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1. Introduction

Topological entropy, which describes the complexity of a system, plays an important role in topological
dynamical systems. It was first induced by Adler, Konheim and McAndrew [1] as an invariant of topological
conjugacy. Later, Bowen [4] and Dinaburg [7] gave equivalent definitions of topological entropy in a metric
space not necessarily compact. Bowen [5] gave a definition of topological entropy for subsets of a compact
space in a way which resembles Hausdorfl dimension. Later, some researchers tried to find some suitable
generalizations of topological entropy for other systems. Friedland [8] gave a survey of entropies for graphs,
semigroups and groups, and gave some examples for these entropies. Ghys, Langevin, Walczak and Przytycki
[9,12,13] gave the notions of entropy in various abstract topological settings, and studied the relationships
between them. Mihailescu and Urbanski [16,17] gave the notion of inverse topological entropy and some
applications to dimension estimates. Nitecki [18] introduced definitions of various notions of topological
entropy and their relations to preimage sets. Kolyada and Snoha [11] introduced the topological entropy
of nonautonomous dynamical systems and Zhu, Liu, Xu and Zhang [23] studied some more properties of
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this case of topological entropy. Stepin and Tagi-Zade [19] introduced the notion of the topological entropy
for amenable group actions and studied some properties of this topological entropy. Bi§ [2] proposed the
notion of topological entropy of a semigroup of finite continuous maps and this case of topological entropy
was studied by Bi§ and Urbanski [3], Ma and Wu [15], Ma and Liu [14] and Wang and Ma [21]. Bufetov [6]
defined the notion of the topological entropy of free semigroup actions in a different way and identified this
notion of topological entropy with fiber entropy of a certain skew-product transformation. Recently, Tang,
Li and Cheng [20] gave an equivalent definition of Bufetov’s topological entropy [6] by using open cover and
some properties.

Wang and Ma [21] extended the notion of the topological entropy defined by Bi§ [2] to the case of a
semigroup of continuous maps on a metric space not necessarily compact. Similar to [21], in the present
paper, we extend the notion of the topological entropy defined by Bufetov [6] to the topological entropy of
a free semigroup action generated with m generators of uniformly continuous maps on a metric space not
necessarily compact, give some properties of this topological entropy, study its relation with the topological
entropy of a skew-product transformation, extend the main results of Bufetov [6], and estimate the bounds
of the extended topological entropy for some particular systems, such as a free semigroup with m generators
of smooth maps on a Riemannian manifold, and affine transformations on p-dimensional torus.

This paper is organized as follows. In section 2, we give some preliminaries. In section 3, we give the
definitions of a free semigroup action generated with m generators of uniformly continuous maps on a
metric space not necessarily compact and give some fundamental properties of them which are useful to
calculate them. In section 4, we extend the topological analogue of the classical Abramov—Rokhlin formula
for the entropy of a skew product transformations with respect to a metric space not necessarily compact.
In section 5, we estimate the bounds of the topological entropy for some particular systems, such as a free
semigroup with m generators of smooth maps on a Riemannian manifold and affine transformations on
p-dimensional torus.

2. Preliminaries

Let F} be the set of all finite words of symbols 0,1,--- ,m — 1. For every w € F,}, |w| denotes the length
of w, i.e., the number of symbols in w. If w,w’ € F}, define ww’ to be the word obtained by writing w’
to the right of w. With respect to this law of composition, F) is a free semigroup with m generators. We
write w < w' if there exists a word w’’ such that w’ = w"w.

Ifwe Fl, w=wws---wy where w; € {0,1,--- ,m —1} forall i = 1,2,--- ,k, let fu, = fu, fun =" fun.-
Obviously, fuw = fuwfw for any w' € Fb.

Denote by X, the set of all two-side infinite sequences of symbols 0,1,...,m — 1, that is,

Ym={w=(..,w_1,wo,w1,...)|w; =0,1,...,m —1 for all integer i}.
A metric on Y, is introduced by setting
d(w,w') = 1/2%, where k = inf{|n| : w, # w}.

Obviously, ¥, is compact with respect to this metric. The Bernoulli shift o, : ¥,, — X,, is a homeo-
morphism of ¥, given by the formula:

(me)i = Wi+1-

Assume that w € X,,,w € F,}, a,b are integers, and a < b. We write w|[a’b] =wifw = weWet1 ... Wp—1Wp.
Let X be a compact metric space with metric d, and fo, f1,--- , fmm—1 be continuous maps of X into itself.
Then there is a free semigroup with m generators fo, f1, -, fm—1 acting on X.



Y. Wang et al. / J. Math. Anal. Appl. 435 (2016) 1573-1590 1575

For every w € F,, define a metric d,, on X by

dw (1, 22) = max d(fu (21), fur (22)), Vo1, 22 € X.

w!' <w

Obviously, if w < w’', then dy, (21, x2) < dy (21, 22).

A subset F' of X is said to be a (w,¢€, fo, -, fm—1)-separated set of X, if z,y € F, x # y implies
dy(z,y) > €. Define Ngep(w, €, fo,-- -, fm—1) to be the largest cardinality of any (w, €, fo,- - , fm—1)-separ-
ated set of X. Since X is compact with respect to the metric dy,, Neep(w, €, fo, -+, fm—1) is a finite number.

A subset F of X is called a (w,¢, fo, -+, fm—1)-spanning set of X if for every x € X there ex-
ists y € E such that dy(z,y) < e. Let Nypan(w, €, fo, -+, fm—1) denote the smallest cardinality of any
(w, €, fo, -+, fm—1)-spanning sets of X.

In [6], Bufetov defined

1
Nspan(n,€7f0,"’ afm—l) = W Z Nspan(w7€’f07"' 7fm—1)a

|w|=n

Nsep(naevf()a" 7fm 1 - Z Nsep w Eaf(),"‘ 7fm—1)7

|'w|—n

and also defined the topological entropy of a semigroup action by the formula

h(fO"" 7fm 1) - lln(l)hmsul) logNspan(n €, an"' 7.fm—1)

n— oo

= lim hmsup log Noep (1, €, fo, -+ 5 fm—1)-

=0 pooco

Observe that for m = 1, this definition coincides with Bowen’s definition [4,22].

Remark 2.1. It’s obvious that h(fo, -, fin—1) is less than or equal to the topological entropy of the semi-
group generated by G; = {idx, fo," -, fm—1} defined by Bi$ [2].

3. Topological entropy and basic properties in the present paper

Let (X, d) be a metric space which is not necessarily comp act and uniformly continuous maps fo, f1,- -
fm—1 from X into itself.

Let K be a compact subset of X. For any w € F} and ¢ > 0, a subset £ C X is said to be a
(w,e, K, fo,++, fm—1)-spanning set of K, if for any = € K, there exists y € E such that d,(z,y) < e.
Define Nypan(w, €, K, fo, -+, fm—1) to be the smallest cardinality of any (w,e€, K, fo, -, fm—1)-spanning
sets of K. A subset FF C K is said to be a (w,¢, K, fo, -, fm—1)-separated set of K, if z,y € F,
r # y implies dy(x,y) > €. Let Ngp(w,€, K, fo, -+, fm—1) denote the largest cardinality of any
(w,e, K, fo, -, fm—1)-separated sets of K.

For any n > 1, let

)

1
NSPaH(n767K7an"' 7fm—1) = W Z Nspan(wveaK7f07"' 7fm—1)7 (31)
|lw|=n
Nscp(naeaKaan" ;fm 1 = Z Nscp w, €, K an"' 7fm—1)~ (32)
|w|—n

Obviously,
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€
Nspan(wa §7K7 f07" : 7fm—1) 2 Nsep(waeaKa fO?"' 7fm—l) Z Nspan(w765K7 fO)"' 7fm—1)7

hence,

€
Nspan(ny 57 K; an te 7fm—1) > J\fsep(na G,K, f07 t 7fm—1) > Afspan(”a G,K, f07 t 7fm—1)- (33)
Thus we give the following definition.

Definition 3.1. Let (X, d) be a metric space which is not necessarily compact, fo, f1, -, fm—1 uniformly
continuous transformations from X into itself, and K a compact subset of X. Define

H(va()a"' afm71> = li_rf(l)Nspan(eaK7f07"' 7fm71) = li_rf(l)Nsep(evaan"' 7fm71)a

where

. 1
Nspan(evKu f07' o 7fm71) = hmsup_lOgNspan(naeaKv f07 T 7fm71)7

n—oo N

and

. 1
Neep(€, K, fo,- -+, fm—1) = limsup — log Neep(n, €, K, fo, -+, fn—1).

n—oo N

Thus, we can define the topological entropy of X with respect to the semigroup with m generators

Jos f1,+, fm—1 by
H(fO)"' 7fm—1) = SUP{H(Ka fO)"' 7fm—1) K g X is compact}.

Remark 3.2. (1) If m = 1 and f is a uniformly continuous map of X, then the new definition of topological
entropy generated by f is the same as the topological entropy of f defined by Bowen [4], we denote this
topological entropy by h(f).

(2) If X is compact, then h(fo, -, fm-1) = H(X, fo, -+, fm—-1) = H(fo, -+, fm—1). Thus the new
definition of topological entropy of a free semigroup actions is the same as the topological entropy defined
by Bufetov [6]. We write Hy(fo, -, fm-1), Ha(K, fo, -, fm—1) respectively to emphasize d if we need to.

(3) It’s obvious that H(fo, -, fin—1) is less than or equal to the topological entropy of the semigroup
generated by G1 = {idx, fo, -+, fm—1} defined by Wang and Ma [21].

Example 3.3. Let (X, d) be a metric space which is not necessarily compact, fo,-- -, frm—1 uniformly con-
tinuous transformations from X to itself. Denote G the semigroup with m generators fo, -, frn—1 acting
on X. If the family G are equicontinuous, then Hg(fo, -+, fm—1) = 0.

Proof. For any € > 0, there exists § > 0 such that for any x,y € X if d(z,y) < ¢ then
d(f(z), f(y)) < € Vf € G. For any compact subset K of X, there exists M > 0 such that for
any w € E}, Nepan(w,6, K, fo, -, fm—1) < M and then Ngpan(n,e, K, fo, -, fm—1) < M. Thus
Nepan(€, K, fo,- -+, fm=1) = 0. Therefore Hy(K, fo, -, fm—1) = 0. Moreover, we have Hg(fo, -,
fm-1)=0. O

Definition 3.4. Let X be a metric space, d and d’ the two metrics on X. We say d and d’ are uniformly
equivalent if idy : (X,d) — (X,d’) and idx : (X,d’) — (X, d) are both uniformly continuous.
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Theorem 3.5. Let (X, d) be a metric space, fo, -+, fm—1 uniformly continuous transformations from X to
itself. If d and d' are uniformly equivalent, then

Ha(fo, s fm—1) = Har(fo, 5 frn—1)-

Proof. Let e; > 0, choose €2 > 0 such that d’'(z,y) < e; implies d(z,y) < €1 for any z,y € X. Choose €3 > 0
such that d(z,y) < e3 implies d’'(z,y) < € for every x,y € X.
For any compact subset K in X and w € F,}, we have

Nspan(w7€17K7 an"' a.fm,—lad) S Nspan(w7627Ka an"' 7fm—ladl)

and
Nipan(w, €2, K, fo, -+, fm-1,d") < Nepan(w, €3, K, fo, -+, fm—1,4d).
Hence
Npan(n, €1, K, fo, -+, fm—1,d) < Nepan(n, €2, K, fo, -+, fn—1,d’)
< Npan(n, €3, K, fo, -+, fm—1,d).
Moreover,

Nspan(elaK» an'" 7fm717d) S Nspan(627K7 an"' 7fm717dl)
< Nspan(GSuKa fOu' T 7fm71>d)‘

If e, — 0, then e — 0 and e3 — 0, so we have Hy(K, fo, -+, f-1) = Ha (K, fo, -+, fm—1). Therefore we
have Hd(fo;"' a.f—l):Hd'(an"' afnb—l)- O

Remark 3.6. If X is compact and if d and d’' are equivalent metrics, then they are uniformly equivalent.
Moreover, each continuous map f : X — X is uniformly continuous. Therefore, if X is a compact metrizable
space, the entropy of fo,- -+, firn—1 does not rely on the metric chosen on X (provided that metric induces
the topology of X).

Theorem 3.7. Let (X,d) be a metric space, and fo, - , fm—1 uniformly continuous transformations from
X to itself. Let & > 0. In order to compute H(fo, -, fm—1), it suffices to take the supremum of
H(K, fo, -+, fm—1) over those compact sets of diameter less than 4.

Proof. The proof follows [22] and [21] and is omitted. O

Theorem 3.8. Let (X;,d;)(i = 1,2) be a metric space. Let F(V) = {fél)7 e vfr(nl)q} be a set of finite uniformly
continuous maps on Xy, and F?) = {féQ),~~ , ,22_)1} a set of finite uniformly continuous maps on Xs.
Let FO x FO = {(f x 9)o, -+, (f X Q)mr_1}, where (f x g)i € {f xg: f € FV g € FO}, and
(f x g)(z1,22) = (f(z1),9(x2)) for any f x g € FU x F@ and x1 € Xy,79 € Xo. A metric d on the

product space X1 X Xo is given by d((x1,z2), (y1,y2)) = max{dy(z1,y1),d2(z2,y2)}. Then
Ha(FV x F) < Hg, (FO) + Ha, (F),

If X1 is compact and Hdl(}"(l)) = lim.,oliminf, %Nsep(n,e,Xl,}"(l)) or Xo is compact and
Hy, (F®) = lim. o liminf,, o0 2 Nyep(n, €, X2, F?)), then

n

Hy(FY x FO) = Hy (FO) 4 Hy, (FP).
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Proof. Firstly, FO x F@ is a set of finite uniformly continuous transformations on X; x X,. For any

vV =u- n € FT, . there exist unique wl) = w(l) . ,(11) IS F+ and unique w® = wgz) 5,2) IS F]j

mk?
such that (f X Gy, = f( o X f((z) for any 1 < i <mn and thus (f x g), = f( 1y X 1(1)2()2) On the other hand,
if w(l) = wgl) = FJr w(z) = (2) w € F,j, there exists unique v = vy ---v,, € F.', such that

f 0 xf(@) = (f X g),, for any 1 <z<nand thusf ) Xfw@) = (f X g),. Thus for any n > 1, the map

v (w(l) w(2)) is a one-to-one correspondence.

Let K; C X; be compact, ¢ = 1,2. For any ¢ > 0 and n > 1 and wl) = w§1)~-~w,(11) S Fﬁ,; and
w® = w£2) x ~w£12) € F,j, if Fjis a (w?, e, K;, F@)-spanning set of K, then for any (z1,22) € K1 x K»
there exist y; € Fy and yo € Fy such that d,o) (z1,y1) < € and d, @) (z2,y2) < €. Moreover, there exists
v=uvi---v, € FF such that (f x g), f( 1)><f((2) So for any v/ = v -+ v, and 1 < k < n, we have

d((f % g)v (21, 22), (f X 9)ur (y1,92))
2 1 2
= d((fy0. 0 @ S @) (L0 01) T (2))
2

= max(d; (fwll(c)l)“.wsll) (z1), fi)li)l)_“wg) (1)), dQ(ff,(jz)---wf) (z2), fij,(jz)---wﬁf) (y2)))

<e.
Therefore Fy x Fy is a (v, €, K1 X Ky, FO x .F(Q))—spanning set of K1 x K5. So

Nspan(V,EaKl X K27]:(1) X J—"(Q)) < Nspan(w(1)7€7K1af(1)) . Nspan(w(Q)a67K2af(2))v
and thus
Hy(K, x K2 FO % ]—'(2))

= lim hmsup log » Z Nspan v,e, K1 X Ko, f(l) X .7:(2))}

e=0 p 300 N (mk =
ro1
< iy o8 [T 57 (Mo 00,3, 70) - Nt 8, 7))

_hmhmsupnbg ( 3" Nopan(w eKl,]-'(l)) ( > Nepan(w ,e,Kg,f(m)”

e—0
nTreo [w @) |=n w2 |=n

< Hg, (K1, FO) + Hy, (Ko, FP).

Let m; : X1 X X9 — X, be the projection map, ¢ = 1,2. If K is a compact subset of X; x X5, then
K; = m(K) and Ky = ma(K) are compact and K C K7 x Ks. Hence

Hy(K, FY x FO) < Hy(K) x Ko, FO x FO),
Therefore

Hy(FM x F®)y = sup  Hy(K,FV x F@)
KCX1XXg
compact

< sup Hy(Kp x Ko, FO x F2)
K1CXq
KoCXo
compact
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< sup (Hg, (K1, FO) + Hy, (Ko, FP))

Ki1CXq
KoCXo
compact
1 2
< sup Hg, (K1, FY)+ sup Hy, (Ko, FP)
KiCXy KoCXo
compact compact

= Hdl (‘7:(1)) + Hdz(f(2))'

Now suppose X7 is compact. (The proof is similar if X is not compact but X5 is compact.) Since any
compact subset of X; x X5 is a subset of X; x K5 for some compact subset Ko of X5, we have

Hd(}"(l) X ]-"(2)) = sup{Hq(X1 x KQ,]-"(U X ]-"(2)) : K5 is a compact subset of X5}.

Let K5 be a compact subset of X5, § > 0, and v € F;“k. There exist w) e Fb and w® e F,j such that
(fxg), = fw(l) X f( - 1fErisa (w6, X1, FV)-separated set of X; and Ey is a (w?), 8, Ky, F®))-separ-
ated set of Ky, then Ey x Ey is a (v, 0, X7 X Ko, F x f(2))—separated set of X1 x K5. Therefore

J\fsep(ya 53 Xl X KQa-F(l) X -F(2)) Z J\fsep( @) 5 X17-F(1 ) %ep(w( 57K23f(2))
and so
Neep (4, X1 x Ko, f<1> x F2))

= limsup — log

W) 7@
msup (mk) > Noep(v,6, X1 x K, FO x F)]

lv|=n

F 1
> limsup ~ log [ —— 3 (Neep (@, 6, X1, FV) - Noag (), 6, K3, F) )|

n—soo M L(mk) o
1 1
=i Liog [(= Neep(w®, 6, X, FOY) - (= Neep(w?, 8, Ko, F?
lgso%p n 08 (m" Iwg_n p(w, 0. X1, )) (k;n lw;_n p(w'™, 0, Ks, ))}

> hmlnf—logNsep(n 0, Xh]:(l)) + lim sup — logNsep(n 0, Ko, ]-'(2))

n—oo n—00

According to the condition we give, letting 6 — 0, we have
Hy(FY x FO) > Hy (FO) + Hyy(FP). O

Remark 3.9. Let m = 1 and f; : X; — X; (¢ = 1,2) a uniformly continuous map of a non-compact metric
space (X;,d;). P. Hulse [10] obtained an example that Hy(f1 X f2) < Ha, (f1) + Ha, (f2)-

4. Relationship between the topological entropy of a skew-product transformation and the topological
entropy of a free semigroup action

Let (X, d) be a metric space which is not necessarily compact, suppose a free semigroup with m generators
acts on X, the generators are uniformly continuous transformations fo, f1,- -, fmm—1 of X.
To this action, a skew-product transformation F': X, x X — X, X X is defined by the formula

F(w>x) = (Umwvfwo (93)),

where w = (+++ ,w_1,wp, w1, ). Here f,, stands for fy if wg = 0, and for f; if wy = 1, and so on. For
w =1y iy € Ff, denote w =i ---i1. Let w = (-++ ,w_1,wp, w1, ) € Xy, then
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Fn(w7x) = (ngw’ fwnflfwnf2 e fwo ($))
= (omws [ (@)

Our purpose is to find the relationship between the topological entropy h(F) of a skew-product trans-
formation and the topological entropy H(fo,- -, fm—1) of a semigroup action, where h(F) denotes the
topological entropy defined by Bowen [4,22].

Theorem 4.1. The topological entropy of the skew product transformation F satisfies
hp(F) =logm + Ha(fo."+ , fm—1), (4.1)
where the metric D on X, X X is defined as
D((w, ), (W', z)) = max(d' (w,w’),d(z, "))
and the metric d' on X, is introduced by setting d'(w,w’) = 1/2%, and k = inf{|n| : w, # ' }.

Remark 4.2. Recall that h(o,,) = logm, where h(o,,) denotes the topological entropy of o, in symbol
space .

The proof of this theorem is as analogous as that of Bufetov [6]. We first give the following two lemmas.

1

Lemma 4.3. For any compact subset E of X, n>1 and 0 < e < 5, we need to prove

27
Nsep(na €, Em X E,F) Z Z Nsep(wa €, Ev f07 e 7fm71)~ (42)

|lw|=n
Proof. Let N = m". There are N distinct words of length n in F}. Denote them as wy,ws, -+ ,wy. For

each 1 <i < N, choose w(i) € X, such that w(i)|jp,,—1] = w;. It is obvious that for 0 < ¢ < % the subset
{w@@) :i=1,2,--- ,N} is a (n, €, 0, )-separated subset of X,,. Let N; = Nyep(W;, €, E, fo,- -+, fm—1) and
{ad xb, - ,wﬂvl} a (W, 6, E, fo, -+, fm—1)-separated set of E. Then the points

(w(i),z) €S x X, i=1,--- N, j=1,--- N

form a (n,e,%,, x E,F)-separated set of ¥,, x E, and the cardinality of this subset is exactly
Z\w|:n Neep(w, 6, E, fo,- -+, fm—1). So the inequality (4.2) is proved. O

Lemma 4.4. For any compact subset E of X, n > 1 and € > 0, we need to prove

Nspan(naeazm X E, F) S K(€)< Z Nspan(waeaEa an" ! 7fm—1))a (43)

|w|=n
where K (€) is a positive constant that depends only on e.

Proof. Let C(e) be a positive integer satisfying 27C <« < and N = m"2¢(), There are N

100

distinct words of length n + 2C(e) in F}. Denote them as wi, -+ ,wy. For each 1 < i < N,
choose w(i) € ¥, such that w|_c(e),ntrc(e—1) = wi. Obviously the subset {w(i) : i = 1,2,--- N}
is a (n,€,0p,)-spanning subset of X,,. Let w; = w(i)ljo,n—1), Bi = Nspan (W}, €, E, fo, -+, fm—1) and

{af,2h,- - 2’z } a (W}, €, E, fo, -+, fm—1)-spanning set of E. Then the points
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(w(i),z}) € B x X, i=1,---,N, j=1,---,B,

form a (n,e,%,, x E, F)-spanning set of ¥,, x F, and the cardinality of this subset is no greater than
K(€)(X2 1pj=n Nspan(w, €, E, fo," -+, fr—1)) where K(e) is a positive constant that depends only on €. So the
inequality (4.3) is proved. O

The proof of Theorem 4.1. From Lemma 4.3 we have for any compact subset F of X,
Nsep(n, €, X, X E,F) > m" - Nyep(n, €, E, fo, -+, fm—1),
and then obtain that
hp(F) > hp(Zm X E,F) > logm + Hy(E, fo, -+, fm—1)-
Then
hp(F) >logm+ Ha(fo, -+, fm-1)-
From Lemma 4.4 we have
Nepan(n, €, x EJF) < K(e)m"™ - Ngpan(n, €, E, fo, -+, fm—1)s
and hence
hp(E, x E,F) <logm+ Hy4(FE, fo, , fm—1) <logm + Haq(fo, ", frn—1)-
Since any compact subset of ¥, x X is a subset of 3, X F for some compact subset of £ C X, we have
hp(F) =sup{hp(Z,;, x E,F): E is a compact subset of X}.
Then
hp(F) <logm+ Ha(fo, -, fm—1),
and the proof is complete. 0O
Remark 4.5. If (X, d) is a compact metric space, Bufetov [6] proved that
hp(F) =logm + ha(fo, -, fm—1)- (4.4)
5. Some estimates of the topological entropies of free semigroup actions

In this section, we will give some estimates of the topological entropy defined by Bufetov [6] and the
topological entropy defined in section 3 of some particular systems.

Theorem 5.1. Let M be a p-dimensional Riemannian manifold and fo, f1,- -, fm—1 the C' maps on M,
then
1 m—1
Hy(fo, 5 fm-1) <lo (— max{1, sup ||dsf; p),
(fos++ s fm1) < log (— ; { xeMll fill})

where d denotes the metric on M induced by the Riemannian metric.
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Proof. Let a; = max{1,sup,cy, [|dsfil|}, 0 <i < m—1. For any w = wyws - - - w, € F}, by the mean-value
theorem

d(fuw, (@), fuw,(y)) < (sulla lda fu ) - d(z,y) < aw,d(z,y), Yo,y M, 1<i<n.
re

Suppose K is a compact subset of M. We shall select convenient charts on M that cover K. Let ||| - |||
denote the norm on R? given by

[l| w|||=max | u; | if w=(us,---,up) € RP
and let B(0,r) denote the open ball in R? with center 0 and radius r in this norm. Choose differentiable
maps ¢; : B(0,3) = M,1 < j < g, such that K C U‘;:l ©;(B(0,1)). Let b > 0 be so that d(p;(u), ¢;(v)) <
bl w—wv||],Yu,v € B(0,2),1 <j <gq.Forany § € (0,1), let
E(é) = {(tlé, s ,tpd) eRP:¢; € Z} N B(O,Q).

The cardinality of E(0) is at most (). Each point of B(0,2) is within distance & of a point of E(6).
Consider F(0) = q 195 (E(§)) This set is clearly a (w, ([T\—; @w,;)bd, fo," -+, fm—1) spanning set for K.

Given € > 0, put 5 = m, then
i=1
A(TT aw,)b\P L P r4b\P
NSpan(w7€aK7 an"' afm—l) S Q(%> = (Ha"wi) (?) q.
i=1
So
1 . P 4b\P
Nspan(naG,Ka an"' 7f’m71) S W Z (Hawi) (?) q
lwl=n =1
m—1
1 n 4\ P
= () (7)
m €
1=0
Moreover
1 m—1
lim sup — logNspan(n &K, fo, -y fm—1) <log (— af).
n—00 m =0
Letting € — 0 we have
1 m—1
Hd(K>f07"' 7fm71)§10g (E alp)
i=0
Then
1 m—1 1 m—1
Ha(fo,  » fme1) <1 (_ ):1 (— 1, dy fi p), O
alfor s fm1) < log ( — 2 ) =log G ; (max{ sup |dz f 1})
Example 5.2. Let M be a p-dimensional Riemannian manifold, fy, -, f;n—1 the Lipschitz maps with a

common Lipschitz constant L > 1. Applying Theorem 5.1,

Hy(fo, -+, fm—1) < plog L.
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Theorem 5.3. Let X be a compact metrizable group, Ag,--- ,Am_1 surjective endomorphisms of X and

ag, * ,am—1 € X. Let u denote the Haar measure on X and d a left-invariant metric on X. Then
h(Ag, -+, Am—1) = h(ag - Ao, ,am—1 - Am—1) and

o 1 1 1
h(AO, o 7Am—1) - ll‘%hrlzn—)Solip |:E 1og (W Z M(Dw(e,EaA(b e 71477L—1)))i|7

|lw|=n

(5.1)

where

Dw(ea€>A07 to 7Am*1) = ﬂ A;}(Bd(e76))

w!' <w

and e is the identity element of X and By(e,€) is the open ball with center e and radius € with respect to
the metric d.

Proof. Let g; = a; - A; for any 0 < i <m — 1. For any € > 0, w = iy ---i € F,}, and w’ = i;-- i), where
1 <1<k, Wang and Ma ([21], in the proof of Theorem 4.2) proved that

g;’le(gw’ (l‘), 6) = (Aiz 00 Aik)_le(ev €).
Puttlng Dw(l', €,90," " 7gm—1) = mw’gw g;/l(Bd(gw/ (13),6)), we have

Du(@,€,90, 1 gm-1) = [ gu’ (Balguw (x),€))

w’ <w

= m x- Ayl Ba(e,€)

w’ <w
—1
x- m A Ba(e,€)
w’ <w

= I'Dw(e,G,AQ,"' aAm—l)-

Consider a (w, €, go, - - , gm—1)-separated subset E of X with cardinality Nsep(w,€, g0, ; gm—1), then

€ €
U Dw(ﬂfa?go,'" 7gm—1) = U ’I"Dw(S,E,AQ,"' ,Am—l)
zeE el

is a disjoint union since E is a separated subset of X. Therefore

€
Nsep(wa €,90," " 5gm—l) : N(Dw(ea 57 A07 e 7Am—1)) S 1.

Thus
Naop ) < L
sep\W, €, 90, s Gm—1) = € )
i H(Dw(€7§7AOa"' ,Am—l))
and
1 1
NSe n,€,90," " s 9m—1 < — €
P( ) mn [w|=n ,UJ(DUJ(67§7A0a"' aAm—l))

and then
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. 1 1 1
Nsep(€7907' e 7gm—1) < 117131—>Solép {g log (W Z M(Dw(e € Ay, aAm—l)))].

[w|=n ’ 2

Moreover

h(ag - Ao, sam—1-Am—1) = h(go, -, Gm-1)

1
< lim lim sup [— log (
n

e=0 pooo

1
mn Z p(Duw(e, 5, Ao, - - - ,Am,l)))]'

lw|=n

If a set F' (w,€,90," - , gm—1) spans X with cardinality Nepan(w,€, g0, ,gm—1), then

X - U Dw<xa26590a"' agm—l) C U $'Dw(€,2€,A0,"' ;Am—l)-

zeF zeF
Thus
Nspan(wa €90, " 7gm—1) : M(Dw(e7 267‘407 e ’Am—l)) > 17
and then
Napan( ) > L
span (W, €, y "y Ym— = .
P 9 g ! IU/(DUJ(€72€,AO7"' aAm—l))
Therefore
1 1
Ns n 5 €y "y Ym— Z . )
P (n 90 g 1) mn lw|= :u‘(Dw(ea2€,A07 7Am—1))
and then
1 1 1
Nsan ) y Ty Ym— > li [_1 —_ :|
P (6 g0 g 1) = lran%Solip " Og(m" zl: ,u(Dw(e,Qe,Ao,--- 7Am_l)))
wi=n
Moreover,
h(ao - Ao, sam—1 - Am—1) = h(go," "+ , gm—1)
> lim limsup [~ log (— 3 ! )
im limsup | — — .
T e=0 n—)oop n & mn Jw|= N(Dw(e>267A0a t aAmfl))

This expression also equals h(Ag, -, Ap—1) since the right hand is independent of a;, 0 < i < m — 1. So

the equality (5.1) holds. O

Corollary 1. Let TP be the p-dimensional torus, p the Haar measure on TP and fo, -, fm—1 the surjective
endomorphisms on TP. Then

1
€,€,f0,~-~ afmfl)))j|’

o 1 1
h(fo, -+ fm-1) = lgﬂ lim sup [ﬁ log (W Z 1D

n—o0o
lw|=n

where
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Theorem 5.4. Let (X, d) and (X,d) be metric spaces and 7w : X — X a continuous surjection such that there
exists § > 0 with

|25 : Bi(&,0) = Ba(m(),0)

an isometric surjection for all & € X. If fo, f1,+++ , fm—1 are uniformly continuous transformations on X,
and fo, f1, -+, fm—1 are uniformly continuous transformations on X satisfying wf; = fiw for any 0 < <
m — 1, then

Hd(f07 e 7fm71) = HJ(fO? T 7fm71)
Proof. The proof follows [21] and is omitted. O

Corollary 2. Let TP be the p-dimensional torus, Ag, -+, Am—_1 endomorphisms of TP, and Ao, Ay
linear transformations on RP, where A; is the lift of A; for 0 <i<m — 1, then

Hg(Ao, -+ s Am—1) = Hg(Ao, -+, A1),
where d is the metric on RP determined from Euclidean norm.

Lemma 5.5. Let Ay, -+, A1 be the linear transformations on RP, 1 the Lebesgue measure on RP and p a
metric on RP determined by a norm. Then

- 1 1 1
Hp(A07 o 7Am—1) - lg’% hTan—>solip |:E log (W Z M(Dw(oa € AOa T aAmfl))>:|,

[w|=n

where

and
B,(0,¢) = {z € R” : p(x,0) < €}.
Also, Hy(Ao, -+, Am—1) does not depend on the norm chosen.

Proof. Since all norms on RP are equivalent, they induce uniformly equivalent metrics on R”. So by Theo-
rem 3.5 we have H,(Ao, -+ ,Am—1) = Hq(Ao,-- , Ay—1) where d is the Euclidean distance on RP. Also it
is clear that the expression given in the theorem is also independent of the norm. Hence we can suppose p
is the Euclidean distance as well.

Let K be a compact subset of R with u(K) > 0, € > 0 and w € F}. Similar as the proof in [21]
(Lemma 4.5), we have

1K)
Ns an ) 7K7A7”.’Am7 = .
pan (W, € 0 1) 1(Dyy(0,2€, Agy -+, A1)

Hence

Nspan(n7 €, K7 AOa e aAm—l) 2
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Then
) 1 1 p(K)
Npan(&, K, Ao, -+, Am—r) 2 lim sup [2los G 2 (Du(0,2¢, Ag, -~ A 1)>)}
n o0 \w|7 w b 9 b b m—
1 1 1
— ~ log (— .
ey [n %8 (1 |Z 11(Dy (0, 2¢, Ay, - - ,Am_n))}
Therefore
1 1 1
A, A1) > limli [ log (— .
Apor ) > iy (06 o 32 55 6 7y )

On the other hand, let w € F,f. Let K, be the closed p-cube with center 0 € RP and side length 2q.

m:*
Similar as the proof in [21] (Lemma 4.5), we have

2°(q +¢)”
/J'(D ( 72aA07"' 7"4711—1))7

IN

Nsep(w7 67Kq7 AO; e aAmfl)

and then

2°(q +¢)®
A07' o 7Am—1))'

1
NSe ) >K7A7"' m— 0
p(né qs 410 1 mn Zz 72’

Moreover,

. 1 1 1
Nocp(e Ky oy o) < imwp [hog (05 3 e )|

n—0o0
|lw|=n

If K is any compact subset of RP then there exists ¢ > 0 such that K C K,. Thus

Nsep(eu Kv AO; T aAmfl) S Nsep(eu Kq7A07 e 7Am71>

. 1 1 1
Stmaw (o8 (0 30 wpm e A

and then
Hp(Ka A07"' 7Am—1) ZE%Nsep(eyKa A07"' 7Am—1)
1 1 1
<lim limsup |— log (— .
T e=0 n—>oop [TL g(mn |1§_:n :U'(Dw( % AOa Am—l)))}
Therefore

H,(Ag, -+, A1) =sup{H,(K, Ag, -+ , A1) : K C R? is compact}

1 1 1
< lim I [— log (— } -
- egr(l) lflng)so%p n Og(mn |Z U(Dw(0765A07"' 7Am—1)>)
w|=n
Theorem 5.6. Let V' be a p-dimensional vector space, p a metric on'V induced by a norm on'V, Ag, -+, Apm_1

the linear transformations on V. If for each 0 < i < m — 1 all eigenvalues of A; is of modulus greater than
or equal to 1, then
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m—1 p @) 1 m—1
log — .. _ - 1?)
og ( [T1) < Ho(Ao, - A 1)§10gm(21\2
=0 j=1 =0
where )\gi)7 )\éi), ey /\,()i) are the eigenvalues of A;, 0 < i < m — 1, counted with their multiplicities, and A;

is the biggest eigenvalue of \/A; AT, 0 <i<m—1.
Particularly in the case p=1 and V = R, we have

m—1

Hy (Ao, An) =Tog (37 ),

=0
where /\gi) is the proportionality constant of A; : R — R,z +— A(li)x, 0<i<m-—1.

Proof. By choosing a basis in V, we can suppose V' = RP. Let u be the Lebesgue measure on RP. Since
all norms on RP are equivalent they induce uniformly equivalent metrics on RP and by Theorem 3.5
H,(Ao, -+, Am—1) = Hq(Ao, -+ , Am—1) where d is the Euclidean distance. Hence we may suppose that p
is the Euclidean distance. By Lemma 5.5 we have

- 1 1
H,(Ag,--- 7Am_l)zlg%hmsup [nlog(mn Z (Dul0.c Ag - 7Am71)))].

n— 00
|w|=n

Let w =wj -+ w, € F,} and n > 1. Similar as the proof in [21] (Thm. 4.6), we have

U(DW(07€’A07 T 7Am—1)) < M(A;lBP(Ove))

= |det(Aw) "] - 1(B,(0,€))
1

= T A
Hence
s (s 2 D0 A
> iog (. ;flﬁ'w') Llog (B,(0,))
= log [ (Tz:f[lu“ )] = = tog (B, (0,€))
=log—(7j :ﬁllA“ ) = = log (B, (0,€))
and ]

S

Hy(Aop,+ ,Am—1) >log—<2ﬁ )\(Z )

=0 j=1

On the other hand, for any n > 1 and w = wy - --w,, € FJ and v’ = w; - w, < w, we can omit from
[21] (Thm. 4.6) that
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1
(Aw) ' B,(0,€) D B,(0, =7—e¢).
g g Hi:l Awi
Thus
1
Dw(O,e,Am e 7141.,71_1) = m (Aw)ipr(O,€) D) BP(O7 WC)
w’ <w Hi:l (CH
Then
1
—1lo
& n wz—n ,LL(Dw(O,E,Ao, aAm71>):|
1 1
< —log | —
"2 B0, e )}
- 1 n P
— ~log o 2 ([[1%) | = ~10g (B, (0,))
-1 m—1 n
I = p —
= —log o ( ; Al> } log 1(B,(0,¢€))
1 —1
—log — (3 A7) = ~log u(B,(0,))
=0
Therefore
1 m—1
H,(Ag, -, A 1)<log—(ZAp) O
1=0

Example 5.7. Let A; : R - R, x — 3z, and Ay : R — R,  — 5x. Applying Theorem 5.6, we cam get
H(Ay, A3) =log £(3 +5) = 2log 2. Denote G; = {idg, A1, A2}. For the topological entropy H(G1) defined
in [21], we have H(G1) = log5. Obviously, H (A1, A2) < H(Gh).

Remark 5.8. Example 5.7 shows that H(A;, As) is strictly less than the topological entropy H(G1) defined
in [21].

Theorem 5.9. Let Ag, -+, Apm—1 be endomorphisms of TP. If for each 0 < i < m — 1 all eigenvalues of the
matriz [A;] which represents A; are of modulus greater than or equal to 1, then

m—1 p m—1
i 1
tog H|A”|)<H (Ao, Ams) Slog — (3 A7)
=0 j=1 =0
where )\gi), )\gi), cee )\I(,i) are the eigenvalues of [A;], 0 < i < m — 1, counted with their multiplicities, and A;

is the biggest eigenvalue of \/[A;][4;]T, 0<i<m — 1.

Particularly in the case p =1, we have
1,
HP(A07 s 7Am71) = log E ( Z |)\§l)|),
i=1

where /\gi) is the degree of the automorphism A; of S*, for every 0 <i < m — 1, where S' denotes the unite
circle.
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Remark 5.10. (1) For the system generated by the iteration of a single linear map A of R, we already have

hA) = Y loglAl

{a:[A]|>1}

where h(A) is the topological entropy of the single map A and Ay, --- , A, are the eigenvalues of the linear
map A [22].
(2) if G is a semigroup generated by G1 = {idvy, fo, -, fm—1}, Wang and Ma [21] gave

0<i<m—

P
W< < |
max 12110g|)\J | < H(Gy) < P, max log A,
=

where H(G1) is the topological entropy of the semigroup defined in [21].

Example 5.11. Let A and B be the hyperbolic automorphisms on T2 induced by the matrices

4 1 1 -1
respectively. Then we can easily get the bounds of the entropy H(A, B) as

19 + 3v/29
%\/_+3+\/5).

logg < H(A, B) < log(

Remark 5.12. This example is appeared in [21]. If Gy = {idy2, 4, B}, then the topological entropy H(G1)
defined in [21] follows

2
logh < H(G;y) < 2log3+T\/_9.

Problem 5.13. It is well known that for a homeomorphism f : X — X of a compact metric space X
the equality h(f) = h(f~!) holds where h(f) denotes the topological entropy of f. If fo,---, fm_1 are
homeomorphisms of X, is it true that h(fo, -, fm—1) = h(fo ' - fl1)?
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