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1. Introduction

Regularity properties of the Bergman projection have been studied for many years. In particular, its 
Lp boundedness is of considerable interest. When the underlying domain has sufficiently smooth boundary, 
decisive results were obtained by several people working on it (e.g. [9,21,17,20,18,19,6,1], etc.). Most recently, 
in [16], Lanzani and Stein show that the Bergman projection is bounded on Lp for 1 < p < ∞, when the 
underlying domain is strongly pseudoconvex with only C2 boundary. However, when we look at some 
domains with serious singularities at their boundaries, the Lp boundedness of the Bergman projection will 
no longer hold for all p ∈ (1, ∞).

There is also a sequence of papers concerning domains with non-smooth boundary. In [15], Lanzani and 
Stein consider non-smooth planar domains, and the ranges for p depend on different types of boundaries. In 
a series of papers, [13] and [14], Krantz and Peloso show that the Bergman projection for the two dimensional 
non-smooth worm domain is bounded only when p is in a range depending on the winding of the domain. 
In [3] and [4], Chakrabarti and Shaw focus on the ∂-equation and the corresponding Sobolev regularities, 
over the product domains and the Hartogs triangle. In [23], Zeytuncu applies Forelli–Rudin’s inflation idea 
to consider a class of domains of the form {(z, w) ∈ C

2| z ∈ D, |w|2 < μ(z)}, where μ is a weight on D. We 
should point out that this class of domains is slightly different from what we focus here.
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Recently, Chakrabarti and Zeytuncu study the Lp mapping property of the Bergman projection on the 
Hartogs triangle in [5]. In [7] and [8], Edholm and McNeal study the Bergman theory of other variants of 
the Hartogs triangle. In [11], Huo obtains new explicit formulas for the Bergman kernel on some Hartogs 
domains and studies the boundary behavior of the kernel function on the diagonal.

As a well known fact, the Hartogs triangle does not possess a Stein neighborhood bases, and the Sobolev 
regularity of its Bergman projection does not behave well near the nontrivial singularity on the bound-
ary. Hence, we may expect the Lp regularity of the Bergman projection of the Hartogs triangle and its 
generalization will not behave well, too. In particular, here we figure out the exact range of p for the Lp

boundedness of the corresponding Bergman projection.
In this paper, we study a class of bounded Hartogs domains which generalize the two dimensional Hartogs 

triangle H = {(z1, z2) ∈ C
2| |z1| < |z2| < 1}. To be precise, for j = 1, . . . , l, let Ωj be a bounded smooth 

domain in Ckj , let φj : Ωj → B
kj be a biholomorphic mapping between Ωj and the unit ball Bkj in 

C
kj with inverse φ−1

j , let mj =
∑j

s=1 ks with m0 = 0 and ml = k < n, and we use the notation that 
z̃j = (zmj−1+1, . . . , zmj

) when z ∈ C
n. For 1 ≤ k < n, we look at the bounded Hartogs domain given by

H
n
{kj ,φj} = {z ∈ C

n| max
1≤j≤l

|φj(z̃j)| < |zk+1| < · · · < |zn| < 1}

in Cn. When l = 1, k = 1, n = 2, and φ1 is the identity map, we obtain the classical Hartogs triangle.
For nontrivial examples, we can take φj to be nonsingular linear mappings. When n = 4, l = 2, k1 = 1, 

k2 = 2, φ1(z1) = 2z1 − 1, φ2(z2, z3) = (z2 + 1
2z3, z3), we obtain a bounded domain which is the intersection 

of two unbounded domains,

{z ∈ C
4| |2z1 − 1|2 < |z4|2 < 1, |z2 + 1

2z3|2 + |z3|2 < |z4|2 < 1}.

We can also take φj to be nonlinear, then we may obtain other types of domains. When n = 3, l = 1, 
k = k1 = 2, φ1(z1, z2) = ( z1

z2−10 , 3z2 + 1), the domain becomes

{z ∈ C
3| | z1

z2 − 10 |
2 + |3z2 + 1|2 < |z3|2 < 1}.

By this consideration, the domains Hn
{kj ,φj} can be a large class of domains to some extent.

For an arbitrary domain D, the corresponding Bergman projection PD is originally defined on L2(D), 
mapping onto the Bergman space A2(D) = O(D) ∩ L2(D). If D is bounded, then Lp′(D) ⊂ Lp(D) when 
p′ > p. So the Bergman projection PD can be defined on Lp(D) ∩ L2(D) = Lp(D) for all p ≥ 2. When 
1 ≤ p < 2, the Bergman projection PD on Lp(D) will mean PD on the subspace Lp(D) ∩ L2(D) of Lp(D). 
So for any p ∈ [1, ∞), when we say the Bergman projection PD is bounded on Lp(D), we mean the Bergman 
projection PD mapping Lp(D) ∩ L2(D) onto Ap(D) ∩ L2(D) is bounded, where Ap(D) = O(D) ∩ Lp(D). 
With all these in mind, we can state our main result.

Theorem 1.1. For 1 ≤ p < ∞ and 1 ≤ k < n, the Bergman projection PHn
{kj,φj}

for Hn
{kj ,φj} is bounded on 

Lp(Hn
{kj ,φj}) if and only if p is in the range ( 2n

n+1 , 
2n
n−1 ).

It is quite interesting that the boundedness range for p does not depend on {kj , φj}, but only on the 
dimension n. If we take φj = idj , the identity map of Bkj , then we will obtain our standard model

H
n
{kj} = {z ∈ C

n| max
1≤j≤l

|z̃j | < |zk+1| < · · · < |zn| < 1},

which plays an important role in this article. For simplicity, we will mainly deal with the case l = 1, since 
the general case requires no new work but clumsy notations. So we come to the n-dimensional generalized 
Hartogs triangle
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H
n
k = {z ∈ C

n| |(z1, . . . , zk)| < |zk+1| < · · · < |zn| < 1}.

In order to emphasize our standard model, we state the special case separately as follows.

Theorem 1.2. For 1 ≤ k < n, the Bergman projection PHn
k

for Hn
k is bounded on Lp(Hn

k ) when 2n
n+1 < p <

2n
n−1 , and is unbounded when 1 ≤ p ≤ 2n

n+1 . The same conclusion is true for our standard model Hn
{kj}.

Remark 1.3. Indeed, for p ∈ ( 2n
n+1 , 

2n
n−1 ), by a simple argument, we can extend the Bergman projection PHn

k

to all the space Lp(Hn
k ), not just defined on the subspace Lp(Hn

k ) ∩L2(Hn
k ). The same is true for Hn

{kj} and 
H

n
{kj ,φj}.

Remark 1.4. For l = 1, when n = k, the generalized Hartogs triangle will degenerate to the unit ball Bk in 
C

k. A classical result states that the Bergman projection is bounded on Lp for p ∈ (1, ∞). Moreover, the 
domain Hk

k,φ1
will degenerate to the smoothly bounded domain Ω, which indeed is strongly pseudoconvex. 

Therefore the Lp boundedness of the Bergman projection is true for p ∈ (1, ∞) by the result in [16]. In fact, 
if we follow the method in the proof of Theorem 1.1, for a general l, when n = k, we can see that the same 
result holds for the degenerate domain.

Our starting point is to study the Bergman projection for the classical Hartogs triangle by following the 
method used in [10], where they only deal with the unit disk in C. After applying a biholomorphism to 
transfer the Hartogs triangle to a product domain, we find that we can use a similar estimate (compared to 
the unit disk) to control the absolute value of the determinant of the Jacobian from the transformation, but 
we have to make a restriction on p, namely p ∈ (4

3 , 4). It is a little bit tricky to find a bounded sequence {fm}
in Lp∩L2, such that the sequence {PH(fm)} blows up in Lp, when p = 4

3 . Further, we find that this idea can 
be generalized to higher dimensions, so we set up the n-dimensional generalized Hartogs triangle Hn

k and 
the standard model Hn

{kj}. Finally, by Bell’s extension theorem (see [2]), we find that the Lp boundedness 
of the Bergman projection will be preserved for a more general class of bounded Hartogs domains Hn

{kj,φj}.

2. Transfer to a product domain

We start the proof by transferring the n-dimensional generalized Hartogs triangle to a product domain.

2.1. The biholomorphism

Let D be the unit disk in C, and let D∗ = D\{0} be the punctured disk. Let us look at the n-dimensional 
generalized Hartogs triangle

H
n
k = {z ∈ C

n| |(z1, . . . , zk)| < |zk+1| < · · · < |zn| < 1}.

Define a map F : Hn
k → B

k × D
∗ × · · · × D

∗ (n − k copies of D∗) given by

F (z1, . . . , zn) =
( z1

zk+1
, . . . ,

zk
zk+1

,
zk+1

zk+2
, . . . ,

zn−1

zn
, zn

)
,

which can be easily seen to be a biholomorphism with inverse

G(w1, . . . , wn) =
(
w1(wk+1 · · ·wn), . . . , wk(wk+1 · · ·wn), (wk+1 · · ·wn), . . . , (wn−1wn), wn

)
.

By a direct computation, we see that the determinant of the Jacobian of G is given by detJ C

G(w) =
wk

k+1 · · ·wn−1
n .
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2.2. The Bergman kernels

Consider the punctured disk D∗, any function f ∈ O(D∗) has a Laurent expansion f(w) =
∑∞

j=−∞ ajw
j

converging uniformly on compact subsets. A direct computation shows that wj ∈ L2(D∗) when j ≥ 0, and 
they are orthogonal. Hence, it follows easily that the set {wj}j≥0 is a complete basis in the Bergman space 
A2(D∗). If we normalize the area measure, namely dV (w) = 1

πdudv with w = u + iv, such that V (D∗) = 1, 
then we obtain the Bergman kernel function on D∗ × D

∗ given by

KD∗(w, η) = 1
(1 − wη)2 .

For the unit ball Bk in Ck, again we normalize the volume measure, such that V (Bk) = 1, then we know 
that the Bergman kernel function on Bk × B

k will be

KBk(w, η) = 1
(1 − 〈w, η〉)k+1 ,

where 〈w, η〉 =
∑k

j=1 wjηj , for w, η ∈ B
k.

By above consideration, for the product model Bk×D
∗×· · ·×D

∗, if we use the notation w̃ = (w1, . . . , wk)
(when w ∈ C

n), then by the formula for the Bergman kernel function on product domain, we obtain

KBk×D∗×···×D∗(w, η) = 1
(1 − 〈w̃, η̃〉)k+1 · 1

(1 − wk+1ηk+1)2
· · · · · 1

(1 − wnηn)2 .

Since we have the biholomorphism G : Bk × D
∗ × · · · × D

∗ → H
n
k , by the transformation formula for the 

Bergman kernel functions (see [12, Proposition 1.4.12]), we obtain

KHn
k
(z, ζ) = KHn

k
(G(w), G(η))

= 1
detJ C

G (w)detJ C

G (η)(1 − 〈w̃, η̃〉)k+1 ∏n
j=k+1(1 − wjηj)2

,
(2.1)

for z, ζ ∈ H
n
k and w, η ∈ B

k × D
∗ × · · · × D

∗.

3. Estimates for the kernels

3.1. The kernel on Bk

For −1 < α < 0, we follow the idea in [22] to obtain an estimate for the integral

Jα(w) =
∫
Bk

(1 − |η|2)αdV (η)
|1 − 〈w, η〉|k+1 ,

where w ∈ B
k (the restriction α > −1 makes the integral convergent). First of all, we need the following.

Lemma 3.1. Let ν = (ν1, . . . , νk) be a multi-index, and let σ be the normalized area measure on Sk (the 
boundary ∂Bk), i.e. σ(Sk) = 1. Then

∫
Sk

|ξν |2dσ(ξ) = (k − 1)!(ν)!
(|ν| + k − 1)! .
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Proof. Let dm denote the standard volume form on the Euclidean space, then we have the integral

∫
Ck

|zν |2 exp(−|z|2)dm(z) =
k∏

j=1

∫
C

|zj |2νj exp(−|zj |2)dm(zj)

=
k∏

j=1
(2π)

∞∫
0

r2νje−r2
rdr

=
k∏

j=1
π(νj)!

= πk(ν)!.

(3.1)

On the other hand, identifying Ck = R
2k, and using the polar coordinates z = rξ and dm(z) =

2kr2k−1 πk

k! drdσ(ξ), we have

∫
Ck

|zν |2 exp(−|z|2)dm(z) = 2k · π
k

k!

∞∫
0

r2|ν|+2k−1e−r2
dr

∫
Sk

|ξν |2dσ(ξ)

= πk

(k − 1)! · (|ν| + k − 1)!
∫
Sk

|ξν |2dσ(ξ).
(3.2)

Hence, comparing (3.1) and (3.2), we have 
∫
Sk
|ξν |2dσ(ξ) = (k−1)!(ν)!

(|ν|+k−1)! . �
With the lemma above, we can show the estimate for the integral Jα(w).

Lemma 3.2. For −1 < α < 0, we have Jα(w) ∼ (1 − |w|2)α, for any w ∈ B
k.

Proof. For w, η ∈ B
k, since |〈w, η〉| < 1, we have the expansion

1
|1 − 〈w, η〉|k+1 = 1

(1 − 〈w, η〉) k+1
2

· 1
(1 − 〈w, η〉) k+1

2

=
∞∑

n=0

Γ(n + k+1
2 )

Γ(n + 1)Γ(k+1
2 )

〈w, η〉n
∞∑

m=0

Γ(m + k+1
2 )

Γ(m + 1)Γ(k+1
2 )

〈w, η〉m.

(3.3)

Substitute the expansion into Jα(w), and integrate term by term. By the rotational symmetries on Bk, we 
obtain

Jα(w) =
∞∑

n=0

Γ(n + k+1
2 )2

Γ(n + 1)2Γ(k+1
2 )2

∫
Bk

|〈w, η〉|2n(1 − |η|2)αdV (η).

Since dV (η) is unitary invariant, if we apply a unitary transformation U to the integral above, such that 
U(w) = (|w|, 0, . . . , 0), then we have

Jα(w) =
∞∑

n=0

Γ(n + k+1
2 )2

Γ(n + 1)2Γ(k+1
2 )2

∫
Bk

|w|2n|η1|2n(1 − |η|2)αdV (η)

=
∞∑

n=0

Γ(n + k+1
2 )2

Γ(n + 1)2Γ(k+1
2 )2

|w|2n
1∫
(2k)r2n+2k−1(1 − r2)αdr

∫
|ξ1|2ndσ(ξ)
0 Sk
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=
∞∑

n=0

Γ(n + k+1
2 )2

Γ(n + 1)2Γ(k+1
2 )2

k!n!
(n + k − 1)! |w|

2n
1∫

0

ρn+k−1(1 − ρ)αdρ (3.4)

∼
∞∑

n=0
|w|2nB(α + 1, n + k)

=
∞∑

n=0

Γ(α + 1)Γ(n + k)
Γ(n + k + α + 1) |w|

2n

∼
∞∑

n=0

Γ(n− α)
Γ(n + 1)Γ(−α) |w|

2n = (1 − |w|2)α.

Here, for the second line, we use the polar coordinate η1 = rξ1. For the third line, we apply the previous 
lemma and the substitution ρ = r2. From the fourth line through the last line, we apply the basic properties 
of the Beta function and the Stirling’s formula to estimate the Gamma functions (as n → ∞). The last 
equality holds, since α < 0. �
3.2. The kernel on D∗

Similarly, for −1 < α < 0 and β > −2, we modify the idea used above to obtain an estimate for the 
integral

Iα,β(w) =
∫
D∗

(1 − |η|2)α|η|βdV (η)
|1 − wη|2 ,

where w ∈ D
∗ (again, the restrictions α > −1 and β > −2 make the integral convergent).

Lemma 3.3. For −1 < α < 0 and β > −2, we have Iα,β(w) ∼ (1 − |w|2)α, for any w ∈ D
∗. In addition, 

when β ≤ 0, we have Iα,β(w) � (1 − |w|2)α|w|β, for w ∈ D
∗.

Proof. As before, for w, η ∈ D
∗, we expand the kernel function

1
|1 − wη|2 =

∞∑
n=0

(wη)n
∞∑

m=0
(wη)m.

Substitute the expansion back to the integral, and integrate term by term. By the rotational symmetry on 
D

∗, we obtain

Iα,β(w) =
∞∑

n=0

∫
D∗

|wη|2n(1 − |η|2)α|η|βdV (η)

=
∞∑

n=0
|w|2n

1∫
0

2r2n+β+1(1 − r2)αdr

=
∞∑

n=0
|w|2n

1∫
0

ρn+ β
2 (1 − ρ)αdρ (3.5)

=
∞∑

|w|2nB(α + 1, n + β

2 + 1)

n=0
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=
∞∑

n=0

Γ(α + 1)Γ(n + β
2 + 1)

Γ(n + β
2 + α + 2)

|w|2n

∼
∞∑

n=0

Γ(n− α)
Γ(n + 1)Γ(−α) |w|

2n = (1 − |w|2)α.

Again, similar to the previous lemma, we use the polar coordinate η = reiθ, then apply the substitution
ρ = r2. By the basic properties of the Beta function and the Stirling’s formula, we obtain the asymptotic
behavior for the Gamma functions (as n → ∞). The last equality holds, since α < 0.

When β ≤ 0, since w ∈ D
∗, we have |w|β ≥ 1. Hence, for any w ∈ D

∗, we have Iα,β(w) � (1 − |w|2)α|w|β
by above argument. �
4. The Schur’s test

For any domain D, to show the Lp boundedness of the Bergman projection PD, we can show a stronger 
statement, namely the Lp boundedness of the integral operator |PD| associated to the kernel |KD|. Here 
|KD| is the absolute value of the Bergman kernel KD for D. By this consideration, we need the following 
version of Schur’s test, which can be found in [10].

Theorem 4.1 (Schur’s test). Suppose X is measure space with a positive measure μ. Let T (x, y) be a pos-
itive measurable function on X × X, and let T be the integral operator associated to the kernel function 
T (x, y).

Given p, q ∈ (1, ∞) with 1
p + 1

q = 1, if there exists a strictly positive function h a.e. on X and a M > 0, 
such that

(1)
∫
X
T (x, y)h(y)qdμ(y) ≤ Mh(x)q, for a.e. x ∈ X, and

(2)
∫
X
T (x, y)h(x)pdμ(x) ≤ Mh(y)p, for a.e. y ∈ X.

Then T is bounded on Lp(X, dμ) with ‖T‖ ≤ M .

Proof. Let f ∈ Lp(X, dμ), by Hölder’s inequality and (1), we have

|Tf(x)| ≤
∫
X

T (x, y)|f(y)|dμ(y)

≤
(∫
X

T (x, y)h(y)qdμ(y)
) 1

q
(∫
X

T (x, y)h(y)−p|f(y)|pdμ(y)
) 1

p

≤ M
1
q h(x)

(∫
X

T (x, y)h(y)−p|f(y)|pdμ(y)
) 1

p

,

(4.1)

for a.e. x ∈ X. So, by Fubini’s theorem and (2), we have

∫
X

|Tf(x)|pdμ(x) ≤ M
p
q

∫
X

h(x)pdμ(x)
∫
X

T (x, y)h(y)−p|f(y)|pdμ(y)

= M
p
q

∫
T (x, y)h(x)pdμ(x)

∫
h(y)−p|f(y)|pdμ(y) (4.2)
X X
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≤ M
p
q +1

∫
X

|f(y)|pdμ(y)

= Mp‖f‖p.

This completes the proof. �
5. Proof of Theorem 1.2

With the above preliminaries, we now can present the proof of Theorem 1.2.

Proof. According to Theorem 4.1 (Schur’s test), if we take X = B
k×D

∗×· · ·×D
∗, dμ(η) = |det JC

G(η)|2dV (η), 
and T (w, η) = |KHn

k
(G(w), G(η))| from (2.1), then for any measurable function f defined on Hn

k , we have

T (f ◦G) = |PHn
k
|(f) ◦G.

So, for a given p ∈ [1, ∞), T is bounded on Lp(X, dμ) if and only if |PHn
k
| is bounded on Lp(Hn

k ). Now let

h(η) = (1 − |η̃|2)s[(1 − |ηk+1|2) · · · (1 − |ηn|2)]s|ηk+1|tk+1 · · · |ηn|tn ,

where s, tk+1, . . . , tn are real numbers to be determined later and η̃ = (η1, . . . , ηk) as before. We need 
to verify the conditions (1) and (2) in Theorem 4.1 to conclude the Lp boundedness of T , for the given 
p, q ∈ (1, ∞) with 1

p + 1
q = 1.

For condition (1), by Lemma 3.2 and Lemma 3.3, we have

T (hq)(w) =
∫
X

T (w, η)h(η)qdμ(η)

=
∫
Bk

(1 − |η̃|2)sqdV (η̃)
|1 − 〈w̃, η̃〉|k+1

n∏
j=k+1

∫
D∗

(1 − |ηj |2)sq|ηj |tjq+j−1dV (ηj)
|wj |j−1|1 − wjηj |2

≤ M(1 − |w̃|2)sq
n∏

j=k+1

(1 − |wj |2)sq|wj |tjq

= Mh(w)q,

(5.1)

for some M > 0, provided

− 1 < sq < 0,

− 2 < tk+1q + k ≤ 0,
...

− 2 < tnq + n− 1 ≤ 0.

(5.2)

For condition (2), similar argument shows,

T ∗(hp)(η) :=
∫
X

T (w, η)h(w)pdμ(w)

=
∫ (1 − |w̃|2)spdV (w̃)

|1 − 〈w̃, η̃〉|k+1

n∏
j=k+1

∫ (1 − |wj |2)sp|wj |tjp+j−1dV (wj)
|ηj |j−1|1 − wjηj |2

(5.3)

Bk D∗
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≤ M(1 − |η̃|2)sp
n∏

j=k+1

(1 − |ηj |2)sp|ηj |tjp

= Mh(η)p,

for some M > 0, provided

− 1 < sp < 0,

− 2 < tk+1p + k ≤ 0,
...

− 2 < tnp + n− 1 ≤ 0.

(5.4)

From (5.2) and (5.4), we have

s ∈
(
− 1

q
, 0
)⋂(

− 1
p
, 0
)
,

tk+1 ∈
(
− k + 2

q
,−k

q

]⋂(
− k + 2

p
,−k

p

]
,

...

tn ∈
(
− n + 1

q
,−n− 1

q

]⋂(
− n + 1

p
,−n− 1

p

]
.

So the real numbers s, tk+1, . . . , tn exist when

−k

q
> −k + 2

p
, −k

p
> −k + 2

q
,

...

−n− 1
q

> −n + 1
p

, −n− 1
p

> −n + 1
q

,

or equivalently, when 2n
n+1 < p < 2n

n−1 . This proves the first part of the theorem.
To show the unboundedness of PHn

k
for 1 ≤ p ≤ 2n

n+1 , we first look at the case p = 2n
n+1 .

For j = 1, 2, . . . , let aj = 1
jj . Define g(r) = r

1
j −(n+1), when r ∈ (aj+1, aj ]. Then we have a function g

defined on (0, 1]. Now, if we look at the sequence {fm}∞m=1 given by

fm(z) =
{

g(|zn|)
(

zn
|zn|

)n−1
, |zn| ∈ (am+1, 1]

0, |zn| ∈ [0, am+1]

for z ∈ H
n
k , then we have

‖fm‖
2n

n+1

L
2n

n+1 (Hn
k )

=
∫

Bk×D∗×···×D∗

|fm(G(w))| 2n
n+1 |wk

k+1 · · ·wn−1
n |2dV (w)

≤
1∫

am+1

g(r)
2n

n+1 r2n−1dr

≤
m∑

j(a
2n

j(n+1)
j − a

2n
j(n+1)
j+1 ) (5.5)
j=1
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≤
∞∑
j=1

j(a
2n

j(n+1)
j − a

2n
j(n+1)
j+1 )

�
∞∑
j=1

j−1− 1
2(n+1) < ∞,

by the limit comparison test. Since each fm is bounded on Hn
k , we see that fm ∈ L2(Hn

k ). So we have 
constructed a sequence {fm}∞m=1 ⊂ L2(Hn

k ) ∩ L
2n

n+1 (Hn
k ), with ‖fm‖

L
2n

n+1 (Hn
k )

bounded by a constant for 
all m.

On the other hand, for w ∈ B
k×D

∗×· · ·×D
∗, by the reproducing property and the rotational symmetry, 

we have

|PHn
k
(fm)(G(w))| = |

∫
Bk×D∗×···×D∗

fm(G(η))ηkk+1 · · · ηn−1
n dV (η)

wk
k+1 · · ·wn−1

n (1 − 〈w̃, η̃〉)k+1 ∏n
j=k+1(1 − wjηj)2

|

= 1
|wn|n−1 |

∫
D∗

fm(G(η))ηn−1
n dV (ηn)

(1 − wnηn)2 |

= 1
|wn|n−1

∫
am+1<|ηn|≤1

g(|ηn|)|ηn|n−1dV (ηn)

≥
1∫

am+1

g(r)rndr

=
m∑
j=1

j(a
1
j

j − a
1
j

j+1).

(5.6)

Therefore, since V (Hn
k ) is finite,

lim
m→∞

‖PHn
k
(fm)‖

L
2n

n+1 (Hn
k )

≥ V (Hn
k )

n+1
2n

∞∑
j=1

j(a
1
j

j − a
1
j

j+1) �
∞∑
j=1

j−1 = ∞,

again by the limit comparison test. So PHn
k

is not bounded on L
2n

n+1 (Hn
k ).

For 1 ≤ p < 2n
n+1 , we take the same sequence {fm}∞m=1 given above. Notice that, by Hölder’s inequality 

and (5.5), we have

‖fm‖Lp(Hn
k ) ≤ C‖fm‖

L
2n

n+1 (Hn
k )

< C ′ < ∞,

for some constants C, C ′ > 0. So we again have a sequence {fm}∞m=1 ⊂ L2(Hn
k ) ∩Lp(Hn

k ), with ‖fm‖Lp(Hn
k )

bounded by a constant for all m. However, from (5.6), we see that

lim
m→∞

‖PHn
k
(fm)‖Lp(Hn

k ) ≥ V (Hn
k )

1
p

∞∑
j=1

j(a
1
j

j − a
1
j

j+1) �
∞∑
j=1

j−1 = ∞.

Hence, PHn
k

is not bounded on Lp(Hn
k ) for 1 ≤ p ≤ 2n

n+1 . This proves the second part of the theorem.
For our standard model

H
n
{kj} = {z ∈ C

n| max |z̃j | < |zk+1| < · · · < |zn| < 1},

1≤j≤l
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we again transfer it to a product domain via the biholomorphism F̃ : Hn
{kj} → B

k1 ×· · ·×B
kl ×D

∗×· · ·×D
∗

(n − k copies of D∗) given by

F̃ (z1, . . . , zn) = ( z1

zk+1
, . . . ,

zk
zk+1

,
zk+1

zk+2
, . . . ,

zn−1

zn
, zn),

with its inverse

G̃(w1, . . . , wn) = (w1(wk+1 · · ·wn), . . . , wk(wk+1 · · ·wn), (wk+1 · · ·wn), . . . , (wn−1wn), wn)

and detJ C

G̃
(w) = wk

k+1 · · ·wn−1
n . Similarly, we have

KHn
{kj}

(z, ζ) = 1
detJ C

G̃
(w)detJ C

G̃
(η)

∏l
j=1(1 − 〈w̃j , η̃j〉)kj+1 ∏n

j=k+1(1 − wjηj)2
,

for w, η ∈ B
k1 × · · · ×B

kl ×D
∗ × · · · ×D

∗ and (z, ζ) = (G̃(w), G̃(η)) ∈ H
n
{kj} ×H

n
{kj}. To apply Theorem 4.1

(Schur’s test) to conclude the Lp boundedness of the operator |PHn
{kj}

|, we only need to modify the positive 

function h by replacing the factor (1 − |η̃|2)s by 
∏l

j=1(1 − |η̃j |2)s. It is easy to see the range ( 2n
n+1 , 

2n
n−1 ) for 

p will not change. Also, the same sequence {fm}∞m=1 works well in our standard model Hn
{kj}. Therefore, 

PHn
{kj}

is not bounded on Lp(Hn
{kj}) for 1 ≤ p ≤ 2n

n+1 . This completes the proof. �
Remark 5.1. As we have seen in the proof, the unboundedness of PHn

{kj}
is still valid when 0 < p < 1.

6. Proof of Theorem 1.1

Proof. For the bounded Hartogs domain

H
n
{kj ,φj} = {z ∈ C

n| max
1≤j≤l

|φj(z̃j)| < |zk+1| < · · · < |zn| < 1},

we define a biholomorphism Φ : Hn
{kj ,φj} → H

n
{kj} by

Φ(z) = (φ1(z̃1), . . . , φl(z̃l), zk+1, . . . , zn),

with inverse

Φ−1(w) = (φ−1
1 (w̃1), . . . , φ−1

l (w̃l), wk+1, . . . , wn).

By a direct computation, it is not difficult to see, for z ∈ H
n
{kj ,φj},

detJ C

Φ (z) =
l∏

j=1
detJ C

φj
(z̃j).

For each j, we have the biholomorphism φj : Ωj → B
kj , with both Ωj and Bkj being smooth and bounded. 

Since Bkj is strongly pseudoconvex, it satisfies condition R. By Bell’s extension theorem (see [2]), φj and 
φ−1
j extend smoothly to the boundaries. So, we can find two positive real numbers cj and dj , such that for 

any z̃j ∈ Ωj ,

0 < cj ≤ |detJ C

φ (z̃j)| ≤ dj .
j
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Hence, if c =
∏l

j=1 cj and d =
∏l

j=1 dj , for z ∈ H
n
{kj ,φj}, we have

0 < c ≤ |detJ C

Φ (z)| ≤ d.

Suppose for some p ∈ [1, ∞), the Bergman projection PHn
{kj,φj}

is bounded on Lp(Hn
{kj ,φj}), then for f ∈

Lp(Hn
{kj}), we have

‖PHn
{kj}

(f)‖pLp(Hn
{kj}

) =
∫

Hn
{kj,φj}

|PHn
{kj}

(f)(Φ(z))|p|detJ C

Φ (z)|2dV (z)

=
∫

Hn
{kj,φj}

|PHn
{kj,φj}

(f ◦ Φ · detJ C

Φ )(z)|p|detJ C

Φ (z)|2−pdV (z)

≤ max{c2−p, d2−p}‖PHn
{kj,φj}

(f ◦ Φ · detJ C

Φ )‖pLp(Hn
{kj,φj}

)

≤ C max{c2−p, d2−p}‖f ◦ Φ · detJ C

Φ ‖pLp(Hn
{kj,φj}

)

≤ Cc−|p−2|d|p−2|‖f‖pLp(Hn
{kj}

),

(6.1)

for some C > 0. So the Bergman projection PHn
{kj}

is bounded on Lp(Hn
{kj}).

Conversely, if we apply the same argument to Φ−1 : Hn
{kj} → H

n
{kj ,φj}, we see that the Lp boundedness 

of PHn
{kj}

will imply the Lp boundedness of PHn
{kj,φj}

. So, for a given p ∈ [1, ∞), PHn
{kj,φj}

is bounded on 

Lp(Hn
{kj ,φj}) if and only if PHn

{kj}
is bounded on Lp(Hn

{kj}).
Since the Bergman projection is self-adjoint, given p, q ∈ (1, ∞) with 1

p + 1
q = 1, the Lp boundedness of 

PHn
{kj}

will imply the Lq boundedness of PHn
{kj}

. Hence, by Theorem 1.2, for 1 ≤ p < ∞, PHn
{kj}

is bounded 

on Lp(Hn
{kj}) if and only if 2n

n+1 < p < 2n
n−1 . Therefore, PHn

{kj,φj}
is bounded on Lp(Hn

{kj ,φj}) if and only if 
p is in the range ( 2n

n+1 , 
2n
n−1 ). This completes the proof. �

7. Concluding remarks

We have shown that the Lp boundedness of the Bergman projection for a class of bounded Hartogs 
domains is valid when p is in some range depending only on the dimension. And the range is sharp for 
p ∈ [1, ∞). However, the restriction on the form of this class of domains is quite special. It should be 
pointed out that there could be other generalization of the Hartogs triangle in higher dimensions. We will 
study this direction in the future. Also, it will be very interesting to fine more techniques to deal with other 
types of Hartogs domains and other integral operators for Hartogs domains.
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