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In this note we consider the pointwise convergence to the initial data for the solutions 
of some nonlocal dyadic Schrödinger equations on spaces of homogeneous type. We 
prove the a.e. convergence when the initial data belongs to a dyadic version of an 
L2 based Besov space.
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1. Introduction

In quantum mechanics the position of a particle in the space is described by the probability density 
function |ϕ|2 = ϕϕ where ϕ is a solution of the Schrödinger equation. In the classical free particle model, 
the space is the Euclidean and the Schrödinger equation is associated to the Laplace operator, i.e. i∂ϕ∂t = �ϕ. 
Hence the probability of finding the particle inside the Borel set E of the Euclidean space at time t is given 
by 

∫
E
|ϕ(x, t)|2 dx.

The pointwise convergence to the initial data for the classical Schrödinger equation in Euclidean settings 
is a hard problem. It is well known that some regularity in the initial data is needed [6,9,11,8,19,22,20].

Nonlocal operators instead of the Laplacian in this basic model have been considered previously in 
the Euclidean space (see for example [15] and references in [21]). The nonlocal fractional derivatives as 
substitutes of the Laplacian become natural objects when the space itself lacks any differentiable structure 
and only an analysis of order less than one can be carried out.

We shall be brief in our introduction of the basic setting. For a more detailed approach see [1]. Let 
(X, d, μ) be a space of homogeneous type (see [17]). Let D be a dyadic family in X as constructed by 
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M. Christ in [7]. Let H be a Haar system for L2(X, μ) associated to D as built in [2] (see also [5,3]). 
Following the basic notation introduced in Section 1, we shall use H itself as the index set for the analysis 
and synthesis of signals defined on X. Precisely, by Q(h) we denote the member of D on which h is based. 
With j(h) we denote the integer scale j for which Q(h) ∈ Dj .

The system H is an orthonormal basis for L2
0, where L2

0 coincides with L2(X, μ) if μ(X) = +∞ and 
L2

0 = {f ∈ L2 :
∫
X
fdμ = 0} if μ(X) < ∞. For a given Q ∈ D the number of wavelets h based on Q is 

#ϑ(Q) − 1, where ϑ(Q) is the offspring of Q and #ϑ(Q) is its cardinal. The homogeneity property of the 
space together with the metric control of the dyadic sets guarantees a uniform upper bound for #ϑ(Q). On 
the other hand #ϑ(Q) ≥ 1 for every Q ∈ D .

Let (X, d, μ, D , H ) be given as before. For the sake of simplicity we shall assume along this paper that X
itself is a quadrant for D . We say that X itself is a quadrant if any two cubes in X have a common ancestor. 
A distance in X associated to D can be defined by δ(x, y) = min{μ(Q) : Q ∈ D such that x, y ∈ Q} when 
x �= y and δ(x, x) = 0. The next lemma, borrowed from [1], reflects the one dimensional character of X
equipped with δ and μ.

Lemma 1. (See Lemma 3.1 in [1].) Let 0 < ε < 1, and let Q be a given dyadic cube in X. Then, for x ∈ Q, 
we have ∫

X\Q

dμ(y)
δ(x, y)1+ε

� μ(Q)−ε.

Furthermore the integral of δ−1(x, ·) diverges on each dyadic cube containing x and, when the measure 
of X is not finite, on the complement of each dyadic cube.

For a complex value function f Lipschitz continuous with respect to δ define

Dβf(x) =
∫
X

f(x) − f(y)
δ(x, y)1+β

dμ(y).

One of the key results relating the operator Dβ with the Haar system is provided by the following spectral 
theorem contained in [1].

Theorem 2. (See Theorem 3.1 in [1].) Let 0 < β < 1. For each h ∈ H we have

Dβh(x) = mhμ(Q(h))−βh(x), (1)

where mh is a constant that may depend on Q(h) but there exist two finite and positive constants M1 and 
M2 such that

M1 < mh < M2, for all h ∈ H . (2)

Set Bλ
2 (X, δ, μ) to denote the space of those functions f ∈ L2(X, μ) satisfying

∫∫
X×X

|f(x) − f(y)|2

δ1+2λ(x, y) dμ(x)dμ(y) < ∞.

The projection operator defined on L2 onto V0 the subspace of functions which are constant on each cube 
Q ∈ D0 is denoted by P0. We are now in position to state the main results of this paper.
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Theorem 3. Let 0 < β < λ < 1 and u0 ∈ Bλ
2 (X, δ, μ) with P0u0 = 0 be given. Then, the function u defined 

on R+ by

u(t) = −
∑
h∈H

e−itmhμ(Q(h))−β 〈u0, h〉h, (3)

(3.a) belongs to Bλ
2 (X, δ, μ) for every t > 0;

(3.b) solves the problem

⎧⎪⎨⎪⎩ i
du

dt
= Dβu, t > 0,

u(0) = u0, on X.

(4)

More precisely, du
dt is the Fréchet derivative of u(t) as a function of t ∈ (0, ∞) with values in 

Bλ−β
2 (X, δ, μ) and limt→0+ u(t) = u0 in Bλ

2 (X, δ, μ).

Theorem 4. Let 0 < β < λ < 1 and u0 ∈ Bλ
2 (X, δ, μ) with P0u0 = 0 be given. Then,

(4.a) there exists Z ⊂ X with μ(Z) = 0 such that the series (3) defining u(t) converges pointwise for every 
t ∈ [0, 1) outside Z;

(4.b) u(t) → u0 pointwise almost everywhere on X with respect to μ when t → 0.

Let us point out that the operator Dβ in the framework of p-adic analysis is called the Vladimirov operator 
and has been extensively studied in recent years, see e.g., [14] and references therein. It has already been 
proved that the collection of the eigenfunctions of Dβ coincides with a wavelet basis. Let us also notice 
that from a probabilistic approach, in [12,13], the Haar wavelets have been identified as eigenfunctions of 
differential operators. On the other hand, since the work of S. Petermichl in [18], where a representation for 
the Hilbert transform is given as an average of dyadic shifts, dyadic techniques has proved to be fundamental 
and useful in harmonic analysis (see [16] and references therein). From this point of view, our problem can 
be regarded as a first approximation to the general nonlocal Schrödinger model in Ahlfors metric measure 
spaces, where instead of δ the metric is the underlying distance d in the space.

The paper is organized in three sections. The second one is devoted to introduce a characterization in 
terms of Haar coefficients of the dyadic Besov spaces Bλ

2 (X, δ, μ). In Section 3 we prove our main results, 
which are contained in Theorems 3 and 4. In the last section we also illustrate our results in the Sierpinski 
gasket.

2. Characterization of the Besov space Bσ
2 (X, δ, μ) in terms of Haar coefficients

The aim of this section is to characterize Bσ
2 (X, δ, μ) in terms of the sequence {〈f, h〉 : h ∈ H } for 

0 < σ < 1.

Theorem 5. Let 0 < σ < 1 be given. The space Bσ
2 (X, δ, μ) coincides with the subspace of L2(X, μ) of those 

functions f for which

∑ |〈f, h〉|2

μ(Q(h))2σ < ∞.

h∈H
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Moreover,

‖f‖2
Bσ

2 (X,δ,μ) � ‖f‖2
L2(X,μ) +

∑
h∈H

|〈f, h〉|2

μ(Q(h))2σ .

Let us state some important lemmas that will be useful for the proof of the above theorem.

Lemma 6. Let 0 < σ < 1 and h, ̃h ∈ H be given. Then

ν(h, h̃) :=
∫∫

X×X

[h(x) − h(y)][h̃(x) − h̃(y)]
δ(x, y)1+2σ dμ(y)dμ(x) = 0,

if h �= h̃, and

ν(h, h) =
∫∫

X×X

[h(x) − h(y)]2

δ(x, y)1+2σ dμ(y)dμ(x) � μ(Q(h))−2σ,

where the equivalence constants depend only on the geometric constants of the space.

Proof. For the first part of the proof, i.e. ν(h, ̃h) = 0, when h �= h̃, we shall divide our analysis in three 
cases according to the relative positions of Q(h) := Q and Q(h̃) := Q̃, (i) Q = Q̃, (ii) Q ∩ Q̃ = ∅ and (iii) 
Q � Q̃.

Let us start by (i). Set Πhh̃(x, y) := [h(x) − h(y)][h̃(x) − h̃(y)]. Notice that for x and y in X \Q we have 
Πhh̃(x, y) = 0. On the other hand, for x ∈ Q and y ∈ X \Q we have Πhh̃(x, y) = h(x)h̃(x). Hence

∫∫
X×X

Πhh̃(x, y)
δ(x, y)1+2σ dμ(x)dμ(y) =

∫∫
Q×(X\Q)

h(x)h̃(x)
δ(x, y)1+2σ dμ(x)dμ(y)

+
∫∫

(X\Q)×Q

h(y)h̃(y)
δ(x, y)1+2σ dμ(x)dμ(y)

+
∫∫

Q×Q

Πhh̃(x, y)
δ(x, y)1+2σ dμ(x)dμ(y)

=
∫∫

Q×Q

Πhh̃(x, y)
δ(x, y)1+2σ dμ(x)dμ(y),

since for the first term δ(x, y) is constant as a function of x ∈ Q for y fixed in X \Q, for the second δ(x, y)
is constant as a function of y ∈ Q for x fixed in X \Q and h and h̃ are orthogonal. Let us prove that∫∫

Q×Q

Πhh̃(x, y)
δ(x, y)1+2σ dμ(x)dμ(y) = 0.

Since h and h̃ are constant on Q′ ∈ ϑ(Q) we have that Πhh̃(x, y) = 0 for (x, y) ∈ Q′ ×Q′, hence∫∫ Πhh̃(x, y)
δ(x, y)1+2σ dμ(x)dμ(y) =

∑
Q′∈ϑ(Q)

∑
Q′′∈ϑ(Q)

∫
′′

∫
′

Πhh̃(x, y)
δ(x, y)1+2σ dμ(x)dμ(y)
Q×Q Q Q
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=
∑

Q′∈ϑ(Q)

∫
Q′

∫
Q′

Πhh̃(x, y)
δ(x, y)1+2σ dμ(x)dμ(y)

+
∑

Q′∈ϑ(Q)

∑
Q′′∈ϑ(Q)
Q′ �=Q′′

∫
Q′′

∫
Q′

Πhh̃(x, y)
μ(Q)1+2σ dμ(x)dμ(y)

= μ(Q)−1−2σ
∑

Q′′∈ϑ(Q)

∫
Q′′

⎛⎝ ∑
Q′∈ϑ(Q)

∫
Q′

Πhh̃(x, y)dμ(x)

⎞⎠ dμ(y)

= μ(Q)−1−2σ
∫
Q

∫
Q

[h(x)h̃(x) − h(y)h̃(x)

− h(x)h̃(y) + h(y)h̃(y)]dμ(x)dμ(y)

= 0. (5)

Let us now consider the case (ii), that is Q ∩Q̃ = ∅. In this case Πhh̃(x, y) is supported in (Q̃×Q) ∪(Q ×Q̃). 
Moreover on Q̃ × Q we have Πhh̃(x, y) = −h(y)h̃(x) and on Q × Q̃, Πhh̃(x, y) = −h(x)h̃(y). Since, on the 
other hand δ(x, y) = δ(Q, Q̃) which is a positive constant on the support of Πhh̃, we get

∫∫
X×X

Πhh̃(x, y)
δ(x, y)1+2σ dμ(x)dμ(y)

= − 1
δ(Q, Q̃)1+2σ

⎧⎪⎨⎪⎩
∫∫

Q̃×Q

[h(y)h̃(x)]dμ(x)dμ(y) +
∫∫

Q×Q̃

[h(x)h̃(y)]dμ(x)dμ(y)

⎫⎪⎬⎪⎭
= 0.

Consider now the case (iii). Since Q � Q̃, then h̃ is constant on Q, hence

∫∫
X×X

Πhh̃(x, y)
δ(x, y)1+2σ dμ(x)dμ(y) =

∫∫
(X\Q)×Q

+
∫∫

Q×Q

+
∫∫

Q×(X\Q)

.

Since h̃ is constant on Q, Πhh̃ is identically zero on Q ×Q and the second term vanishes. For the first term 
notice that it can be written as

∫
X\Q

⎛⎝∫
Q

(−h(y))(h̃(x) − h̃(yQ))
δ(Q, x)1+2σ dμ(y)

⎞⎠ dμ(x)

= −
∫

X\Q

h̃(x) − h̃(yQ)
δ(Q, x)1+2σ dμ(x)

⎛⎝∫
Q

h(y)dμ(y)

⎞⎠
= 0,

here yQ denotes any fixed point in Q. For the third term we have similarly
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∫∫
Q×(X\Q)

Πhh̃(x, y)
δ(x, y)1+2σ dμ(x)dμ(y) =

∫
X\Q

⎛⎝∫
Q

(h(x))(h̃(xQ) − h̃(y))
δ(Q, y)1+2σ dμ(x)

⎞⎠ dμ(y)

= 0.

Finally we have to show that ν(h, h) � μ(Q(h))−2σ. Let Q = Q(h). Notice first for (x, y) ∈ (X\Q) ×(X\Q)
we have Πhh(x, y) = 0. Hence∫∫

X×X

Πhh(x, y)
δ(x, y)1+2σ dμ(x)dμ(y) =

∫∫
(X\Q)×Q

Πhh(x, y)
δ(x, y)1+2σ dμ(x)dμ(y) +

∫∫
Q×Q

Πhh(x, y)
δ(x, y)1+2σ dμ(x)dμ(y)

+
∫∫

Q×(X\Q)

Πhh(x, y)
δ(x, y)1+2σ dμ(x)dμ(y)

= 2
∫

X\Q

⎛⎝∫
Q

Πhh(x, y)
δ(x, y)1+2σ dμ(x)

⎞⎠ dμ(y) +
∫∫

Q×Q

Πhh(x, y)
δ(x, y)1+2σ dμ(x)dμ(y)

= 2I + II .

Let us first get an estimate for I. Notice that for any x, z ∈ Q and y ∈ X \Q, we have that δ(x, y) = δ(z, y), 
hence

I =
∫

X\Q

dμ(y)
δ(z, y)1+2σ

∫
Q

|h(x)|2 dμ(x),

which is equivalent to μ(Q)−2σ by Lemma 1. To get the desired bound for II , we observe that equation (5)
holds for h = h̃ also, then∫∫

Q×Q

Πhh(x, y)
δ(x, y)1+2σ dμ(x)dμ(y) = μ(Q)−1−2σ

∫∫
Q×Q

[h2(x) + h2(y) − 2h(x)h(y)]dμ(x)dμ(y)

= 2μ(Q)−2σ. �
For Q ∈ D , set HQ = {h ∈ H : Q(h) ⊆ Q}. Let S(HQ) denote the linear span of HQ. Since HQ is 

countable we write 
2 to denote the space 
2(HQ) of all square summable complex sequences indexed on 
HQ. On the other hand, consider the weighted space L2(Q ×Q) := L2(Q ×Q, dμ(x)dμ(y)

δ(x,y) ). The next lemma 

shows that for ϕ and ψ in S(HQ) the inner product of ϕ(x)−ϕ(y)
δ(x,y)σ with ψ(x)−ψ(y)

δ(x,y)σ in L2(Q ×Q) is equivalent 
to the inner product of 〈ϕ,h〉

μ(Q(h))σ with 〈ψ,h〉
μ(Q(h))σ in 
2(HQ).

Lemma 7. Let 0 < σ < 1 and Q ∈ D be given. For ϕ, ψ two functions in S(HQ) we have that∫∫
Q×Q

[ϕ(x) − ϕ(y)][ψ(x) − ψ(y)]
δ(x, y)1+2σ dμ(x)dμ(y) =

∑
h∈HQ

〈ϕ, h〉 〈ψ, h〉 ν(h, h).

In particular, ∫∫
Q×Q

|ϕ(x) − ϕ(y)|2

δ(x, y)1+2σ dμ(x)dμ(y) �
∑

h∈HQ

|〈ϕ, h〉|2

μ(Q(h))2σ .
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Proof. Since ϕ and ψ are in the linear span of HQ we easily see that

[ϕ(x) − ϕ(y)][ψ(x) − ψ(y)] =
∑

h∈HQ

∑
h̃∈HQ

〈ϕ, h〉
〈
ψ, h̃

〉
[h(x) − h(y)][h̃(x) − h̃(y)]

Dividing both members of the above equation by δ(x, y)1+2σ, integrating on the product space Q ×Q and 
then applying Lemma 6 we get∫∫

Q×Q

[ϕ(x) − ϕ(y)][ψ(x) − ψ(y)]
δ(x, y)1+2σ dμ(x)dμ(y)

=
∑

h∈HQ

∑
h̃∈HQ

〈ϕ, h〉
〈
ψ, h̃

〉∫∫
Q×Q

(h(x) − h(y))(h̃(x) − h̃(y))
δ(x, y)1+2σ dμ(x)dμ(y)

=
∑

h∈HQ

〈ϕ, h〉 〈ψ, h〉
∫∫

Q×Q

[h(x) − h(y)]2

δ(x, y)1+2σ dμ(x)dμ(y)

=
∑

h∈HQ

〈ϕ, h〉 〈ψ, h〉 ν(h, h). �

Lemma 8. For ψ ∈ S(H ) there exists ε > 0 such that ψ(x) − ψ(y) vanishes on Δε = {(x, y) ∈ X × X :
δ(x, y) < ε}.

Proof. It is enough to check the result for ψ = h ∈ H . But since h is constant on each child Q′ of Q(h) we 
have that h(x) − h(y) = 0 on 

⋃
Q′ child of Q Q′ × Q′. On the other hand, h(x) − h(y) = 0 for x and y both 

outside Q(h). Hence h(x) − h(y) vanishes on {(x, y) : δ(x, y) < μ(Q(h))}. �
The next result shows that Lemma 7 extends to the case of ϕ in L2.

Lemma 9. Let Q be a cube in D , f ∈ L2(Q, μ) and ψ ∈ S(HQ). Then∫∫
Q×Q

(f(x) − f(y))(ψ(x) − ψ(y))
δ(x, y)1+2σ dμ(x)dμ(y) =

∑
h∈HQ

〈f, h〉 〈ψ, h〉 ν(h, h).

Proof. Let Fn ↗ HQ and fn =
∑

h∈Fn
〈f, h〉h. Since each fn ∈ S(HQ) we have from Lemma 7 that∫∫

Q×Q

[fn(x) − fn(y)][ψ(x) − ψ(y)]
δ(x, y)1+2σ dμ(x)dμ(y) =

∑
h∈HQ

〈f, h〉 〈ψ, h〉 ν(h, h)

taking n large enough such that Fn contains all the h’s building ψ. On the other hand, since, from Lemma 8, 
the function ψ(x)−ψ(y)

δ(x,y)1+2σ ∈ L∞(Q ×Q) and fn(x) − fn(y) → f(x) − f(y) in L2(Q ×Q), hence in L1(Q ×Q)
we get the desired equality. �

The next result allows us to localize to dyadic cubes our characterization of the Besov space Bσ
2 (X, δ, μ)

in terms of the Haar coefficients.

Lemma 10. The set

�1 = {(x, y) ∈ X ×X : δ(x, y) < 1} =
⋃

Q∈M

Q×Q,

where M is the family of all maximal dyadic cubes in D with μ(Q) < 1.
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The next result is a statement of the intuitive fact that the regularity requirement additional to the L2

integrability involved in the definition of Bσ
2 (X, δ, μ) is only relevant around the diagonal of X ×X.

Lemma 11. For 0 < σ < 1 an L2 function f belongs to Bσ
2 (X, δ, μ) if and only if

E (f) =
∫∫

δ(x,y)<1

|f(x) − f(y)|2

δ(x, y)1+2σ dμ(x)dμ(y) < ∞.

Moreover, the Bσ
2 (X, δ, μ) norm of f is equivalent to ‖f‖2 + [E (f)]

1
2 .

Proof. The “only if” is obvious. Since

∫∫
δ(x,y)≥1

|f(x) − f(y)|2

δ(x, y)1+2σ dμ(x)dμ(y) ≤ C

∫
x∈X

|f(x)|2
⎛⎜⎝ ∫

δ(x,y)≥1

dμ(y)
δ(x, y)1+2σ

⎞⎟⎠ dμ(x).

From Lemma 1 we have that the first term in the above inequality is bounded by the L2 norm of f , as 
desired. �

The following result is elementary but useful.

Lemma 12. For an L2(X, μ) function f the quantities ‖f‖2
2+

∑
h∈H

|〈f,h〉|2
μ(Q(h))2σ and ‖f‖2

2+
∑

h∈H
μ(Q(h))<1

|〈f,h〉|2
μ(Q(h))2σ

are equivalent.

The characterization of Bσ
2 (X, δ, μ) in terms of the Haar system is just a completion argument built on 

the result in Lemma 6.

Proof of Theorem 5. From Lemmas 8, 9 and 10 it is enough to prove that quantities∫∫
Q×Q

|f(x) − f(y)|2

δ(x, y)1+2σ dμ(x)dμ(y) (6)

and

∑
h∈HQ

|〈f, h〉|2

μ(Q(h))2σ (7)

are equivalent for each cube Q in M with constants independent of Q.
Let us start by showing that the double integral in (6) is bounded by the sum (7). Let (Fn) be an 

increasing sequence of finite subfamilies of HQ that covers HQ. In other words Fn ⊆ Fn+1 and HQ =⋃
n Fn. Let fn =

∑
h∈Fn

〈fχQ, h〉h. Since fn converge pointwise almost everywhere for x in Q to f(x), 
then we have that |fn(x) − fn(y)| → |f(x) − f(y)| as n → ∞ for y ∈ Q also. Hence from Fatou’s lemma 
and Lemma 7 ∫∫

Q×Q

|f(x) − f(y)|2

δ(x, y)1+2σ dμ(x)dμ(y) =
∫∫

Q×Q

lim
n→∞

|fn(x) − fn(y)|2

δ(x, y)1+2σ dμ(x)dμ(y)

≤ lim inf
n→∞

∫∫ |fn(x) − fn(y)|2

δ(x, y)1+2σ dμ(x)dμ(y)

Q×Q
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≤ C lim inf
n→∞

∑
h∈HQ

|〈fn, h〉|2

μ(Q(h))2σ

≤ C
∑

h∈HQ

|〈f, h〉|2

μ(Q(h))2σ .

To prove the converse we shall argue by duality. Take b = {bh : h ∈ HQ} a sequence of scalars indexed 
on HQ with bh = 0 except for a finite number of h ∈ HQ. Assume that 

∑
h∈HQ

|bh|2 ≤ 1. Set ψ =∑
h∈HQ

bhν(h, h)−1/2h ∈ S(HQ). So that from Lemma 9,∑
h∈HQ

〈f, h〉 ν(h, h)
1
2 bh =

∑
h∈HQ

〈f, h〉 〈ψ, h〉 ν(h, h)

=
∫∫

Q×Q

(f(x) − f(y))(ψ(x) − ψ(y))
δ(x, y)1+2σ dμ(x)dμ(y)

≤

⎛⎝ ∫∫
Q×Q

|f(x) − f(y)|2

δ(x, y)1+2σ dμ(x)dμ(y)

⎞⎠
1
2

×

⎛⎝ ∫∫
Q×Q

|ψ(x) − ψ(y)|2

δ(x, y)1+2σ dμ(x)dμ(y)

⎞⎠
1
2

.

Notice that from Lemma 7 and Lemma 6 we have,∫∫
Q×Q

|ψ(x) − ψ(y)|2

δ(x, y)1+2σ dμ(x)dμ(y) ≤ C
∑

h∈HQ

|〈ψ, h〉|2

μ(Q(h))2σ

≤ C
∑

h∈HQ

|bh|2
⎡⎣ν(h, h)−

1
2

μ(Q(h))σ

⎤⎦2

≤ C.

Hence ∣∣∣∣∣∣
∑

h∈HQ

〈f, h〉 ν(h, h)
1
2 bh

∣∣∣∣∣∣ ≤ C

⎛⎝ ∫∫
Q×Q

|f(x) − f(y)|2

δ(x, y)1+2σ dμ(x)dμ(y)

⎞⎠
1
2

,

so that ⎛⎝ ∑
h∈HQ

|〈f, h〉|2 ν(h, h)

⎞⎠
1
2

≤ C

⎛⎝ ∫∫
Q×Q

|f(x) − f(y)|2

δ(x, y)1+2σ dμ(x)dμ(y)

⎞⎠
1
2

or ⎛⎝ ∑
h∈HQ

|〈f, h〉|2

μ(Q(h))2σ

⎞⎠
1
2

≤ C

⎛⎝ ∫∫
Q×Q

|f(x) − f(y)|2

δ(x, y)1+2σ dμ(x)dμ(y)

⎞⎠
1
2

as desired.
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3. Proofs of Theorems 3 and 4

Before starting to prove the main results, let us mention that from the result of the previous section the 
Sobolev type condition required in [1, Theorem 4.1] is the same as our current hypothesis f ∈ Bλ

2 (X, δ, μ)
when p = 2. Then for any function f ∈ Bσ

2 (X, δ, μ) we can write

Dσf(x) =
∑
h∈H

mhμ(Q(h))−σ 〈f, h〉h(x),

where the series converges in L2(X, μ).

Proof of Theorem 3. From Theorem 5 we see that for each t > 0, u(t) defined in (3) belongs to Bλ
2 (X, δ, μ), 

since u0 ∈ Bλ
2 (X, δ, μ). Moreover, for t, s ≥ 0,

‖u(t) − u(s)‖2
Bλ

2 (X,δ,μ) =

∥∥∥∥∥ ∑
h∈H

(
eitmhμ(Q(h))−β − eismhμ(Q(h))−β

)
〈u0, h〉h

∥∥∥∥∥
2

Bλ
2 (X,δ,μ)

=
∑
h∈H

∣∣∣eitmhμ(Q(h))−β − eismhμ(Q(h))−β
∣∣∣2 |〈u0, h〉|2

+
∑
h∈H

∣∣∣eitmhμ(Q(h))−β − eismhμ(Q(h))−β
∣∣∣2 |〈u0, h〉|2

μ(Q(h))2λ .

In order to see that both series above tend to zero as s → t, for each positive ε we can take a finite subfamily 
F of H such that ∑

h∈H \F

|〈u0, h〉|2
(
1 + μ(Q(h))−2λ) < ε.

For the sums on F we can argue with the continuity of the complex exponential.
Let us prove that the formal derivative of u(t) is actually the derivative in the sense of Bλ−β

2 (X, δ, μ). In 
fact, for t > 0 and τ small enough,

∥∥∥∥∥u(t + τ) − u(t)
τ

− i
∑
h∈H

eitmhμ(Q(h))−β

μ(Q(h))−β 〈u0, h〉h
∥∥∥∥∥

2

Bλ−β
2 (X,δ,μ)

=

∥∥∥∥∥ ∑
h∈H

eitmhμ(Q(h))−β

[
eiτmhμ(Q(h))−β − 1

τ
− iμ(Q(h))−β

]
〈u0, h〉h

∥∥∥∥∥
2

Bλ−β
2 (X,δ,μ)

≤ C

⎧⎨⎩
∥∥∥∥∥ ∑
h∈H

eitmhμ(Q(h))−β

[
eiτmhμ(Q(h))−β − 1

τ
− iμ(Q(h))−β

]
〈u0, h〉h

∥∥∥∥∥
2

L2

+
∑
h∈H

∣∣∣∣∣eiτmhμ(Q(h))−β − 1
τ

− iμ(Q(h))−β

∣∣∣∣∣
2

|〈u0, h〉|2

μ(Q(h))2(λ−β)

⎫⎬⎭
≤ C

∑
h∈H

μ(Q(h))2β
∣∣∣∣∣eiτmhμ(Q(h))−β − 1

τ
− iμ(Q(h))−β

∣∣∣∣∣
2

|〈u0, h〉|2

μ(Q(h))2λ .
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Since, from Theorem 5, 
∑

h∈H
|〈u0,h〉|2
μ(Q(h))2λ < ∞ and

μ(Q(h))2β
∣∣∣∣∣eiτmhμ(Q(h))−β − 1

τ
− iμ(Q(h))−β

∣∣∣∣∣
2

=

∣∣∣∣∣eiτmhμ(Q(h))−β − 1
μ(Q(h))−βτ

− i

∣∣∣∣∣
2

tends to zero as τ → 0 for each h ∈ H , arguing as before we obtain the result.
On the other hand since u(t) ∈ Bλ

2 (X, δ, μ) and since λ > β, Dβu(t) is well defined and it is given by

Dβu(t) = Dβ

( ∑
h∈H

eitmhμ(Q(h))−β 〈u0, h〉h
)

=
∑
h∈H

eitmhμ(Q(h))−β

μ(Q(h))−β 〈u0, h〉h = −i
du

dt
.

Hence u(t) is a solution of the nonlocal equation and (3.b) is proved. �
Before proving Theorem 4 we shall obtain some basic maximal estimates involved in the proofs of (4.a)

and (4.b). With Mdy we denote the Hardy–Littlewood dyadic maximal operator given by

Mdyf(x) = sup 1
μ(Q)

∫
Q

|f(y)| dμ(y)

where the supremum is taken on the family of all dyadic cubes Q ∈ D for which x ∈ Q. Calderón’s dyadic 
maximal operator of order λ is defined by

M#
λ,dyf(x) = sup 1

μ(Q)1+λ

∫
Q

|f(y) − f(x)| dμ(y),

where the supremum is taken on the family of all dyadic cubes Q of X such that x ∈ Q. The following 
lemma can be seen as an extension of a result by DeVore and Sharpley in [10, Corollary 11.6].

Lemma 13. If f ∈ Bλ
2 (X, δ, μ), then 

∥∥∥M#
λ,dyf

∥∥∥
L2

≤ ‖f‖Bλ
2
.

Proof. Let Q ∈ D and x ∈ Q be given. Applying Schwarz’s inequality, since δ(x, y) ≤ μ(Q) for y ∈ Q, we 
have

1
μ(Q)1+λ

∫
Q

|f(y) − f(x)| dμ(y) ≤ 1
μ(Q)1+λ

⎛⎝∫
Q

|f(y) − f(x)|2 dμ(y)

⎞⎠
1
2

μ(Q)
1
2

≤

⎛⎝ 1
μ(Q)1+2λ

∫
Q

|f(y) − f(x)|2 dμ(y)

⎞⎠
1
2

≤

⎛⎝∫
X

|f(y) − f(x)|2

δ(x, y)1+2λ dμ(y)

⎞⎠
1
2

.
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In this section we shall need a better description of the structure of H in terms of scales. As we said 
before Dj denotes the dyadic sets at the scale j ∈ Z. With H j we denote the Haar wavelets which are 
based in the cubes of Dj for j a fixed integer. Since from our construction of the Haar system we have that

Vj+1 = Vj ⊕Wj ,

then H j is an orthonormal basis for Wj . Hence, for N > 0, VN+1 = V0 ⊕ W0 ⊕ . . . ⊕ WN . So that, for 
P0f = 0, the projection of f onto VN+1 is given by

PN+1f =
N∑
j=0

Qjf,

where Qj is the projector onto Wj , precisely

Qjf =
∑

h∈H j

〈f, h〉h.

As it is easy to see, since VN+1 is the space of those L2 functions on X which are constant on each cube of 
DN+1, |PN+1f(x)| ≤ Mdyf(x), pointwise.

Let us next introduce two maximal operators related to the series (3). For fixed t > 0 set

S∗t f(x) = sup
N∈N

∣∣SN
t f(x)

∣∣
with

SN
t f(x) =

N∑
j=0

∑
h∈H j

e−itmhμ(Q(h))−β 〈f, h〉h(x).

Set

S∗f(x) = sup
0<t<1

S∗t f(x).

Lemma 14. Let f ∈ Bλ
2 (X, δ, μ) with 0 < β < λ < 1 and P0f = 0. Then, the inequalities

(14.a) S∗t f(x) ≤ CtM#
λ,dyf(x) + 2Mdyf(x) for t ≥ 0 and x ∈ X;

(14.b) S∗f(x) ≤ CM#
λ,dyf(x) + 2Mdyf(x) for x ∈ X;

(14.c)
∥∥S∗f∥∥

L2 ≤ C ‖f‖Bλ
2 (X,δ,μ),

hold for some constant C which does not depend on f .

Proof. For f ∈ Bλ
2 (X, δ, μ), t ≥ 0 and N ∈ N, we have∣∣SN

t f(x)
∣∣ ≤ ∣∣SN

t f(x) − SN
0 f(x)

∣∣ +
∣∣SN

0 f(x)
∣∣ . (8)

Since SN
0 f(x) = PNf(x), we have supN

∣∣SN
0 f(x)

∣∣ ≤ Mdyf(x). Let us now estimate the first term on the 
right hand side of (8). Let Q(j, x) be the only cube Q in Dj for which x ∈ Q. Let H (j, x) be the set of all 
the wavelets based on Q(j, x). Recall that #(H (j, x)) is bounded by a purely geometric constant. Then
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∣∣SN
t f(x) − SN

0 f(x)
∣∣ =

∣∣∣∣∣∣
N∑
j=0

∑
h∈H (j,x)

[
e−itmhμ(Q(j,x))−β − 1

]
〈f, h〉h(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
N∑
j=0

∑
h∈H (j,x)

[
e−itmhμ(Q(j,x))−β − 1

] ∫
Q(j,x)

(f(y) − f(x))h(y)dμ(y)h(x)

∣∣∣∣∣∣∣
= C t

N∑
j=0

∑
h∈H (j,x)

∣∣∣e−itmhμ(Q(j,x))−β − 1
∣∣∣

mhtμ(Q(j, x))−λ

1
μ(Q(j, x))1+λ

∫
Q(j,x)

|f(y) − f(x)| dμ(y)

≤ C t
N∑
j=0

μ(Q(j, x))λ−βM#
λ,dyf(x)

≤ C̃ tM#
λ,dyf(x)

and (14.a) is proved. Since t < 1, (14.b) follows. And applying Lemma 13 we get (14.c). �
Proof of Theorem 4. Since for each Q ∈ D we have that XQ belongs to Lip(X, δ), in fact |XQ(x) −XQ(y)| ≤
δ(x,y)
μ(Q) , then S(H ) is a dense subspace of L2(X, μ) such that SN

t g(x) converges as N → ∞ for every x ∈ X

and every t ≥ 0. From Lemmas 13, 14, and the above remark the result of Theorem 4 follows the standard 
argument of pointwise convergence (see [4]). �

Let us finally illustrate the above result in the Sierpinski triangle. Set S to denote the Sierpinski triangle 
in R2 equipped with the normalized Hausdorff measure Hs of order s = log 3

log 2 . For each positive integer j, 
the set S can be written as the union of 3j translations of the contraction of S by a factor 3−j , with respect 
to any one of the three vertices of the convex hull of S. Except for sets of Hs measure zero this covering 
of S is disjoint. Each one of these disjoint pieces is denoted by T j

k , k = 1, . . . , 3j . We shall also write T 0
1 to 

denote S. Set Dj to denote the family {T j
k : k = 1, . . . , 3j} and D = ∪j≥0D

j . Notice that Hs(T j
k ) = 3−j .

For each j and each k = 1, . . . , 3j we have that T j
k contains and is covered by exactly three pieces T j+1

k1
, 

T j+1
k2

, T j+1
k3

of the generation j + 1. In order to abbreviate the notation, given T ∈ D we write T (1), T (2)
and T (3) to denote these pieces of T . The three dimensional space of all functions defined in T which are 
constant on T (1), T (2) and T (3) has as a basis 

{
XT ,XT (1),XT (2)

}
. By orthonormalization of this basis 

with the inner product of L2(S, dHs) keeping 3j/2XT , T ∈ Dj , we get two other functions h1
T and h2

T such 
that 

{
3j/2XT , h

1
T , h

2
T

}
is an orthonormal basis for that 3-dimensional space. From the self similarity of our 

setting, we can take h1
T and h2

T as the corresponding scalings and translations of those associated to T 0
1 . If

h1
T 0

1
(x) =

√
3
2
(
XT (1) −XT (2)

)
,

h2
T 0

1
(x) = 1√

2

(
XT (1) + XT (2) − 2XT (3)

)
,

then

h1
T j
k

(x) = 3
j
2
√

3
2

(
XT j

k (1) −XT j
k (2)

)
and

h2
T j
k

(x) = 3
j
2 1√

2

(
XT j

k (1) + XT j
k (2) − 2XT j

k (3)

)
.

The system H of all these functions h is an orthonormal basis for the subspace of L2(S, dHs) of those 
functions with vanishing mean. Or, equivalently, the system H ∪{1} is an orthonormal basis for L2(S, dHs).
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For a given h in H we shall use T (h) to denote the triangle in which h is based, i.e. h = hi
T for i = 1 or 

i = 2. For each T ∈ D there are exactly two wavelets h ∈ H based on T .
The function δ(x, y) = min{Hs(T ) : T ∈ D such that x, y ∈ T} is a distance on S provided we agree at 

defining δ(x, x) = 0.
Set j(h) to denote the integer j such that T (h) ∈ Dj . From Lemma 2 for 0 < β < 1 we have that each 

h ∈ H is an eigenfunction with eigenvalue mβ3j(h)β of the dyadic fractional differential operator

Dβg(x) =
∫
S

g(x) − g(y)
δ(x, y)1+β

dHs(y),

where the constant mβ = 1 + 1
2

1
3β−1 is independent of h.

Our main results throughout this paper applied to the particular setting S read as follows.

Corollary 15. Let f be an L2(S, dHs) function with vanishing mean such that

∫∫
S×S

|f(x) − f(y)|2

δ(x, y)1+2λ dHs(x)dHs(y) < ∞

for some λ > β > 0. Then, the wave function

u(x, t) =
∑
h∈H

e−itmβ3j(h)β 〈f, h〉h(x),

solves the Schrödinger type problem⎧⎪⎨⎪⎩
i
∂u

∂t
= Dβu, x ∈ S, t > 0,

lim
t→0+

u(x, t) = f(x), for Hs-almost every x ∈ S.
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