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1. Introduction and preliminaries

Let us consider the space of real valued continuous mappings on an interval I and denote it by C(I). In this paper we
study the Volterra convolution operator defined on C([0, c0)) x C([0, c0)) by

t
(f*g)(t)sz(r)g(t—r)df.
0

An interesting property of the convolution operator considered above is that it maximizes the differentiability of the
operands f and g. Being more specific, it is easily seen that if any of the functions f or g are differentiable and have
a bounded derivative, then f x g is also differentiable. However, the differentiability of f or g is by no means a necessary
condition for the differentiability of the convolution f * g. In this paper we provide examples of continuous nowhere dif-
ferentiable functions whose convolutions are differentiable. We also study a problem which is at the other end of the scale.
Already in 1951, Jarnik [17] provided two functions in C([0, 1]) whose convolution was nowhere differentiable. We also
prove that the set of functions in C([0, c0)) whose convolutions are nowhere differentiable is maximal lineable (see, [8]),
i.e., it contains (except for the zero function) an infinite dimensional subspace of the largest possible dimension. This would
shed some light on a question posed in 1973 on the structure of the set of continuous functions whose Volterra convolution
is nowhere differentiable (see the final remark of [18]).

The word lineability was coined by Gurariy and used for the first time in [3]. The exact definition of that concept is
the following: Given a property, we say that the subset M of functions on K (C or R) satisfying it is «-lineable if M U {0}
contains a vector space of dimension « (finite or infinite). If M contains an infinite-dimensional vector space, it will be
called lineable for short. One of the first results related to the notion of lineability is tightly related to the questions studied
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in this paper. Gurariy [15,16] proved that the subset of C([0, 1]) consisting of nowhere differentiable functions is lineable.
His proof, however, was not constructive. Jiménez-Rodriguez, Mufioz-Fernindez and Seoane-Sepilveda show in [19] that
there is a c-dimensional linear space of continuous nowhere differentiable functions generated by instances of the so called
Weierstrass’ function (also called the Monster of Weierstrass). Observe that here ¢ is the cardinality of R.

As the reader may already know, Weierstrass’ function shocked the mathematical community of the 19th century by rep-
resenting a continuous nowhere differentiable function. Actually it was the first example of such a function to be published
(which happened in 1872), although not the only one nor the first to be discovered. An excellent account on nowhere dif-
ferentiable functions and their historical evolution can be found in [21]. Another example of nowhere differentiable function
was given by Knopp [20] in 1918 (this example plays an important role in Section 3).

The study of the algebraic properties of sets of functions satisfying strange or striking properties has become a fruitful
field in the last decade. Words such as lineability (already defined above), algebrability or spaceability appear nowadays in the
titles and abstracts of numerous publications concerning many different problems in several different areas of Mathematics
and have attracted the interest of many mathematicians, among whom we have R. Aron, L. Bernal-Gonzalez, G. Botelho,
P. Enflo, G. Godefroy, V. Fonf, V. Gurariy, V. Kadets, D. Pellegrino, or ].B. Seoane-Sepilveda (see, e.g., [1,2,4,6-8,10-14]). The
present work is yet another contribution to the field of lineability. The reader can find a very recent and excellent expository
paper on lineability, spaceability, and algebrability in [9].

2. Lineability of continuous functions whose convolutions are nowhere differentiable

As mentioned in the introduction, the construction of a vector space of maximal dimension of continuous functions
whose convolutions are nowhere differentiable is based on the example given by Weierstrass in the 19th century of a
continuous nowhere differentiable function, also known as the Monster of Weierstrass:

Definition 2.1. We shall define, for % <a < 1, the Monster of Weierstrass associated to the parameter a as follows:

Wa(t) =) d*cos(9mt) =) yau(t)
k=0

k=0

(in what follows we shall assume those functions are only defined over [0, c0)).

It turns out that the convolution of Monsters of Weierstrass is nowhere differentiable:
Proposition 2.2. For % < ap,az < 1, we have that Wy, * W, is nowhere differentiable.
Proof. First, we can see that

[Yar(s)| <@ and  |yqax(s) — yar(®] < (9a).
Let now tp > 0 and, for every n € N, find an even number p, such that

2
_ P it
9n

pnt3
gt -

I'n = on

and define also s, :=
Then, for k >n

n

Yay k * Yay k(Tn) :/a’1< cos(9%7 7)ak cos(9* 7 (rn — 7)) dt
0
n

= (a1a2)"/cos(9knr)[cos(9k7rrn)cos(9k7rt) + sin(9"71rn) sin(9k7rr)]dr

0
'n
k i k T=ry
9
= (alaz)k/cosz(Q"nr) dt = (@1a2) sin(9*m 1)
2 gkyr o
0
k k
2
_ (@) s (a1az) EAY
2 2 gn

Similarly, we get
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k k
—(aq1a —(aia
(ar1az) < (12)t

Yay k * Yay k(Sn) = 2 Sp < 5

0,
from which

Ya; k * J’az,k(sn) — Yay,n * Yay,n(n) <_ (0102)k (9nt0 _ 1),

Sp — I'n = 3
and hence
Z Yay k * }/az,k(sn) — Yar.n * Yay,n(n) < _9nt0 -1 ) (ar1a)"
Sn — I'n = 3 1—aar
k>n

Then, there exists n,(a;, az) < —1 such that

Sn) — T, 9t —1 (ajax)"
Z Yar .k * Yay k(Sn) — Yay,n * Yay,n(n) = (a1, @) 0 ) (a1az) . 1)
Sn—Tn 3 1—aiap

k>n
Let now k % m > 0. Then,

Yay k * Yay.m(sn) = dka m/cos 7snT)[cos(9M sy ) cos(9Mmw T) + sin(9M 7w s, ) sin(9Mw T) | dT

k

aa

COS

<sm[(9k +9M77]  sin[(9% — 9] )5"
sn) (9K +9m)7r Ok—9mmz  J,

(9"s )<cos[(9’< 9m)m]_cos[(9’<—9m)m]>s"]
0

—sin
9k +9m)1r 9k — 91

k
(11(1

(cos(9™M7sn) sm[(9" +9™)sn] — sin(9" 7 sy) cos[(9k +9™)7sa])

2w k 4+ gm

+ W (cos(9Msn) sm[(9k — 9™ sp] 4 sin(9Mrsy,) cos[(9k —9M)7sn])
2-9Msin(9Mrsy)
- 92k _ g2m

: k
gk _gm Sm(g JTSn) - 92k _ g2m

k m i m

ala2 1 .k 2-9"sin(9" mrsp)

= sin(9"°7ms —_— .
21 (9’<+9m (9%sn) +

Hence, we can put, for m #k,

Yay.k * Yay,m(Sn) — Yay .k * Yay,m(n)
k k

ajay 2.9¢
2w | 92k —g2m

2.9M
92k —92m

= (sin(9"rrsn) — sin(9k7rrn)) + (sin(9™mry) — sin(9’"nsn))]

In a similar way (for 0 <k<n—1),

Sn
Yay k * Yay k(Sn) = (a1a2)k/cos(anr)[cos(ansn) cos(gknr) +sin(9knsn) sin(9k7rr)]dr
0
k : k Sn k Sn
aa sin(2-9*rt cos(2-9rmt
- (@107) [cos(9knsn)<r+ 1(—k)> —sin(9knsn)(¥> }
2 2. 9% 0 2.9 0
(ara)¥ sin(2 - 9%mrs,) . cos(2 - msy) — 1
= % cos(9"rrsn) sn+ Wnn — Sln(gk”S")Tk;
(ara2)¥ ( sin(9%7sy)
=— = =+ spcos(9Fsn) ),

and hence we can write (reaching the analogous expression for yg, i * Ya, k(n)):

(ara2)¥ |:sin(9knsn) — sin(9¥7rry)

Yayk * Yay k(Sn) — Yaq k * Yap k() = 2 977

Putting everything together, we can conclude the following inequalities:

+ sn cos(9"nsn) — Ty cos(9k7rrn)].
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(1) Ifo<m#k,

Yay.k * Yay,m(Sn) — Yay .k * Yay,m(n)
Sn —Tn

92k+92m
k m k -m
\a]az m <2'(11(12. (22)

@) Ifo<k<n-—1,

Yay k * .Vaz,k(sn) — Yay k * ygz,k(rn)
Sn —Tn

k 3
< (01(212) [2 + 9k (to + 9—n>}. (2.3)

With those inequalities, we may see that

-1
i Z Yay .k * Yar,m(Sn) — Ya; k * Yay,m(Tn) S Yay .k * Yar,m(Sn) — Ya; .k * Yay,m(n)
S

+
k=0 mak n=Tn k=0 Sn—Tn
=) n—1 k
I (a1az2) X 3
<Y 2 da + Y > [2+9n<t0+9—n
k=0 msk k=0
2 aa)" T (9a1ax)" — 1 3
< (a1az) 7 (9a1a2) b+
(1 —a1)(1 —(12) 1 —aidap 2 9(11(12 -1 qn
2 (ma)®  9to—1 (@a2)"
< . .
(1 —a1)(l —(12) 1 —aqdp 4 1 —aqdp

After all these calculations, we can guarantee, for n large enough,

-1
i Z Yai .k * Yar,m(Sn) — Yay .k * Yap,m(Tn) 4 TIX: Yai .k * Yar,m(Sn) — Ya; .k * Yap,m(n) < 9"t — 1 ) (ajap)"
k=0

Sy — I'n Sp—T'n S 4 1—aay’

k=0 m#k

and then, for n large enough, we can find the existence of a constant €,(a, az) € [—1, 1] such that

= ¢&n(ay, az)

-1
nZ i Ya; k * Yay,m(Sn) — Ya; k * Yap,m(n) 9"t — 1 ] (a1a)" (2.4)
Sp—Tn 4 1—aay’ )

k=0 m=0
In conclusion, using the identities in (2.1) and (2.4), we can say, for n large enough, that

Wa, * W, (sn) — Wq, * W, () 9to—1 (ma)" 9to—1 (ma)"
=nn(ay, az) . + én(ay, az) . ,
Sn—Tn 3 1—aiay 4 1—aiay

for some constants 1,(ay,a2) < —1, gp(a,ay) € [—1, 1]. Using this last expression, it is easy to see that

Wa, * Wg, (sn) — Wqy * We, (1)
—

Shp—TIn n—oo

—0oQ. O

Remark 2.3. If, instead of the choice of sequences {r;};2,, {sn},2; we had used the following definition of sequences {v,}5° ;
and {wp}32,:

_Qn<t qn +2 Qa3
=gn Sh<—g— =g

for a properly choice of odd numbers g, € Z, we would have had that

Wa, * W, (Wn) — Wq, * W, (vp)
—

Wn — Vp n—o0o

Vi

Q.

Theorem 2.4. The set of all continuous functions that, convoluting with themselves, give a nowhere differentiable function, is c-lineable.
Proof. Consider the set

7
{Wa(x): ) <a< 1}.

Assume % <ay<ay<---<ag<1and aq,...,0r € R\ {0} and consider the function
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k
g =) aiWq ().
i=1

Following the steps of Proposition 2.2 and with the same definitions of sequences {sp}>2 ;, {ra};2, we find that, for n large
enough,

gxg(sn) — g *g(rn) ZO‘ {(nn(al,a,)jLsn(ai,aj)).(a,-a;)"(9"to—1)}
i

Shn —Tn et 4 1—aa;

M@, aj) = en(ai,a)) [aiaj\" 9to—1
9(1 (041 — _— (.
k Z 1 J{( + 4 a% 91(1 — aqay)

i,j=1

Now, if (i, j) # (k, k), we get that

v (Mn@i-a) | en@iap faiap)' o—1 | o
= 3 4 @ ) (1 —aay) fnooo”

and if (i, j) = (k, k), we get

o2 Nn(ay, ai) n en(ag, ap) 9"to—1 M x<0
k 3 4 9(1 —aqay) | >0 '

Hence, we conclude

g*g(sn) — g g(ry) N

Sh—TInp n—oo

—00Q. O

Remark 2.5. If, instead of the choice of sequences {r;};2,, {sn},=; we had used the definition of sequences {v,}>°, and
{wn}p2, as in Remark 2.3, we would have had that

gxg(wp) — g*g(vp)
—> O

Wl‘l — Vn n—-oo
3. Final remarks

After the previous results and constructions, one might think that whenever we have any two continuous nowhere
differentiable functions then their convolution is also nowhere differentiable. Of course, as it is well known, the convolution
of two continuous functions f and g is differentiable if any of the functions f and g are differentiable and have a bounded
derivative. The convolution operator acts then as a smoothing transformation. This property may still hold even when f and
g are highly nondifferentiable. Here we give an example of a function which is continuous nowhere differentiable function
and whose convolution with itself is everywhere differentiable. Our construction is based on Knopp’s example mentioned
in the Introduction and the following consequence of the so called Weierstrass M-Test.

Proposition 3.1. Let (fy);2, be a sequence of differentiable functions on an interval I = [a, b] and let (an);2, be a sequence of
numbers such that Y pe o |an| < co. Assume that || f}llc < K < 0o for all n > 0 and that > o2, an fn(x) converges for at least one
x € . Then, Y 12y an f converges uniformly on I to a differentiable function f such that f’ =312 an f;.

Proof. We just need to apply Weierstrass M-test to show that Y -2 ,a,f; converges uniformly on I. Since Y o2 an fn(x)
converges for some x € I, according to a basic result on functions of one real variable, > oo an fo converges uniformly to a
differentiable function and (}_;2ganfn) =Y peoanfs. O

Next we reproduce the definition of Knopp’s function. Let 0 <a <1, b > 1 with 1/a >ab > 1 and @(z) := dist(z, Z).
Observe that dist(z, Z) is the distance from z to Z, i.e.,

dist(z, Z) = inf{|z —m|: m e Z}.

If fi(x) = @ (b*x) is defined over a bounded interval, say [0, M], then Knopp’s example is defined as f(x) = Yo a* fr(x)
for x € [0, M].

Although f is a continuous nowhere differentiable function (see [20] for the original work by Knopp or [5] for a more
modern exposition), it can be proved that f * f is differentiable. Indeed, we have that
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Graph of Knopp’s function f on [0,1/2] Graph of f x f on [0,1/2]

Fig. 1. We have considered f with the parameters a = 0.2 and b = 21. We have truncated the series appearing in the definition of f up to 10 terms in
order to sketch the graph of f and f x f.

frfe= /f@ﬁ@—rmr—/‘E:fhw) }:whm—r)dr
0 k=
k

a“o bkt k_j<D(b"_j(x— 7))dt

\x

M

k

Il
o

j=079

2 k k X
(a b+1) ( 2b2 ]) Zazk—f/qﬁ(bkr)fp(bk_j(x—r))dr
a=b + izo .

2
b+1)gum,

rqu

k

Il
o

rqu

k

Il
=}

with

gl<(X)=<a2b+1) ZGZk ’/ o (b*r) e (b (x — 1)) d.

0

Each of the functions g is differentiable, with

g,;(x):( 2b+1) ZGZk 1/ bk )bk ig’ (bk ](X_T))
0

and hence,

0] < 2a2b "’i 1 f1vz< Mab
SIS \ab 1) Z\a) 2 20— aby

In conclusion, |g; (x)| < 2(’1‘/’—_"';[’), for all x in [0, M] and for all k. Applying Proposition 3.1 it follows that f is differentiable.
The reader may find of interest Fig. 1, where we have a sketch of the graph of f % f in a small interval.
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