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For each quasi-metric space X we consider the convex lattice SLip1(X) of all 
semi-Lipschitz functions on X with semi-Lipschitz constant not greater than 1. 
If X and Y are two complete quasi-metric spaces, we prove that every convex 
lattice isomorphism T from SLip1(Y ) onto SLip1(X) can be written in the form 
Tf = c · (f ◦ τ) + φ, where τ is an isometry, c > 0 and φ ∈ SLip1(X). As a 
consequence, we obtain that two complete quasi-metric spaces are almost isometric 
if, and only if, there exists an almost-unital convex lattice isomorphism between 
SLip1(X) and SLip1(Y ).

© 2016 Published by Elsevier Inc.

0. Introduction

Suppose you live in a building with no lift. It is clear that your third floor apartment is further from the 
street than the street is from your apartment, if we think the distance between two places as the time spent 
for coming from one place to the other one. You may also think about a building with a lift and measure 
another kind of distance: the time plus the effort – properly weighted. In this case, most people will use the 
lift when coming home, but not when coming down.

The metrics described above are not symmetric and, moreover, the second one has another strange feature: 
the ground floor–third floor preferred way (geodesic) is different from the third floor–ground floor one.

In this paper we will deal with non-symmetric metrics, called quasi-metrics. In the last years there has 
been an increasing interest about quasi-metric spaces, with applications in a wide variety of topics. We 
refer to [5,6,8,9] and references therein for further information about the subject. Here we will be interested 
in some natural transformations of quasi-metric spaces, the so-called almost isometries considered in [5]. 
These are bijections between quasi-metric spaces preserving the triangular function, that is, the quantity 
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Tr(x, y, z) = d(x, y) + d(y, z) − d(x, z). This quantity measures how far the points x, y, z are of achieving 
equality in the triangle inequality. It is easily seen that, in the case that symmetry holds, almost isometries 
coincide in fact with isometries.

Our aim is to characterize almost isometries by means of a suitable space of real-valued functions, thus 
obtaining a theorem of Banach–Stone type in this context. In the symmetric case, it has been shown 
in [1] that a metric on the space X can be recovered, up to Lipschitz homeomorphisms, by using the 
lattice structure of the space Lip(X) of real-valued Lipschitz functions on X. Related results have been 
obtained in [4] in terms of the unital vector lattice structure of Lip(X). We refer to the survey paper [3]
for further developments about Banach–Stone type theorems. In our case, due to the lack of symmetry, 
it is natural to consider the space of semi-Lipschitz functions in the sense of [9]. A function f : X → R

defined on a quasi-metric space (X, d) is said to be semi-Lipschitz if there exists a constant L ≥ 0 such 
that f(x) − f(y) ≤ L · dX(x, y) for every x, y ∈ X. The space of semi-Lipschitz functions on X will be 
denoted by SLip(X). Since we are dealing with almost isometries, we will focus on the subspace SLip1(X)
of semi-Lipschitz functions with constant L ≤ 1. It is not difficult to see that SLip1(X) is a lattice with the 
usual pointwise operations. Furthermore, it is closed under convex combinations. As a consequence of our 
main result, we obtain in Corollary 3.8 a characterization of almost isometries of a quasi-metric space X in 
terms of the convex lattice structure of SLip1(X).

The contents of the paper are as follows. In section 1 we review some basic facts about quasi-metrics 
and almost isometries. It is known that a bijection τ : (X, dX) → (Y, dY ) between quasi-metric spaces is 
an almost isometry if, and only if, there exists a function φ : X → R (which is unique up to an additive 
constant) such that

dY (τ(x1), τ(x2)) = dX(x1, x2) + φ(x2) − φ(x1). (1)

We will prove that a bijection between quasi-metric spaces is an almost isometry if, and only if, it preserves 
the length of closed polygonal paths or, equivalently, the length of any rectifiable closed path. In section 2
we obtain the results about semi-Lipschitz functions which are needed along the paper. As we will see, the 
extension properties of semi-Lipschitz functions will play an important role. Section 3 is devoted to the main 
result of the paper. It turns out that, given an almost isometry τ : (X, dX) → (Y, dY ), the function φ : X → R

that governs τ in the sense of equation (1) allows us to define a bijection T : SLip1(Y, dY ) → SLip1(X, dX)
in the following way: f �→ Tf = f ◦ τ +φ. It is not difficult to see that this map preserves order and convex 
combinations, so we say that it is a convex lattice isomorphism. In the opposite direction, note that there 
are three kinds of natural convex lattice isomorphisms to be considered. Namely:

• T1 : SLip1(Y, dY ) → SLip1(X, dX), T1f = f ◦ τ , where τ is an isometry.
• T2 : SLip1(X, dX) → SLip1(X, c dX), T2f = c · f , where c ∈ (0, ∞).
• T3 : SLip1(X, d′X) → SLip1(X, dX), T3f = f + φ, where d′(x, x′) = d(x, x′) + φ(x′) − φ(x).

In Theorem 3.1 we show that every convex lattice isomorphism T : SLip1(Y, dY ) → SLip1(X, dX) between 
complete quasi-metric spaces is, in fact, a composition of one of each kind: T is of the form Tf = c ·(f ◦τ) +φ. 
Finally, in section 4, we give some further consequences and related results.

1. Quasi-metrics

Let X be a set. We will say dX : X ×X → [0, ∞) is a quasi-metric on X if the following holds:

• dX(x, y) = 0 if and only if x = y.
• dX(x, y) ≤ dX(x, z) + dX(z, y) for every x, y, z ∈ X.

We say then that the couple (X, dX) is a quasi-metric space.
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Now, for each x ∈ X and each r > 0, we can consider two kinds of open balls: the forward open ball 
B+

d (x, r) = {y ∈ X : d(x, y) < r} and the backward open ball B−
d (x, r) = {y ∈ X : d(y, x) < r}. We will 

always consider X endowed with the topology generated by the family B+
d (x, r) ∩ B−

d (x, r), where x ∈ X

and r > 0. It is not difficult to check that this is the topology associated to the metric

d̃X(x, y) = 1
2(dX(x, y) + dX(y, x)),

which we will call the symmetrized metric associated to dX .
Following [5], we consider the triangular function TrX : X ×X ×X → [0, ∞), which is given by

TrX(x1, x2, x3) = dX(x1, x2) + dX(x2, x3) − dX(x1, x3).

Definition 1.1. Let (X, dX) and (Y, dY ) be quasi-metric spaces. We will say a bijection τ : (X, dX) → (Y, dY )
is an almost isometry if TrY (τ(x1), τ(x2), τ(x3)) = TrX(x1, x2, x3) for all x1, x2, x3 ∈ X.

It is clear that every almost isometry τ : (X, dX) → (Y, dY ) is an isometry between the corresponding 
symmetrized spaces (X, d̃X) and (Y, d̃Y ):

d̃Y (τ(x1), τ(x2)) = 1
2 (dY (τ(x1), τ(x2)) + dY (τ(x2), τ(x1))) =

= 1
2TrY (τ(x1), τ(x2), τ(x1)) = 1

2TrX(x1, x2, x1) = d̃X(x1, x2).

In particular, in the case of metric spaces, every almost isometry is in fact an isometry. The following useful 
characterization of almost-isometries has been obtained in [5].

Lemma 1.2. (See [5], Proposition 2.8.) Given quasi-metric spaces (X, dX), (Y, dY ), a bijection τ : (X, dX) →
(Y, dY ) is an almost isometry if and only if there exists a function φ : X → R such that

dY (τ(x1), τ(x2)) = d(x1, x2) + φ(x2) − φ(x1)

for every x1, x2 ∈ X.

Remark 1.3. Actually, as seen in [5], φ is determined up to an additive constant and given by φ(x) =
dX(x, x0) − dY (τ(x), τ(x0)) for any fixed x0 ∈ X.

Now, given x1, . . . , xn in a quasi-metric space (X, dX), we will denote the closed polygonal defined by 
these points as [x1, . . . , xn]. Then the perimeter of this closed polygonal is given by:

PX([x1, x2, . . . , xn]) = dX(x1, x2) + dX(x2, x3) + . . . + dX(xn, x1).

Lemma 1.4. Let τ : (X, dX) → (Y, dY ) be a bijection between quasi-metric spaces. Then, the following 
conditions are equivalent:

(1) τ is an almost isometry.
(2) PY ([τ(x1), τ(x2), τ(x3)]) = PX([x1, x2, x3]) for all x1, x2, x3 ∈ X.
(3) PY ([τ(x1), τ(x2), . . . , τ(xn)]) = PX([x1, x2, . . . , xn]) for all x1, x2, . . . , xn ∈ X, n ≥ 3.

Proof. We have seen that any almost isometry τ is an isometry between the corresponding symmetrized 
spaces (X, d̃X) and (Y, d̃Y ). It is also easy to check that τ is again an isometry whenever 2 or 3 holds. Now, 
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as PX(x1, x2, x3) = TrX(x1, x2, x3) + 2d̃X(x1, x3), we obtain that 2 is equivalent to 1. It is obvious that 3 
implies 2, so it only that remains to check is that 2 implies 3. Let x1, . . . , xn ∈ X. We must show that

PY ([τ(x1), τ(x2), . . . , τ(xn)]) = PX([x1, x2, . . . , xn]).

We will use induction. For n = 3, this is our hypothesis, so assume n ≥ 4. Then,

PX([x1, x2, . . . , xn]) = dX(x1, x2) + . . . + dX(xn−1, xn) + dX(xn, x1) =

= dX(x1, x2) + . . . + dX(xn−2, xn−1) + dX(xn−1, x1) +

+ dX(x1, xn−1) + dX(xn−1, xn) + dX(xn, x1) − dX(xn−1, x1) − dX(x1, xn−1) =

= PX([x1, x2, . . . , xn−1]) + PX([x1, xn−1, xn]) − 2d̃X(x1, xn−1).

The last term equals

PY ([τ(x1), τ(x2), . . . , τ(xn−1)]) + PY ([τ(x1), τ(xn−1), τ(xn)]) − 2d̃Y (τ(x1), τ(xn−1))

by induction hypothesis. �
Let γ : [a, b] → X be a closed path on a quasi-metric space (X, dX), that is, a continuous function defined 

on the interval [a, b] such that γ(a) = γ(b). As usual, we define the length of γ as

�(γ) = sup P ([γ(t1), γ(t2), . . . , γ(tn)]),

where the supremum is taken over finite increasing sequences a = t0 < t1 < t2 < . . . < tn = b. We say that 
γ is rectifiable if it has finite length. Then the following is an immediate consequence of Lemma 1.4:

Corollary 1.5. A bijection τ : (X, dX) → (Y, dY ) between quasi-metric spaces is an almost isometry if, and 
only if, �(τ ◦ γ) = �(γ) for every rectifiable closed path γ in (X, dX).

2. Semi-Lipschitz functions

We recall the following definition from [9]:

Definition 2.1. Let (X, dX) be a quasi-metric space. A function f : X → R is said to be semi-Lipschitz if 
there exists a constant L ≥ 0 such that

f(x) − f(x′) ≤ LdX(x, x′)

for every x, x′ ∈ X. The lowest of these constants is called the semi-Lipschitz constant of f , and will be 
denoted by SLip(f). The space of all semi-Lipschitz functions f : X → R will be denoted by SLip(X).

Remark 2.2. Note that every dX-semi-Lipschitz function is continuous for the associated symmetrized dis-
tance d̃X . In fact, every dX -semi-Lipschitz function f : (X, dX) → R is d̃X -Lipschitz, with Lipschitz constant 
Lip(f) ≤ 2 SLip(f). Indeed, for every x, x′ ∈ X we have:

f(x) − f(x′) ≤ SLip(f)d(x, x′) ≤ SLip(f) 2 d̃X(x, x′).

Moreover, this bound is sharp, as the following example shows.
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Example 2.3. On the real line R consider the Sorgenfrey quasi-metric dS, defined by

dS(x, x′) =
{

x− x′ if x ≥ x′

1 if x < x′ (2)

Consider the map f : (R, dS) → [0, 1) given by f(x) = x − 
x�, where 
x� stands for the integer part of x. 
That is, if x = m + α, with m ∈ Z and α ∈ [0, 1), then f(x) = α. Then, f is semi-Lipschitz, SLip(f) = 1
and Lip(f) = 2. Indeed, we have that:

• If x < x′, then dS(x, x′) = 1 and f(x) − f(x′) ≤ 1.
• If x ≥ x′, then f(x) − f(x′) ≤ x − x′ = dS(x, x′).

Thus SLip(f) ≤ 1. On the other hand, f(x) − f(x′) = x − x′ if 
x� = 
x′�, so that SLip(f) = 1.
As for Lip(f), note that the symmetrized metric is given by d̃S(x, x′) = 1

2 (1 + |x − x′|) for every x′ �= x, 
and therefore it induces the discrete topology on R. It easy to see that Lip(f) = 2. Take, for instance, the 
sequences ( 1

n ), (−1
n ) and observe that d̃S( 1

n , 
−1
n ) = 1

2 + 1
n and f(−1

n ) − f( 1
n ) = 1 − 2

n for each n. �
For a quasi-metric space (X, dX), let SLip1(X) denote the space of all semi-Lipschitz functions f : X → R

with constant ≤ 1:

SLip1(X) = {f : X → R : f(x) − f(x′) ≤ dX(x, x′), ∀x, x′ ∈ X}.

It is not difficult to check that, given two functions f, g in SLip1(X), then their supremum f ∨ g and 
infimum f ∧ g also belong to SLip1(X). Thus SLip1(X) has a natural lattice structure. Furthermore, it is 
closed under convex combinations. In this sense we say that SLip1(X) has a convex lattice structure. If now 
(Y, dY ) is another quasi-metric space, we will say that a mapping T : SLip1(Y ) → SLip1(X) is a convex 
lattice isomorphism if the following conditions are satisfied:

• T is a bijection,
• T preserves convex combinations, that is, T (λf + (1 −λ)g) = λTf + (1 −λ)Tg for each f, g ∈ SLip1(Y )

and λ ∈ [0, 1], and
• T preserves order, that is, Tf ≤ Tg if and only if f ≤ g.

Note that every bijection between lattices that preserves order is automatically a lattice isomorphism. 
Therefore we have that every convex lattice isomorphism T satisfies that T (f ∨ g) = (Tf) ∨ (Tg) and 
T (f ∧ g) = (Tf) ∧ (Tg).

The convex lattice structure of SLip1(X) is naturally related with almost isometries, in the following 
way.

Proposition 2.4. Let τ : (X, dX) → (Y, dY ) be an almost isometry between quasi-metric spaces, and let 
φ : X → R such that dY (τ(x), τ(x′)) = dX(x, x′) + φ(x′) − φ(x). Then T : SLip1(Y ) → SLip1(X), given by 
Tf = f ◦ τ + φ, is a convex lattice isomorphism.

Proof. We need to show that Tf ∈ SLip1(X) for every f ∈ SLip1(Y ). Indeed, let x, x′ ∈ X. Then

Tf(x) − Tf(x′) = f(τ(x)) + φ(x) − f(τ(x′)) − φ(x′) ≤ dY (τ(x), τ(x′)) + φ(x) − φ(x′) =

= dY (τ(x), τ(x′)) + dX(x, x′) − dY (τ(x), τ(x′)) = dX(x, x′).
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As it is clear that T is injective, by symmetry we have that T is a bijection. Given f, g ∈ SLip1(Y ), it is 
easy to see that Tf ≤ Tg whenever f ≤ g. Furthermore, we have that T (λf +(1 −λ)g) = λTf +(1 −λ)Tg, 
for each λ ∈ [0, 1]. Therefore, T is a convex lattice isomorphism. �

In the next section we will obtain the general form of convex lattice isomorphisms (see Theorem 3.1). In 
order to achieve this, we need some further developments about semi-Lipschitz functions.

Lemma 2.5. Let (X, dX) be a quasi-metric space. For every nonempty A ⊂ X, the functions f(x) = dX(x, A)
and g(x) = −dX(A, x) belong to SLip1(X), where dX(A, B) is defined as usually as inf{dX(a, b) : a ∈ A,

b ∈ B}.

Proof. We will check that SLip(f) ≤ 1, for g it is analogous. Let x, x′ ∈ X, and consider ε > 0. Choose 
a ∈ A such that dX(x′, a) ≤ dX(x′, A) + ε. Then

f(x) − f(x′) = dX(x,A) − dX(x′, A) ≤ dX(x,A) − dX(x′, a) + ε ≤

≤ dX(x, a) − dX(x′, a) + ε ≤ dX(x, x′) + ε.

As ε is arbitrary, we have f(x) − f(x′) ≤ dX(x, x′). �
Next we are going to see that semi-Lipschitz functions defined on arbitrary subsets can be extended 

elsewhere preserving the semi-Lipschitz constant. In fact, the McShane extension of Lipschitz functions 
(see [7], Theorem 1) can be adapted to the semi-Lipschitz setting.

Lemma 2.6. Let (X, dX) be a quasi-metric space, and consider a nonempty subset A of X. If f : A → R is 
a semi-Lipschitz function with constant L, then the function f̃ : X → R defined by

f̃(x) = inf{f(a) + Ld(x, a) : a ∈ A}

is a semi-Lipschitz extension of f with constant L.

Proof. It is clear that f̃ is an extension of f . We are going to check that SLip(f̃) ≤ L. Let x, x′ ∈ X, and 
consider ε > 0. Choose a ∈ A such that f̃(x′) ≥ f(a) + L d(x′, a) − ε. Then

f̃(x) − f̃(x′) ≤ f(a) + Ld(x, a) − f(a) − Ld(x′, a) + ε = L (d(x, a) − d(x′, a)) + ε ≤ Ld(x, x′) + ε.

Thus f̃(x) − f̃(x′) ≤ L d(x, x′). �
In what follows we are going to construct, for every quasi-metric space (X, dX), a basis of the topology 

induced by the symmetrized distance d̃X , which is defined in terms of the functions in SLip1(X), and 
behaves nicely with respect to its convex lattice structure. This will turn out to be quite useful in the next 
section. In the symmetric case, this kind of construction is usually done by using cozero-sets. Recall that 
the cozero-set of a function f : X → R is defined as {x ∈ X : f(x) �= 0}. Nevertheless, as our next example 
shows, in general the construction cannot be done this way for the non-symmetric case, so we will need to 
consider a modification of cozero-sets.

Example 2.7. Consider the Sorgenfrey line (R, dS), where dS is given as in Example 2.3. As we have seen, 
the symmetrized distance d̃S induces the discrete topology on R. Thus for each point x0 ∈ R, the singleton 
V = {x0} is an open set, but it cannot be the cozero-set of any function f ∈ SLip1(X). Indeed, if we have 
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that f(x) − f(x0) ≤ dS(x, x0) for all x ∈ R, we obtain that f(x′) + x0 − x′ ≤ f(x0) ≤ f(x) + x0 − x for all 
x < x0 < x′. So if we assume that f = 0 on R \ {x0}, we deduce that f(x0) = 0.

This is related to the question of uniqueness of extension of semi-Lipschitz functions from subspaces. 
If we consider X = (R \ {x0}, dS), then the only way to extend the function g : X → R, g(x) = 0 to 
a function in SLip1(R, dS) is by setting g(x0) = 0. Nevertheless, the function f : X → R defined by 
f(x) = (x − x0) − 
x − x0� can be extended in many ways to a function in SLip1(R, dS). Actually, it is 
easy to check that, for any δ ∈ (0, 1), if we set fδ(x0) = δ and fδ(x) = f(x) for every x �= x0, we obtain 
that fδ is an extension of f and fδ ∈ SLip1(R, dS). In this way we can describe the singleton V = {x0} as 
V = {x ∈ R : fδ2(x) > fδ1(x)} for any 0 < δ1 < δ2 < 1. This example will be properly generalized in the 
next result. �
Proposition 2.8. Let (X, dX) be a quasi-metric space and X0 a subset of X. The restriction mapping f ∈
SLip(X) �→ f|X0 ∈ SLip(X0) is a bijection if, and only if, d̃X(x, X0) = 0 for every x ∈ X, i.e., if and only 

if X0 is dense in X for the symmetrized distance d̃X .

Proof. If X0 is dense in X for d̃X it is clear that, given a semi-Lipschitz function f : (X0, d̃X) → R, there is 
at most one way of extending f continuously to X. As we have seen before (see Lemma 2.6), semi-Lipschitz 
functions extend from arbitrary subsets, so f �→ f|X0 is a bijection in this case.

Conversely, suppose that x0 ∈ X satisfies that d̃X(x0, X0) ≥ ε > 0. We are going to show that there 
exists a function f ∈ SLip1(X0) which admits many different extensions in SLip1(X0 ∪ {x0}), and these 
can be further extended from X0 ∪ {x0} to X. Consider the sets A = {x ∈ X0 : 0 < dX(x0, x) < ε/2} and 
B = {x ∈ X0 : 0 < dX(x, x0) < ε/2}.

If B = ∅ then dX(x0, x) ≥ ε/2 for all x ∈ X0. In this case, we define the function f = 0 on X0 and for 
each δ ∈ (0, ε/2) we can consider the extension f : X0 ∪ {x0} → R given by setting f(x0) = δ. It is easy to 
check that f ∈ SLip1(X0 ∪ {x0}).

If B �= ∅, we define the function f(x) = dX(x, B) ∧ (ε/2) on X0 and for each δ ∈ (0, ε/2) we can consider 
the extension f : X0∪{x0} → R given by setting f(x0) = δ. We are going to see that f ∈ SLip1(X0∪{x0}). 
We have to show that f(x) − f(x′) ≤ d(x, x′) for every x, x′ ∈ X0 ∪ {x0}:

• This is clear if both x, x′ ∈ X0 since, for every nonempty C ⊂ X, the map x �→ d(x, C) belongs to 
SLip1(X) (see Lemma 2.5).

• If x ∈ B then f(x) = 0 and therefore

f(x) − f(x0) = −δ < 0 ≤ dX(x, x0)

f(x0) − f(x) = δ <
ε

2 ≤ dX(x0, x)

• If x ∈ A, taking into account that dX(x0, x) +dX(x, x0) = 2d̃X(x, x0) ≥ 2ε, we obtain that dX(x, x0) ≥ ε

and also dX(x0, b) ≥ ε for all b ∈ B. Thus dX(x, B) ≥ ε/2 since, for each b ∈ B:

ε ≤ dX(x0, b) ≤ dX(x0, x) + dX(x, b) < ε/2 + dX(x, b).

Therefore we have that f(x) = ε/2 and

f(x) − f(x0) = ε/2 − δ < ε ≤ dX(x, x0)

f(x0) − f(x) = δ − ε/2 < 0 ≤ dX(x0, x)
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• Finally, if x /∈ A ∪B, we have that

(f(x) − f(x0)) ∨ (f(x0) − f(x)) ≤ ε/2 ≤ dX(x, x0) ∧ dX(x0, x). �
Definition 2.9. Let (X, dX) be a quasi-metric space. For every pair f, h ∈ SLip1(X) with f ≥ h, the h-cozero 
of f will be cozh(f) = {x ∈ X : f(x) > h(x)}. The h-support of f , denoted supph(f), is the closure of its 
h-cozero, and we shall write V f

h for the interior of supph(f). We denote by RS(X) the family of all sets of 
the form V f

h , where f, h ∈ SLip1(X) and f ≥ h.

Recall that an open set in a topological space is said to be regular if it agrees with the interior of its 
closure or, equivalently, if it agrees with the interior of any closed set. From the very definition, we see that 
each set V f

h in RS(X) is a regular open set. In the next Lemma we see that the family RS(X) is a basis of 
the topology for the symmetrized distance d̃X on X.

Lemma 2.10. Let (X, dX) be a quasi-metric space, let U be a nonempty open subset of X for the symmetrized 
distance d̃X , and let x0 ∈ U . Then there exist f, h ∈ SLip1(X) with f ≥ h, such that x0 ∈ V f

h ⊂ U .

Proof. We may assume U �= X, otherwise we could take f = 1, h = 0.
Since d̃X(x0, X \ U) > 0, from the proof of Proposition 2.8 we deduce that there exist two functions 

f1, f2 ∈ SLip1((X \ U) ∪ {x0}) agreeing on X \ U and such that f1(x0) > f2(x0). If we extend these 
functions to f̃1, f̃2 ∈ SLip1(X), we may take f = f̃1 ∨ f̃2 and h = f̃1 ∧ f̃2 and we are done. �
Remark 2.11. For any f ≥ h ∈ SLip1(X), c ∈ R and λ ∈ (0, 1], one has

V f+c
h+c = V

λf+(1−λ)h
h = V λf

λh = V f
h .

With the next two Lemmas, we will show that the inclusion between members of the family RS(X) can 
be described using the convex lattice structure of SLip1(X).

Lemma 2.12. Let (X, dX) be a quasi-metric space and let f1, f2, h1, h2 ∈ SLip1(X) with f1 ≥ h1 and f2 ≥ h2. 
The following conditions are equivalent:

(i) V f1
h1

⊂ V f2
h2

(ii) For every ψ, ϕ ∈ SLip1(X) with ψ∧ϕ ≥ h1∨h2, we have that ψ ≥ ϕ on V f2
h2

implies that ψ ≥ ϕ on V f1
h1

.

Proof. It is clear that (i) implies (ii), so let us prove the converse. First note that, if U and V are regular 
open sets and U \V is nonempty, then there exists x0 ∈ U such that d̃X(x0, V ) > 0. Indeed, if d̃X(x, V ) = 0
for every x ∈ U we have that U ⊂ V . So, U ⊂ V , and then U = int

(
U
)
⊂ int

(
V
)

= V . Therefore if 
V f1
h1

\ V f2
h2

is nonempty, there exist a point x0 and an open ball B for the symmetrized distance d̃X , such 
that

x0 ∈ B ⊂ V f1
h1

\ V f2
h2

.

By Lemma 2.10 we can find f, h ∈ SLip1(X) with f ≥ h such that x0 ∈ V f
h ⊂ B. Since semi-Lipschitz 

functions are bounded on d̃X-balls, taking into account Remark 2.11 we may also assume that f∧h ≥ h1∨h2
on B. Now consider ϕ = f∨h1∨h2 and ψ = h ∨h1∨h2. It is clear that ψ, ϕ ∈ SLip1(X) with ψ∧ϕ ≥ h1∨h2. 
Note that ϕ = f and ψ = h on B. On the other hand, on X \ B we have that f = h and thus ϕ = ψ. In 
particular, we have that ψ ≥ ϕ on V f2

h2
. Nevertheless, ϕ(x0) > ψ(x0), so it is not true that ψ ≥ ϕ on V f1

h1
. �
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Lemma 2.13. Let (X, dX) be a quasi-metric space and let f, h, ψ, ϕ ∈ SLip1(X) with f ∧ ψ ∧ ϕ ≥ h. The 
following conditions are equivalent:

(i) ψ ≥ ϕ on V f
h .

(ii) For every λ ∈ [0, 1], we have that (λψ + (1 − λ)h) ∧ f ≥ (λϕ + (1 − λ)h) ∧ f .

Proof. It is easy to check that (i) implies (ii). To prove the converse suppose, on the contrary, that there 
exists x0 ∈ V f

h such that ψ(x0) < ϕ(x0). Now we have two options: either f(x0) = h(x0) or f(x0) > h(x0).

• Suppose that inequality holds. Then, there exists λ ∈ (0, 1) such that

f(x0) > λϕ(x0) + (1 − λ)h(x0) > λψ(x0) + (1 − λ)h(x0) ≥ h(x0).

It is obvious that this implies that (λψ + (1 − λ)h) ∧ f ≥ (λϕ + (1 − λ)h) ∧ f is not true.
• If equality holds, then x0 ∈ supph(f) = cozh(f), so there exists a sequence (xn) converging to x0 in the 

d̃X -distance, such that f(xn) > h(xn) for every n ∈ N. As every semi-Lipschitz function is continuous 
for the d̃X -distance, there exists N such that ψ(xn) < ϕ(xn) for every n ≥ N . Then we may apply the 
previous case to xn for some n ≥ N , and we are done. �

Now, as a direct consequence of the previous characterizations, we obtain the following stability results 
for convex lattice isomorphisms, which are going to be useful in the next section.

Corollary 2.14. Let (X, dX), (Y, dY ) be quasi-metric spaces, and T : SLip1(Y ) → SLip1(X) a convex lattice 
isomorphism. Consider f, h, ψ, ϕ ∈ SLip1(Y ) with f ∧ ψ ∧ ϕ ≥ h. Then ψ ≥ ϕ on V f

h if, and only if, 
Tψ ≥ Tϕ on V Tf

Th .

Proof. Suppose that ψ ≥ ϕ on V f
h . From the previous Lemma we have that, for every λ ∈ [0, 1],

(λψ + (1 − λ)h) ∧ f ≥ (λϕ + (1 − λ)h) ∧ f.

Since T is a convex lattice isomorphism, we obtain that Tf ∧ Tψ ∧ Tϕ ≥ Th and

(λTψ + (1 − λ)Th) ∧ Tf ≥ (λTϕ + (1 − λ)Th) ∧ Tf for every λ ∈ [0, 1].

Using again the previous Lemma we see that Tψ ≥ Tϕ on V Tf
Th . The converse follows by considering T−1. �

Corollary 2.15. Let (X, dX), (Y, dY ) be quasi-metric spaces, and T : SLip1(Y ) → SLip1(X) a convex lattice 
isomorphism. Consider f1, f2, h1, h2 ∈ SLip1(Y ) with f1 ≥ h1 and f2 ≥ h2. Then V f1

h1
⊂ V f2

h2
if, and only 

if, V Tf1
Th1

⊂ V Tf2
Th2

.

Proof. Assume that V f1
h1

⊂ V f2
h2

. In order to see that V Tf1
Th1

⊂ V Tf2
Th2

, we are going to use Lemma 2.12. Suppose 

that a pair of functions ξ, η ∈ SLip1(X) are given, such that ξ ∧ η ≥ Th1 ∨ Th2 and ξ ≥ η on V Tf2
Th2

. Let 
ψ, ϕ ∈ SLip1(X) such that ξ = Tψ and η = Tϕ. Then ψ ∧ ϕ ≥ h1 ∨ h2 and, by Corollary 2.14, ψ ≥ ϕ

on V f2
h2

. Thus ψ ≥ ϕ on V f1
h1

and, again from Corollary 2.14, we have that ξ ≥ η on V Tf1
Th1

. From Lemma 2.12
we obtain that V Tf1

Th1
⊂ V Tf2

Th2
. The converse follows by symmetry. �
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3. Main result

This section is devoted to obtain the main result in this paper, after all preliminary work in the previous 
section. First recall that a quasi-metric space (X, dX) is said to be complete if the corresponding symmetrized 
space (X, d̃X) is complete.

Theorem 3.1. Let (X, dX) and (Y, dY ) be complete quasi-metric spaces. If T : SLip1(Y ) → SLip1(X) is 
a convex lattice isomorphism, then there exist α > 0, a homeomorphism τ : (X, dX) → (Y, dY ) and a 
quasi-metric d′X on X, such that

• (X, dX) and (X, d′X) are almost-isometric, and d′X(x, x′) = dX(x, x′) + T0(x′) − T0(x).
• τ : (X, α · d′X) → (Y, dY ) is an isometry.
• For every f ∈ SLip1(Y ) we have that Tf = c · (f ◦ τ) + φ, where c = 1

α and φ = T0.

Remark 3.2. Observe that, even in the symmetric case, there is no hope of avoiding this α: if we consider 
(X, dX) = (R, 2| · |) and (Y, dY ) = (R, | · |), then T : SLip1(Y ) → SLip1(X), given by f �→ 2f is a convex 
lattice isomorphism. Actually, this can be done with any quasi-metric space.

In the proof of the Theorem, we will use the following result from [1]:

Lemma 3.3. (See [1].) Let X and Y be complete metric spaces. Suppose that there exist bases of their 
topologies BX , BY and a bijection T : BY → BX that preserves the inclusion. Then there exist dense subsets 
X0 ⊂ X, Y0 ⊂ Y and a homeomorphism τ : X0 → Y0 such that for every x ∈ X0 and every V ∈ BY , we 
have that x ∈ T(V ) if and only if τ(x) ∈ V .

Proof of Theorem 3.1. For the symmetrized spaces (X, d̃X) and (Y, d̃Y ) we consider the respective bases of 
their topologies RS(X) and RS(Y ) (see Lemma 2.10). We now define T : RS(Y ) → RS(X) by setting

T(V f
h ) = V Tf

Th

for every f, h ∈ SLip1(Y ) with f ≥ h. From Corollary 2.15 we have that T is a well-defined bijection that 
preserves the inclusion. Thus from Lemma 3.3 we obtain that there exist dense subsets Y0 ⊂ Y , X0 ⊂ X

and a homeomorphism τ : X0 → Y0 such that, for every set V f
h ∈ RS(Y ) and every x ∈ X0, we have that 

x ∈ V Tf
Th if and only if τ(x) ∈ V f

h . We will need the following claims:

Claim 3.4. Let g1, g2 ∈ SLip1(Y ) and x0 ∈ X0. Then, g1(τ(x0)) = g2(τ(x0)) if and only if Tg1(x0) =
Tg2(x0).

Proof. Let y0 = τ(x0) and suppose that g1(y0) = g2(y0). If y0 is isolated, then we may take h, f ∈ SLip1(Y )
such that g1(y0) ≥ f(y0) > h(y0) and f(y) = h(y) whenever y �= y0. Furthermore, we may suppose 
g1 ∧ g2 ≥ f ≥ h as in the proof of Lemma 2.12. Applying Corollary 2.14 with ϕ = g1, ψ = g2, we have 
Tg1(x0) = Tg2(x0).

If y0 is non-isolated, then we may find a sequence (yn) ⊂ Y0 such that, for every n,

max{dY (y0, yn+1), dY (yn+1, y0)} <
1
4 min{dY (y0, yn), dY (yn, y0)} ≤ 1.

We may suppose g1 ≥ g2. We are looking for g ∈ SLip1(Y ) such that g(y2n) > g1(y2n), g(y2n−1) <
g2(y2n−1) for every n ∈ N (as in [2], Lemma 3). This cannot be done for every couple of functions, so we 



JID:YJMAA AID:20365 /FLA Doctopic: Functional Analysis [m3L; v1.175; Prn:15/04/2016; 13:28] P.11 (1-15)
J. Cabello, J.A. Jaramillo / J. Math. Anal. Appl. ••• (••••) •••–••• 11
must reduce the difference between g1 and g2. As g1(y0) = g2(y0), we have 1
4g1(y0) = 1

4g2(y0). Now we 
consider the function g0 defined on the sequence (yn) by setting, for n ∈ N,

g0(y2n) = 1
4g1(y2n) + 1

8 |g1(y2n) − g1(y0)|, g0(y2n−1) = 1
4g2(y2n−1) −

1
8 |g2(y2n−1) − g2(y0)|.

Now we show that g0(ym) − g0(yk) ≤ dY (ym, yk) for any m, k ∈ N. Indeed, let m < k (the other case is 
similar). Then,

g0(ym) − g0(yk) ≤
1
4g1(ym) + 1

8 |g1(ym) − g1(y0)| −
1
4g2(yk) + 1

8 |g2(yk) − g2(y0)| =

= 1
4
(
g1(ym) − g1(y0) − g2(yk) + g2(y0)

)
+ 1

8
(
|g1(ym) − g1(y0)| + |g2(yk) − g2(y0)|

)
≤

≤ 1
4(dY (ym, y0) + dY (y0, yk)) + 1

8(dY (ym, y0) + dY (y0, yk)) <
3
4dY (ym, y0) ≤

≤ dY (ym, y0) − dY (y0, yk) ≤ dY (ym, yk),

and this g0 extends to g ∈ SLip1(Y ). Now, applying Corollary 2.14 to ϕ = h = g ∧ 1
4g1, ψ = f = 1

4g1, one 
has Tg ≥ T

( 1
4g1

)
in a neighborhood of each x2n = τ−1(y2n). Analogously, Tg ≤ T

(1
4g2

)
in a neighborhood

of each x2n−1 = τ−1(y2n−1). As τ is a homeomorphism, xn tends to x0, and so, T
( 1

4g1
)
(x0) ≤ Tg(x0) ≤

T
( 1

4g2
)
(x0). As T preserves order, this implies T

( 1
4g1

)
(x0) = Tg(x0) = T

(1
4g2

)
(x0). To finish we just need 

to check that Tg1(x0) = Tg2(x0), but this is obvious since T
( 1

4g1
)

= 1
4Tg1+ 3

4T0 and T
( 1

4g2
)

= 1
4Tg2+ 3

4T0.
The “if” part comes by symmetry. �

Claim 3.5. Tg − T0 is constant if and only if g is. Moreover, there exists α > 0 such that Tλ = T0 + λ
α for 

every λ ∈ R.

Proof. For each λ ∈ R let gλ ∈ SLip1(Y ) be such that Tgλ = T0 + λ. Note that, for λ ≥ 1,

T

(
1
λ
gλ

)
= T

(
1
λ
gλ + λ− 1

λ
0
)

= 1
λ
Tgλ + λ− 1

λ
T0 = 1

λ
T0 + 1 + λ− 1

λ
T0 = T0 + 1 = T (g1).

This implies that g1 = 1
λgλ, and so SLip(g1) ≤ 1

λ for every λ ≥ 1. Thus we obtain that g1 is a constant 
function. From now on, α will be the constant value g1 takes. Since T (g1) = T0 + 1 > T0 we have that 
α > 0. Now, it is not hard to check that gλ must be constant and gλ = αλ for every λ ≥ 0. In particular, 
Tλ = T0 + λ

α . Furthermore, for every λ ≥ 0

T0 = T

(
1
2 · λ + 1

2 · (−λ)
)

= 1
2Tλ + 1

2T (−λ) = 1
2

(
T0 + λ

α

)
+ 1

2T (−λ)

and we obtain T (−λ) = T0 − λ
α . �

Claim 3.6. Taking c = 1
α = T1 − T0 and φ = T0 we have that, for every f ∈ SLip1(Y ) and x ∈ X0,

Tf(x) = c · f(τ(x)) + φ(x).

Proof. Fix f ∈ SLip1(Y ) and x0 ∈ X0. Consider the functions g1 = f and g2 the constant function 
on Y with value f(τ(x0)). By applying the two preceding Claims we obtain that Tf(x0) = Tg2(x0) =
T0(x0) + 1

αf(τ(x0)). �
Claim 3.7. The function φ = T0 satisfies that T0(x1) − T0(x2) < dX(x1, x2) for every x1 �= x2 ∈ X0.
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Proof. Suppose that there exist x1 �= x2 ∈ X0 such that T0(x1) − T0(x2) = dX(x1, x2) and let y1 = τ(x1), 
y2 = τ(x2), β = dY (y1, y2) > 0. Consider f(y) = dY (y, y2). This function is 1-semi-Lipschitz, takes value 
β > 0 on y1 and vanishes on y2. Then,

Tf(x1) − Tf(x2) = T0(x1) + β

α
− T0(x2) = dX(x1, x2) + β

α
> dX(x1, x2),

a contradiction. �
To continue with the proof, we define on X the quasi-metric d′X(x, x′) = dX(x, x′) + φ(x′) − φ(x), where 

φ = T0. Then d′X is almost-isometric to dX . Consider now the convex lattice isomorphisms

R : SLip1(X, dX) → SLip(X, d′X),

defined by Rg = g − φ,

S : SLip1(X, d′X) → SLip(X,αd′X),

defined by Sh = α · h, and finally the composition

T̂ : SLip1(Y, dY ) → SLip(X,αd′X),

given by T̂ = S ◦R ◦T . Then we have that T̂1 = 1 and, moreover, T̂ f(x) = f(τ(x)) for every f ∈ SLip1(Y )
and every x ∈ X0.

We are going to see that (Y, dY ) and (X, αd′X) are isometric. First choose x1 and x2 ∈ X0 and let 
y1 = τ(x1), y2 = τ(x2). Consider the function f ∈ SLip1(Y ) given by f(y) = dY (y, y2). Then T̂ f(x1) =
dY (y1, y2) and T̂ f(x2) = 0, so we obtain that

dY (y1, y2) = T̂ f(x1) − T̂ f(x2) ≤ αd′X(x1, x2).

By symmetry, if we consider T̂−1, we obtain that αd′X(x1, x2) ≤ dY (τ(x1), τ(x2)) for every x1, x2 ∈ X0. 
Thus τ : (X0, αd′X) → (Y0, dY ) is in fact an isometry. Taking into account that (X, d̃X) and (Y, d̃Y ) are 
complete, and that every quasi-metric is continuous for the corresponding symmetrized distance, we obtain 
that this isometry τ extends to the whole X, and we have finished the proof of the theorem. �

Let (X, dX) and (Y, dY ) be complete quasi-metric spaces. A convex lattice isomorphism T : SLip1(Y ) →
SLip1(X) is said to be almost-unital if T1 −T0 = 1. According to the representation obtained in the previous 
theorem, T is of the form Tf(x) = c · (f ◦ τ) + φ, where c = T1 − T0 and φ = T0. Then T is almost-unital 
if, and only if, c = 1, and this is equivalent to the fact that (X, dX) and (Y, dY ) are almost isometric. So we 
obtain the following

Corollary 3.8. Let (X, dX) and (Y, dY ) be complete quasi-metric spaces. Then, the following are equivalent:

• (X, dX) and (Y, dY ) are almost isometric.
• There exists an almost unital convex lattice isomorphism between SLip1(X) and SLip1(Y ).

4. Consequences and related questions

Since every almost isometry between metric spaces is an isometry (see [5], Corollary 2.9), we readily 
obtain the following
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Corollary 4.1. Let X and Y be complete metric spaces and T : Lip1(Y ) → Lip1(X) a convex lattice isomor-
phism. Then, there exist τ : (X, dX) → (Y, dY ), c ∈ (0, ∞) and β ∈ R such that

• Tf = 1
c · (f ◦ τ) + β for every f ∈ Lip(Y ).

• dX(x, x′) = c · dY (τ(x), τ(x′)) for every x, x′ ∈ X.

We next consider the case of two quasi-metrics on the same space inducing the same symmetrized distance.

Corollary 4.2. Let (X, dX) be a complete quasi-metric space and d′X another quasi-metric on X. If 
d̃′X(x, x′) = d̃X(x, x′) for all x, x′ ∈ X, then the following are equivalent:

(i) Id : (X, dX) → (X, d′X) is an almost isometry.
(ii) For every x0 ∈ X and every f ∈ SLip1(X, d′X), the function defined as f(x) + dX(x, x0) − d′X(x, x0) is 

1-semi-Lipschitz on (X, dX).
(iii) For some x0 ∈ X and every f ∈ SLip1(X, d′X), the function defined as f(x) + dX(x, x0) − d′X(x, x0) is 

1-semi-Lipschitz on (X, dX).

Proof. We will show that (i) implies (ii) and that (iii) implies (i).
As shown before (see Proposition 2.4), if Id : (X, dX) → (X, d′X) is an almost isometry, with d′X(x, x′) =

dX(x, x′) +φ(x′) −φ(x), then T : SLip1(X, d′X) → SLip1(X, dX) given by Tf = f+φ +c is a bijection for any 
c ∈ R. As seen in Remark 1.3, for every x0 ∈ X there exists c ∈ R such that φ(x) = dX(x, x0) −d′X(x, x0) −c

for every x, so we obtain the first implication.
For the second one, we will check PX([x1, x2, x3]) = P ′

X([x1, x2, x3]) for every x1, x2, x3 ∈ X. Let us 
denote by T the application that maps f ∈ SLip1(X, d′X) to f + dX(x, x0) − d′X(x, x0) ∈ SLip1(X, dX). For 
some suitable f1, f2, f3 ∈ SLip1(X, d′X) we have:

P ′
X([x1, x2, x3]) = d′X(x1, x2) + d′X(x2, x3) + d′X(x3, x1) =

= f1(x2) − f1(x1) + f2(x3) − f2(x2) + f3(x1) − f3(x3) =

= f1(x2) + dX(x2, x0) − d′X(x2, x0) − f1(x1) − dX(x1, x0) + d′X(x1, x0) +

+ f2(x3) + dX(x3, x0) − d′X(x3, x0) − f2(x2) − dX(x2, x0) + d′X(x2, x0) +

+ f3(x1) + dX(x1, x0) − d′X(x1, x0) − f3(x3) − dX(x3, x0) + d′X(x3, x0) =

= Tf1(x2) − Tf1(x1) + Tf2(x3) − Tf2(x2) + Tf3(x1) − Tf3(x3) ≤
≤ dX(x1, x2) + dX(x2, x3) + dX(x3, x1) = PX([x1, x2, x3]).

As both symmetrized metrics agree,

P ′
X([x1, x2, x3]) + P ′

X([x3, x2, x1]) = PX([x1, x2, x3]) + PX([x3, x2, x1]),

and we obtain P ′
X([x1, x2, x3]) = PX([x1, x2, x3]). �

Finally, we characterize when a quasi-metric space is almost isometric to a metric space.

Corollary 4.3. Let (X, dX) be a quasi-metric space. Then, the following are equivalent:

(i) (X, dX) is almost isometric to (X, d̃X).
(ii) (X, dX) is almost isometric to (X, d′X), where d′X is the reverse quasi-metric of dX : d′X(x, x′) =

dX(x′, x).
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(iii) (X, dX) is almost isometric to a metric space.
(iv) There exists φ ∈ SLip1(X, dX) such that φ + f ∈ SLip1(X, dX) if and only if φ − f ∈ SLip1(X, dX).

Proof. We will show some implications:

• (iii) implies (i): If (X, dX) is almost isometric to a metric space (Y, dY ), then (X, d̃X) is isometric to 
(Y, d̃Y ) = (Y, dY ), so (X, dX) is almost isometric to (X, d̃X).

• (i) implies (iii): It is trivial.
• (i) if and only if (ii): Since P̃X([x1, x2, x3]) = 1

2 (P ′
X([x1, x2, x3]) + PX([x1, x2, x3])), it is clear that 

P ′
X([x1, x2, x3]) = PX([x1, x2, x3]) if and only if P̃X([x1, x2, x3]) = PX([x1, x2, x3]).

• (i) implies (iv): Suppose (X, dX) is almost isometric to (X, d̃X). Then, d̃X(x, x′) = dX(x, x′) +φ(x′) −φ(x)
for some φ ∈ SLip1(X, dX) and f ∈ SLip1(X, d̃X) �→ f + φ ∈ SLip1(X, dX) is an isomorphism. As 
−f ∈ SLip1(X, d̃X) if and only if f ∈ SLip1(X, d̃X), we obtain (iv).

• (iv) implies (ii): The only we must show is that PX([x1, x2, x3]) ≤ PX([x3, x2, x1]) whenever 
x1, x2, x3 ∈ X. Let f1, f2, f3 ∈ SLip1(X) such that

PX([x1, x2, x3]) = dX(x1, x2) + dX(x2, x3) + dX(x3, x1) =

= f1(x2) − f1(x1) + f2(x3) − f2(x2) + f3(x1) − f3(x3).

As (iv) implies that 2φ − fi ∈ SLip1(X) for i = 1, 2, 3, we get

PX([x3, x2, x1]) = dX(x3, x2) + dX(x2, x1) + dX(x1, x3) ≥
≥ (2φ− f2)(x2) − (2φ− f2)(x3) + (2φ− f1)(x1) − (2φ− f1)(x2) +

+ (2φ− f3)(x3) − (2φ− f3)(x1) =

= PX([x1, x2, x3]).

By symmetry, PX([x1, x2, x3]) = PX([x3, x2, x1]), which equals P ′
X([x1, x2, x3]), so we are done. �

Taking a look at [5], we see that another natural environment for almost isometries is that of Finsler 
manifolds. It is shown there that, given an almost isometry τ between Finsler manifolds, the function φ that 
governs τ is smooth and has differential with norm lower than 1 at every point. It would be interesting to 
know whether almost isometries of Finsler manifolds can be functionally characterized in terms of a suitable 
space of smooth functions.
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