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BIRKHOFF-JAMES ORTHOGONALITY OF LINEAR
OPERATORS ON FINITE DIMENSIONAL BANACH SPACES

DEBMALYA SAIN

ABSTRACT. In this paper we characterize Birkhoff-James orthogonality of lin-
ear operators defined on a finite dimensional real Banach space X. We also
explore the left symmetry of Birkhoff-James orthogonality of linear operators
defined on X. Using some of the related results proved in this paper, we fi-
nally prove that T € ]L(l?,)(p > 2,p # o0) is left symmetric with respect to
Birkhoff-James orthogonality if and only if 7" is the zero operator.

1. INTRODUCTION.

Birkhoff-James orthogonality [2] plays a vital role in the study of geometry of
Banach spaces. One of the prominent reasons behind this is the natural connection
shared by Birkhoff-James orthogonality with various geometric properties of the
space, like smoothness, strict convexity etc. Recently in [5], Sain and Paul have
characterized finite dimensional real Hilbert spaces among finite dimensional real
Banach spaces in terms of operator norm attainment, using the notion of Birkhoff-
James orthogonality. More recently, symmetry of Birkhoff-James orthogonality of
linear operators defined on a finite dimensional real Hilbert space H has been ex-
plored by Ghosh et al. in [3]. However, it was remarked in [3] that analogous
results corresponding to the far more general setting of Banach spaces remain un-
known. The aim of the present paper is twofold: we characterize Birkhoff-James
orthogonality of linear operators defined on a finite dimensional real Banach space
X and we also explore the left symmetry of Birkhoff-James orthogonality of linear
operators defined on X. Using some of the results proved in this paper, we finally
study the left symmetry of Birkhoff-James orthogonality of linear operators defined
on I2(p > 2,p # 00).

Let (X, ||||) be a finite dimensional real Banach space. Let Bx = {z € X: ||z]| < 1}
and Sx = {z € X : ||z|| = 1} be the unit ball and the unit sphere of the Banach
space X respectively. Let L(X) denote the Banach space of all linear operators on
X, endowed with the usual operator norm.

For any two elements z,y € X, x is said to be orthogonal to y in the sense of
Birkhoff-James, written as x L y, if

|zl < ||z + Ay|| for all A € R.
Likewise, for any two elements T, A € IL(X), T is said to be orthogonal to A in the
sense of Birkhoff-James, written as T L g A, if

I < ||T + AA|| for all X € R.
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For a linear operator T defined on a Banach space X, let M7 denote the collection
of all unit vectors in X at which T" attains norm, i.e.,

Mrp = {z € Sx: |Tz| = T}

In a finite dimensional Hilbert space H, Bhatia and Semrl [1] proved that for any
two elements T, A € L(H), T" Lp A if and only if there exists x € My such that
Tz L p Az. Sain and Paul [5] generalized the result for linear operators defined on
finite dimensional real Banach spaces in Theorem 2.1 of [5] by proving the following
result:

Let X be a finite dimensional real Banach space. Let T' € L(X) be such that
My = £D, where D is a closed, connected subset of Sx. Then for A € L(X) with
T 1 A, there exists © € D such that Tx 15 Ax.

It is easy to observe that there exists a bounded linear operator T € L(X) such that
M is not of the form +D, where D is a closed connected subset of Sx. Therefore,
Theorem 2.1 of [5] does not completely characterize Birkhoff-James orthogonality
of linear operators defined on a finite dimensional real Banach space X. In this
paper, one of our main aims would be to obtain a complete characterization of
Birkhoff-James orthogonality of linear operators defined on X. The next notion is
crucial for our main result:

For any two elements z,y in a real normed linear space X, let us say that y € ™
if ||z 4+ Ay|| > ||z|| for all A > 0. Accordingly, we say that y € = if ||x + Ay|| > ||z]]
for all A < 0. Using this notion we completely characterize Birkhoff-James orthog-
onality of linear operators defined on finite dimensional real Banach spaces.

Next we consider the left symmetry of Birkhoff-James orthogonality of linear oper-
ators defined on a finite dimensional real Banach space X. For an element = € X
let us say that x is left symmetric (with respect to Birkhoff-James orthogonality)
if # Ly implies y L x for any y € X. It was proved in [3] that if H is a finite
dimensional real Hilbert space then T € L(H) is a left symmetric point if and only
if T is the zero operator. In this paper we consider the problem in the more general
setting of real Banach spaces and prove some related results corresponding to the
left symmetry of linear operators defined on a finite dimensional real Banach space.
We give example to show that in a finite dimensional real Banach space X, which
is not a Hilbert space, there may exist nonzero linear operators T' € IL(X) such that
T is a left symmetric point in L(X). Finally, we prove that T' € IL(I2)(p > 2,p # o)
is left symmetric if and only if 7" is the zero operator.

2. MAIN RESULTS.

In order to characterize Birkhoff-James orthogonality of linear operators defined on
finite dimensional real Banach spaces, we have introduced the notions y € 2 and
y € x—, for any two elements x,y in a real normed linear space X. First we state
some obvious but useful properties of this notion which would be used later on in
this paper, without giving explicit proofs.

Proposition 2.1. Let X be a real normed linear space and x,y € X. Then the
following are true:
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(i) Fithery € x* ory € z™.

(ii) x Ly if and only ify € x+ and y € x~.

(iii) y € o implies that ny € (px)™ for all n,u > 0.
(iv) y € xt implies that —y € x~ and y € (—x) .
(v) y € x~ implies that ny € (px)~ for all n,u > 0.
(vi) y € = implies that —y € ™t and y € (—x)™.

In the next theorem we use this notion to give a characterization of Birkhoff-James
orthogonality of linear operators defined on a finite dimensional real Banach space.

Theorem 2.2. Let X be a finite dimensional real Banach space. Let T, A € L(X).
Then T Lp A if and only if there exists x,y € My such that Az € Taxt and
Ay e Ty~ .

Proof : Let us first prove the easier “if” part.

Suppose there exists x,y € My such that Az € TxT and Ay € Ty~ . For any
A>0,[|TH+NA| > [|[Tx+AAz|| > ||Tz|| = ||T||. Similarly, for any A < 0, [T+ A| >
Ty + MNAy|| > || Ty|| = ||T||. This proves that T Lz A.

Let us now prove the comparatively trickier “only if” part.

Let T, A € L(X) be such that T' L g A. If possible suppose that there does not exist
x,y € Mr such that Az € Tz™ and Ay € Ty . Using (i) of Proposition 2.1, it is
easy to show that either of the following is true:

(i) Az € Ta™ for each x € My and Az ¢ Tz~ for any x € My

(i) Az € Tz~ for each x € My and Ax ¢ Tx™ for any = € Mr.

Without loss of generality, let us assume that Az € Tz™ for each z € My and
Az ¢ Tz~ for any x € My. Consider the function g : Sx x [—1,1] — R defined by

9(z,A) = [Tz + AAz|.

It is easy to check that ¢ is continuous. Given any x € My, since Az ¢ Tz~ there
exists A, < 0 such that g(z, ;) = [|[ Tz + A\ Az| < ||[Tz|| = ||T||. By continuity of
g, there exists r,, d, > 0 such that

g(y, A) < ||T|| for all y € B(z,r,) N Sx and for all A € (A\y — 9z, Ay + 02).

Using the convexity property of the norm function, it is easy to show that g(y, \) =
Ty + AAy|| < ||T|| for all y € B(x,r,) N Sk and for all A € (A;,0).

For any z € Sx\ My, we have g(z,0) = ||Tz|| < ||T]|. Thus by continuity of g, there
exist 75,0, > 0 such that g(y, \) = ||Ty + NAy| < ||| for all y € B(z,r,) N Sx and
for all A € (=4.,0.).

Consider the open cover {B(z,r,) N Sx:x € Mp}U{B(z,7,) N Sx : z € Sx\Mr}
of Sx. Since X is finite dimensional, Sx is compact. This proves that the considered
open cover has a finite subcover and so we get,

Sx C U B(xi,re,) Up2, B2k, r2,) N Sk,
for some positive integers ni,ns, where each z; € Mp and each z, € Sx\ M.
Choose Ao € (N2} (Az;,0)) N (Np2; (=02, 05,))-

Since X is finite dimensional, 7"+ M\gA attains its norm at some wg € Sx. Either
wo € B(x;,ry,) for some x; € Mr or wg € B(zy,72,) for some z, € Sx\Mr. In
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either case, it follows from the choice of Ao that ||T+ X A|| = |[(T+ XoA)wo|| < || T
which contradicts our primary assumption that 7' L g A and thereby completes the
proof of the “only if” part.

Theorem 2.1 of Sain and Paul [5] can be deduced as a corollary to the previous
theorem.

Corollary 2.2.1. Let X be a finite dimensional real Banach space. Let T € L(X)
be such that Mp = +D, where D is a closed, connected subset of Sx. Then for
A e L(X) with T L A, there exists x € D such that Tx 1 g Ax.

Proof : Since T Lp A, applying Theorem 2.2, we see that there exists x,y €
My = £D such that Az € Tzt and Ay € Ty~ . Moreover, it is easy to see that by
applying (iv) and (vi) of Proposition 2.1, we may assume without loss of generality
that z,y € D. Then following the same line of arguments, as in Theorem 2.1 of [5],
it can be proved that there exists ug € D such that Aug € Tuo+ and Aug € Ty,
by using the connectedness of D. However, this is equivalent to Tug 1p Auy,
completing the proof of Theorem 2.1 of [5].

Remark 2.3. The previous theorem gives a complete characterization of Birkhoff-
James orthogonality of linear operators defined on a finite dimensional real Banach
space X. Moreover, as we will see later on in this paper, the theorem is very useful
computationally as well as from theoretical point of view. It should be noted that
the main idea of the proof of Theorem 2.2 was already there in the proof of Theorem
2.1 of [5]. However, complete characterization of Birkhoff-James orthogonality of
linear operators on X could not be obtained in [5]. This reveals the usefulness of
the notion introduced by us in this paper to meet this end.

Next we consider the left symmetry of Birkhoff-James orthogonality of linear opera-
tors defined on a finite dimensional real Banach space X. T' € L(X) is left symmetric
if ' Lp A implies that A Lp T for any A € L(X). In the following theorem we
establish a useful connection between left symmetry of an operator 7' € L(X) and
left symmetry of points in the corresponding norm attainment set Myp.

Theorem 2.4. Let X be a finite dimensional strictly convex real Banach space. If
T € L(X) is a left symmetric point then for each x € My, Tx is a left symmetric
point.

Proof : First we observe that the theorem is trivially true if 7" is the zero operator.
Let T be nonzero. Since X is finite dimensional, M is nonempty. If possible suppose
that there exists x; € My such that Tz is not a left symmetric point. Since T is
nonzero, Tz1 # 0. Then there exists y; € Sx such that Txy L y; but y1 L Tx;.
Since X is strictly convex, x1 is an exposed point of the unit ball Bx. Let H be the
hyperplane of codimension 1 in X such that z; L g H. Clearly, any element x of X
can be uniquely written in the form = = a2 + h, where a; € R and h € H. Define
a linear operator A € L(X) as follows:

Axy =y1,Ah =0 for all h € H.

Since 1 € My and Tx1 L Axq, it follows that T' L g A. Since T is left symmetric,
it follows that A 15 T.
It is easy to check that M4 = {£x;}, since X is strictly convex. Applying Theorem
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2.1 of [5] to A, it follows from A L g T that Axy Lp Ty, ie., y1 L Txy, contrary
to our initial assumption that y; £ p Tx;. This contradiction completes the proof
of the theorem.

The proof of the following corollary is now obvious.

Corollary 2.4.1. Let X be a finite dimensional strictly convex real Banach space
such that the unit sphere Sx has no left symmetric point. Then L(X) can not have
any nonzero left symmetric point.

In the next theorem we prove that if X is a finite dimensional strictly convex
and smooth real Banach space, then a “large” class of operators can not be left
symmetric in L(X).

Theorem 2.5. Let X be a finite dimensional strictly convexr and smooth real Ba-
nach space. Let T € L(X) be such that there exists x,y € Sx satisfying (i) x €
My, (it) y Lp x, (iti) Ty # 0. Then T' can not be left symmetric.

Proof : There exists a hyperplane H of codimension 1 in X such that y 1L H.
Define a linear operator A € IL(X) as follows:

Ay =Ty, A(H) = 0.
Since y L g x and X is smooth, it follows that x € H, i.e., Az = 0. Since X is strictly
convex, as before it is easy to show that My = {xy}. We observe that 7' L5 A,
since x € My and Tz Lp Az = 0. However, M4 = {+y}, Ay Lp Ty together
implies that A [ 5 T. This completes the proof of the fact that T" can not be left
symmetric.

Corollary 2.5.1. Let X be a finite dimensional strictly convex and smooth real
Banach space. Let T € L(X) be invertible. Then T can not be left symmetric.

Proof : Since X is finite dimensional, there exists « € Sx such that ||Tz| = ||T.
From Theorem 2.3 of James [4], it follows that there exists y(# 0) € X such that
y Lp x. Using the homogeneity property of Birkhoff-James orthgonality, we may
assume without loss of generality that ||y|| = 1. Since T' is invertible, T'y # 0. Thus,
all the conditions of the previous theorem are satisfied and hence T' can not be left
symmetric.

Let H be a finite dimensional real Hilbert space. It was proved in [3] that 7" € L(H)
is a left symmetric point in L(H) if and only if 7" is the zero operator. In the next
example we show that if X is a finite dimensional real Banach space, which is not
a Hilbert space, then there may exist nonzero left symmetric operators in L(X).

Ezample 1. Let X be the 2 dimensional real Banach space (. Let T € L(X) be
defined by 7(1,0) = (%,1),7(0,1) = (0,0). We claim that T is left symmetric
in L(X). Indeed, let A € L(X) be such that T L A. Since My = {£(1,0)}, it
follows that (%,3) = 7'(1,0) L A(1,0). Since (3, 3) is a left symmetric point in
X, it follows that A(1,0) Lg T'(1,0). We also note that {£(1,0),+(0,1)} are the
only extreme points of Sx. Since a linear operator defined on a finite dimensional
Banach space must attain norm at some extreme point of the unit sphere, either
(1,0) € M4 or (0,1) € My. In either case, there exists a unit vector = such that
x € M and Ax 1L Tx. However, this clearly implies that A L g T, completing

the proof of the fact that 7" is a nonzero left symmetric point in L(X).
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We next wish to prove that in case of the strictly convex and smooth real Banach
spaces lf,(p >2p# ), T € L(lg)(p > 2,p # 00) is left symmetric if and only if
T is the zero operator. Before proving the desired result, we first state two easy
propositions. It may be noted that the proofs of both the propositions follow easily
from ordinary calculus.

Proposition 2.6. Let X be the real Banach space lf,(p # 1,00). € Sx is a left
symmetric point in X if and only if x € £{(1,0), (0,1), (57

5i75): (5751 2060 )

Proposition 2.7. Let X be the real Banach space lg(p # 1,00). If z,y € Sx are
such that x L gy and y L x then either of the following is true:

(i) = £(1,0) and y = +(0,1).

(i) x = £(0,1) and y = £(1,0).

(Z“) T = :l:(zll/p ’ ﬁ)’y = :l:(gll/p7 QT/ID)'

(v) x = i(ﬁv QT_/II))7y = i(ﬁv #)

Next we apply these two propositions and some of the results proved in this paper
to prove that T € L(I2)(p > 2,p # o0) is left symmetric if and only if 7" is the zero
operator.

Theorem 2.8. Let X be the 2 dimensional real Banach space li(p > 2,p # 00).
T € L(X) is left symmetric if and only if T is the zero operator.

Proof : If possible suppose that 7' € L(X) is a nonzero left symmetric point in
L(X). Since Birkhoff-James orthogonality is homogeneous, and 7' is nonzero, let us
assume, without loss of generality, that ||T|| = 1. Let T attains norm at x € Sx.
From Theorem 2.3 of James [4], it follows that there exists y € Sx such that y L g .
Since X is strictly convex and smooth, applying Theorem 2.5, we see that Ty = 0.
Theorem 2.4 ensures that Tx must be a left symmetric point in X. Thus, applying
Proposition 2.6, we have that

11 1 -1
Tz e i{(la 0)’ (0’ 1)7 (M7 m)v (mv m)}

We next claim that x L y.

From Theorem 2.3 of James [4], it follows that there exists a real number a such
that ay +x Lp y. Since y Lp x and z,y # 0, {z,y} is linearly independent and
hence ay + x # 0. Let z = IIZZiiH' We note that if T2 = 0 then T is the zero
operator. Let Tz # 0. Clearly, {y, z} is a basis of X.

Let ||e1z+ cay|| = 1, for some scalars ¢y, co. Then we have, 1 = |le1z+coy|| > | 1 | -
Since X is strictly convex, 1 >| ¢1 |, if ca # 0. We also have, | T(c1z + c2y)|| =
leaTz|| =| 1 | |T2|| < ||Tz| and ||T(c1z + c2y)|| = || T2| if and only if ¢; = £1
and co = 0. This proves that My = {+z}. However, we have already assumed that
x € Mrp. Thus, we must have z = +2z. Since z L p y, our claim is proved.

Thus, =,y € Sx are such that x L5 y and y L x. Therefore, by applying Propo-
sition 2.7, we see that we have the following information about 7" :

(i) T attains norm at z, z Lg y,y Lp z, Ty =0.

(11) m,y7Tas € i{(l,O), (07 1)7 (21%7 21%)7 (21%7 2:/11;)}'
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This effectively ensures that in order to prove that 7' € L(X) is left symmetric if

and only if T" is the zero operator, we only need to consider 32 different operators

that satisfy (i) and (ii) and show that none among them is left symmetric.

Let us first consider one such typical linear operator and prove that it is not left

symmetric.

Let T € L(X) be defined by: 7(1,0) = (1,0),7(0,1) = (0,0). Define A € L(X)

by A(1,0) = (0,1), A(0,1) = (1,1). Clearly, T" attains norm only at +(1,0). Since
T(1,0) = (1,0) Lg (0, 1) A(1,0), it follows that T' L 5 A. We claim that A Y5 T.

Now, |A(z75, 555)|IP = 5 +2°71 > 2 = ||A(0,1)||?, since p > 2. This proves that
+(1,0),(0,1) ¢ Ma. It 1s also easy to observe that if (a,8) € M4 then either

a,B>0ora,p<0.

For any «, 8 > 0 and for sufficiently small negative \,

| A(a, B)+AT(c, BIIP = |(B+Aa,a+B) [P = [B+Aal+|a+BIP < 8P +]a-+ AP =

JA(a, AP

Similarly, for any «, 8 < 0, and for sufficiently small negative A, ||A(«, 8)+AT (o, B)||P <

| A(c, B[P

This proves that for any w € Ma,Tw ¢ Aw~. Applying Theorem 2.2, it now fol-

lows that A Y T. Thus, T is not left symmetric in L(X), contradicting our initial

assumption.

Next we describe a general method to prove that none among these 32 operators

are left symmetric.

Let T attainsnorm at z, x L y,y Lp x,Ty =0and z,y, Tz € +{(1,0), (0, 1), (21/p, 21/p) (21/p, 2}}1,)}

Define a linear operator A € L(X) by Az =y, Ay = (1,0) or (1,1) such that

(i) A does not attain its norm at +x, +y.

(if) Tw ¢ Aw™ for any w € M.

Then, as before, it is easy to see that T 1 g A but A L T. Thus, T is not left

symmetric.

This completes the proof of the theorem.

We would like to end the present paper with the concluding remark that it would
be indeed interesting to extend the above theorem to higher dimensional [, spaces,
and more generally, to finite-dimensional strictly convex and smooth real Banach
spaces, if possible.
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