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negative integer (not an eigenvalue). Otherwise, due to multiplicity of solutions 
to the underlying problem, when λ is a negative integer, controllability could only 
be obtained if proper additional conditions on the boundary are imposed.
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1. Introduction

We consider the Poisson equation for functions of complex variables on the unit disk D ⊂ C

Δu = f in D, (1.1)

subject to the boundary condition

∂

∂n
u + λu = g on ∂D, (1.2)

where n is the outward unit normal and λ ∈ C\{0}. This boundary condition is known as the third boundary 
condition. We assume throughout that f ∈ C(D) (continuous). We investigate the optimal control problem 
of finding a control g in an admissible set of functions which minimizes the quadratic functional
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J(u, g) =
∫
D

|u|2 dx dy +
2π∫
0

|g(θ)|2 dθ, (1.3)

for different values of the parameter λ ∈ C\{0}.
Most works in the literature treat the case when λ is a positive real parameter [10,15,20] known as the 

Robin boundary condition [18,24,23,25] for which energy methods can be used to study the problem. The 
case of λ < 0, also known as the Steklov problem [28,18], has been considered by [5] and explicit solutions 
are provided in terms of polar coordinates on a disk and it has been also studied by [3] where explicit 
solutions are provided in terms of spherical coordinates on a sphere. In [4], the author considered different 
representations of Green’s functions for Laplacian boundary value problems.

The Steklov problem is an eigenvalue problem with the spectral parameter in the boundary condition 
and has various applications [17]. This boundary condition is relevant to the study of certain physical and 
biological models such as the electron energy barrier model and oxygen absorption of human lungs [18,
16]. In some special cases, the Steklov spectrum can be explicitly computed as in [17] where the Steklov 
eigenvalues and eigenfunctions of cylinders and balls are calculated explicitly using separation of variables 
for a non-negative weight function ρ ≡ 1 on the boundary and where the eigenfunctions are given in terms 
of polar coordinates for the unit disk.

This paper considers however the more general case where λ is any complex valued parameter on the unit 
disk, and refers to this case by the “third boundary condition”. Moreover the explicit solutions are provided in 
terms of holomorphic and anti holomorphic polynomials/functions from the perspective of complex analysis 
and the parameter is assumed to be any complex number rather than limiting it to be a positive or a 
negative real number [25]. The third boundary condition for holomorphic and harmonic functions is studied 
by [24,23,25] and explicit solutions are provided for the case when λ is a general complex valued function. 
In this paper, we utilize the explicit solutions provided by [25] for the case of a general complex valued 
constant λ, to obtain a boundary controllability result on the solution to the BVP.

For λ > 0, or the Robin problem on a general bounded domain, it is well known that there is a unique 
solution, given sufficiently regular data g. Energy methods and the Lax–Milgram theorem are usually invoked 
to establish the existence of a weak solution to the equation. The controllability of this problem and optimal 
solution in case of the Robin as well as the Dirichlet boundary conditions are also known [13,21,2] for some 
general domains and in the case of Steklov, there are also some studies available, among others [14,17]. 
These tools cannot be applied however for more general values of λ when λ is a complex number or when 
λ(z) is a complex valued function. In this paper, we study controllability of the Poisson equation with the 
third boundary condition when the control is imposed in the boundary condition.

2. Preliminaries

2.1. Function spaces

We introduce the Sobolev space which we will use throughout the paper

W 2,1(D) ≡ {v ∈ L2(D) : ∂zv ∈ L2(D), ∂zv ∈ L2(D)},

equipped with the norm

‖v‖W 2,1(D) ≡

⎛
⎝∫

|v|2 dx dy +
∫

|∂zv|2 dx dy +
∫

|∂zv|2 dx dy

⎞
⎠

1/2

,

D D D
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induced by inner product

〈v, w〉 =
∫
D

v w dx dy +
∫
D

∂zv ∂zw dx dy +
∫
D

∂zv ∂zw dx dy.

We also denote by W 2,2 the Sobolev space

W 2,2(D) ≡ {v ∈ L2(D) : ∂zv ∈ W 2,1(D), ∂zv ∈ W 2,1(D)},

with the norm

‖v‖W 2,2(D) ≡
(
‖v‖2

L2 + ‖∂zv‖2
W 2,1(D) + ‖∂zv‖2

W 2,1(D)

)1/2
.

The fractional Sobolev spaces W k,2(D) for 0 < k < 2, are defined as real interpolation spaces between 
W 2,2(D) and L2(D), see [6]. The trace map acts continuously from Wm,2(D) to Wm−1/2,2(∂D). We shall 
also make use of the continuous embedding W 2,m(D) ⊂ C1(D) for m > 2.

The set of all complex-valued functions on the unit circle of the complex plane with absolutely convergent 
Fourier series is called the Wiener algebra [22,19] and can be denoted by

A(∂D) =
{
h
∣∣∣h(z) =

+∞∑
−∞

hkz
k, z ∈ ∂D, ‖h‖ :=

+∞∑
−∞

|hk| < ∞
}
.

2.2. Particular/special solution of the Poisson equation

The general solution to the Poisson equation (1.1) can be represented [9–12] as

u = φ(z) + ψ(z) + w(z), (2.1)

where φ and ψ are functions, holomorphic in D and w is the particular solution given by the expression 
w = T1,1(f), a generalization of the so-called T operator [7,8,11,12]. We quote some relevant notations and 
results from [8,11,12] to use in the paper without going into details.

The T operator, also known as the Pompeiu operator is defined [8,29] as

Tf(z) = − 1
π

∫
D

f(ζ)dξ dη
ζ − z

, z ∈ D,

and the special solution w defined as T1,1f(z) on the unit disk is given in explicit form (cf. [10]) by

w(z) = T1,1f(z) = 2
π

∫
D

f(ζ) ln |z − ζ| dξ dη. (2.2)

Higher order generalization of the Pompeiu operator provides a representation of functions w ∈ Cm+n(D)
in terms of an area integral Tm,n(∂m+nw/∂zm∂zn) with m +n ≥ 0, but (m, n) 
≡ (0, 0). Then T0,1 and T1,0
are the T and T operators respectively. The operators Tm,n have interesting properties such as ∂z(Tm,nw) =
Tm−1,nw and ∂z(Tm,nw) = Tm,n−1w. Clearly ∂z(T1,1w) = T0,1w and ∂z(T1,1w) = T1,0w. It is important to 
notice that Tm,nw = Tn,mw.
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Now, the boundary condition (1.2) is written as

ζ
∂u

∂ζ
+ ζ

∂u

∂ζ
+ λu = g(ζ) on ∂D. (2.3)

Note that throughout the manuscript, we occasionally use the notation g(z) for z ∈ ∂D interchangeably 
with g(θ) for θ ∈ [0, 2π] for functions defined on the boundary.

Therefore, the boundary condition (2.3) can be expressed in the form

(ζφζ + λφ) + (ζψζ + λψ) = g�(ζ) on ∂D, (2.4)

where

g�(ζ) ≡ g(ζ) − ζT0,1f(ζ) − ζT1,0f(ζ) − λT1,1f(ζ), ζ ∈ ∂D. (2.5)

Since |ζ| = 1 on ∂D and T1,0f = T0,1f , it suffices to analyze the terms T0,1f = Tf and T1,1f .
According to (p. 89) Theorem 30 in [7], the operator T is a completely continuous operator from Cν(D)

to C1+ν(D) and the norm of Tf is bounded by the norm of f . Thus,

||Tf ||Cν+1(D) ≤ M ||f ||Cν(D). (2.6)

Moreover, by Theorem 4.3 (c) [12] on page 679, for p = 2, T1,1 satisfies

|T1,1f(z)| ≤ M ||f ||L2(D), (2.7)

for all z ∈ D and f ∈ L2(D).
On the other hand, if f ∈ L2(D) then Tf ∈ W 2,1(D) and the estimate

||Tf ||W 2,1(D) ≤ M ||f ||L2(D) (2.8)

holds, see [6]. Consequently, regarding T1,1f , the estimate

||T1,1f ||W 2,2(D) ≤ M ||f ||L2(D), (2.9)

holds.
Hence, the norm of w satisfies the following inequality

‖w‖W 2,2(D) ≤ M ||f ||L2(D). (2.10)

By the Bernstein theorem [19], Cν(∂D) ⊂ A(∂D) for ν > 1/2. Obviously C1(∂D) ⊂ A(∂D) ⊂ C(∂D) and 
if g(ζ) ∈ C1(∂D), then g�(ζ) ∈ C1(∂D).

We can also conclude that the boundary term g� satisfies the estimate

‖g�‖L2(∂D) ≤ C(‖g‖L2(∂D) + ‖T1,1f‖L2(∂D) + ‖T0,1f‖L2(∂D) + ‖T1,0f‖L2(∂D))

≤ C(‖g‖L2(∂D) + ‖T1,1f‖C(D) + ‖T0,1f‖W 2,1(D) + ‖T1,0f‖W 2,1(D))

≤ C(‖g‖L2(∂D) + ‖f‖L2(D)), (2.11)

where C throughout the paper denotes a constant that depends on λ.
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3. Main results

Our main results in this paper are the following four theorems. The first two address the case when the 
complex number λ is not a negative integer.

Theorem 3.1. Suppose λ ∈ C, but −λ /∈ N, then given f ∈ C(D) and g ∈ C1(∂D), the Poisson equation 
(1.1) with the third boundary condition (1.2) has a unique solution u explicitly given by the formula

u = (T1,1f)(z) +
∞∑
k=0

g�k
k + λ

zk +
∞∑
k=0

g�−k

k + λ
zk, (3.1)

where G�(z) :=
∑∞

k=0 g
�
kz

k and H�(z) :=
∑∞

k=0 g
�
−kz

k are holomorphic functions obtained by applying the 
Schwarz operator on g�(ζ) and g�(ζ) as defined in the expressions given in (4.6) and (4.7) respectively.

On the other hand, if g ∈ L2(∂D) and f ∈ L2(D) only, there exists a unique weak solution u ∈ W 2,1(D)
satisfying

− 2
∫
D

∂zu ∂zv dx dy − 2
∫
D

∂zu ∂zv dx dy − λ

2π∫
0

u(eiθ) v(eiθ) dθ +
2π∫
0

g(θ) v(eiθ) dθ

=
∫
D

f v dx dy, ∀v ∈ W 2,1(D). (3.2)

The solution satisfies the estimate

‖u‖W 2,1(D) ≤ C‖g‖L2(∂D) + C‖f‖L2(D), (3.3)

with C being a constant depending on λ.

The second theorem is on the existence and uniqueness of the optimal control g which minimizes the 
functional (1.3).

Theorem 3.2. Suppose λ ∈ C, but −λ /∈ N, then given f ∈ C(D), there exists a unique minimizer g0 ∈
L2(∂D) to the functional (1.3) subject to boundary value problem (1.1)–(1.2). Moreover, the optimal control 
g0 ∈ C1(∂D).

The next two theorems address the case when −λ = k0 ∈ N wherein additional conditions are required 
to guarantee uniqueness of solution to the boundary value problem and hence the well-posedness of the 
control problem. In particular, we have

Theorem 3.3. Suppose −λ = k0 ∈ N, and suppose f ∈ C(D) and g ∈ C1(∂D) satisfy the compatibility 
conditions ∫

|ζ|=1

g�(ζ)ζ±k0 dζ

ζ
= 0 (3.4)

(where g� is defined in (2.5)), then the Poisson equation (1.1) with boundary condition (1.2) has the general 
solution u explicitly given by the formula

u = (T1,1f)(z) +
∞∑ g�k

k − k0
zk +

∞∑ g�−k

k − k0
zk + Azk0 + Bzk0 , (3.5)
k=0,k �=k0 k=0,k �=k0
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where A and B are any constants, while G�(z) :=
∑∞

k=0 g
�
kz

k and H�(z) :=
∑∞

k=0 g
�
−kz

k are given by (4.6)
and (4.7) respectively. If the additional conditions∫

∂D

u(ζ) ζ
k0+1

dζ = u1 (3.6)

∫
∂D

u(ζ) ζk0−1 dζ = u2, (3.7)

are imposed, where u1 and u2 are given complex constants, then there is a unique classical solution.
On the other hand, suppose that u1 = u2 = 0, while g ∈ L2(∂D) only and satisfies compatibility conditions 

(3.4), then there exists a unique weak solution u ∈ W 2,1(D) satisfying (3.2) and conditions (3.6) and (3.7). 
Moreover, the solution u satisfies the estimate

‖u‖W 2,1(D) ≤ C‖g‖L2(∂D) + C‖f‖L2(D) + C(|u1| + |u2|). (3.8)

As for the optimal control, we have the following theorem

Theorem 3.4. Suppose −λ = k0 ∈ N, u1 = u2 = 0, then given f ∈ C(D), there exists a unique minimizer g0

to the functional (1.3) satisfying compatibility condition (3.4), subject to boundary value problem (1.1)–(1.2)
and conditions (3.6)–(3.7).

4. Proof of Theorem 3.1

Using the decomposition (2.1) of the solution to the Poisson equation, it suffices to find holomorphic 
functions φ and ψ satisfying the boundary condition (2.4) on ∂D. In other words, φ and ψ satisfy


(z∂φ + λφ) + 

(
z∂ψ + λψ

)
= 
(g�(z)), z ∈ ∂D, (4.1)

and

�(z∂φ + λφ) −�
(
z∂ψ + λψ

)
= �(g�(z)), z ∈ ∂D, (4.2)

where g� is given in (2.5).
The solutions for φ and ψ are obtained through the Schwarz operator S which furnishes a solution G to 

the problem

∂G = 0 in D


(G) = τ(z) on ∂D,

given a function τ(z) ∈ C(∂D). In particular, G(z) = S(τ(·))(z) where the Schwarz operator S is defined 
by

S(τ(·))(z) ≡ 1
2πi

∫
∂D

τ(ζ)
(

2ζ
ζ − z

− 1
)

dζ

ζ
+ ic, (4.3)

and c ∈ R is arbitrary.
Therefore, the solution to boundary problem (4.1) is

(z∂φ + λφ) +
(
z∂ψ + λψ

)
= S(
[g�(.)])(z), z ∈ D, (4.4)
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while the solution to (4.2) is given by

(z∂φ + λφ) −
(
z∂ψ + λψ

)
= iS(�[g�(.)])(z), z ∈ D. (4.5)

Adding and subtracting the two equations, we obtain the conditions

(z∂φ + λφ) = 1
2S(
[g�(.)])(z) + 1

2 iS(�[g�(.)])(z) ≡ 1
2S(g�(.))(z) := G�(z), z ∈ D, (4.6)

and

(
z∂ψ + λψ

)
= 1

2S(
[g�(.)])(z) − 1
2 iS(�[g�(.)])(z) ≡ 1

2S(g�(.))(z) := H�(z), z ∈ D. (4.7)

Due to the fact that the right hand sides of equations (4.6) and (4.7) are associated with the Schwarz 
kernel, they are holomorphic functions and they can be written as

zφ′ + λφ = G�(z), z ∈ D, (4.8)

and

zψ′ + λψ = H�(z), z ∈ D (4.9)

which are clearly linear equations for holomorphic functions φ and ψ. To the corresponding homogeneous 
equations

zφ′ + λφ = 0, z ∈ D,

and

zψ′ + λψ = 0, z ∈ D

solutions can be given in the form of zr. Clearly r = −λ and r = −λ respectively and thus the solutions are 
φ(z) = C1z

−λ and ψ(z) = C2z
−λ with C1 and C2 being arbitrary complex numbers.

However, the terms z−λ and z−λ are the nontrivial solutions of the corresponding homogeneous equations 
of (4.8) and (4.9) only if they are holomorphic, i.e., only if −λ = k0 ∈ N (automatically −λ = k0). 
When −λ /∈ N, the terms z−λ and z−λ are no longer holomorphic for z ∈ D, so the only solutions of the 
homogeneous equations are the trivial solution, i.e., C1 = C2 = 0.

4.1. Fourier series solution

Since g�(ζ) ∈ C1(∂D) ⊂ A(∂D), functions G�(z) and H�(z) can be expressed in terms of absolutely 
convergent Fourier series as (see Remarks 6.3)

G�(z) =
∞∑
k=0

g�kz
k, H�(z) =

∞∑
k=0

g�−kz
k, z ∈ D; g�(ζ) =

∞∑
k=0

g�−kζ
−k +

∞∑
k=0

g�kζ
k, ζ ∈ ∂D. (4.10)

Since φ and ψ are holomorphic in D, one can assume that

φ(z) =
∞∑

φkz
k, ψ(z) =

∞∑
ψkz

k, z ∈ D. (4.11)

k=0 k=0
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By substituting (4.10) and (4.11) into (4.8), it is easy to get that

∞∑
k=0

[(k + λ)φk − g�k]zk = 0, z ∈ D. (4.12)

If λ ∈ C, but −λ /∈ N ∪ {0}, then k + λ 
= 0, ∀k ∈ N ∪ {0}. Thus (4.12) means that

φk = g�k
k + λ

, k ∈ N ∪ {0}, φ(z) =
∞∑
k=0

g�k
k + λ

zk, z ∈ D. (4.13)

Similarly, we conclude

ψ(z) =
∞∑
k=0

g�−k

k + λ
zk. (4.14)

4.2. Uniqueness of solution

Considering the homogeneous problem (f = 0 and g = 0) arising from taking the difference of two 
solutions, the solution has the form u = φ + ψ where φ and ψ are two holomorphic functions satisfying the 
homogeneous version of conditions (4.6) and (4.7)

(z∂φ + λφ) = 0 on D (4.15)(
z∂ψ + λψ

)
= 0 on D, (4.16)

which implies that

φ = C1z
−λ, (4.17)

ψ = C2z
−λ. (4.18)

Since, φ and ψ are holomorphic we either have −λ = k0 ∈ N or C1 = C2 ≡ 0. But λ is nonzero and is not a 
negative integer by assumption and thus C1 = C2 ≡ 0 and uniqueness of a classical solution follows. Note, 
the case of λ = 0 is the Neumann condition which is no longer the third boundary condition.

4.3. Continuous dependence on data

We next establish the estimate (3.3) showing continuous dependence of the solution u on the data f and 
g in the prescribed norms. In particular, estimating the W 2,1 norm of φ, ψ and w we have

‖φ‖2
W 2,1(D) = ‖φ‖2

L2(D) + ‖∂φ‖2
L2(D)

= 2π
1∫

0

∞∑
k=0

|g�k|2
|k + λ|2 r

2k+1 dr + 2π
1∫

0

∞∑
k=0

k2|g�k|2
|k + λ|2 r

2k−1 dr

= 2π
∞∑
k=0

|g�k|2
|k + λ|2

1
2k + 2 + 2π

∞∑
k=0

k2|g�k|2
|k + λ|2

1
2k

Now, if �(λ) 
= 0, then |k + λ| ≥ |�(λ)|. If �(λ) = 0 and 
(λ) > 0 then |λ + k| ≥ λ > 0. On the 
other hand, if �(λ) = 0 and 
(λ) = −m − d < 0 where m is a nonnegative integer and 0 < d < 1 then 
|λ + k| ≥ min{d, 1 − d}. Hence, the first sum satisfies
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2π
∞∑
k=0

|g�k|2
|k + λ|2

1
2k + 2 ≤ C1(λ)2π

∞∑
k=0

|g�k|2
1

2k + 2 = C1(λ)
∥∥∥∥1

2S(g�)
∥∥∥∥

2

L2(D)
,

where

C1(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1
|�(λ)| , �(λ) 
= 0

1
λ , �(λ) = 0, 
(λ) > 0

max{ 1
d ,

1
1−d}, λ = −m− d < 0

To estimate the second sum, note that if 
(λ) ≥ 0, then

k2

|k + λ|2 ≤ 1.

On the other hand, if 
(λ) = −m − d < 0, where m is a nonnegative integer and 0 ≤ d < 1, then we 
bound the first m terms

k2

|k + λ|2 ≤ m2

d2 + |�(λ)|2 , k = 0, 1, 2, ...m

noting that d and �(λ) are not both zero. The remaining terms are bounded since k2

(k−m−d)2 is a decreasing 
function of k for k ≥ m + 1 and asymptotically converges to 1. Hence, we have

2π
∞∑
k=0

k2|g�k|2
|k + λ|2

1
2k = 2π

m∑
k=0

k2|g�k|2
|k + λ|2

1
2k + 2π

∞∑
k=m+1

k2|g�k|2
|k + λ|2

1
2k

≤ 2π m2

d2 + |�(λ)|2
m∑

k=0

|g�k|2
1
2k + 2π (m + 1)2

(1 − d)2
∞∑

k=m+1

|g�k|2
1
2k

Therefore,

2π
∞∑
k=0

k2|g�k|2
|k + λ|2

1
2k ≤ 4πC2(λ)

∞∑
k=0

|g�k|2
1

2k + 2

= 2C2(λ)
∥∥∥∥1

2S(g�)
∥∥∥∥

2

L2(D)
,

where

C2(λ) =

⎧⎨
⎩

1, 
(λ) ≥ 0

max
{(

m2

d2+|�(λ)|2
)
,
(

m+1
1−d

)2
}
, 
(λ) = −m− d < 0.

Therefore, we conclude

‖φ‖2
W 2,1(D) ≤ C(λ)‖S(g�)‖2

L2(D), (4.19)

where C(λ) = 1
4C1(λ) + 1

2C2(λ).
We now appeal to the properties of the Schwarz operator S defined in (4.3) which is bounded from 

Lp(∂D) to Lp(D) for 1 < p < ∞ [26]. In fact, the real part of the kernel in (4.3) is the Poisson kernel and 
the map τ → 
(S(τ)) is bounded from Lp(∂D) to Lp(D) for all p (it is easy to see this is true for p = ∞
by the maximum principle). The imaginary part of the kernel is called the conjugate Poisson kernel, and 
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the boundedness of mapping τ → �(S(τ)) is equivalent to boundedness of the Hilbert transform on Lp(D)
which holds for p ∈ (1, ∞), a classical result due to Riesz (1924) [27].

Therefore, taking p = 2 and appealing to the expression for 1
2S(g�) in (4.6), we have that

‖S(g�)‖2
L2(D) ≤ C‖g�‖2

L2(∂D).

Thus, by the inequality (2.11)

‖S(g�)‖2
L2(D) ≤ C‖g‖2

L2(∂D) + C‖f‖2
L2(D).

A similar estimate for ψ also applies since

‖ψ‖2
W 2,1(D) = ‖ψ‖2

L2(D) + ‖∂ψ‖2
L2(D)

= 2π
1∫

0

∞∑
k=0

|g�−k|2
|k + λ|2 r

2k+1 dr + 2π
1∫

0

∞∑
k=0

k2|g�−k|2
|k + λ|2 r

2k−1 dr

= 2π
∞∑
k=0

|g�−k|2
|k + λ|2

1
2k + 2 + 2π

∞∑
k=0

k2|g�−k|2
|k + λ|2

1
2k

≤ C(λ)‖S(g�)‖2
L2(D), (4.20)

and S(g�) satisfies the same estimate as S(g�).
Moreover, since w = T1,1f , it satisfies the estimate

‖w‖2
W 2,1(D) ≤ C(‖T1,1f‖2

L2(D) + ‖T1,0f‖2
L2(D) + ‖T0,1f‖2

L2(D))

≤ C‖f‖2
L2(D),

where we used (2.10). Hence, the estimate (3.3) is established.

4.4. Existence and uniqueness of a weak solution

We now use a density argument to pass through the limit in the weak formulation of the problem (3.2). In 
particular, given g in L2(∂D) and f in L2(D) one can find a sequence of functions gn ∈ C1(∂D) converging 
to g in L2(∂D), and a sequence of functions fn ∈ C(D) converging to f in L2(D). The corresponding solution 
un to the equation satisfies the inequality (3.3), and thus we can extract a weakly convergent subsequence 
unj

corresponding to data {gnj
, fnj

} and converging weakly to an element u in W 2,1(D).
Taking the inner product of (1.1) with a test function v and integrating by parts using Green’s identity 

over the domain D (see appendix), we obtain the weak formulation for the problem

2
∫
D

∂unj
∂v dx dy + 2

∫
D

∂zunj
∂zv dx dy + λ

2π∫
0

unj
(eiθ)v(eiθ) dθ −

2π∫
0

gnj
(θ) v(eiθ) dθ = −

∫
D

fnj
v dx dy.

(4.21)

Hence, passing to the limit in (4.21), we have that u ∈ W 2,1(D) is a weak solution corresponding to 
the data g ∈ L2(∂D) and f ∈ L2(D). That the solution is unique follows again from considering the 
homogeneous problem satisfied by the difference of two solutions. Since the domain is regular and the 
problem is homogeneous, the weak solution is in fact a classical solution and thus it is the zero solution.
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5. Controllability: proof of Theorem 3.2

Let m ≥ 0 be the infimum of J over L2(∂D). We now consider a minimizing sequence gn ∈ L2(∂D) of 
the functional (1.3), or in other words

m = inf
g∈L2(∂D)

J(u(g), g) = lim
n→∞

J(u(gn), gn), (5.1)

and the corresponding sequence of weak solutions un = u(gn) ∈ W 2,1(D). Then, there exist constants M > 0
and N ∈ N, such that J(u(gn), gn) ≤ M for all n ≥ N . Therefore, we can extract a weakly convergent 
subsequence gn → g0 ∈ L2(∂D). Moreover, using the inequality (3.3) we can extract a weakly convergent 
subsequence unj

in W 2,1(D) converging to an element u ∈ W 2,1(D). By passing to the limit as nj → ∞ in 
the weak formulation (4.21), we conclude that u is the unique weak solution to the problem corresponding 
to data f and boundary data g0. In addition, unj

converges to u strongly in L2(D) by compactness.
Now, since the norm is convex and lower semicontinuous it is weakly lower semicontinuous which implies

J(u, g0) =
∫
D

|u|2 dx dy +
2π∫
0

|g0(θ)|2 dθ

≤ lim inf
n

∫
D

|un|2 dx dy + lim inf
n

2π∫
0

|gn(θ)|2 dθ

≤ lim inf
n

J(un(gn), gn) = m.

Therefore, the minimum of J is realized by the function g0. Uniqueness follows from strict convexity of 
J(u(g), g) in g which is a consequence of strict convexity of the norm and the convexity of u(g).

We next characterize the optimal control and show that in fact u(g0) is a classical solution. In fact, we 
can express u(g) as u = Lg� + T1,1f , where L : L2(∂D) → W 2,1(D) denotes the solution map defined by

Lg = u ⇐⇒ −2
∫
D

∂zu ∂zv dx dy − 2
∫
D

∂zu ∂zv dx dy − λ

2π∫
0

u(eiθ) v(eiθ) dθ +
2π∫
0

g(θ) v(eiθ) dθ = 0,

(5.2)

∀v ∈ W 2,1(D), which is well-defined by Theorem 3.1.
We next derive the expression of the optimal control g0 by taking the variation of the functional J with 

respect to g.
First, using the expression u = Lg� + T1,1f we have

J = 〈Lg� + T1,1f, Lg
� + T1,1f〉D + 〈g�, g�〉∂D,

which after taking the variation, and denoting by L� the adjoint of L with respect to the L2(D) inner 
product, we obtain

0 = δJ = 〈L�Lg�, δg�〉∂D + 〈δg�, L�Lg�〉∂D + 〈L�T1,1f, δg
�〉∂D + 〈δg�, L�T1,1f〉∂D + 〈g�, δg�〉∂D

+ 〈δg�, g�〉∂D.

Therefore

2
〈L�Lg�, δg�〉∂D + 2
〈L�T1,1f, δg
�〉∂D + 2
〈g�, δg�〉∂D = 0,
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which holds for all δg� ∈ L2(∂D) and thus

(I + L�L)g� = −L�T1,1f. (5.3)

Now, the operator I + L�L is bounded on L2(∂D) and coercive since

〈(I + L�L)h, h〉∂D = ‖h‖2
L2(∂D) + ‖L�h‖2

L2(∂D) ≥ ‖h‖2
L2(∂D),

for all h ∈ L2(∂D). Therefore, by the Lax–Milgram theorem, (I + L�L) has a bounded inverse on L2(∂D)
and hence we conclude

g0(z) = −(I + L�L)−1L�T1,1f + zTf + zTf + λT1,1f, z ∈ ∂D. (5.4)

Moreover, we can explicitly compute the adjoint of the map L. Let h ∈ L2(D) and set v to be the solution 
to the problem

Δv = h in D, (5.5)

subject to the boundary condition

∂

∂n
v + λv = 0 on ∂D, (5.6)

then, given any g ∈ L2(∂D), we have using Green’s identity

〈Lg, h〉D = 〈Lg,Δv〉D

= −2
∫
D

∂zLg ∂zv dx dy − 2
∫
D

∂zLg ∂zv dx dy +
2π∫
0

Lg(eiθ) ∂

∂n
v(eiθ) dθ

= λ

2π∫
0

Lg(eiθ) v(eiθ) dθ −
2π∫
0

g(θ) v(eiθ) dθ +
2π∫
0

Lg(eiθ) ∂

∂n
v(eiθ) dθ

= −
2π∫
0

g(θ) v(eiθ) dθ

= 〈g, L�h〉∂D,

where we used the definition of L as the solution map defined in (5.2).
Hence, the adjoint L� : L2(D) → L2(∂D) is defined as the solution map to the problem

L�h = q ⇐⇒ q = −v|∂D and

− 2
∫
D

∂zv ∂zu dx dy − 2
∫
D

∂zv ∂zu dx dy − λ

2π∫
0

v(eiθ)u(eiθ) dθ =
∫
D

hu dx dy ∀u ∈ W 2,1(D). (5.7)

In other words, the adjoint is the trace of the solution to the problem (5.5)–(5.6) and is thus bounded 
L2(D) → W 2,1/2(∂D). Using a higher regularity argument via the Agmon–Douglis–Nirenberg method [1], 
we can also deduce the regularity property L� : W 2,s(D) → W 2,s+1/2(∂D).
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Now, from (5.3) we have that

g� = −L�Lg� − L�T1,1f. (5.8)

The above relation shows that the optimal control g0 is in fact more regular, and thus the corresponding 
solution u to this control is a classical solution. In particular, we conclude that Lg� ∈ W 2,1(D). On the other 
hand, L� is the solution map L�h = v|∂D to the BVP (5.5)–(5.6), and thus L�Lg� ∈ W 2,3/2(∂D) ⊂ C(∂D). 
Moreover, T1,1f ∈ W 2,2(D), and accordingly L�T1,1f ∈ W 2,5/2(∂D) ⊂ C1(∂D). Thus, g� ∈ W 2,3/2(∂D) ∩
C(∂D). Iterating again using (5.8), we conclude L�Lg� ∈ W 2,3(∂D) ⊂ C1(∂D). Therefore, g� is C1 while 
the optimal control g0 may be expressed as

g0(ζ) ≡ g�(ζ) + ζT0,1f + ζT1,0f − λT1,1f, ζ ∈ ∂D,

using (2.5). If we further assume f ∈ C(D) then we conclude g0 is also C1(∂D) and thus the corresponding 
optimal solution u0 is a classical solution in C2(D). This completes the proof of Theorem 3.3.

6. The case of −λ = k0 ∈ N: proof of Theorems 3.3, 3.4

If −λ = k0 ∈ N, then (4.12) implies that

φk = g�k
k + λ

, k ∈ N \ {k0}, φk0 = A if g�k0
= 0; φ(z) =

∞∑
k=0, k �=k0

g�k
k + λ

zk + Azk0 , z ∈ D (6.1)

where A ∈ C is an arbitrary constant. In this case,

φ(z) =
∞∑

k=0,k �=k0

g�k
k − k0

zk + Azk0 . (6.2)

If the compatibility condition g�k0
= 0 is not satisfied, the problem (4.12) is not solvable for the case 

−λ ∈ N due to incompatibility. This means that under the assumption −λ = k0 ∈ N, if φ =
∑∞

k=0 akz
k is 

a holomorphic solution to (4.8) then we must have g�k0
= 0. In other words, due to the fact that G�(z) is 

holomorphic, we may express g�k0
as

g�k0
= 1

k0!
G∗(k0)(0)

and the compatibility condition g�k0
= 0 can be expressed using the Cauchy integral formula as

∫
|ζ|=1

G�(ζ)ζk0 dζ

ζ
= 0, ζ ∈ ∂D

and the following Theorem can be deduced.

Theorem 6.1. Let −λ = k0 ∈ N. If φ =
∑∞

k=0 akz
k is a holomorphic solution to (4.8), then G� must satisfy 

the compatibility condition

g�k0
= 0 or

∫
G�(ζ)ζk0 dζ

ζ
= 0. (6.3)
|ζ|=1
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If the compatibility condition (6.3) is satisfied, then the problem (4.8) has the solution (6.2) for −λ ∈ N with 
A being an arbitrary complex number. If the compatibility condition (6.3) is not satisfied, then the problem 
(4.8) is not solvable when −λ ∈ N.

Similarly, one can conclude that

ψ(z) =
∞∑

k=0,k �=k0

g�−k

k − k0
zk + Bzk0 , (6.4)

where B is an arbitrary constant, assuming the compatibility condition g�−k = 0 is satisfied by H�. An 
analogous theorem can be stated for the problem (4.9):

Theorem 6.2. Let −λ = k0 ∈ N. If ψ =
∑∞

k=0 akz
k is a holomorphic solution to (4.9), then H� must satisfy 

the compatibility condition

g�−k0
= 0 or

∫
|ζ|=1

H�(ζ)ζk0 dζ

ζ
= 0. (6.5)

If the compatibility condition (6.5) is satisfied, then the problem (4.9) has the solution (6.4) with B being an 
arbitrary complex number. If the compatibility condition (6.5) is not satisfied, then the problem (4.9) is not 
solvable when −λ ∈ N.

Note that compatibility conditions (6.3) and (6.5) can be expressed as

g�±k0
= 0 or

∫
|ζ|=1

g�(ζ)ζ∓k0
dζ

ζ
= 0. (6.6)

Moreover, since −λ = k0 ∈ N, the problem

Δu = 0 in D (6.7)

subject to the boundary condition

∂

∂n
u + λu = 0 on ∂D, (6.8)

admits a family of solutions of the form

u(z) = Azk0 + Bzk0 , (6.9)

for any A, B ∈ C, cf. [25]. This means that the optimal control problem of minimizing (1.3) subject to the 
BVP (1.1)–(1.2) is not well-posed in this case. In fact, for any choice of g, the lack of uniqueness of solution 
u implies a lack of controllability. In particular, for any g ∈ L2(∂D), we may choose A, and B so that the 
value of the functional is arbitrarily large.

Therefore, we impose additional conditions (3.6) and (3.7) on the boundary data u which determine the 
values of the coefficients A and B uniquely

∫
u(ζ) ζ

k0+1
dζ = u1,
∂D
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and
∫
∂D

u(ζ) ζk0−1 dζ = u2,

where u1 and u2 are given complex numbers.
This is justified by the following computations. If we take the inner product of zk0 with u while paying 

attention to z k0 = z−k0 on ∂D, then we have

u(z) zk0 = w(z)z k0 +
∞∑

k=0,k �=k0

akz
k−k0 +

∞∑
k=0,k �=−k0

bkz
k+k0 + Az2k0 + B on ∂D.

Hence, by the Cauchy complex integral formula, we have

∫
∂D

u(ζ) ζ
k0+1

dζ =
∫
∂D

⎛
⎝w(z)ζk0+1 +

∞∑
k=0,k �=k0

akζ
k−k0−1 +

∞∑
k=0,k �=−k0

bkζ
k+k0+1 + Aζ

2k0+1 + B

ζ

⎞
⎠ dζ,

=
∫
∂D

w(z)ζk0+1
dζ + 2πiB.

Thus,

2πiB = u1 −
∫
∂D

w(z)ζk0+1
dζ.

Similarly,

u(z) zk0 = w(z)zk0 +
∞∑

k=0,k �=−k0

akz
k+k0 +

∞∑
k=0,k �=k0

bkz
k−k0 + A + Bz2k0 on ∂D.

Therefore, using the Cauchy integral formula, we have

∫
∂D

u(ζ) ζk0−1 dζ =
∫
∂D

⎛
⎝w(z)ζk0−1 +

∑
k=0,k �=−k0

akζ
k+k0−1 +

∑
k=0,k �=k0

bkζ
k−k0+1 + A

ζ
+ Bζ2k0−1

⎞
⎠ dζ

=
∫
∂D

w(z)ζk0−1 dζ + 2πiA,

from which, we get

2πiA = u2 −
∫
∂D

w(z)ζk0−1 dζ.

Hence, the choice of u1 determines the coefficient B and the choice of u2 determines the coefficient A, 
which guarantees uniqueness of solution.

Repeating the estimates on the W 2,1 norm of the solution u as in the proof of Theorem 3.1 and using 
the expressions for A and B, the estimate (3.8) easily follows.



JID:YJMAA AID:21777 /FLA Doctopic: Optimization and Control [m3L; v1.224; Prn:31/10/2017; 10:24] P.16 (1-19)
16 A. Mohammed, A. Tuffaha / J. Math. Anal. Appl. ••• (••••) •••–•••
Remark. Notice for example that when f(z) = 0, λ = −2, g(z) = c1z
2 + c2z

2 + c3z
3, problem (1.1)–(1.2) is 

not solvable for |c1|2 + |c2|2 
= 0, ∀c3 ∈ C due to the fact that the compatibility condition is violated and it 
is solvable for |c1|2 + |c2|2 = 0, ∀c3 ∈ C. Therefore, if the compatibility conditions are not satisfied, there is 
no solution to the original problem.

6.1. Existence of a weak solution

Given f ∈ C(D), and g ∈ L2(∂D) satisfying the compatibility condition
∫

|ζ|=1

g�(ζ)ζ±k0
dζ

ζ
= 0,

we can find a sequence of functions gn ∈ C1(∂D) converging to g ∈ L2(∂D) as n → ∞, and such that the 
same compatibility condition

∫
|ζ|=1

g�n(ζ)ζ±k0
dζ

ζ
= 0

is satisfied. Such a sequence can be constructed by truncating the Fourier series for g� to construct an 
approximate sequence g�n, which guarantees that the coefficients corresponding to zk0 and zk0 remain zero. 
Accordingly, gn(ζ) may be selected to be g�n(ζ) + ζT0,1f(ζ) + ζ̄T1,0f(ζ) − k0T1,1f(ζ).

Therefore, if we impose the conditions (3.6) and (3.7), by the result of the previous section there exists 
a unique solution un corresponding to the data gn and f to the BVP (1.1) with the boundary condition 
(1.2) when −λ = k0 ∈ N. Integrating by parts via Green’s formula, we have that un satisfies (4.21). We now 
invoke the a priori estimate (3.8), to extract a weakly convergent subsequence unj

converging to an element 
u ∈ W 2,1(D). Passing to the limit in (4.21) as n → ∞, we obtain the weak formulation (3.2) satisfied by u. 
The same uniqueness argument as in the case of Theorem 3.1 also holds.

6.2. Proof of Theorem 3.4

The proof of Theorem 3.4 on existence of the optimal control follows the same argument of proof of 
Theorem 3.2, using the inequality (3.8). Under the assumptions u1 = u2 = 0, the solution map L : g → u

is a linear map. Here, the admissible set of controls includes the compatibility conditions (3.4). In other 
words, given f ∈ C(D) we minimize the functional J over the closed subset K of L2(∂D):

K :=

⎧⎪⎨
⎪⎩g ∈ L2(∂D) :

∫
|ζ|=1

g(ζ)ζ±k0 dζ

ζ
=

∫
|ζ|=1

(
ζT0,1f(ζ) + ζT1,0f(ζ) − k0T1,1f(ζ)ζ±k0

)
dζ

ζ

⎫⎪⎬
⎪⎭

By finding a minimizing sequence {gn} ∈ K of the functional J , we can extract a weakly convergent 
subsequence {gnj

} converging weakly to an element g0 ∈ L2(∂D). Moreover, g0 must satisfy the same 
compatibility conditions and thus belongs to K. From (3.8) we have a uniform bound on u(gn), and thus we 
can extract a corresponding subsequence of weak solutions unj

= u(gnj
) converging weakly to u in W 2,1(D). 

It is easy to see again that this element u is the weak solution corresponding to g0 and indeed satisfies 
the conditions (3.6) and (3.7). In particular, the trace map is compact W 2,1(D) → L2(∂D), and thus unj

converges strongly to u on the boundary in L2(∂D), and thus we can pass to the limit in conditions (3.6)
and (3.7) satisfied by unj

, which implies u also satisfies (3.6) and (3.7). The same argument as before applies 
to show that g0 is the unique minimizer of J over the set K.
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6.3. Some remarks

The following identities hold

1
2πi

∫
∂D

dζ

ζ
= 1

2πi

2π∫
0

d(eiθ)
eiθ

= i

2πi

2π∫
0

dθ = 1 (6.10)

and

1
2πi

∫
∂D

ζ±k dζ

ζ
= 1

2πi

2π∫
0

e±ikθ d(eiθ)
eiθ

= i

2πi

2π∫
0

e±ikθdθ = 0, ∀k ∈ N (6.11)

By (4.10),

g�(ζ) =
∞∑
k=0

g�kζ
k +

∞∑
k=0

g�−kζ
−k =

∞∑
k=0

g�kζ
k +

∞∑
k=1

g�−kζ
k
, ζ ∈ ∂D

and by (4.6),

G�(z) = 1
2S(g�(.))(z) = 1

2

{ 1
2πi

∫
∂D

(g�(ζ))
(

2ζ
ζ − z

− 1
)

dζ

ζ
+ ic

}
= 1

2πi

∫
∂D

g�(ζ)
(

ζ

ζ − z
− 1

2

)
dζ

ζ
+ i

2c

= 1
2πi

∫
∂D

g�(ζ)
(

1
1 − zζ

− 1
2

)
dζ

ζ
+ i

2c

= 1
2πi

∫
∂D

( ∞∑
k=0

g�kζ
k +

∞∑
k=0

g�−kζ
−k

)( ∞∑
h=0

(zζ)h − 1
2

)
dζ

ζ
+ i

2c.

Here, only terms k = h are of particular interest, and the rest all vanish due to (6.10) and (6.11) so that

G�(z) =
∞∑
k=1

g�kz
k + g�0 + i

2c.

Clearly, G�(z) is fully determined by the holomorphic coefficients of g�(z) up to a constant term.

Appendix A. Green’s identity

Let u(z) and v(z) be two complex valued functions defined on the unit disk and in C2(D). Green’s identity 
states that on any smooth domain in the plane, we have

∫
D

Δu v dx dy = −
∫
D

∇u · ∇v dx dy +
∫
∂D

∂u

∂n
v ds

where ds =
√

x′ 2(θ) + y′ 2(θ) dθ is the infinitesimal arclength and (x(θ), y(θ)) is a parametrization of the 
boundary ∂D, and n is the outward unit normal to the boundary.

Since the domain is the unit disk and ∇u · ∇v = 2∂u∂v + 2∂u∂v we have

∫
Δuv dx dy = −2

∫
∂u∂v dx dy − 2

∫
∂u∂v dx dy +

2π∫
∂u

∂n
(eiθ)v(eiθ)dθ.
D D D 0
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Moreover, since our boundary condition on ∂D is

∂u

∂n
+ λu = g,

the relation becomes

∫
D

Δuv dx dy = −2
∫
D

∂u∂v dx dy − 2
∫
D

∂u∂v dx dy − λ

2π∫
0

u(eiθ)v(eiθ) dθ +
2π∫
0

g(eiθ)v(eiθ) dθ.

Using Δu = f , we finally have

−2
∫
D

∂u∂v dx dy − 2
∫
D

∂u∂v dx dy − λ

2π∫
0

u(eiθ)v(eiθ) dθ +
2π∫
0

g(eiθ)v(eiθ) dθ =
∫
D

fv dx dy,

which is the weak formulation of the problem given in (3.2).
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