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One purpose of the paper is to show Weyl type spectral asymptotic formulas 
for pseudodifferential operators Pa of order 2a, with type and factorization index 
a ∈ R+ when restricted to a compact set with smooth boundary. The Pa include 
fractional powers of the Laplace operator and of variable-coefficient strongly elliptic 
differential operators. Also the regularity of eigenfunctions is described. The other 
purpose is to improve the knowledge of realizations Aχ,Σ+ in L2(Ω) of mixed 
problems for second-order strongly elliptic symmetric differential operators A on 
a bounded smooth set Ω ⊂ Rn. Here the boundary ∂Ω = Σ is partitioned
smoothly into Σ = Σ− ∪ Σ+, the Dirichlet condition γ0u = 0 is imposed on Σ−, 
and a Neumann or Robin condition χu = 0 is imposed on Σ+. It is shown that 
the Dirichlet-to-Neumann operator Pγ,χ is principally of type 1

2 with factorization 
index 1

2 , relative to Σ+. The above theory allows a detailed description of D(Aχ,Σ+ )
with singular elements outside of H 3

2 (Ω), and leads to a spectral asymptotic formula 
for the Krein resolvent difference A−1

χ,Σ+
−A−1

γ .
© 2014 Elsevier Inc. All rights reserved.

0. Introduction

This paper has two parts. After a section with preliminaries, we establish in the first part (Section 2) 
spectral asymptotic formulas of Weyl type for general Dirichlet realizations of pseudodifferential operators 
(ψdo’s) of type a > 0, as defined in Grubb [16,18], and discuss the regularity of eigenfunctions.

In the second part (Section 3) we consider mixed boundary value problems for second-order symmetric 
strongly elliptic differential operators, characterize the domain, and find the spectral asymptotics of the 
Krein term (the difference of the resolvent from the Dirichlet resolvent) in general variable-coefficient situa-
tions, extending the result of [13] for the principally Laplacian case. This includes showing that the relevant 
Dirichlet-to-Neumann operator fits into the calculus of the first part.

In Section 2: A typical example of the ψdo’s Pa of type a > 0 and order 2a that we treat is the 
a-th power of the Laplacian (−Δ)a on Rn, which is currently of great interest in probability and finance, 
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mathematical physics and geometry. Also powers of variable coefficient-operators and much more general 
ψdo’s are included. For the Dirichlet realization Pa,Dir on a bounded open set Ω ⊂ R

n, spectral studies have 
mainly been aimed at the fractional Laplacian (−Δ)a. In the case of (−Δ)a, a Weyl asymptotic formula was 
shown already by Blumenthal and Getoor in [3]; recently a refined asymptotic formula was shown by Frank 
and Geisinger [7], and Geisinger gave an extension to certain other constant-coefficient operators [8]. The 
exact domain D(Pa,Dir) has not been well described for a ≥ 1

2 , except in integer cases where the operator 
belongs to the calculus of Boutet de Monvel [5]. Based on a recently published systematic theory [16] of 
ψdo’s of type μ ∈ C (where those in the Boutet de Monvel calculus are of type 0), it is now possible to 
describe domains and parametrices of operators D(Pa,Dir) in an exact way, when Ω is smooth. We analyze
the sequence of eigenvalues λj (singular values sj when the operator is not selfadjoint), showing that a Weyl 
asymptotic formula holds in general:

sj(Pa,Dir) ∼ C(Pa, Ω)j2a/n for j → ∞; (0.1)

moreover we show that the possible eigenfunctions are in daC2a(Ω) (in daC2a−ε(Ω) if 2a ∈ N), where 
d(x) ∼ dist(x, ∂Ω). The results are generalized to operators P of order m = a +b with type and factorization 
index a (a, b ∈ R+).

In Section 3: The detailed knowledge of ψdo’s of type a has an application to the classical “mixed” 
boundary value problems for a second-order strongly elliptic symmetric differential operator A on a smooth 
bounded set Ω ⊂ R

n. Here the boundary condition jumps from a Dirichlet to a Neumann (or Robin) 
condition at the interface of a smooth partition Σ = Σ− ∪ Σ+ of the boundary Σ = ∂Ω; it is also 
called the Zaremba problem when A is the Laplacian. The L2-realization Aχ,Σ+ it defines is less regular 
than standard realizations such as the Dirichlet realization Aγ , but the domain has just been somewhat 
abstractly described; it is contained in H

3
2−ε(Ω) only (observed by Shamir [23]), whereas D(Aγ) ⊂ H2(Ω). 

The resolvent difference M = A−1
χ,Σ+

−A−1
γ was shown by Birman [1] to have eigenvalues satisfying μj(M) =

O(j−2/(n−1)). The present author studied Aχ,Σ+ from the point of view of extension theory for elliptic 
operators in [13] (to which we refer for more references to the literature); here we obtained the asymptotic 
estimate

μj(M) ∼ c(M)j−2/(n−1) for j → ∞, (0.2)

in the case where A is principally Laplacian. This was drawing on the theories of Vishik and Eskin [6] and 
Birman and Solomyak [2], and other traditional pseudodifferential methods.

We now show that the Dirichlet-to-Neumann operator Pγ,χ of order 1 on Σ associated with A is principally 
of type 1

2 with factorization index 1
2 relative to Σ+. In the formulas connected with the mixed problem, 

Pγ,χ enters as truncated to Σ+. Therefore we can now use the detailed information on type 1
2 ψdo’s to 

describe the domain of Aχ,Σ+ more precisely, showing how functions /∈ H
3
2 (Ω) occur. Moreover, using 

Section 2 we can extend the spectral asymptotic formula (0.2) to the general case where A has variable 
coefficients.

1. Preliminaries

The notations of [16,18] will be used; we shall just give a brief summary here.
We consider a Riemannian n-dimensional C∞ manifold Ω1 (it can be Rn) and an embedded smooth 

n-dimensional manifold Ω with boundary ∂Ω and interior Ω. For Ω1 = R
n, Ω can be Rn

± = {x ∈ R
n |

xn ≷ 0}; here (x1, . . . , xn−1) = x′. In the general manifold case, Ω is taken compact. For ξ ∈ R
n, we denote 

(1 + |ξ|2) 1
2 = 〈ξ〉. Restriction from Rn to Rn

+ resp. Rn
− (or from Ω1 to Ω resp. �Ω) is denoted by r+ resp. r−, 

extension by zero from Rn
± to Rn (or from Ω resp. �Ω to Ω1) is denoted by e±. In Section 3, the notation 

is used for a smooth subset Σ+ of an (n − 1)-dimensional manifold Σ.
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A pseudodifferential operator (ψdo) P on Rn is defined from a symbol p(x, ξ) on Rn × R
n by

Pu = p(x,D)u = OP
(
p(x, ξ)

)
u = (2π)−n

∫
eix·ξp(x, ξ)û dξ = F−1

ξ→x

(
p(x, ξ)û(ξ)

)
; (1.1)

here F is the Fourier transform (Fu)(ξ) = û(ξ) =
∫
Rn e−ix·ξu(x) dx. The symbol p is assumed to be such 

that ∂β
x∂

α
ξ p(x, ξ) is O(〈ξ〉r−|α|) for all α, β, for some r ∈ R (defining the symbol class Sr

1,0(Rn ×R
n)); then 

it has order r. The definition of P is carried over to manifolds by use of local coordinates; there are many 
textbooks (e.g. [12]) describing this and other rules for operations with P , e.g. composition rules. When P
is a ψdo on Rn or Ω1, P+ = r+Pe+ denotes its truncation to Rn

+ resp. Ω.
Let 1 < p < ∞ (with 1/p′ = 1 − 1/p), then we define for s ∈ R the Bessel-potential spaces

Hs
p

(
R

n
)

=
{
u ∈ S ′(

R
n
) ∣∣ F−1(〈ξ〉sû) ∈ Lp

(
R

n
)}

,

Ḣs
p

(
R

n
+
)

=
{
u ∈ Hs

p

(
R

n
) ∣∣ suppu ⊂ R

n
+
}
,

Hs
p

(
R

n
+
)

=
{
u ∈ D′(

R
n
+
) ∣∣ u = r+U for some U ∈ Hs

p

(
R

n
)}

; (1.2)

here suppu denotes the support of u. For Ω compact ⊂ Ω1, the definition extends to define Ḣs
p(Ω) and 

Hs
p(Ω) by use of a finite system of local coordinates. When p = 2, we get the standard L2-Sobolev spaces, 

here the lower index 2 is usually omitted. (These and other spaces are thoroughly described in Triebel’s 
book [24]. He writes H̃ instead of Ḣ; the present notation stems from Hörmander’s works.) We also need 
the Hölder spaces Ct for t ∈ R+ \N; when t ∈ N0, Ct stands for functions with continuous derivatives up to 
order t. Ċt(Ω) denotes the Ct-functions on Ω1 supported in Ω. Occasionally, we shall also formulate results 
in the Hölder–Zygmund spaces Ct

∗ for t ≥ 0, that allow some statements to be valid for all t; they equal Ct

when t /∈ N0 and contain Ct in the integer cases (more details in [18]). The conventions 
⋃

ε>0 H
s+ε
p = Hs+0

p , ⋂
ε>0 H

s−ε
p = Hs−0

p , defined in a similar way for the other scales of spaces, will sometimes be used.
A ψdo P is called classical (or polyhomogeneous) when the symbol p has an asymptotic expansion 

p(x, ξ) ∼
∑

j∈N0
pj(x, ξ) with pj homogeneous in ξ of degree m − j for all j. Then P has order m. One 

can even allow m to be complex; then p ∈ SRe m
1,0 (Rn × R

n); the operator and symbol are still said to be of 
order m.

Here there is an additional definition: P satisfies the μ-transmission condition (in short: is of type μ) for 
some μ ∈ C when, in local coordinates,

∂β
x∂

α
ξ pj(x,−N) = eπi(m−2μ−j−|α|)∂β

x∂
α
ξ pj(x,N), (1.3)

for all x ∈ ∂Ω, all j, α, β, where N denotes the interior normal to ∂Ω at x. The implications of the 
μ-transmission property were a main subject of [16,18]; the mapping properties for such operators in 
C∞-based spaces were shown in Hörmander [19, Sect. 18.2].

A special role in the theory is played by the order-reducing operators. There is a simple definition of 
operators Ξμ

± on Rn

Ξμ
± = OP

((〈
ξ′
〉
± iξn

)μ);
they preserve support in Rn

±, respectively. Here the functions (〈ξ′〉 ± iξn)μ do not satisfy all the estimates 
required for the class SRe μ(Rn × R

n), but the operators are useful for some purposes. There is a more 
refined choice Λμ

± that does satisfy all the estimates, and there is a definition Λ(μ)
± in the manifold situation. 

These operators define homeomorphisms for all s ∈ R such as

Λ
(μ)
+ : Ḣs

p(Ω) ∼−−→ Ḣs−Re μ
p (Ω),

Λ
(μ)
−,+:Hs

p(Ω) ∼−−→ Hs−Re μ
p (Ω); (1.4)
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here Λ(μ)
−,+ is short for r+Λ

(μ)
− e+, suitably extended to large negative s (cf. Remark 1.1 and Theorem 1.3 

in [16]).
The following special spaces introduced by Hörmander are particularly adapted to μ-transmission oper-

ators P :

Hμ(s)
p

(
R

n
+
)

= Ξ−μ
+ e+Hs−Re μ

p

(
R

n
+
)
, s > Reμ− 1/p′,

Hμ(s)
p (Ω) = Λ

(−μ)
+ e+Hs−Re μ

p (Ω), s > Reμ− 1/p′,

Eμ(Ω) = e+{u(x) = d(x)μv(x)
∣∣ v ∈ C∞(Ω)

}
; (1.5)

namely, r+P (of order m) maps them into Hs−Re m
p (Rn

+), Hs−Re m
p (Ω) resp. C∞(Ω) (cf. [16, Sections 1.3, 

2, 4]), and they appear as domains of elliptic realizations of P . In the third line, Reμ > −1 (for other μ, 
cf. [16]) and d(x) is a C∞-function positive on Ω and vanishing to order 1 at ∂Ω, e.g. d(x) = dist(x, ∂Ω)
near ∂Ω. One has that Hμ(s)

p (Ω) ⊃ Ḣs
p(Ω), and that the distributions are locally in Hs

p on Ω, but at the 
boundary they in general have a singular behavior. More details are given in [16,18].

2. Spectral results for Dirichlet realizations of type a operators

2.1. Dirichlet realizations of type a operators

Consider a Riemannian n-dimensional C∞-manifold Ω1 (n ≥ 2) and an embedded compact n-dimensional 
C∞-manifold Ω with boundary ∂Ω and interior Ω. We consider an elliptic pseudodifferential operator on Ω1
with the following properties explained in detail in [16]:

Assumption 2.1. Let a ∈ R+. Pa is a classical elliptic ψdo on Ω1 of order 2a, which relative to Ω satisfies 
the a-transmission condition and has the factorization index a.

For example, Pa can be the a-th power of a strongly elliptic second-order differential operator on Ω1, 
in particular (−Δ)a, or it can be the a/m-th power of a properly elliptic differential operator of even 
order 2m, but also other operators are allowed. (We call such operators “fractional elliptic”, because they 
share important properties with the fractional Laplacian.)

As in [16], we define the Dirichlet realization Pa,Dir in L2(Ω) as the operator acting like r+Pa with 
domain

D(Pa,Dir) =
{
u ∈ Ḣa(Ω)

∣∣ r+Pau ∈ L2(Ω)
}
. (2.1)

Then according to [16, Sections 4–5],

D(Pa,Dir) = Ha(2a)(Ω) = Λ
(−a)
+ e+Ha(Ω). (2.2)

We recall from [16]:

Lemma 2.2. For 1 < p < ∞, s > a − 1/p′, the spaces Ha(s)
p (Ω) satisfy

Ha(s)
p (Ω) = Λ

(−a)
+ e+Hs−a

p (Ω)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
= Ḣs

p(Ω), if s− a ∈ ]−1/p′, 1/p[,
⊂ Ḣs−0

p (Ω), if s = a + 1/p,
⊂ dae+Hs−a

p (Ω) + Ḣs
p(Ω), if s− a− 1/p ∈ R+ \ N,

⊂ dae+Hs−a(Ω) + Ḣs−0(Ω), if s− a− 1/p ∈ N.

(2.3)
p p
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Moreover,

Ha(s)
p (Ω) ⊂ Ḣa

p (Ω), when s− a ≥ 0. (2.4)

Proof. The equalities in (2.3) come from the definition of Ha(s)
p (Ω), and the inclusions are special cases 

of [16, Th. 5.4]. For the last statement, we note that when s − a ≥ 0, e+Hs−a
p (Ω) ⊂ e+Lp(Ω), which is 

mapped into Ḣa
p (Ω) by Λ(−a)

+ . �
In the case where Pa is strongly elliptic, i.e., the principal symbol pa,0(x, ξ) satisfies

Re pa,0(x, ξ) ≥ c|ξ|2a,

with c > 0, we can describe D(Pa,Dir) in a different way:
Modifying Ω1 at a distance from Ω if necessary, we can assume Ω1 to be compact without boundary. 

Then it is well-known that Pa satisfies a Gårding inequality for u ∈ C∞(Ω1):

Re(Pau, u)L2(Ω1) ≥ c0‖u‖2
Ha(Ω1) − k‖u‖2

L2(Ω1), (2.5)

with c0 > 0, k ∈ R (cf. e.g. [12, Ch. 7]), besides the inequality∣∣(Pau, v)L2(Ω1)
∣∣ ≤ C‖u‖Ha(Ω1)‖v‖Ha(Ω1).

(In the case of (−Δ)a on Rn, Ω ⊂ R
n, there is a slightly different formulation: For general Pa one would here 

require x-estimates of the symbol to be uniform on the noncompact set Rn; see e.g. [15] for the appropriate 
version of the Gårding inequality. One can also include this case by replacing Rn \Ω by a suitable compact 
manifold.)

Define the sesquilinear form s0 on C∞
0 (Ω) by

s0(u, v) =
(
r+Pau, v

)
L2(Ω) = (Pau, v)L2(Ω1), for u, v ∈ C∞

0 (Ω);

it extends by closure to a bounded sesquilinear form s(u, v) on Ḣa(Ω), to which the inequality (2.5) extends. 
The Lax–Milgram construction applied to s(u, v) (cf. e.g. [12, Ch. 12]) leads to an operator S which acts 
like r+Pa: Ḣa(Ω) → H−a(Ω), with domain consisting of the functions that are mapped into L2(Ω); this is 
exactly Pa,Dir as in (2.1), (2.2). Here both S and S∗ are lower bounded, with lower bound > −k (they are 
in fact sectorial), hence have {λ ∈ C | Reλ ≤ −k} in their resolvent sets.

When Pa moreover is symmetric, Pa,Dir is the Friedrichs extension of (r+Pa)|C∞
0 (Ω).

In the case of Pa = (−Δ)a, some authors for precision call this Pa,Dir the “restricted fractional Laplacian”, 
see e.g. Bonforte, Sire and Vazquez [4], in order to distinguish it from the “spectral fractional Laplacian” 
defined as the a-th power of the Dirichlet realization of −Δ.

2.2. Regularity of eigenfunctions

The possible eigenfunctions have a certain smoothness:

Theorem 2.3. Let Pa satisfy Assumption 2.1.
If 0 is an eigenvalue of Pa,Dir, its associated eigenfunctions are in Ea(Ω).
When a ∈ R+ \ N, then the eigenfunctions u of Pa,Dir associated with nonzero eigenvalues λ lie in 

daC2a(Ω) if 2a /∈ N, in daC2a−ε(Ω) (for any ε > 0) if 2a ∈ N; they are also in C∞(Ω).
When a ∈ N, the eigenfunctions u of Pa,Dir associated with an eigenvalue λ lie in {u ∈ C∞(Ω) | γ0u =

γ1u = · · · = γa−1u = 0} (equal to Ea(Ω) in this case).
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Proof. (In some of the formulas here, the extension by zero e+ is tacitly understood.) When λ is an 
eigenvalue, the associated eigenfunctions u are nontrivial solutions of

r+Pau = λu. (2.6)

If λ = 0, then u ∈ Ea(Ω), since the right-hand side in (2.6) is in C∞(Ω), and we can apply [16, Th. 4.4].
Now let λ �= 0. When a ∈ N, we are in a well-known standard elliptic case (as treated e.g. in [11, Sect. 1.7]); 

the eigenfunctions are in C∞(Ω) as well as in Ea(Ω), and Ea(Ω) is the described subset of C∞(Ω).
Next, consider the case a ∈ R+ \ N.
To begin with, we know that u ∈ Ḣa(Ω) (from (2.1)). We shall use the well-known general embedding 

properties for p, p1 ∈ ]1, ∞[:

Ḣa
p (Ω) ⊂ e+Lp1(Ω), when n

p1
≥ n

p
− a, Ḣa

p (Ω) ⊂ Ċ0(Ω) when a >
n

p
. (2.7)

If a > n
2 , we have already that Ḣa(Ω) ⊂ Ċ0(Ω), so (2.6) has right-hand side in C0(Ω), and we can go 

on with solution results in Hölder spaces; this will be done further below.
If a ≤ n

2 , we make a finite number of iterative steps to reach the information u ∈ C0(Ω), as follows: 
Define p0, p1, p2, . . . , with p0 = 2 and qj = n

pj
for all the relevant j, such that

qj = qj−1 − a for j ≥ 1.

This means that qj = q0−ja; we stop the sequence at j0 the first time we reach a qj0 ≤ 0. As a first step, we 
note that u ∈ Ḣa(Ω) ⊂ e+Lp1(Ω) implies u ∈ H

a(2a)
p1 (Ω) by [16, Th. 4.4], and then by (2.4), u ∈ Ḣa

p1
(Ω). In 

the next step we use the embedding Ḣa
p1

(Ω) ⊂ e+Lp2(Ω) to conclude in a similar way that u ∈ Ḣa
p2

(Ω), and 
so on. If qj0 < 0, we have that n

pj0
< a, so u ∈ Ḣa

pj0
(Ω) ⊂ Ċ0(Ω). If qj0 = 0, the corresponding pj0 would 

be +∞, and we see at least that u ∈ e+Lp(Ω) for any large p; then one step more gives that u ∈ Ċ0(Ω).
The rest of the argumentation relies on Hölder estimates, as in [16, Sect. 7], or still more efficiently by 

[18, Sect. 3]. By the regularity results there,

u ∈ C0(Ω) =⇒ u ∈ C
a(2a)
∗ (Ω) ⊂ e+daCa(Ω) + Ċ2a−0(Ω) ⊂ e+Ca(Ω).

Next, u ∈ Ca(Ω) implies

u ∈ C
a(3a)
∗ (Ω) ⊂ e+daC2a

∗ (Ω) + Ċ3a(−ε)(Ω) ⊂ e+daC2a(−ε)(Ω)

where (−ε) is active if 2a ∈ N. Moreover, by the ellipticity of Pa − λ on Ω1, u is C∞ on the interior Ω. �
The fact that an eigenfunction in Ḣa(Ω) is in L∞(Ω) was shown for Pa = (−Δ)a with 0 < a < 1 by 

Servadei and Valdinoci [22] by a completely different method.

Remark 2.4. For Pa = (−Δ)a it has been shown by Ros-Oton and Serra (see [21]) that an eigenfunction u
cannot have u/da vanishing identically on ∂Ω. This implies that the regularity of u cannot be improved all 
the way up to Ea(Ω), when λ �= 0, a ∈ R+ \ N. For if u were in Ea(Ω), it would also lie in C∞(Ω) (since 
r+Pau = λu would lie there). Now it is easily checked that C∞(Ω) ∩Ea(Ω) = Ċ∞(Ω) when a ∈ R+\N, where 
the functions vanish to order ∞ at the boundary. In particular, u/da would be zero on ∂Ω, contradicting 
u �= 0.

The theorem extends without difficulty to operators of order m = a + b considered in Hs
p-spaces:
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Theorem 2.5. Let P be of type a > 0 with factorization index a, and of order m = a + b, b > 0. Let 
1 < p < ∞, and define PDir as the operator from Ha(m)

p (Ω) to Lp(Ω) acting like r+P . If 0 is an eigenvalue, 
the associated eigenfunctions are in Ea(Ω). If λ �= 0 is an eigenvalue, the associated eigenfunctions are in 
daCm(Ω) (in daCm−ε(Ω) if m is integer).

Proof. The zero eigenfunctions are solutions with a C∞ right-hand side, hence lie in Ea(Ω) by [16, Th. 4.4].
Now let u be an eigenfunction associated with an eigenvalue λ �= 0. In view of (2.4), we have u ∈ Ḣa

p (Ω). 
Using (2.7), we find by application of the regularity result of [16, Th. 4.4], by a finite number of iterative 
steps as in the proof of Theorem 2.3, that u ∈ Ḣa

p1
, Ḣa

p2
, . . . with increasing pj ’s, until we reach u ∈ C0(Ω).

Now we can apply the Hölder results from [16,18]; this goes most efficiently by [18, Th. 3.2 2◦ and Th. 3.3]
for Hölder–Zygmund spaces:

r+Pu ∈ Ct
∗(Ω) =⇒ u ∈ C

a(m+t)
∗ (Ω) ⊂ dae+Cm+t−a

∗ (Ω) + Ċ
m+t(−ε)
∗ (Ω), (2.8)

t ≥ 0, where (−ε) is active if m + t − a ∈ N.
If b > a, there are two steps:

u ∈ C0(Ω) =⇒ u ∈ C
a(a+b)
∗ (Ω) ⊂ e+daCb

∗(Ω) + Ċ
a+b(−ε)
∗ (Ω) ⊂ e+Ca

∗(Ω).

Next, u ∈ Ca
∗(Ω) implies

u ∈ C
a(m+a)
∗ (Ω) ⊂ e+daCm

∗ (Ω) + Ċ
m+a(−ε)
∗ (Ω) ⊂ e+daCm(−ε)(Ω),

where (−ε) is active if m ∈ N.
If b ≤ a, we need a finite number of steps, such as

u ∈ C0(Ω) =⇒ u ∈ C
a(a+b)
∗ (Ω) ⊂ e+daCb

∗(Ω) + Ċ
a+b(−ε)
∗ (Ω) ⊂ e+Cb

∗(Ω),

where we use that a + b − ε > b for small ε. Next, u ∈ Cb
∗(Ω) implies

u ∈ C
a(m+b)
∗ (Ω) ⊂ e+daC2b

∗ (Ω) + Ċ
a+2b(−ε)
∗ (Ω) ⊂ e+C

min{2b,a}
∗ (Ω),

where we use that a + 2b − ε > min{2b, a} for small ε. If 2b ≥ a, we end the proof as above. If not, we 
estimate again, now arriving at the exponent min{3b, a}, etc., continuing until we reach kb ≥ a; then the 
proof is completed as above. �
2.3. Spectral asymptotics

We shall now study spectral asymptotic estimates for our operators. We first recall some notation and 
basic rules.

As in [10] we denote by Cp(H, H1) the p-th Schatten class consisting of the compact operators B from 
a Hilbert space H to another H1 such that (sj(B))j∈N ∈ �p(N). Here the s-numbers, or singular values, 
are defined as sj(B) = μj(B∗B) 1

2 , where μj(B∗B) denotes the j-th positive eigenvalue of B∗B, arranged 
nonincreasingly and repeated according to multiplicities. The so-called weak Schatten class consists of the 
compact operators B such that

sj(B) ≤ Cj−1/p for all j; we set Np(B) = sup
j∈N

sj(B)j1/p. (2.9)

The notation S(p)(H, H1) was used in [10] for this space; instead we here use the name Sp,∞(H, H1) (as 
in [17] and in other works). The indication (H, H1) is replaced by (H) if H = H1; it can be omitted when 
it is clear from the context. One has that Sp,∞ ⊂ Cp+ε for any ε > 0. They are linear spaces.
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We recall (cf. e.g. [10] for details and references) that Np(B) is a quasinorm on Sp,∞, with a good control 
over the behavior under summation. Recall also that

Sp,∞ ·Sq,∞ ⊂ Sr,∞, where r−1 = p−1 + q−1, (2.10)

and

sj
(
B∗) = sj(B), sj(EBF ) ≤ ‖E‖sj(B)‖F‖, (2.11)

when E: H1 → H3 and F : H2 → H are bounded linear maps between Hilbert spaces.
Moreover, we recall that when Ξ is a bounded open subset of Rm and reasonably regular, or is a compact 

smooth m-dimensional manifold with boundary, then the injection Ht(Ξ) ↪→ L2(Ξ) is in Sm/t,∞ when 
t > 0. It follows that when B is a linear operator in L2(Ξ) that is bounded from L2(Ξ) to Ht(Ξ), then 
B ∈ Sm/t,∞, with

Nm/t(B) ≤ C‖B‖L(L2(Ξ),Ht(Ξ)). (2.12)

Recall also the Weyl–Ky Fan perturbation result:

sj(B)j1/p → C0, sj
(
B′)j1/p → 0 =⇒ sj

(
B + B′)j1/p → C0, for j → ∞. (2.13)

We shall moreover use Laptev’s result [20]: When P is a classical ψdo of order t < 0 on a closed 
m-dimensional manifold Ξ1 with a smooth subset Ξ, m ≥ 2, then

1Ξ1\ΞP1Ξ ∈ S(m−1)/t,∞; (2.14)

in fact it has a Weyl-type asymptotic formula of that order.
Results on the spectral behavior of compositions of ψdo’s of negative order interspersed with functions 

with jumps were shown in [14], see in particular Theorem 4.3 there. We need to supply this result with a 
statement allowing a zero-order factor of the form of a sum of a pseudodifferential and a singular Green 
operator (in the Boutet de Monvel calculus); as functions with jumps we here just take 1Ω.

Theorem 2.6. Let MΩ be an operator on Ω composed of l ≥ 1 factors Pj,+ formed of classical pseudodiffer-
ential operators Pj on Ω1 of negative orders −tj and truncated to Ω, j = 1, . . . , l, and one factor Q+ + G

(placed somewhere between them), where Q is classical of order 0 and G is a singular Green operator on Ω
of order and class 0:

MΩ = P1,+ . . . Pl0,+(Q+ + G)Pl0+1,+ . . . Pl,+. (2.15)

Let t = t1 + · · · + tl, and let m(x, ξ) be the product of the principal ψdo symbols on Ω1:

m(x, ξ) = p1,0(x, ξ) . . . q0(x, ξ) . . . pl,0(x, ξ).

Then MΩ has the spectral behavior:

sj(MΩ)jt/n → c(MΩ)t/n for j → ∞, (2.16)

where

c(MΩ) = 1
n(2π)n

∫
Ω

∫
|ξ|=1

(
m(x, ξ)∗m(x, ξ)

)n/2t
dω(ξ)dx. (2.17)



1624 G. Grubb / J. Math. Anal. Appl. 421 (2015) 1616–1634
Proof. By Theorem 4.3 of [14] with interspersed functions of the form 1Ω, the statement holds if Q = 1
and G = 0, so the new thing is to include nontrivial cases of Q and G. We can assume that l0 ≥ 1. For the 
contribution from Q we write

Pl0,+Q+ = r+Pl0e
+r+Qe+ = r+Pl0Qe+ − r+Pl0e

−r−Qe+. (2.18)

Here Pl0Q is a ψdo of order −tl0 < 0 with principal symbol pl0,0q0, and when r+Pl0Qe+ is taken into the 
original expression, we get an operator of the type treated by Theorem 4.3 of [14],

P1,+ . . . (Pl0Q)+Pl0+1,+ . . . Pl,+, (2.19)

for which the statement (2.16), (2.17) holds. For the other term in (2.18), we use that r+Pl0e
− is the type 

of operator covered by the theorem of Laptev [20] (cf. (2.14)), belonging to S(n−1)/tl0 ,∞, and r−Qe+ is 
bounded in L2, so in view of the rules (2.10) and (2.11) for compositions, the full expression with this term 
inserted is in Sn/(t+θ),∞ for a certain θ > 0. The spectral asymptotic estimate obtained for the term (2.19)
is preserved when we add this term of a better weak Schatten class, in view of (2.13).

The contribution from G will likewise be shown to be in a better weak Schatten class that the main ψdo 
term; this requires a deeper effort. Actually, the strategy can be copied from some proofs in [17], as follows: 
Consider first the composition of G with just one operator:

M = P+G,

where P is of order −t < 0. In local coordinates, we can extend Theorem 4.1 in [17] to this operator, writing

ψP+Gψ1 =
∑
k∈N0

ψP+KkΦ
∗
kψ1 =

∑
k∈N0

ψP+ζKkΦ
∗
kψ1 +

∑
k∈N0

ψP+Kk(1 − ζ)Φ∗
kψ1,

with Poisson and trace operators Kk and Φ∗
k as explained in [17], and letting P+Kk play the role of Kk

in the proof there. Here (ψP+Kkζ)∗ is bounded from L2(BR,+) to Ht(B′
R′) for a large R′, hence lies in 

S(n−1)/t,∞ (by the property of the injection of Ht(B′
R′) into L2(B′

R′), B′
R′ = {x′ ∈ R

n−1 | |x′| < R′}). The 
proof that the full series P+G lies in S(n−1)/t,∞ goes as in [17] (using also that the terms with 1 − ζ have a 
smoothing component, and that the series is rapidly convergent). Moreover, Corollary 4.2 there shows how 
the result is extended to the manifold situation.

When there are several factors in M , we need only use that Pj,+ ∈ Sn/tj ,∞ for the other factors and 
apply the product rule (2.10), and we end with the information that the full product is in Sn/(t+θ),∞ for 
some θ > 0, so that the spectral asymptotics remains as that of (2.19), when this term is added on. �

The result extends easily to matrix-formed operators.
Now we can show a spectral asymptotic estimate for Pa,Dir.

Theorem 2.7. Let Pa satisfy Assumption 2.1. Assume that Pa,Dir is invertible, or more generally that Pa,Dir+c

is invertible from D(Pa,Dir) to L2(Ω) for some c ∈ C (this holds if Pa is strongly elliptic).
The singular values sj(Pa,Dir) (eigenvalues of (P ∗

a,DirPa,Dir)
1
2 ) have the asymptotic behavior:

sj(Pa,Dir) = C(Pa,Dir)j2a/n + o
(
j2a/n), for j → ∞, (2.20)

where C(Pa,Dir) = C ′(Pa,Dir)−2a/n, defined from the principal symbol pa,0(x, ξ) by

C ′(Pa,Dir) = 1
n(2π)n

∫
Ω

∫
|ξ|=1

∣∣pa,0(x, ξ)∣∣−n/2a
dω(ξ)dx. (2.21)
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Proof. By Theorem 4.4 of [16], Pa,Dir, acting like r+Pa, has a parametrix of order −2a,

R = Λ
(−a)
+,+ (Q̃+ + G)Λ(−a)

−,+ = r+Λ
(−a)
+ e+(r+Q̃e+ + G

)
r+Λ

(−a)
− e+; (2.22)

in the last expression, we have written the restriction- and extension-operators out in detail. In comparison 
with the formula for R in [16, Th. 4.4], we have moreover placed an r+ in front, which is allowed since R
maps into a space of functions supported in Ω. (The singular Green operator component G was missing 
in some preliminary versions of [16].) The operator is of the form treated in Theorem 2.6, which gives the 
asymptotic behavior of the s-numbers of R:

sj(R)j2a/n → c(R)2a/n for j → ∞; (2.23)

here c(R) = C ′(Pa,Dir) defined in (2.21), since the principal symbol of Λ(−a)
+ Q̃Λ

(−a)
− is the inverse of the 

principal symbol of Pa.
That R is parametrix of r+Pa = Pa,Dir implies that

Pa,DirR = I − S1, where S1:L2(Ω) → C∞(Ω). (2.24)

Consider the case where Pa,Dir is invertible; it is clearly compact since it maps L2(Ω) into Ḣa(Ω). It follows 
from (2.24) that

P−1
a,Dir = P−1

a,Dir(Pa,DirR + S1) = R + S2, S2 = P−1
a,DirS1,

where P−1
a,Dir ∈ Sn/a,∞ (since it maps L2(Ω) into Ḣa(Ω)), and S1 ∈

⋂
p>0 Sp,∞, so S2 ∈

⋂
p>0 Sp,∞

by (2.10). By (2.13), the spectral asymptotic formula (2.23) for R will therefore imply the same spectral 
asymptotic formula for P−1

a,Dir, so

sj
(
P−1
a,Dir

)
j2a/n → C ′(P−1

a,Dir
)2a/n

.

The asymptotic formula can also be written as the formula (2.20) for the s-numbers of Pa,Dir.
If instead Pa,Dir + c is invertible, we can write

(Pa,Dir + c)R = I − S1 + cR,

with S1 as in (2.24), and hence

(Pa,Dir + c)−1 = (Pa,Dir + c)−1((Pa,Dir + c)R + S1 − cR
)

= R + (Pa,Dir + c)−1S1 − c(Pa,Dir + c)−1R.

Here (Pa,Dir + c)−1S1 ∈
⋂

p>0 Sp,∞ and c(Pa,Dir + c)−1R ∈ Sn/3a,∞, since (Pa,Dir + c)−1 ∈ Sn/a,∞, and 
R ∈ Sn/2a,∞ in view of its spectral behavior shown above. Thus (Pa,Dir + c)−1 is a perturbation of R by 
operators in better weak Schatten classes, and the desired spectral results follow for (Pa,Dir + c)−1 and its 
inverse Pa,Dir + c. �

When Pa,Dir is selfadjoint ≥ 0, its eigenvalue sequence λj , j ∈ N, coincides with the sequence of sj-values, 
and Theorem 2.7 gives an asymptotic estimate of the eigenvalues.

In this case, the asymptotic estimate extends to arbitrary open sets Ω (assumed bounded when Ω1 = R
n), 

with the Dirichlet realization defined by Friedrichs extension of r+Pa from C∞
0 (Ω), since the eigenvalues can 

be characterized by the minimax principle, which gives a monotonicity property in terms of nested open sets.
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As mentioned in the introduction, the estimate (2.20) was shown for the case Pa = (−Δ)a by Blumenthal 
and Getoor in [3]. In this case, a two-terms asymptotic formula for the N -th average of eigenvalues as N → ∞
was obtained by Frank and Geisinger in [7], and Geisinger extended the estimate (2.20) to a larger class of 
constant-coefficient ψdo’s in [8].

Remark 2.8. Theorem 2.7 extends straightforwardly to Dirichlet realizations of operators P as in Theo-
rem 2.5; in the proof, the factor Λ(−a)

−,+ is replaced by Λ(−b)
−,+ , and 2a in the asymptotic formula is replaced 

by m = a + b.

3. Mixed problems for second-order symmetric strongly elliptic differential operators

3.1. The Krein resolvent formula

We shall now apply the knowledge of the operators of type 1
2 to the mixed boundary value problem for 

second-order elliptic differential operators. The setting is the following:
On a bounded C∞-smooth open subset Ω of Rn with boundary ∂Ω = Σ we consider a second-order 

symmetric differential operator with real coefficients in C∞(Ω):

Au = −
n∑

j,k=1

∂j
(
ajk(x)∂ku

)
+ a0(x)u, (3.1)

here ajk = akj for all j, k. A is assumed strongly elliptic, i.e., 
∑n

j,k=1 ajk(x)ξjξk ≥ c0|ξ|2 for x ∈ Ω, ξ ∈ R
n, 

with c0 > 0. We denote as usual u|Σ = γ0u, and consider moreover the conormal derivative ν and a Robin 
variant χ (both are Neumann-type boundary operators)

νu =
n∑

j,k=1

njγ0(ajk∂ku), χu = νu− σγ0u; (3.2)

here �n = (n1, . . . , nn) denotes the interior unit normal to the boundary, and σ is a real C∞-function on Σ. 
With Σ+ denoting a closed C∞-subset of Σ, we define L2(Ω)-realizations Aγ and Aχ,Σ+ of A determined 
respectively by the boundary conditions:

γ0u = 0 on Σ, the Dirichlet condition,

χu = 0 on Σ+, γ0u = 0 on Σ \Σ+, a mixed condition. (3.3)

It is accounted for in [13] that with the domains defined more precisely by

D(Aγ) =
{
u ∈ H2(Ω)

∣∣ γ0u = 0
}
,

D(Aχ,Σ+) =
{
u ∈ H1(Ω) ∩D(Amax)

∣∣ γ0u ∈ Ḣ
1
2 (Σ+), χu = 0 on Σ◦

+
}
, (3.4)

where Amax denotes the operator acting like A with domain D(Amax) = {u ∈ L2(Ω) | Au ∈ L2(Ω)}, the 
operators Aγ and Aχ,Σ+ are selfadjoint lower bounded. We can and shall assume that a sufficiently large 
constant has been added to A such that both operators have a positive lower bound.

Let

X = Ḣ− 1
2 (Σ+); then X∗ = H

1
2
(
Σ◦

+
)
, (3.5)

with respect to a duality consistent with the L2-scalar product on Σ+. The injection iX : X ↪→ H− 1
2 (Σ) can 

be viewed as an “extension by zero” e+ (often tacitly understood), and its adjoint (iX)∗: H 1
2 (Σ) → H

1
2 (Σ◦

+)
is the restriction r+.
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Recalling that γ0 defines a homeomorphism from Z = ker(Amax) = {u ∈ L2(Ω) | Au = 0} to H− 1
2 (Σ)

with inverse Kγ (a Poisson operator), we define

V = KγX, γV :V ∼−−→ X; (3.6)

here V is a closed subspace of Z (both closed in the L2(Ω)-norm), and γV denotes the restriction of γ0 to V . 
Note that γ−1

V acts like Kγ on X; it is also denoted by Kγ,X in [13]. We denote by iV the injection of V
into Z, its adjoint is the orthogonal projection prV of Z onto V . Let us moreover introduce the relevant 
Dirichlet-to-Neumann operators

Pγ,ν = νKγ , Pγ,χ = χKγ = Pγ,ν − σ; (3.7)

they are pseudodifferential operators of order 1 on Σ, both formally selfadjoint.
The following Krein resolvent formula was shown in [13, Sect. 4.1]:

Proposition 3.1. For the realizations of A defined above,

A−1
χ,Σ+

−A−1
γ = iV γ−1

V L−1(γ−1
V

)∗prV . (3.8)

Here L is the (selfadjoint invertible) operator from X to X∗ acting like −r+Pγ,χe
+ and with domain

D(L) = γ0D(Aχ,Σ+).

It was shown in [13] that D(L) ⊂ Ḣ1−ε(Σ+) for all ε > 0, but that the inclusion does not hold with 
ε = 0.

Since L acts like −Pγ,χ,+ and is surjective onto H
1
2 (Σ◦

+), we also have

D(L) =
{
ϕ ∈ Ḣ1−ε(Σ+)

∣∣ r+Pγ,χϕ ∈ H
1
2
(
Σ◦

+
)}

. (3.9)

Below we shall improve the knowledge of the domain by setting Pγ,χ in relation to the types of operators 
studied in Section 2.

3.2. Structure of the Dirichlet-to-Neumann operator

To study the symbol of Pγ,χ we consider the operators in a neighborhood U of a point x0 ∈ ∂Ω = Σ, where 
local coordinates x = (x1 . . . , xn) = (x′, xn) are chosen such that U ∩Ω = {(x′, xn) | x′ ∈ B1, 0 < xn < 1}
and U ∩ ∂Ω = {(x′, xn) | x′ ∈ B1, xn = 0}; B1 = {x′ ∈ R

n−1 | |ξ′| < 1}. In these coordinates, the principal 
symbol of A at the boundary is a polynomial

a
(
x′, 0, ξ

)
=

n∑
j,k=1

ajk
(
x′, 0

)
ξjξk = ann

(
x′, 0

)
ξ2
n + 2b

(
x′, ξ′

)
ξn + c

(
x′, ξ′

)
,

with b =
n−1∑
j=1

ajn
(
x′)ξj , c =

n−1∑
j,k=1

ajk
(
x′)ξjξk; (3.10)

the coefficients are real with ajk = akj . We often write (x′, 0) as x′. Since A is strongly elliptic, a(x′, ξ′, ξn) >
0 when ξ′ �= 0, so the polynomial a(x′, ξ′, λ) in λ has no real roots when ξ′ �= 0. When we set

a′
(
x′, ξ′

)
= ann

(
x′)c(x′, ξ′

)
− b

(
x′, ξ′

)2 =
n−1∑

a′jk
(
x′)ξjξk,
j,k=1
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we therefore have that a′(x′, ξ′) > 0 for ξ′ ∈ R
n−1 \ 0. The roots of a(x′, ξ′, λ) equal λ± = a−1

nn(−b ± iκ0), 
lying respectively in C± = {λ ∈ C | Im λ ≷ 0}, where we have set

κ0
(
x′, ξ′

)
= a′

(
x′, ξ′

) 1
2 > 0. (3.11)

Denote

κ±
(
x′, ξ′

)
= ∓iλ± = a−1

nn(κ0 ± ib); (3.12)

then a has the factorization

a
(
x′, ξ′, ξn

)
= ann

(
x′)(κ+

(
x′, ξ′

)
+ iξn

)(
κ−

(
x′, ξ′

)
− iξn

)
, (3.13)

where κ+ and κ− both have positive real part (= κ0). This plays a role in standard investigations of 
boundary problems. We go on to study the Dirichlet-to-Neumann operators.

The principal symbol-kernel k̃γ(x′, xn, ξ′) of Kγ is the solution operator for the semi-homogeneous model 
problem (with ϕ given in C):

a
(
x′, ξ′, Dn

)
u(xn) = 0 on R+, u(0) = ϕ;

it is seen from (3.13) that the solution in L2(R+) is ϕe−κ+xn , so

k̃γ
(
x′, xn, ξ

′) = e−κ+xn . (3.14)

The conormal derivative for the model problem is

νu = γ0

(
ann∂xn

u(xn) +
n−1∑
k=1

ankiξku(xn)
)
.

Then the principal symbol of Pγ,ν is

pγ,ν
(
x′, ξ′

)
0 = γ0

(
ann∂xn

+
n−1∑
k=1

ankiξk

)
eκ+xn

= −annκ+ +
n−1∑
k=1

ankiξk

= −ann(−i)a−1
nn(−b + iκ0) + ib

= −κ0.

Since Pγ,χ = Pγ,ν − σ with σ of order 0, Pγ,χ likewise has the principal symbol −κ0.
The important fact that we observe here is that κ0(x′, ξ′) is even in ξ′;

κ0
(
x′,−ξ′

)
= κ0

(
x′, ξ′

)
, with ∂β

x′∂
α
ξ′κ0

(
x′,−ξ′

)
= (−1)|α|∂β

x′∂
α
ξ′κ0

(
x′, ξ′

)
for all α, β (3.15)

(since c(x′, ξ′) and b(x′, ξ′)2 are clearly even in ξ′). Since κ0 is homogeneous of degree 1, it therefore has the 
1
2 -transmission property with respect to any smooth subset of B1, satisfying (1.3) with m = 1, μ = 1

2 .
Moreover, we shall show that it has factorization index 1

2 with respect to any smooth subset of B1: We 
can take the subset as B1,+ = {x′ ∈ R

n−1 | |x′| < 1, xn−1 > 0}, with (x1, . . . , xn−2) denoted by x′′. Now 
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we apply the same procedure as above to the polynomial a′(x′′, 0, ξ′) = κ0(x′′, 0, ξ′′, ξn−1)2 in ξn−1. It has 
a factorization analogously to (3.13):

κ0
(
x′′, 0, ξ′

)2 = a′n−1,n−1
(
x′′)(κ′

+
(
x′′, ξ′′

)
+ iξn−1

)(
κ′
−
(
x′′, ξ′′

)
− iξn−1

)
,

where a′n−1,n−1 > 0 and κ′
± have positive real part; here κ′

± = ∓iλ′
±, where λ′

± are the roots of a′(x′′, 0, ξ′′, λ)
lying in C±, respectively. It follows that

κ0
(
x′′, 0, ξ′

)
= a′n−1,n−1

(
x′′) 1

2
(
κ′

+
(
x′′, ξ′′

)
+ iξn−1

) 1
2
(
κ′
−
(
x′′, ξ′′

)
− iξn−1

) 1
2 , (3.16)

where (κ′
+(x′′, ξ′′) + iξn−1)

1
2 extends analytically in ξn−1 into C− and (κ′

−(x′′, ξ′′) − iξn−1)
1
2 extends ana-

lytically in ξn−1 into C+ (in short, are a “plus-symbol” resp. a “minus-symbol”, cf. [6,16]).
Carrying the information back to Ω and Σ = ∂Ω, we have obtained:

Theorem 3.2. The principal symbol of the Dirichlet-to-Neumann operator Pγ,χ equals −κ0(x′, ξ′) (expressed 
in local coordinates in (3.10)–(3.11)), negative and elliptic of order 1. For any smooth subset Σ+ of Σ, κ0 is 
of type 1

2 and has factorization index 1
2 relative to Σ+. An explicit factorization in local coordinates is given 

in (3.16).

3.3. Precisions on L and L−1

Define L1 to be a ψdo on Σ with symbol κ0(x′, ξ′), and let L0 = −Pγ,χ − L1. Then since L acts like 
−Pγ,χ,+, it acts like L1,+ + L0,+:

Lϕ = L1,+ϕ + L0,+ϕ, for ϕ ∈ D(L). (3.17)

Here L1, classical of order 1, is principally equal to −Pγ,χ and −Pγ,ν , whereas the operator L0 is a classical 
ψdo of order 0, containing both the local term σ and the nonlocal difference between Pγ,ν and its principal 
part.

As shown in Theorem 3.2, L1 is of type 1
2 and has factorization index 1

2 relative to Σ+. Here L1,+, 
when considered on Ḣ1−ε(Σ+), identifies with the operator r+L1 in the homogeneous Dirichlet problem 
for L1, going from Ḣ1−ε(Σ+) to Ḣ−ε(Σ+). It has according to [16, Th. 4.4] a parametrix R:Hs−1(Σ◦

+) →
H

1
2 (s)(Σ+) for s > 1

2 ; here H
1
2 (s)(Σ+) = Ḣs(Σ+) for 1

2 < s < 1, cf. (2.3), and R is of the form

R = Λ
(− 1

2 )
+,+ (Q̃+ + G)Λ(− 1

2 )
−,+ , (3.18)

with a ψdo Q̃ of order and type 0 and a singular Green operator G of order and class 0. The parametrix 
property implies that

L1,+R = I − S1, S1:Ht(Σ+) → C∞(Σ+), for t > −1
2 ,

RL1,+ = I − S2, S2: Ḣ1+t(Σ+) → E 1
2
(Σ+), for −1

2 < t < 0,

S2:H
1
2 (1+t)(Σ+) → E 1

2
(Σ+), for t ≥ 0. (3.19)

From (3.17) and the first line in (3.19), we have for the difference S3 of L−1 and R:

S3 = L−1 −R = L−1(L1,+R + S1) − L−1(L1,+ + L0,+)R = L−1S1 − L−1L0,+R. (3.20)

Some properties of L−1 can be obtained by considerations similar to those in [13]:
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Proposition 3.3. The operator L−1: X∗ → X extends to an operator M0 that maps continuously

M0:Hs
(
Σ◦

+
)
→ Ḣs+ 1

2−ε(Σ+) for −1 < s ≤ 1
2 , any ε > 0.

In particular, the closure of L−1 in L2(Σ+) is a continuous operator from L2(Σ+) to Ḣ
1
2−ε(Σ+).

The operators L−1 and M0 have the same eigenfunctions (for nonzero eigenvalues); they belong to D(L).

Proof. We already know from [13] (cf. (3.9)) that L−1 is continuous from X∗ = H
1
2 (Σ◦

+) to Ḣ1−ε(Σ+). Then 
it has an adjoint M0 (with respect to dualities consistent with the L2(Σ+)-scalar product) that is continuous 
from H−1+ε(Σ◦

+) to Ḣ− 1
2 (Σ+). But since L−1 is known to be selfadjoint (from X∗ to X, consistently with 

the L2-scalar product), M0 must be an extension of L−1. Now the asserted continuity for −1 < s ≤ 1
2

follows by interpolation. For s = 0 this shows the mapping property of the L2-closure.
When ϕ is a distribution in H−1+ε(Σ◦

+) such that M0ϕ = λϕ for some λ �= 0, then since M0ϕ ∈
H− 1

2+ε(Σ◦
+) = Ḣ− 1

2+ε(Σ+), ϕ lies there. Next, it follows that M0ϕ ∈ Hε1(Σ◦
+) = Ḣε1(Σ+), and hence ϕ

also lies there. Finally, we conclude that M0ϕ ∈ H
1
2+ε2(Σ◦

+), so that ϕ also lies there. Here M0 coincides 
with L−1. �

We can now find exact information on the domain of L:

Theorem 3.4. L−1 maps H 1
2 (Σ◦

+) onto H
1
2 ( 3

2 )(Σ+). In other words, the domain of L satisfies

D(L) = H
1
2 ( 3

2 )(Σ+) = Λ
(− 1

2 )
+ e+H1(Σ◦

+
)
, (3.21)

which is contained in d
1
2 e+H1(Σ◦

+) + Ḣ
3
2 (Σ+).

Proof. It is seen from the second line in (3.19) that S3 = L−1 −R is also described by

S3 = (RL1,+ + S2)L−1 −R(L1,+ + L0,+)L−1 = S2L
−1 −RL0,+L

−1. (3.22)

Here S2L
−1 maps H 1

2 (Σ◦
+) into E 1

2
(Σ+) in view of (3.19). For the other term, we note that L0,+ maps 

Ḣ1−ε(Σ+) into H1−ε(Σ◦
+), since an extension by zero is understood, and R maps the latter space into 

H
1
2 (2−ε)(Σ+). Thus S3 maps H 1

2 (Σ◦
+) into H

1
2 (2−ε)(Σ+). Since R maps H 1

2 (Σ◦
+) into H

1
2 ( 3

2 )(Σ+), it follows 
that L−1 maps H 1

2 (Σ◦
+) into H

1
2 ( 3

2 )(Σ+). Thus D(L) ⊂ H
1
2 ( 3

2 )(Σ+).
The opposite inclusion also holds, since r+L1 maps H 1

2 ( 3
2 )(Σ+) into H

1
2 (Σ◦

+), and H
1
2 ( 3

2 )(Σ+) ⊂ Ḣ
1
2 (Ω)

by Lemma 2.2, which r+L0 maps into H
1
2 (Σ◦

+).
This shows the identity. The last statement follows from (2.3). �

Remark 3.5. By this information we can explain more precisely in which way D(L), known to be contained 
in Ḣ1−ε(Σ+), reaches outside of Ḣ1(Σ+), namely by certain nontrivial elements of d 1

2 e+H1(Σ◦
+) (lying in 

H
1
2 ( 3

2 )(Σ+)).
Consider the spaces in local coordinates, where Σ and Σ+ are replaced by Rn−1 and Rn−1

+ . As a typical 
element of x

1
2
n−1e

+H1(Rn−1
+ ) lying in H

1
2 ( 3

2 )(Rn−1
+ ), we can take

ϕ
(
x′) = cx

1
2
n−1K0ψ, c = Γ

(
3
2

)−1

, (3.23)

where ψ(x′′) ∈ H
1
2 (Rn−2). Here K0 is the Poisson operator from H

1
2 (Rn−2) to H1(Rn−1

+ ) solving

(1 − Δ)ζ
(
x′) = 0 on R

n−1
+ , γ0ζ = ψ on R

n−2,
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namely

ζ = K0ψ = F−1
ξ′→x′

((〈
ξ′′
〉

+ iξn−1
)−1

ψ̂
(
ξ′′
))

= F−1
ξ′′→x′′

(
e−〈ξ′′〉xn−1 ψ̂

(
ξ′′
))
,

and ϕ(x′) = cx
1
2
n−1ζ(x′).

To verify that ϕ(x′) ∈ H
1
2 ( 3

2 )(Rn−1
+ ), we recall from [16, Sect. 5], that the special boundary operator 

γ 1
2 ,0: H

1
2 ( 3

2 )(Rn−1
+ ) → H

1
2 (Rn−2) defined there satisfies

γ 1
2 ,0ϕ = c−1γ0

(
x
− 1

2
n−1ϕ

(
x′)) = γ0Ξ

1
2
+ϕ, with Ξμ

+ = OP
((〈

ξ′′
〉

+ iξn−1
)μ)

,

and has the right inverse K 1
2 ,0, where

ϕ = K 1
2 ,0ψ = Ξ

− 1
2

+ e+K0ψ = cx
1
2
n−1K0ψ,

cf. [16], Corollary 5.3, and the analysis in the sequel there.
Now ϕ defined by (3.23) is not in Ḣ1 (nor in H1) near xn−1 = 0, since

∂xn−1ϕ
(
x′) = 1

2x
− 1

2
n−1ζ

(
x′) + x

1
2
n−1∂xn−1ζ

(
x′),

where x
1
2
n−1∂xn−1ζ(x′) is clearly L2-integrable over Rn−2 × [0, 1], but x− 1

2
n−1ζ(x′) is not so:∫

Rn−2

∫
0<xn−1<1

∣∣x− 1
2

n−1ζ
∣∣2 dxn−1dx

′′ = (2π)2−n lim
δ→0

∫
Rn−2

∫
δ<xn−1<1

x−1
n−1e

−2〈ξ′′〉xn−1
∣∣ψ̂(ξ′′)∣∣2 dxn−1dξ

′′

≥ (2π)2−n lim
δ→0

∫
Rn−2

∫
δ<xn−1<1

x−1
n−1e

−2〈ξ′′〉∣∣ψ̂(ξ′′)∣∣2 dxn−1dξ
′′

= (2π)2−n lim
δ→0

|log δ|
∫

Rn−2

e−2〈ξ′′〉∣∣ψ̂(ξ′′)∣∣2 dξ′′ = +∞, (3.24)

when ψ �= 0. (It does not help to take ψ very smooth.)

We consequently have for D(Aχ,Σ+):

Corollary 3.6. The domain of Aχ,Σ+ satisfies

D(Aχ,Σ+) ⊂ D(Aγ) + KγH
1
2 ( 3

2 )(Σ+) ⊂ H2(Ω) + Kγ

(
e+d

(
x′) 1

2H1(Σ◦
+
))

(3.25)

(where we recall that e+ denotes the extension from Σ+ by zero on Σ−, and d(x′) is a C∞-function on Σ+
proportional to dist(x′, ∂Σ+) near ∂Σ+).

All elements of KγH
1
2 ( 3

2 )(Σ+) are reached from D(Aχ,Σ+).
Nontrivial elements of Kγ(e+d(x′) 1

2H1(Σ◦
+)) are reached, that are not in KγḢ

1(Σ+), nor in
Kγ(e+H1(Σ◦

+)) (as in Remark 3.5), hence not in H
3
2 (Ω).

Proof. It is known from [9, Th. II.1.2] that

D(Aχ,Σ+) ⊂ D(Aγ) +̇ D(T ) = D(Aγ) +̇ KγD(L),
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when we use that Aγ = Aβ and KγD(L) = D(T ) with the notation used there. Here all elements of D(T )
are reached, in the sense that for any z ∈ D(T ) there is a v ∈ D(Aγ) such that u = v+z ∈ D(Aχ,Σ+). Since 
D(L) = H

1
2 ( 3

2 )(Σ+), this shows the first inclusion in (3.25) and the first statement afterwards.
For the remaining part we use the last information in Theorem 3.4. Since KγḢ

3
2 ⊂ H2(Ω), this implies 

the second inclusion in (3.25). Remark 3.5 shows how nontrivial nonsmooth elements occur. �
3.4. The spectrum of the Krein term

The spectral asymptotic behavior of the Krein term

M = A−1
χ,Σ+

−A−1
γ = iV γ−1

V L−1(γ−1
V

)∗prV (3.26)

will now be determined. We assume n ≥ 3 in this section since applications on Σ of Laptev’s result quoted 
in (2.14) requires the dimension m to be ≥ 2, i.e., n −1 ≥ 2. It is used to show that some cut-off terms have 
a better asymptotic behavior than the one we are aiming for, hence can be disregarded. (We believe that 
there are ways to handle the case n − 1 = 1, either by establishing weaker versions of (2.14), or by using the 
variable-coefficient factorization of the principal symbol of L, but we refrain from making an effort here. 
The case n = 2 was included in [13] for A principally Laplacian.)

First we study the spectrum of the factor L−1.

Theorem 3.7. S3 belongs to S(n−1)/( 3
2−ε),∞, and L−1 belongs to Sn−1,∞ (when the operators are extended 

to L2(Σ+) by closure).
The eigenvalues of L−1 have the asymptotic behavior:

μj

(
L−1)j1/(n−1) → c(L)1/(n−1) for j → ∞, (3.27)

where

c(L) = 1
(n− 1)(2π)n−1

∫
Σ+

∫
|ξ′|=1

κ0
(
x′, ξ′

)−(n−1)
dω

(
ξ′
)
dx′. (3.28)

Proof. Recall that L−1 acts as follows:

L−1 = R + S3 = Λ
(− 1

2 )
+,+ (Q̃+ + G)Λ(− 1

2 )
−,+ + S3, (3.29)

cf. (3.18). By application of Theorem 2.6 to R we find that the singular values sj(R) behave as in 
(3.27)–(3.28), where the constant is as in (3.28) since the principal pseudodifferential symbol of R is κ−1

0 . 
In particular, R ∈ Sn−1,∞.

Since the closure of L−1 maps L2(Σ+) continuously into Ḣ
1
2−ε(Σ+) by Proposition 3.3, it belongs to 

S(n−1)/( 1
2−ε),∞. Moreover (cf. (3.19)), S1 ∈

⋂
τ>0 Sτ,∞, and L0,+ is bounded in L2(Σ+). Then L−1S1 is in ⋂

τ>0 Sτ,∞, and L−1L0,+R ∈ S(n−1)/( 1
2−ε),∞ ·Sn−1,∞ ⊂ S(n−1)/( 3

2−ε),∞ by the rule (2.10), using that S1

and L0,+R map into spaces where L−1 coincides with its L2-closure. Therefore by (3.20),

S3 ∈ S(n−1)/( 3
2−ε),∞.

Now since L−1 acts like R + S3, its closure is in Sn−1,∞. This shows the first statement in the theorem.
The last statement follows, since S3 is of a better Schatten class than R, so that (2.13) implies that the 

L2-closure of L−1 has the same asymptotic behavior of singular values as R. Since L−1 is symmetric in L2, 
the L2-closure is selfadjoint, so its singular values are eigenvalues; they are consistent with the eigenvalues 
of L−1 by Proposition 3.3. �
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We now turn to the Krein term M recalled in (3.26). Proceeding as in [13, Sect. 5.4], we have for the 
eigenvalues:

μj(M) = μj

(
iV γ−1

V L−1(γ−1
V

)∗prV
)

= μj

(
L−1(γ−1

V

)∗
γ−1
V

)
= μj

(
L−1P1,+

)
,

where P1 = K∗
γKγ is a selfadjoint nonnegative invertible elliptic ψdo of order −1; in view of (3.14) it has 

principal symbol (κ+ + κ̄+)−1 = ann(2κ0)−1. Let P2 = P
1
2
1 , then we continue the calculation as follows:

μj(M) = μj

(
L−1r+P2P2e

+) = μj

(
P2e

+L−1r+P2
)

= μj

(
r+P2e

+L−1r+P2e
+ + S4

)
,

where S4 is a sum of three terms, each one a product of ψdo’s and cutoff functions of a total order −2, 
and each containing a factor either r−P2e

+ or r+P2e
− (or both). To the terms in S4 we can apply (2.14)

together with product rules, concluding that they are in S(n−1)/(2+θ),∞ for some θ > 0.
The operator (cf. (3.25))

M1 = r+P2e
+L−1r+P2e

+ = P2,+Λ
(− 1

2 )
+,+ (Q̃+ + G)Λ(− 1

2 )
−,+ P2,+ + P2,+S3P2,+

is selfadjoint nonnegative, so its eigenvalues μj coincide with the s-values. We can apply Theorem 2.6 to 
the first term, obtaining a spectral asymptotic formula (2.16)–(2.17) with t/n replaced by 2/(n − 1); then 
the addition of the second term which lies in a better weak Schatten class S(n−1)/(2+θ),∞ preserves the 
formulas.

Finally M (likewise selfadjoint nonnegative) differs from M1 by the operator S4 in a better weak Schatten 
class, so the spectral asymptotic formula carries over to this operator.

Hereby we obtain the theorem:

Theorem 3.8. The eigenvalues of M = A−1
χ,Σ+

−A−1
γ have the asymptotic behavior:

μj(M)j2/(n−1) → c(M)2/(n−1) for j → ∞, (3.30)

where

c(M) = 1
(n− 1)(2π)n−1

∫
Σ+

∫
|ξ′|=1

(
ann(x′)

2κ0(x′, ξ′)2

)(n−1)/2

dω
(
ξ′
)
dx′. (3.31)

Proof. It remains to account for the value of the constant c(M). It follows, since P 2
2 = P1 has principal 

symbol ann(2κ0)−1 and the ψdo part of L−1 has principal symbol κ−1
0 . �

Remark 3.9. We take the opportunity to recall two corrections to [13] (already mentioned in [14]): Page 351, 
line 4 from below, delete “H 1

2 (Σ◦
+) ⊂”, replace “H1(Σ)” by “L2(Σ)”. Page 361, line 4, replace “(Th. 3.3)” 

by “(Th. 4.3)”.
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