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Let (G, ·) be a Polish group. We say that a set X ⊂ G is Haar null if there exists a 
universally measurable set U ⊃ X and a Borel probability measure μ such that for 
every g, h ∈ G we have μ(gUh) = 0. We call a set X naively Haar null if there exists 
a Borel probability measure μ such that for every g, h ∈ G we have μ(gXh) = 0. 
Generalizing a result of Elekes and Steprāns, which answers the first part of Problem 
FC from Fremlin’s list, we prove that in every abelian Polish group there exists a 
naively Haar null set that is not Haar null.

© 2016 Published by Elsevier Inc.

1. Introduction

Let (G, ·) be a Polish group. It is well known that there exists a left Haar measure on G (that is, a regular 
left invariant Borel measure that is finite for compact sets and positive for non-empty open sets) if and only 
if G is locally compact. It can be proved that the ideal of left Haar measure zero sets does not depend on 
the choice of the measure, moreover, it coincides with the ideal of the right Haar null sets (that can be 
defined analogously). This ideal plays an important role in the study of locally compact groups and there 
are a lot of interesting non-locally compact groups, so it is very natural to try to construct well-behaved 
generalizations of this notion in non-locally compact groups.

Christensen [2] suggested a generalization, which is widely used in diverse areas of mathematics. We will 
call a set universally measurable if it is measurable with respect to every Borel probability measure and we 
identify Borel measures with their completions.
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Definition 1.1. A set X ⊂ G is called Haar null if there exists a universally measurable set U ⊃ X and a 
Borel probability measure μ on G such that μ(gUh) = 0 for every g, h ∈ G.

For a Haar null set we will call a corresponding measure a witness measure and the set U its universally 
measurable hull. Notice that some authors use a slightly more restrictive notion, namely they require the 
hull to be a Borel set. These two notions provably differ in non-locally compact abelian Polish groups (see 
[6], where the above notion is called generalized Haar null), although in practice this makes little difference 
as the studied sets are typically Borel.

Christensen proved that in a locally compact Polish group a set is Haar null if and only if it is of measure 
zero with respect to a (or equivalently, every) Haar measure. He also showed that the collection of Haar 
null sets form a σ-ideal in every Polish group.

Our paper is motivated by the first part of Problem FC on Fremlin’s list [8]. The problem is whether we 
really need the universally measurable hulls in this definition. Let us consider the following notion.

Definition 1.2. A set X ⊂ G is called naively Haar null if there exists a Borel probability measure μ on G
such that μ(gXh) = 0 for every g, h ∈ G.

Using this terminology Fremlin’s problem asks whether every naively Haar null set is Haar null. This 
question was answered by Elekes and Steprāns [5]. Notice that this question makes sense in any uncountable 
Polish group, though the original question was formulated in R.

It was observed by Dougherty [4] that under the Continuum Hypothesis (CH) the answer is negative in 
the groups of the form G ×G. In fact, it is easy to see that if we consider a well-ordering <W of G in order 
type ω1 as a subset W of G ×G then both W and (G ×G) \W are naively Haar null. In particular, since 
G ×G is clearly not Haar null and Haar null sets form a σ-ideal, we obtain that either W or its complement 
is a naively Haar null, non-Haar null set.

Elekes and Steprāns [5] proved that in Rn the assumption of CH can be dropped. In this paper we extend 
their result to every abelian Polish group, proving the following statement.

Theorem 1.3. Let G be an uncountable abelian Polish group. There exists a subset of G that is naively Haar 
null but not Haar null.

We have to treat the case of locally compact and non-locally compact Polish topological groups separately. 
We start with the locally compact case, which is essentially a transfinite construction, while to solve the 
non-locally compact case we use ideas from [6].

In fact, we will prove slightly more in both cases. A natural modification of the definition of Haar nullness 
that was investigated by several authors ([11,12] etc.) is the following:

Definition 1.4. A set X ⊂ G is called left Haar null if there exists a universally measurable set U ⊃ X and 
a Borel probability measure μ on G such that μ(gU) = 0 for every g ∈ G.

The naive version of this notion can be defined analogously. It is easy to see using convolution that in 
locally compact groups a set is left Haar null if and only if it is of measure zero with respect to a Haar 
measure.

In the locally compact case we show that every Polish group has a naively left Haar null set that is not 
Haar null.

In the non-locally compact case our results (including of course the part cited from [6]) can be generalized 
to every non-locally compact Polish group that admits a two-sided invariant metric.
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2. Preliminaries

We use the notation of [9] and [6].
A Polish group is a topological group whose topology is Polish (a topology is called Polish if it is separable 

and completely metrizable). If G is a Polish group we denote by K(G) the Polish space of non-empty 
compact subsets of G (endowed with topology given by the Hausdorff metric). P(G) stands for the set of 
Borel probability measures on G (i.e. the completions of probability measures defined on the Borel sets). 
With the weak*-topology these measures form a Polish space.

For μ ∈ P(G) we denote by supp(μ) the support of μ, that is, the smallest closed set F such that 
μ(G \F ) = 0. The collection of Borel probability measures on G with compact support is denoted by Pc(G). 
It can be shown that Pc(G) is a Borel subset of P(G) [6, Lemma 3.2].

A simple but important observation is that if we have a Haar null set with witness measure μ then passing 
to a μ-positive compact subset ([9, Theorem 17.10]) and normalizing we can obtain a witness measure with 
compact support, thus:

Every Haar null set has a witness measure with compact support. (2.1)

If G is locally compact we will denote a left Haar measure on G by λ.
If H ⊂ X × Y and x ∈ X then the x-section of H is the set Hx = {y ∈ Y : (x, y) ∈ H}. For a function 

f : X × Y → Z the x-section is the function fx : Y → Z defined by fx(y) = f(x, y).
For A, B ⊂ G let A ·B denote the Minkowski product of A and B, i.e. the set {a · b : a ∈ A, b ∈ B}, while 

A−1 stands for the set {a−1 : a ∈ A}.
If H < G then a partial left (right) transversal to H is a subset of G that intersects every left (right) 

coset of H in at most one point.

3. Locally compact groups

Theorem 3.1. Every uncountable locally compact Polish group contains a naively left Haar null set that is 
not Haar null. In particular, every uncountable abelian Polish group contains a naively Haar null set that 
is not Haar null.

First we prove an easy lemma.

Lemma 3.2. Let P ⊂ G be a perfect set and B be a Borel λ-positive set. Then there exists g ∈ G such that 
|gP ∩B| = c.

Proof. Suppose the contrary. The indirect assumption and the Borelness of the set B ∩ gP imply that for 
every g ∈ G we have |B ∩ gP | ≤ ℵ0. Fix a continuous probability measure ν with supp(ν) ⊂ P . Then for 
every g ∈ G we have

|gB ∩ supp(ν)| ≤ |gB ∩ P | = |B ∩ g−1P | ≤ ℵ0,

so ν(gB) = 0. Thus B is a Borel left Haar null set, consequently a λ-null set, a contradiction. �
The following statement is the crucial point of our argument.

Lemma 3.3. Suppose that there exists an uncountable analytic subgroup H < G such that |G : H| > ℵ0.

(1) There exists a set X ⊂ G that is naively left Haar null, but not λ-null.
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(2) If H is also a normal subgroup then there exists a set X that is naively Haar null, but not λ-null.

Proof. First we prove that if X is a partial left transversal to H then X is naively left Haar null and if 
additionally H is a normal subgroup then a partial transversal is Haar null.

Since H is an uncountable analytic set it contains a perfect subset, so we can fix a continuous Borel 
probability measure μ with supp(μ) ⊂ H. Now, for an arbitrary g ∈ G we have

|gX ∩ supp(μ)| = |X ∩ g−1 supp(μ)| ≤ |X ∩ g−1H| ≤ 1,

so μ(gX) = 0.
If H is a normal subgroup then being a left or a right transversal is the same and repeating this argument 

we obtain that for every g, h ∈ G

|gXh ∩ supp(μ)| = |X ∩ g−1 supp(μ)h−1| ≤ |X ∩ g−1Hh−1| =

= |X ∩ g−1h−1hHh−1| = |X ∩ g−1h−1H| ≤ 1,

which shows that X is naively Haar null.
So it is enough to construct a non-λ-null partial left transversal to H. Notice first that since H has the 

Baire property, the condition |G : H| > ℵ0 implies that H is meager, hence by [1, p. 5] there exists a partial 
perfect left transversal P to H.

Enumerate the λ-null Gδ sets as {Gα : α < c}. Suppose that we have already constructed a partial left 
transversal to H, denoted by {xβ : β < α}, such that xβ /∈ Gβ for every β < α.

Claim. There exists an xα such that

xα /∈
⋃

β<α

xβH ∪Gα

and this is clearly enough to continue the induction.
Suppose the contrary. Then the set S =

⋃
β<α xβH is a co-null set.

Now notice that for every g ∈ G we have |gP ∩S| < c: otherwise there would exist an ordinal β < α such 
that

gp1 = xβh1 and gp2 = xβh2

for some distinct p1, p2 ∈ P and h1, h2 ∈ H. But then

p−1
2 p1 = h−1

2 h1 ∈ H,

which contradicts the fact that P was a partial left transversal.
So every left translate of P intersects S in less then c many points and since S is co-null, it contains a 

co-null Fσ set B. By Lemma 3.2 this is impossible, finishing the proof of the claim.
We have the claim, thus the induction can be carried out. The resulting set X = {xα : α < c} is a partial 

left transversal to H which contains a point outside of every λ-null Gδ set, consequently it is a non-λ-null 
set, so we are done. �
Lemma 3.4. Every uncountable Polish group G contains an uncountable Borel subgroup of uncountable index.

Proof. By [7], every uncountable Polish group contains an uncountable Borel non-Polish subgroup. It follows 
from Pettis’ theorem [10] (alternatively, one could use a theorem of Banach), that every non-meager Borel 
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subgroup of a Polish group contains a neighborhood of the identity, hence such a subgroup must be open. 
Thus, a non-Polish subgroup is necessarily meager and therefore it must have uncountable index. �
Remark 3.5. It is not hard to prove Lemma 3.4 directly, constructing by induction a perfect scheme so that 
the corresponding perfect set is compact and very “thin”: it generates a σ-compact first category subgroup 
of G. Compactness implies that the generated subgroup is also σ-compact.

Putting together Lemmas 3.4 and 3.3 we obtain Theorem 3.1, thus finishing the proof of Theorem 1.3 in 
the locally compact case.

4. Non-locally compact groups

In this section we will use ideas and a large part of the proof from [6]. Unfortunately, this cannot be 
avoided, since, apart from Proposition 4.2, the used proof segment is not explicitly citable.

Theorem 4.1. Suppose that G is a non-locally compact abelian Polish group. Then there exists a set X that 
is naively Haar null but not Haar null.

We will use the following proposition from [6].

Proposition 4.2. Let C ∈ K(G) be fixed. Then there exists a Borel map t : K(G) × 2ω × 2ω → G so that

(1) if (K, x, y) 
= (K ′, x′, y′) are elements of K(G) × 2ω × 2ω then

(K · C−1 · t(K,x, y)) ∩ (K ′ · C−1 · t(K ′, x′, y′)) = ∅

(2) for every K ∈ K(G) and y ∈ 2ω the map t(K, ·, y) is continuous.

Note that the original proposition in [6] contains a typo, namely, C ′ should be read as C. The following 
Proposition is the analogue of [6, Theorem 3.1], but the idea of the proof is different. Recall that for a 
function f : Pc(G) × 2ω → G and μ ∈ Pc(G) we denote the function f(μ, ·) by fμ.

Proposition 4.3. Let us denote the usual product measure on 2ω by λ. There exists a partial function f :
Pc(G) × 2ω → G satisfying the following properties: ∀μ ∈ Pc(G)

(1) (∀x ∈ 2ω) [(μ, x) ∈ dom(f) ⇒ f(μ, x) ∈ supp(μ)],
(2) for every Gδ subset S of 2ω ×G we have (graph(fμ) ⊂ S) ⇒ ((λ × μ)(S) > 0).

Proof. In order to construct the function f , we define the function fμ for every μ ∈ Pc(G) separately. Let 
μ ∈ Pc(G) be fixed. We claim that there exists a partial function fμ : 2ω → supp(μ) such that whenever S
is a Gδ subset of 2ω ×G containing graph(fμ) then (λ × μ)(S) > 0.

We construct the function fμ by transfinite induction. Let {Gα : α < c} be an enumeration of the 
λ × μ-null Gδ subsets of 2ω ×G. At stage α we choose a pair (xα, fμ(xα)) ∈ (2ω × supp(μ)) \Gα such that 
{(xβ , fμ(xβ)) : β ≤ α} is a graph of a partial function. This can be done, since if Gα is of λ × μ measure 
zero then λ almost all vertical sections of Gα have μ measure zero. Therefore, the set H = {xβ : β <

α} ∪{x : μ((Gα)x) > 0} is not the whole 2ω: otherwise, as the complement of the set {xβ : β < α} would be 
a λ-null set, {xβ : β < α} would be a λ-positive measurable set, which must contain a non-empty perfect 
set, contradicting that |α| < c. Consequently, we can choose xα /∈ H and fμ(xα) ∈ supp(μ) \ (Gα)xα

, which 
shows that the induction can be carried out. �



198 M. Elekes, Z. Vidnyánszky / J. Math. Anal. Appl. 446 (2017) 193–200
In order to prove Theorem 4.1 we need the following simple observation, which is probably well-known.

Lemma 4.4. Suppose that X and Y are Polish spaces, U ⊂ Y is a universally measurable set and f : X → Y

is a continuous function. Then f−1(U) is also universally measurable.

Proof. Let μ be a Borel probability measure on X. Let us denote by ν the push-forward measure on Y , 
i.e. the measure defined by ν(B) = μ(f−1(B)) for every Borel set B ⊂ Y . It is easy to see that ν is a Borel 
probability measure on Y . Consequently, as U is ν measurable we have U = B ∪N with some Borel set B
and ν(N) = 0. Then f−1(U) = f−1(B) ∪ f−1(N) and f−1(B) is Borel while μ(f−1(N)) = ν(N) = 0.

Thus f−1(U) is μ-measurable, which finishes the proof. �
We continue with the proof of Theorem 4.1, which is a word-by-word repetition of the proof of [6, 

Theorem 4.1] mutatis mutandis.

Proof of Theorem 4.1. Let f be given by Proposition 4.3.
It can be proved that the map μ �→ supp(μ) from Pc(G) to K(G) is Borel, see [9, 17.38]. Let us denote 

this map by supp. Let us also fix a Borel bijection c : Pc(G) → 2ω (which we think of as a coding map) and 
a continuous Borel probability measure ν on G with compact support C. Let t : K(G) × 2ω × 2ω → G be 
the map from Proposition 4.2 with the C fixed above, and define the map Ψ: Pc(G) × 2ω ×G → G by

Ψ(μ, x, g) = g · t(supp(μ), x, c(μ)). (4.1)

Finally, define X = Ψ(graph(f)) ⊂ G.

Claim 4.5. X is naively Haar null.

Proof. We prove that ν is witnessing this fact. Actually, we prove more: |C ∩Xg| ≤ 1 for every g ∈ G, or 
equivalently |Cg ∩X| ≤ 1 for every g ∈ G. So let us fix g ∈ G.

X = Ψ(graph(f)) = {Ψ(μ, x, f(μ, x)) : (μ, x) ∈ dom(f)} =

{f(μ, x) · t(supp(μ), x, c(μ)) : (μ, x) ∈ dom(f)},

hence the elements of X are of the form gμ,x = f(μ, x) · t(supp(μ), x, c(μ)). This element gμ,x is clearly in 
Aμ,x = supp(μ) · t(supp(μ), x, c(μ)) by Property (1) of Proposition 4.3, and the sets Aμ,x form a pairwise 
disjoint family as (μ, x) ranges over dom(f), by Property (2) of Proposition 4.2. Hence it suffices to show that 
Cg can intersect at most one Aμ,x. But it can actually intersect at most one set of the form K · t(K, x, y)(=
supp(μ) · t(supp(μ), x, y)), since otherwise g would be in the intersection of two distinct sets of the form 
K · C−1 · t(K, x, y), contradicting Property (2) of Proposition 4.2. �
Claim 4.6. X is not Haar null.

Suppose the contrary, then by definition X has a universally measurable Haar null hull U . Then using 
observation (2.1) there exists a Borel probability measure μ with compact support witnessing that U is 
Haar null. The section map Ψμ = Ψ(μ, ·, ·) is continuous by (4.1) and Property (2) of Proposition 4.2. Now 
let T = Ψ−1

μ (U), then T is universally measurable by Lemma 4.4. Notice that by the definition of X, f and 
T we have that graph(fμ) ⊂ T .

We show that for every x ∈ 2ω we have μ(Tx) = 0. Suppose the contrary. By the definition of T we have 
that
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Ψ(μ, x, Tx) = Ψμ({x} × Tx) ⊂ Ψμ(T ) = U.

But Ψ(μ, x, ·) : G → G is a translation, so a translate of U contains Tx, which is of positive μ-measure, 
contradicting that U is Haar null with witness μ.

Hence every vertical section of T has μ-measure zero and since T is universally measurable, by the Fubini 
theorem λ ×μ(T ) = 0. Therefore, by the regularity of Borel measures, there exists a Gδ subset S of 2ω ×G

so that S ⊃ T and S has λ × μ-measure zero. But

graph(fμ) ⊂ T ⊂ S

which contradicts Property (2) of Proposition 4.3. �
This concludes the proof of Theorem 4.1 and hence of Theorem 1.3.

5. Remarks and open problems

We finish our paper with collecting the most important open problems. Fremlin’s problem in full generality 
remains unsolved.

Question 5.1. Does there exist a naively Haar null non-Haar null set in every uncountable Polish group?

Since we have shown that the existence of an uncountable Borel normal subgroup of uncountable index 
implies the existence of a naively Haar null non-Haar null set, it would be interesting to know, which groups 
contain such a subgroup.

Question 5.2. Does every uncountable non-Archimedean compact group contain an uncountable Borel (or 
analytic) normal subgroup of uncountable index?

In order to show that the notion of naively Haar null sets is indeed very naive, it would be sufficient to 
prove that naively Haar null sets do not form a σ-ideal.

Question 5.3. Is it true that in every uncountable Polish group G the naively Haar null sets do not form a 
σ-ideal? In particular, does there exist a naively Haar null set S ⊂ G such that G \ S is also naively Haar 
null?

As it was mentioned before, under CH the groups of the form G ×G can be decomposed into two naively 
Haar null sets. A natural attempt to use the same idea in locally compact groups to obtain a ZFC result 
would be the following.

Let S ⊂ G be a λ-positive set of cardinality non(N ) (i.e. the smallest cardinality of a positive set). Then 
a well-ordering of S regarded as a subset W of S × S is a naively Haar null set with witness λ, as every 
vertical section is λ-null, similarly (S × S) \ W is also naively Haar null. It is easy to see that S × S is 
λ ×λ-positive, however it is not clear, whether this set is naively Haar null. So the following question arises: 
does there exist a set S ⊂ G of cardinality non(N ) such that S × S is not naively Haar null in G ×G?

Finally, we present a ZFC example of the failure of the σ-idealness in R2.

Example 5.4. Davies [3] proved that R2 can be covered by countably many rotated graphs of functions. But 
a graph of a function is naively Haar null: an arbitrary continuous Borel probability measure concentrated 
on the range axis of the function will be a witness measure.
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Question 5.5. Is it possible to use Davies’ construction to obtain an example to the failure of the σ-idealness 
in every abelian Polish group?

References

[1] H. Becker, A.S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Mathematical Society Lecture Note 
Series, vol. 232, Cambridge University Press, Cambridge, 1996.

[2] J.P.R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972) 255–260.
[3] R.O. Davies, Covering the plane with denumerably many curves, J. Lond. Math. Soc. 38 (1963) 433–438.
[4] R. Dougherty, Examples of non-shy sets, Fund. Math. 144 (1994) 73–88.
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