x(g(t)) = 0. (2.15)

Application of Corollary 2.6 yields the following criterion for Eq. (2.15).

Corollary 2.7. Assume (H1), (H2), (1.6), n ≥ 4 is even, and let D, D0,H be as in Theorem 1.7. Assume further that there exist
functions h∗

∈ C(D0, R), K , ρ ∈ C1([t0, ∞), (0, ∞)) such that

−
∂

∂s
(H(t, s)K(s)) − H(t, s)K(s)

ρ ′(s)
ρ(s)

= h∗(t, s), ∀(t, s) ∈ D0, (2.16)

and, for some constant λ0 ∈ (0, 1),

lim sup
t→∞

1
H(t, t0)

 t

t0
exp

 s

t0

r(τ )

a(τ )
dτ


×

H(t, s)K(s)ρ(s)q(s)

gn−1(s)
sn−1

p−1

−
ρ(s)a(s)

H(t, s)K(s) λ0sn−2

(n−2)!

p−1


|h∗(t, s)|

p

p

 ds = ∞. (2.17)

Suppose also that there exists a continuous function H∗ : D → R such that (2.3) holds and H∗ has a nonpositive continuous
partial derivative with respect to the second variable in D0. If there exist functions h∗ ∈ C(D0, R), K∗, δ ∈ C1([t0, ∞), (0, ∞))
such that (2.4) holds and

lim sup
t→∞

1
H∗(t, t0)

 t

t0


H∗(t, s)K∗(s)δ(s)Q̄ (s) −

δ(s)|h∗(t, s)|2

4H∗(t, s)K∗(s)


ds = ∞, (2.18)
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where

Q̄ (t) :=


∞

t (η − t)n−4

 
∞

η q(s) exp
 s

t0
r(τ )
a(τ )

dτ


g(s)
s

p−1
ds

a(η) exp
 η

t0
r(τ )
a(τ )

dτ


1/(p−1)

dη

(n − 4)!
,

then Eq. (2.15) is oscillatory.

Since Eqs. (1.1) and (2.15) are equivalent, we have the following result.

Corollary 2.8. Let all assumptions of Corollary 2.7 be satisfied. Then Eq. (1.1) is oscillatory.

Example 2.9. For t ≥ 1, consider a fourth-order delay differential equation

x(4)(t) +
q0
t4

x

9t
10


= 0, (2.19)

where q0 > 0 is a constant. Let n = 4, p = 2, a(t) = 1, r(t) = 0, q(t) = q0/t4, and g(t) = 9t/10. It is easy to see that
condition (1.6) is satisfied. Set H(t, s) = (t − s)2, K(t) = 1, and ρ(t) = t3. Then h(t, s) = h∗(t, s) = (t − s)(5− 3ts−1), and
so

lim sup
t→∞

1
H(t, t0)

 t

t0

H(t, s)K(s)ρ(s)q(s)

gn−1(s)
sn−1

p−1

−
ρ(s)a(s)

H(t, s)K(s) λ0sn−2

(n−2)!

p−1


|h(t, s)|

p

p

 ds

= lim sup
t→∞

1
(t − 1)2

 t

1


729q0
1000

t2s−1
+

729q0
1000

s −
729q0
500

t −
s

2λ0
(25 + 9t2s−2

− 30ts−1)


ds = ∞,

if q0 > 500/(81λ0) for some constant λ0 ∈ (0, 1). In particular, we can take q0 ≥ 41000/94 (by letting λ0 ∈ (81/82, 1)).
On the other hand, we have that Q (t) = 3q0/(20t2). Let δ(t) = t, K∗(t) = 1, and H∗(t, s) = (t − s)2. Then h∗(t, s) =

(t − s)(3 − ts−1), and hence

lim sup
t→∞

1
H∗(t, t0)

 t

t0


H∗(t, s)K∗(s)δ(s)Q (s) −

δ(s)|h∗(t, s)|2

4H∗(t, s)K∗(s)


ds

= lim sup
t→∞

1
(t − 1)2

 t

1


3q0
20

t2s−1
+

3q0
20

s −
3q0
10

t −
s
4
(9 − 6ts−1

+ t2s−2)


ds = ∞,

if q0 > 5/3. In conclusion, Eq. (2.19) is oscillatory if q0 ≥ 6.25 when using Theorem 2.4 or Corollary 2.8.

Remark 2.10. Applying Theorem 2.4 or Corollary 2.8, the oscillation result (q0 ≥ 6.25) obtained for equation (2.19) is new;
see the following details.

(a) Theorem 1.1 cannot be applied to Eq. (2.19) due to the arbitrariness in the choice of θ ;
(b) Let σ(t) = t and ρ(t) = t3. Using Theorem 1.2, we see that Eq. (2.19) is oscillatory if q0 > 1728;
(c) Using Theorem 1.3, we find that Eq. (2.19) is oscillatory if q0 > 64000/


243e ln 10

9


> 919.6;

(d) An application of Theorem 1.4 implies that Eq. (2.19) is oscillatory when q0 > 2000/

243e ln 10

9


> 28.73;

(e) Using Theorem 1.5, δ(t) = 9t/10,QK (t) =

243 ln 10

9 q0/2000
K

, and so Eq. (2.19) is oscillatory if q0 > 2000/
243e ln 10

9


> 28.73;

(f) Let α = 1 and a(t) = 1. Using Theorem 1.6, we obtain that Eq. (2.19) is oscillatory if q0 > 2000/

243e ln 10

9


> 28.73;

(g) Theorems 1.7–1.9 cannot be applied to Eq. (2.19) due to the arbitrary choice ofM .

Remark 2.11. In this section, assuming a′(t) + r(t) ≥ 0 and using a modified technique, we establish two new oscillation
criteria (Theorem 2.4 and Corollary 2.8) that provide answers to problem (P1) formulated in Section 1. We stress that,
contrary to Theorem 2.4, we do not need in Corollary 2.8 the restrictive condition r(t) ≥ 0 (in the second part of the
proof of Theorem 2.4) which, in some sense, is a significant improvement. We also improve some of results reported there,
cf. Examples 2.5 and 2.9. In particular, Example 2.9 shows that Theorem 2.4 and Corollary 2.8 are new in the case where
r(t) = 0.

Remark 2.12. Let ρ(t) be replaced with ρ(t) exp

−
 t
t0

r(τ )

a(τ )
dτ

. Then assumptions (2.16) and (2.17) reduce to conditions

(1.7) and (2.2), respectively. It is not difficult to find that, contrary to assumption (2.18), condition (2.5) is easier to be verified
in the case r(t) ≥ 0.



1102 C. Zhang et al. / J. Math. Anal. Appl. 409 (2014) 1093–1106

Remark 2.13. Under the assumption that n ≥ 4 is even, we stress that the study of oscillatory behavior of Eq. (1.1) is more
difficult in comparisonwith second-order differential equations. Since the sign of the derivative x′′ is not known, our criteria
for oscillation of (1.1) involve double assumptions, as for instance, (2.2) and (2.5). On the other hand, we point out that (2.6)
cannot be given by using (1.5) and Lemma 2.2, since we need condition limt→∞ x′(t) ≠ 0.

3. Asymptotic results via the comparison technique

Theorem 3.1. Assume (H1), (H2), (1.6), and let n ≥ 2 be even. If there exists a constant λ0 ∈ (0, 1) such that the first-order
differential inequality

y(t)


y′(t) +

r(t)
a(t)

y(t) +
q(t)

a(g(t))


λ0gn−1(t)
(n − 1)!

p−1

y(g(t))


≤ 0 (3.1)

has no positive solutions, then Eq. (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, x can be assumed to be eventually positive.
Similar as in the proof of Lemma 2.3, we have

x(t) > 0, x′(t) > 0, x(n−1)(t) > 0, and x(n)(t) < 0 (3.2)

for t ≥ t1, where t1 ≥ t0 is sufficiently large. It follows from Lemma 2.2 that

x(t) ≥
λ

(n − 1)!
tn−1

a1/(p−1)(t)
a1/(p−1)(t)x(n−1)(t) (3.3)

for every λ ∈ (0, 1) and for all sufficiently large t . Set y := a(x(n−1))p−1. Using (3.3) in (1.1), we obtain inequality

y′(t) +
r(t)
a(t)

y(t) +
q(t)

a(g(t))


λgn−1(t)
(n − 1)!

p−1

y(g(t)) ≤ 0. (3.4)

That is, y is a positive solution of inequality (3.1), which is a contradiction. The proof is complete. �

On the basis of Theorem 3.1 and [20, Corollary 1], we obtain the following result.

Corollary 3.2. Assume (H1), (H2), (1.6), and let n ≥ 2 be even. If

lim inf
t→∞

 t

g(t)

q(s)
a(g(s))

(gn−1(s))p−1 exp
 s

g(s)

r(v)

a(v)
dv

ds >

((n − 1)!)p−1

e
, (3.5)

then Eq. (1.1) is oscillatory.

Example 3.3. For t ≥ 1, consider a fourth-order delay damped differential equation

x(4)(t) +
1
t
x(3)(t) +

q0
t4

x

t
3


= 0, (3.6)

where q0 > 0 is a constant. It is not difficult to check that (1.6) holds. Furthermore,

lim inf
t→∞

 t

g(t)

q(s)
a(g(s))

gn−1(s) exp
 s

g(s)

r(v)

a(v)
dv

ds =

q0 ln 3
9

>
6
e
,

if q0 > 54/(e ln 3) ≈ 18.08. Hence by Corollary 3.2, Eq. (3.6) is oscillatory when q0 > 18.1.

Theorem 3.4. Assume (H1), (H2), (1.6), and let n ≥ 3 be odd. If there exists a constant λ0 ∈ (0, 1) such that the first-order
differential inequality (3.1) has no positive solutions, then every solution of Eq. (1.1) is oscillatory or converges to zero as t → ∞.

Proof. Let x be a nonoscillatory solution of (1.1), which does not tend to zero asymptotically. Without loss of generality, we
can assume that x is eventually positive. On one hand, similar as in the proof of [14, Lemma 4] and Lemma 2.3, we obtain

x(t) > 0, x(n−1)(t) > 0, and x(n)(t) < 0

for t ≥ t1, where t1 ≥ t0 is sufficiently large. On the other hand, using Lemma 2.2, we have that (3.3) holds for every
λ ∈ (0, 1) and for all sufficiently large t . Set y := a(x(n−1))p−1. By virtue of (1.1) and (3.3), we get (3.4). That is, y is a positive
solution of inequality (3.1), which is a contradiction. This completes the proof. �
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Combining Theorem 3.4 and [20, Corollary 1], we have the following result.

Corollary 3.5. Assume (H1), (H2), (1.6), and let n ≥ 3 be odd. If (3.5) holds, then every solution of Eq. (1.1) is oscillatory or
converges to zero as t → ∞.

Example 3.6. For t ≥ 1, consider a third-order differential equation

x′′′(t) + t−1x′′(t) +
t − 1
et

x (t − 1) = 0. (3.7)

It is not difficult to verify that (1.6) is satisfied. Furthermore,

lim inf
t→∞

 t

g(t)

q(s)
a(g(s))

gn−1(s) exp
 s

g(s)

r(v)

a(v)
dv

ds =

1
e
lim inf
t→∞

 t

t−1
(s − 1)2ds = ∞.

Hence by Corollary 3.5, every solution of (3.7) is oscillatory or tends to zero as t → ∞. As a matter of fact, one such solution
is x(t) = e−t .

Remark 3.7. Assuming x is an eventually positive solution of (2.15) and using Lemma 2.2 and [13, Theorem 2.1.1] in
Eq. (2.15), we also have Corollaries 3.2 and 3.5. The details are left to the reader.

Remark 3.8. In this section, assuming a′(t) + r(t) ≥ 0 and using a comparison method, we establish several new criteria
that include answers to problem (P2) formulated in Section 1. On one hand, we point out that, contrary to Theorem 2.4,
we do not need in Theorem 3.1 and Corollary 3.2 the restrictive condition r(t) ≥ 0 which, in certain sense, is a significant
improvement. On the other hand, the results obtained in this section cannot be applied to (1.1) in the case where g(t) = t .
However, Theorem 2.4 and Corollary 2.8 are valid in this case. As yet, we cannot extend the method used in Section 2 to
(1.1) in the case where n is odd.

4. Comments on results in Sections 2 and 3

The following two examples illustrate applications of theoretical results in the previous sections.

Example 4.1. For t ≥ 1, consider a fourth-order delay damped differential equation

x(4)(t) +
1
t
x(3)(t) +

q0
t4

x

99t
100


= 0, (4.1)

where q0 > 0 is a constant. It is not difficult to check that (1.6) holds. Furthermore,

lim inf
t→∞

 t

g(t)

q(s)
a(g(s))

gn−1(s) exp
 s

g(s)

r(v)

a(v)
dv

ds = q0


99
100

2

ln
100
99

>
6
e
,

if q0 > 6 (100/99)2 /

e ln 100

99


≈ 224.08. Hence by Corollary 3.2, Eq. (4.1) is oscillatory when q0 > 224.1.

Let n = 4, p = 2, a(t) = 1, r(t) = 1/t, q(t) = q0/t4, and g(t) = 99t/100. It is easy to see that condition (1.6) is
satisfied. Set H(t, s) = (t − s)2, K(t) = 1, and ρ(t) = t3. Then h(t, s) = (t − s)(4 − 2ts−1), and hence

lim sup
t→∞

1
H(t, t0)

 t

t0

H(t, s)K(s)ρ(s)q(s)

gn−1(s)
sn−1

p−1

−
ρ(s)a(s)

H(t, s)K(s) λ0sn−2

(n−2)!

p−1


|h(t, s)|

p

p

 ds

= lim sup
t→∞

1
(t − 1)2

 t

1


99
100

3

q0t2s−1
+


99
100

3

q0s − 2


99
100

3

q0t −
s
λ0

(8 + 2t2s−2
− 8ts−1)


ds = ∞,

if q0 > 2(100/99)3/λ0 for some constant λ0 ∈ (0, 1). In particular, we can take q0 ≥ 2(100/99)4 (by letting λ0 ∈

(99/100, 1)). On the other hand, we have that Q (t) = 33q0/(200t2). Let δ(t) = t, K∗(t) = 1, and H∗(t, s) = (t − s)2.
Then h∗(t, s) = (t − s)(3 − ts−1), and so

lim sup
t→∞

1
H∗(t, t0)

 t

t0


H∗(t, s)K∗(s)δ(s)Q (s) −

δ(s)|h∗(t, s)|2

4H∗(t, s)K∗(s)


ds

= lim sup
t→∞

1
(t − 1)2

 t

1


33q0
200

t2s−1
+

33q0
200

s −
33q0
100

t −
s
4
(9 − 6ts−1

+ t2s−2)


ds = ∞,

if q0 > 50/33. In conclusion, Eq. (4.1) is oscillatory if q0 ≥ 2.09 when using Theorem 2.4. Therefore, Theorem 2.4 improves
Corollary 3.2 for Eq. (4.1).
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Example 4.2. For t ≥ 1, consider Eq. (3.6). As in Example 3.3, Eq. (3.6) is oscillatory if q0 > 18.1. Let now n = 4, p =

2, a(t) = 1, r(t) = 1/t, q(t) = q0/t4, and g(t) = t/3. It is easy to see that condition (1.6) holds. Set H(t, s) =

(t − s)2, K(t) = 1, and ρ(t) = t3. Then h(t, s) = (t − s)(4 − 2ts−1), and hence

lim sup
t→∞

1
H(t, t0)

 t

t0

H(t, s)K(s)ρ(s)q(s)

gn−1(s)
sn−1

p−1

−
ρ(s)a(s)

H(t, s)K(s) λ0sn−2

(n−2)!

p−1


|h(t, s)|

p

p

 ds

= lim sup
t→∞

1
(t − 1)2

 t

1


q0
27

t2s−1
+

q0
27

s −
2q0
27

t −
s
λ0

(8 + 2t2s−2
− 8ts−1)


ds = ∞,

if q0 > 54/λ0 for some constant λ0 ∈ (0, 1). In particular, we can take q0 ≥ 55 (by letting λ0 ∈ (54/55, 1)). On the other
hand, we have that Q (t) = q0/(18t2). Let δ(t) = t, K∗(t) = 1, and H∗(t, s) = (t − s)2. Then h∗(t, s) = (t − s)(3 − ts−1),
and so

lim sup
t→∞

1
H∗(t, t0)

 t

t0


H∗(t, s)K∗(s)δ(s)Q (s) −

δ(s)|h∗(t, s)|2

4H∗(t, s)K∗(s)


ds

= lim sup
t→∞

1
(t − 1)2

 t

1

 q0
18

t2s−1
+

q0
18

s −
q0
9
t −

s
4
(9 − 6ts−1

+ t2s−2)

ds = ∞,

if q0 > 9/2. In conclusion, Eq. (3.6) is oscillatory if q0 ≥ 55 when using Theorem 2.4. Therefore, Corollary 3.2 improves
Theorem 2.4 for Eq. (3.6).

In conclusion, the results obtained in Sections 2 and 3 are of independent interest. Furthermore, it follows from
Examples 2.5, 2.9, 4.1, and 4.2 that condition (2.5) plays an auxiliary role in certain sense. That is, condition (2.2) may have
more important role in Theorem 2.4.

5. Extension of the results in Section 3

In what follows, consider a higher-order differential equation

(a(t)(x(n−1)(t))γ )′ + r(t)(x(n−1)(t))γ + q(t)
m
i=1

xγi(gi(t)) = 0, (5.1)

where we assume that (H2) is satisfied and

(H3) i = 1, . . . ,m, γ and γi are the ratios of odd natural numbers,
m

i=1 γi = γ , gi ∈ C[t0, ∞), gi(t) ≤ t, limt→∞ gi(t)
= ∞.

Eq. (5.1) may be also viewed as a special case of higher-order damped differential equations with a p-Laplacian. Nowwe
establish the following results for (5.1) using the similar method given in Section 3.

Theorem 5.1. Assume (H2), (H3), and let n ≥ 2 be even. Suppose further that
∞

t0


1

a(s)
exp


−

 s

t0

r(τ )

a(τ )
dτ
 1

γ

ds = ∞. (5.2)

If there exists a constant λ0 ∈ (0, 1) such that the first-order differential inequality

y(t)


y′(t) +

r(t)
a(t)

y(t) +


λ0

(n − 1)!

γ

q(t)
m
i=1

(gn−1
i (t))γi

aγi/γ (gi(t))

m
i=1

yγi/γ (gi(t))


≤ 0 (5.3)

has no positive solutions, then Eq. (5.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (5.1). Without loss of generality, x can be assumed to be eventually positive.
Similar as in the proof of Lemma 2.3, we have (3.2) for t ≥ t1, where t1 ≥ t0 is sufficiently large. It follows from Lemma 2.2
that

x(t) ≥
λ

(n − 1)!
tn−1

a1/γ (t)
a1/γ (t)x(n−1)(t) (5.4)

for every λ ∈ (0, 1) and for all sufficiently large t . Set y := a(x(n−1))γ . Using (5.4) in (5.1), we obtain inequality

y′(t) +
r(t)
a(t)

y(t) +


λ

(n − 1)!

γ

q(t)
m
i=1

(gn−1
i (t))γi

aγi/γ (gi(t))

m
i=1

yγi/γ (gi(t)) ≤ 0.
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That is, y is a positive solution of inequality (5.3), which is a contradiction. The proof is complete. �

On the basis of Theorem 5.1 and [20, Corollary 1], we obtain the following result.

Corollary 5.2. Assume (H2), (H3), (5.2), and let n ≥ 2 be even. If

m
k=1

lim inf
t→∞

γk

γ

 t

gk(t)
q(s)

m
i=1

(gn−1
i (s))γi

aγi/γ (gi(s))
exp


m
j=1

γj

γ

 s

gj(s)

r(v)

a(v)
dv


ds >

((n − 1)!)γ

e
, (5.5)

then Eq. (5.1) is oscillatory.

Similarly, we have the following result.

Theorem 5.3. Assume (H2), (H3), (5.2), and let n ≥ 3 be odd. Suppose further that either

(i) (5.5) holds or
(ii) there exists a constant λ0 ∈ (0, 1) such that the first-order differential inequality (5.3) has no positive solutions.

Then every solution of Eq. (5.1) is oscillatory or tends to zero as t → ∞.

Remark 5.4. One can easily obtain that Eqs. (5.1) and
a(t) exp

 t

t0

r(τ )

a(τ )
dτ


(x(n−1)(t))γ
′

+ q(t) exp
 t

t0

r(τ )

a(τ )
dτ
 m

i=1

xγi(gi(t)) = 0 (5.6)

are equivalent. Assuming x is an eventually positive solution of (5.6) and using Lemma 2.2 and [20, Corollary 1] in Eq. (5.6),
we also get Corollary 5.2. The details are left to the reader.

Remark 5.5. The results obtained in this section include those reported in Section 3 under the assumptions thatm = 1 and
p − 1 = γ .

6. Summary

Most oscillation results in the literature for the damped differential equation (1.1) and its particular cases have been
obtained with the help of the original results due to Philos [15]. In this paper, using the integral averaging technique and a
comparison method, we establish new criteria for oscillation and asymptotic behavior of Eqs. (1.1) and (5.1). We point out
that, contrary to [3,8,10,14,21,23,25–27], we do not need in our results restrictive condition thatM is an arbitrary constant
and other similar assumptions which, in certain sense, is a significant improvement compared to the results in the cited
papers.
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