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SYMPLECTIC RIGIDITY OF REAL AND COMPLEX

POLYDISCS

YAT-SEN WONG

Abstract. In R2n with its standard symplectic structure, the complex poly-
disc, D2n

C
(r), is constructed as the product of n open complex discs of radius

r. When n = 2, the real polydisc, D4
R
(r), is constructed as the product of 2

open real/Lagrangian discs of radius r. Sukhov and Tumanov recently showed

that D4
C
(1) and D4

R
(1) are not symplectically equivalent. We extend this re-

sult in two ways. First we give the necessary and sufficient conditions for an
orthogonal image of D4

C
(1) to be symplectically equivalent to D4

C
(1). Second,

we show that for all r ≥ 1 and n ≥ 1, D4
R
(1)× D2n−4

C
(r) is not symplectically

equivalent to D4
C
(1)× D2n−4

C
(r).

1. Introduction

The problem of symplectic rigidity has been studied for a long time. The first
striking result was obtained by Gromov [3], which states that one can symplectically
embed a sphere into a cylinder only if the radius of the sphere is less than or equal
to the radius of the cylinder. Following Gromov’s work, many results on symplectic
rigidity were obtained for various domains. For example, McDuff [5] studied when a
4-dimensional ellipsoid can be symplectically embedded in a ball; Guth [4] gave an
asymptotic result on when a polydisc D2

C
(r1)× · · · × D2

C
(rn) can be symplectically

embedded into another.
Sukhov and Tumanov [7] applied techniques in classical complex analysis to

a problem of symplectic rigidity. They showed that the real bi-disc D4
R
(1) =

{(z1, z2) ∈ C2 : |x1|2 + |x2|2 < 1, |y1|2 + |y2|2 < 1} cannot be symplectically
embedded into the complex cylinder D2

C
(1)×C of radius 1. If we consider the real

bidisc as obtained from a non-holomorphic change of coordinates

T0 : (x1, y1, x2, y2) �→ (x1, x2, y1, y2)

of D4
C
(1), then the result of Sukhov and Tumanov shows that T0(D

4
C
(1)) is not

symplectomorphic to D4
C
(1) itself.

In this paper, we apply the complex analysis techniques used by Sukhov and
Tumanov [7] to solve the problem of symplectic rigidity on different domains: real
bidisc and its modifications.

Let x1, y1, . . . , xn, yn be the standard coordinates on the 2n-dimensional Eu-
clidean space R2n ∼= Cn, the standard symplectc form on the space is given by
dx1 ∧ dy1 + · · · + dxn ∧ dyn. All symplectic embeddings considered in this pa-
per will be with respect to the standard symplectic form on R2n, unless otherwise
specified. For n > 1, define the real 2n-dimensional complex n-disc of radius r by
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D2n
C
(r) = {(z1, · · · , zn) ∈ Cn : |zi| < r for i = 1, · · · , n}. When n = 1, D2

C
(r) is

the standard real 2-dimensional disc in C centered at the origin with radius r. To
simplify the notation, we will write D2

C
(r) as D(r) and D2

C
(1) as D. When n = 2,

D4
C
(r) is called complex bidisc of radius r. We also define the real bidisc in C2 by

D4
R
= {(z1, z2) ∈ C2 : |x1|2 + |x2|2 < r2, |y1|2 + |y2|2 < r2}.
The first main result of this paper generalizes the result of Sukhov and Tumanov

[7] mentioned above: if T ∈ O(4) is any orthogonal transformation on R4 = C2,
then T (DC

4(1)) is symplectomorphic to D4
C
(1) if and only if the image of D4

C
(1)

under T agrees with the image of D4
C
(1) under a unitary transformation. We will

give a more precise statement in Section 3.
The second result of this paper considers a high dimensional analogy of the

first result. We will show that for r ≥ 1 and n ≥ 2, D4
R
(1) × D2n−4

C
(r) is not

symplectomorphic to D4
C
(1)× D2n−4

C
(r).

There are a lot of open problems concerning symplectic rigidity, for instance it is
not known that whether D4

R
(1)×D2n−4

C
(r) is symplectomorphic to D4

C
(1)×D2n−4

C
(r)

when r < 1. The results in this paper only show that such symplectomorphism does
not exist when r ≥ 1. Another interesting open problem is to characterize when two
polydiscs D2

C
(r1)× · · · × D2

C
(rn) and D2

C
(s1)× · · · × D2

C
(sn) are symplectomorphic.

2. J-holomorphic discs and symplectic manifolds

In this section we will recall some basic properties of J-holomorphic discs and
symplectic manifolds.

Definition 2.1. A smooth map φ : (M,J) → (M ′, J ′) from one almost complex
manifold to another is said to be (J, J ′)-holomorphic if its derivative dφ is complex
linear, that is

(2.1) dφ ◦ J = J ′ ◦ dφ.
Denote by Jst the standard complex structure of Cn, that is, Jst is R-linear and

J2
st = −I where I is the identity map. A J-holomorphic disc, also known as a

pseudo-holomorphic disc, is a (Jst, J)-holomorphic map

u : D → M

from D to an almost complex manifold (M,J).
In local coordinates z ∈ Cn, an almost complex structure J is represented by

an R-linear operator J(z) : Cn → Cn such that J(z)2 = −I. Now the Cauchy-
Riemann equations (2.1) for a J-holomorphic disc z : D → Cn can be written in
the form

zη = J(z)zξ, ζ = ξ + iη ∈ D.

It is possible to represent J by a complex n × n matrix function A = A(z) so
that we get the equivalent equations

(2.2) zζ = A(z)zζ , ζ ∈ D.

We now recall how one constructs A from J for fixed z. Let J : Cn → Cn be a
R-linear map so that det(Jst + J) 	= 0, where Jstv = iv. Here we only consider J
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such that det(Jst+J) 	= 0, for example when J is tamed by the standard symplectic
structure on Cn (the notion of tamed is defined below). Set

Q = (Jst + J)−1(Jst − J).

Lemma 2.2. (See, for example, Chapter 2 Section 1.1 of [1]) J2 = −I if and only
if QJst + JstQ = 0.

Notice that QJst + JstQ = 0 is equivalent to Q being a linear anti-complex
operator. Therefore Lemma 2.2 implies that there is a unique matrix A ∈Mat(n,C)
such that

Av = Qv, v ∈ Cn.

A symplectic manifold, (M,ω), consists of a smooth manifold M of dimension
2n and a closed, non-degenerate 2-form ω. A basic example is M = Cn with the
coordinates zj = xj+iyj , j = 1, . . . , n, equipped with the standard symplectic form
ωst =

∑n
j=1 dxj ∧ dyj =

i
2

∑n
j=1 dzj ∧ dzj .

A symplectic form ω tames an almost complex structure J on M if ω(u, Ju) >
0, for all u 	= 0. A basic example is (M,ω, J) = (Cn, ωst, Jst).

Given a matrix B ∈ Rm×n, the matrix norm of B is defined by

‖B‖ = sup

{ |Bv|Rm

|v|Rn

with v 	= 0

}
.

Lemma 2.3. (See, for example, Chapter 2 Section 1.1 of [1]) Let J be an almost
complex structure on Cn, then J is tamed by ωst if and only if the complex matrix
A of J satisfies the condition

(2.3) ‖A(z)‖ < 1, for all z ∈ Cn.

For a map u : D → Cn, the (symplectic) area of u is given by

(2.4) Area(u) =

∫
D

u∗ωst.

If J is ωst tamed, we can consider the canonical Riemannian metric gJ(X,Y ) =
1

2
(ωst(X, JY )+ωst(Y, JX)) determined by J and ωst. Suppose u is a J-holomorphic

disc. The symplectic area of u coincides with the area induced by gJ ; in particular,
it coincides with the Euclidean area if J = Jst (see [1] for more details).

3. Orthogonal transformation of complex bidisc

Let T ∈ O(4) be an orthogonal transformation on R4 ∼= C2. In this section we
will give a necessary and sufficient condition for T (D4

C
(1)) to be symplectomorphic

to D4
C
(1) with respect to the standard symplectic form on C2.

First of all, we define the notion of holomorphic radius and state a theorem
proved by A. Sukhov and A. Tumanov [7] which provides a necessary condition on
holomorphic radius for the existence of symplectic embedding.

Definition 3.1. Let Ω be a complex manifold. A closed set A ⊂ Ω is called a
(complex) analytic set if it is, in a neighborhood of each of its points, the set of
common zeros of a certain finite family of holomorphic functions.

In this paper we only consider closed analytic sets.
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Definition 3.2. A point p of an analytic set A in a complex manifold Ω is called
regular if there is a neighborhood U in Ω containing p such that A∩U is a complex
submanifold of U . The complex dimension of this submanifold is said to be the
dimension of A at its regular point p, and is denoted by dimpA. The set of all
regular points of A is denoted by regA.

It is a fundamental result of complex analytic sets that the set of all regular
points of an analytic set A is dense in A (see, for example, Section 2.3 of [2]).

Definition 3.3. A purely m-dimensional analytic set A is an analytic set such
that for every p ∈ regA, we have dimp A = m.

Definition 3.4. Let G be a domain in Cn containing the origin. Denote by O1
0(G)

the set of purely one-dimensional analytic sets in G passing through the origin.
Denote by E(X) the Euclidean area of X ∈ O1

0(G). The holomorphic radius
rh(G) of G is defined as

rh(G) = inf{λ > 0 : ∃X ∈ O1
0(G), E(X) = πλ2}.

Example 3.5. Let B4(r) be the Euclidean ball of C2 with radius r, then rh(B4(r)) =
r. In fact the area E(X) of X ∈ O1

0(B
4(r)) is bounded from below by the area πr2

of a section of the ball by a complex line through the origin (Lelong, 1950; see, for
example, Section 15.3 of [2]).

The following theorem is known as Bishop’s convergence theorem (see, for ex-
ample, Section 15.5 of [2]). It will be used in the rest of the paper:

Theorem 3.6. Let {Aj} be a sequence of purely p-dimensional analytic subsets in
a complex manifold Ω with locally uniformly bounded volumes:

Vol2p(Aj ∩K) ≤ MK < ∞
for any compact set K ⊂ Ω. Here MK is a constant depending only on K. Then
we can extract a subsequence from {Aj} converging on compact subsets in Ω (in
Hausdorff sense) to a purely p-dimensional analytic subset or to the empty set.

The following result is due to A. Sukhov and A. Tumanov [7]. It provides a nec-
essary condition on holomorphic radius for the existence of symplectic embedding.
This result will be used in the proof of Theorem 3.9.

Theorem 3.7. ([7]) Let G1 be a domain in C2 containing the origin and let G2 be
a domain in D(R)×C for some R > 0. Assume there exists a symplectomorphism
φ : G1 → G2, then rh(G1) ≤ R.

For v = (v1, . . . , v4), w = (w1, . . . , w4) ∈ R4, we denote the real inner prod-

uct by 〈v, w〉R4 =
∑4

j=1 vjwj . Similarly for v = (v1, v2), w = (w1, w2) ∈ C2,

we denote the complex inner product by 〈v, w〉C2 =
∑2

j=1 vjwj . Notice that

〈v, w〉R4 = Re〈v, w〉C2 .
Let L ⊂ C2 be a real two dimensional plane. Denote by L⊥

R4 the orthogonal
complement of L with respect to 〈·, ·〉R4 and by L⊥

C2 the orthogonal complement
of L with respect to 〈·, ·〉C2 . L is called a complex line when v ∈ L if and only
if iv ∈ L for all v ∈ C2. By using the properties of inner product, the following
lemma can be proved easily.

Lemma 3.8. If L ⊂ C2 is a complex line, then:
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(1) L⊥
R4 = L⊥

C2 .
(2) L⊥

C2 is also a complex line.

We denote by I the set consisting of four diagonal matrices:

I =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
1

a
1

b

⎞
⎟⎟⎠ : a = ±1, b = ±1

⎫⎪⎪⎬
⎪⎪⎭

The following is the main theorem of this section. We used the canonical iden-
tification between complex matrices on C2 and real matrices on R4:

Theorem 3.9. Let T ∈ O(4) be an orthogonal transformation. Then in (R4, ωstd.),

T (D4
C
(1)) is symplectomorphic to D4

C
(1) if and only if there exists U ∈ U(2) such

that T (D4
C
(1)) = U(D4

C
(1)) as a set.

Idea of the proof. The if-part of the proof is straight forward. For the only-if-part,
we start by considering the complex lines H1 = {z2 = 0} and H2 = {z1 = 0} in
C2. The key argument is to show that T (H1) and T (H2) are also complex lines in

C2. It is then obvious that ŨT ∈ I for some unitary matrix Ũ ∈ U(2). Hence the
result follows immediately.

Proof. (⇐) Suppose there exists a U ∈ U(2) such that T (D4
C
(1)) = U(D4

C
(1)),

then since U ∈ U(2) is a linear symplectomorphism on C2, we can conclude that
T (D4

C
(1)) is symplectomorphic to D4

C
(1).

(⇒) Let (z1, z2) be the coordinate on C2. First of all, let ∂D4
C
(1) ∩ ∂B4(1) =

S1 ∪ S2 where S1 = {|z1| = 1, z2 = 0} and S2 = {z1 = 0, |z2| = 1}. Therefore S1

and S2 are contained in the complex line H1 and H2 respectively. For i = 1, 2, let
ui, vi ∈ C2 be an orthonormal basis of T (Hi) under the real inner product 〈·, ·〉R4

on R4. Note that T (Si), the image of Si under T , can be parameterized by

1

2

(
t+

1

t

)
ui +

1

2i

(
t− 1

t

)
vi

for |t| = 1 in C. The complexification of T (Si), denoted by T̃ (Si), is given by the
same parametrization but allowing t ∈ CP1. Here CPn is the complex projective

space of complex dimension n. Hence T̃ (Si) is a complex algebraic curve in CP2

parameterized by t ∈ CP1.

Notice that for i = 1, 2, T̃ (Si) passes through the origin in C2 if and only if ui

and vi are C-dependent.
Suppose TD4

C
(1) is symplectomorphic to D4

C
(1), then Theorem 3.7 implies that

rh(T (D4
C
(1))) ≤ 1. By the definition of rh(T (D4

C
(1))), consider a sequence of real

numbers λn ≥ rh(T (D4
C
(1))) that converges to rh(T (D4

C
(1))), and consider a se-

quence of Xn ∈ O1
0(T (D

4
C
(1))) with E(Xn) = πλ2

n. By applying Theorem 3.6
to the sequence {Xn}, there exists X ∈ O1

0(T (D
4
C
(1))) such that E(X) = π ∗

rh(T (D4
C
(1)))2. Suppose there exists p ∈ ∂X ∩∂B4(1) such that p ∈ Int(T (D4

C
(1)));

then X is not entirely contained in B4(1). Hence E(X) > E(X ∩ B4(1)) ≥ π
(see Example 3.5), which implies rh(T (D4

C
(1))) > 1, a contradiction. Therefore

∂X ⊂ ∂B4(1) ∩ ∂T (D4
C
(1)) = T (S1) ∪ T (S2) and X is a complex one dimensional

analytic subset in C2\(T (S1)∪T (S2)). Since T (S1)∪T (S2) is a real one dimensional
curve, it is totally real. Hence, by the reflection principle for analytic sets (see, for
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example, Section 20.5 of [2]), X extends as a complex one dimensional analytic set
to a neighborhood of T (S1)∪ T (S2). By the uniqueness theorem X is contained in

the complex algebraic curve T̃ (S1) ∪ T̃ (S2).
Since X contains the origin in C2, without loss of generality we can assume

T̃ (S1) contains the origin. By the discussion above, we know that u1 and v1 are C-

dependent. Hence T (H1) = spanR{u1, v1} = spanR{u1, iu1} = spanC{u1} = T̃ (S1).
This shows that T (H1) is a complex line.

By Lemma 3.8, H2 = H
⊥

C2

1 = H
⊥

R4

1 . Since T is an orthogonal matrix, we
have T (H2) = (T (H1))

⊥
R4 = (T (H1))

⊥
C2 where the last equality follows from

Lemma 3.8 and the fact that T (H1) = T̃ (S1) = spanC{u1} is a complex line.
Therefore Lemma 3.8 implies that T (H2) is a complex line.

We’ve shown that if T is orthogonal and T (D4
C
(1)) is symplectomorphic to D4

C
(1),

then T maps the complex lines H1 = {z2 = 0}, H2 = {z1 = 0} to complex lines

T (H1), T (H2). Therefore there exists a unitary matrix Ũ ∈ U(2) such that ŨT ∈ I,
it then follows that T (D2) = U(D2) as a set for some U ∈ U(2). �

4. Rigidity persisting through stabilization

The following is the main theorem of this section:

Theorem 4.1. For r ≥ 1 and n ≥ 2, the domains D4
R
(1)× D2n−4

C
(r) and D4

C
(1)×

D2n−4
C

(r) in Cn equipped with the standard symplectic form are not symplectomor-
phic.

We will first give the proof for the case r > 1 by adapting the idea in the proof
of Theorem 2.2 in [9]. We will then develop a new method to prove Theorem 4.1
for the case r = 1.

4.1. The case r > 1. In the case r > 1, theorem 4.1 follows from a more general
result:

Theorem 4.2. If there exists a symplectic embedding φ : D4
R
(1) × D2n−4

C
(r) →

D(R)× Cn−1 and r > 1, then R > 1.

Proof. For R > 0, suppose there exists a symplectic embedding from D4
R
(1) ×

D2n−4
C

(r) into D(R) × Cn−1. It is proved in [9] that for every 1 ≤ r1 < 2√
π
,

there is a symplectic embedding from B4(r1) into D4
R
(1). Take 1 < r1 < 2√

π
, then

by combining these two embeddings, we obtain an embedding from B2n(a) into
D(R) × Cn−1 where a = min(r, r1) > 1. Therefore, by Gromov’s non-squeezing
theorem [3], we have R > 1. �

4.2. The case r = 1. In order to prove the case r = 1, we need the following
theorem by A. Sukhov and A. Tumanov [6] regarding the existence of J-holomorphic
discs. The original statement was about the triangular cylinder Δ × Cn−1 where
Δ = {z ∈ C : 0 < Imz < 1 − |Rez|} instead of the circular cylinder D × Cn−1.
However, one can see the result still holds for the circular cylinder by applying an
area preserving map from the triangle to the disc.

Theorem 4.3. (A. Sukhov and A. Tumanov [6]) Let A be a continuous n × n
matrix function on Cn with compact support in D × Cn−1. Suppose there is a
constant 0 < a < 1 such that
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(4.1) ‖A(z)‖ ≤ a, ∀z ∈ D× Cn−1.

Then there exists p > 2 such that for every point x ∈ D×Cn−1 there is a solution
Z ∈ W 1,p(D) (Sobolev space) of equation (2.2)

Zζ = A(Z)Zζ

such that Z(D) ⊂ D× Cn−1, x ∈ Z(D), Area(Z) = π and

Z(∂D) ⊂ ∂(D× Cn−1) = (∂D)× Cn−1.

Furthermore, if we denote the components of Z by Z = (f1, . . . , fn), then we have
the following area property

Area(f1) = π, Area(fj) = 0, for j = 2, . . . , n.

For 1 ≤ j ≤ n, let Mj be the holomorphic disc Mj = (m1, . . . ,mn) : D → Cn

where mk(z) = 0 if k 	= j and mj(z) = z. Notice that the minimal area of an

analytic set passing through the origin in D4
R
(1) × D2n−4

C
is π: this is because

B2n ⊂ D4
R
(1)× D2n−4

C
and the minimal area of analytic set of B2n passing through

the origin is π (Lelong 1950; see, for example, Section 15.3 of [2]).

Lemma 4.4. The analytic set of minimal area of D4
R
(1) × D2n−4

C
(1) through the

origin is given by one of the n− 2 distinct holomorphic discs M3, . . . ,Mn.

Proof. Let S1 = {x2
1 + x2

2 = 1, y1 = y2 = 0, z3 = · · · = zn = 0}, S2 = {y21 + y22 =
1, x1 = x2 = 0, z3 = · · · = zn = 0}, Sj = {|zj | = 1, zk = 0 for k 	= j} for 3 ≤ j ≤ n.
By using Lelong’s result (see, for example, Section 15.3 of [2]) and the argument
in proof of Theorem 3.9, we conclude that the boundary of the analytic set E of
minimal area in D4

R
(1) × D2n−4

C
(1) through the origin must lie in the intersection

of the boundary of B2n and the boundary of D4
R
(1) × D2n−4

C
(1). Notice that this

intersection consists of n circles S1, . . . , Sn. Suppose a boundary point of E lies in
S1 ∪ S2, then E must have a component lying in the complexification of S1 ∪ S2,
which is given by {z21 + z22 = 1, z3 = · · · = zn = 0}. In fact all of E lies in this set
since E is of minimal area. However {z21 + z22 = 1, z3 = · · · = zn = 0} does not pass
through the origin, so the boundary of E is contained in the circles S3 ∪ · · · ∪ Sn.
Hence E is one of the discs M3, . . . ,Mn. �

The following lemma is a consequence of Lemma 4.4 and Theorem 3.6:

Lemma 4.5. Let Ej be a convergent sequence of analytic sets in D4
R
(1)×D2n−4

C
(1)

passing through the origin so that

lim
j→∞

Area(Ej) = π.

Then the limiting analytic set E∞ is one of the n − 2 distinct holomorphic discs
M3, . . . ,Mn.

Our proof of Theorem 4.1 in the case r = 1 is based on the fact that the domains
D4

R
(1)×D2n−4

C
(1) and D2n

C
(1) have a different number of analytic sets of minimum

area through the origin. We are now ready to prove the main theorem of this
section.

Theorem 4.6. The domains D4
R
(1)×D2n−4

C
(1) and D2n

C
(1) equipped with the stan-

dard symplectic form on Cn are not symplectomorphic.
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Proof. Suppose on the contrary that ψ : D4
R
(1) × D2n−4

C
→ D2n

C
(1) is a symplec-

tomorphism. By composing with a symplectomorphism of D2n
C
(1), we can assume

that ψ(0) = 0.
Consider the standard almost complex structure Jst on D4

R
(1) × D2n−4

C
(1) and

let J = ψ∗Jst be the complex structure on D2n
C
(1) given by the push-forward of Jst

by ψ. Since ψ∗ωst = ωst, the almost complex structure J is tamed by ωst. Then,

by Lemma 2.3, the complex matrix Ã of J satisfies ‖Ã(z)‖ < 1 for z ∈ D2n
C
(1).

Let {Kl}∞l=1 be a compact exhaustion of D2n
C
(1) so that each Kl is a closed

polydisc with radius less than 1, that is, Kl ⊂ Kl+1, Kl is a compact subset of
D2n

C
(1) for all l and ∪∞

l=1Kl = D2n
C
(1). For each l, let χl be a smooth cut-off

function on Cn with support in D2n
C
(1) and equals to 1 on Kl. Consider the n× n

matrix function Al = χlÃ, which agrees with 0 outside D2n
C
(1). Since ‖Ã‖ < 1 on

D2n
C
(1), there is a constant 0 < al < 1 such that (4.1) holds for Al. Let Jl be the

almost complex structure on Cn corresponding to the complex matrix Al.
By considering D2n

C
(1) as a subset of D × Cn−1, we can apply Theorem 4.3 so

that for each l, there exists a Jl-holomorphic disc fl : D → D×Cn−1 such that the
image of fl passes through the origin. Also if we write fl = (fl,1, . . . , fl,n), then we
have Area(fl,j) = δj1π for all l where δj1 is the Kronecker delta.

Fix an integer N , for each l ≥ N , ψ−1(fl(D) ∩ KN ) is an analytic set in
ψ−1(KN ) ⊂ D4

R
(1)× D2n−4

C
(1) passing through the origin. Since ψ is a symplecto-

morphism, we have

Area(ψ−1(fl(D) ∩KN )) ≤ Area(fl(D) ∩KN ) ≤ π.

Therefore by Theorem 3.6, after passing to a subsequence,

FN = lim
l→∞

ψ−1(fl(D) ∩KN )

exists and Area(FN ) ≤ π. Since 0 ∈ ψ−1(fl(D) ∩KN ) for all l ≥ N , it follows that
FN is not an empty set when N is sufficiently large.

The above argument holds for all N that is sufficiently large, so we can apply
Theorem 3.6 again to the sequence of analytic set FN as N → ∞. After passing
to a subsequence, denote the limit of FN by F . Now F is an analytic set in
D4

R
(1)×D2n−4

C
(1) passing through the origin with Area(F ) ≤ π and ∂F ⊂ ∂(D4

R
(1)×

D2n−4
C

(1)). Since the minimal area of an analytic set in D4
R
(1)×D2n−4

C
(1) through

the origin is π, we must have Area(F ) = π. Therefore F is one of the holomorphic
discs Mj for 3 ≤ j ≤ n by Lemma 4.5.

Let E = ψ(F ). We now know that Areafl = π for all l and fl(D) ∩ D2n
C
(1) → E

as l → ∞. We also know that Area(E) = π. We want to show that fl(D) → E as
l → ∞. Let Xl = fl(D) \ D2n

C
(1), which is the image of fl that is not in D2n

C
(1).

By the construction of Al and Jl, we know that Jl = Jst outside D2n
C
(1), hence

Xl is a usual analytic set in (D × Cn−1) \ D2n
C
(1). Since AreaXl ≤ Areafl = π for

all l, we can apply Theorem 3.6 to conclude that, after passing to a subsequence,
Xl converges to an analytic set X. However fl(D) ∩ D2n

C
(1) → E as l → ∞ and

Area(E) = π implies that

lim
l→∞

Area(fl(D) ∩ D2n
C (1)) = π.
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By construction Area(fl) = π for all l, hence we have Area(Xl) → 0 as l → ∞.
Therefore X is an empty set and we can conclude that

lim
l→∞

fl(D) ⊂ D2n
C (1),

and hence
lim
l→∞

fl(D) = E.

Since Area(fl,j) = δj1π, if we write ωst = ω1 + · · · + ωn where ωj = dxj ∧ dyj for
j = 1, . . . , n, then we have ∫

E

ωj = δj1π.

Now for 1 ≤ k ≤ n, by considering D2n
C
(1) as a subset of the cylinder Ck−1×D×

Cn−k ∼= D×Cn−1, we can apply the above argument to obtain a real 2-dimensional
set Ek in D2n

C
(1) passing through the origin, satisfying the following conditions:

(1)
∫
Ek

ωj = δjkπ for 1 ≤ j ≤ n, hence all Ek’s are distinct for 1 ≤ k ≤ n.

(2) The preimage Fk = ψ−1(Ek) is an analytic set in D4
R
(1)×D2n−4

C
(1) passing

through the origin.
(3) Fk’s are distinct analytic sets for 1 ≤ k ≤ n since Ek’s are distinct and ψ

is a bijection.
(4) Area(Fk) = π for 1 ≤ k ≤ n.

Hence for each 1 ≤ k ≤ n, Fk must be one of the holomorphic discs Mj for
3 ≤ j ≤ n according to Lemma 4.5, but this is impossible since all Fk’s are distinct,
so we arrived at a contradiction. Therefore D4

R
(1)×D2n−4

C
(1) and D2n

C
(1) equipped

with the standard symplectic form on Cn are not symplectomorphic.
�
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