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Global boundedness in a fully parabolic quasilinear chemotaxis

system with singular sensitivity∗

Mengyao Ding†

School of Mathematical Sciences, Peking University, Beijing 100089, P.R. China

January 25, 2018

Abstract. In this paper we study the global boundedness of solutions to the quasilinear

fully parabolic chemotaxis system: ut = ∇ · (D(u)∇u− S(u)∇ϕ(v)), vt = Δv − v + u, where

bounded domain Ω ⊂ R
n (n ≥ 2) subject to the non-flux boundary conditions, the diffusivity

fulfills D(u) = a0(u + 1)−α with a0 > 0 and α ≥ 0, while the density-signal governed sen-

sitivity satisfies 0 ≤ S(u) ≤ b0(u + 1)β and 0 < ϕ′(v) ≤ χ
vk

for b0, χ > 0 and β, k ∈ R. It

is shown that the solution is globally bounded provided α + β < 1 and k ≤ 1. This result

demonstrates the effect of signal-dependent sensitivity on the blow-up prevention.

Keywords: Chemotaxis; Nonlinear diffusion; Global boundedness; Signal-dependent sensi-

tivity

Mathematics Subject Classification: 92C17; 35K55; 35B35; 35B40

1 Introduction

In this article, we study the following parabolic-parabolic Keller-Segel system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u)−∇ · (S(u)∇ϕ(v)), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,
∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in R
n (n ≥ 2) with smooth boundary, ∂

∂ν denotes the derivative

with respect to the outer normal of ∂Ω. u and v stand for the cell density, the concentration

of an attractive signal produced by cells themselves respectively. Initial data u0 and v0 fullfill{
u0 ∈ C(Ω̄), u0 ≥ 0 in Ω̄, u0 �≡ 0,

v0 ∈ W 1,∞(Ω), v0 > 0 in Ω̄.
(1.2)
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D(u) measures the nonlinear cell self-diffusion, S(u) and ϕ(v) represent the density-dependent

sensitivity and the signal-dependent sensitivity.

Recall related results obtained in previous literatures of the field.

For the parabolic-parabolic case, Winkler [18] established that problem (1.1) has a unique

globally bounded classical solution provided 0 < ϕ(v) ≤ χ
(1+αv)k

with α, χ > 0 and k > 1.

However this result is not completely correct for all χ > 0, and it was repaired by Mizukami

and Yokota [14] under a smallness condition for χ. Moreover, Fujie and Yokota [5] dealt

with the singular case that 0 < ϕ(s) ≤ χ
sk

with k > 1, χ > 0 and presented global existence

and boundedness of classical solutions. While for ϕ(v) = 1
v , Winkler [19] proved the global

existence of classical solutions to (1.1) if χ <
√

2
n , and the global existence of weak solutions

is ensured by the condition χ <
√

n+2
3n−4 , Fujie [8] obtained the boundedness result for (1.1)

with D(u) ≡ 1 under the condition 0 < χ <
√

2
n . When D(u) takes algebraic form and

ϕ(v) = v, the problem (1.1) with Ω being a ball possesses smooth solutions that blow up

either in finite or infinite time if S(u)
D(u) ≥ cu

2
n
+ε for u > 1 [20]. Whereas all solutions are

globally bounded if Ω is convex and S(u)
D(u) ≤ cu

2
n
−ε for large u [16], this result was extended

to the case without convexity assumption by Ishida etal. [10], and Fujie etal. [7] established

that the same result holds also for ϕ(v) = log v.

For the parabolic-elliptic counterpart (which takes place in the situation where chemicals

diffuse much faster than cells move [11]), the corresponding problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u− S(u)∇ϕ(v)), x ∈ Ω, t > 0,

0 = Δv − v + u, x ∈ Ω, t > 0,
∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω

(1.3)

has also been studied extensively. WithD(u) ≡ 1 in (1.3), Biler [1] proved the global existence

of weak solutions under 0 < χ < 2
n . Independently, on the condition D(u) ≡ 1, Nagai and

Senba [13] obtained that the radial solutions are globally bounded when either n ≥ 3 with

0 < χ < n
n−2 , or n = 2 with any χ > 0, whereas if n ≥ 3 with χ ≥ 2n

n−2 , then the finite time

blow-up of solutions may occur. Without the symmetric assumption, for D(u) ≡ 1 and k ≥ 1,

Fujie etal. got the result that there exists a unique globally bounded classical solution to

(1.3) under some additional conditions on parameters χ and k [4]. When the second equation

in (1.3) is replaced by 0 = Δv−m+u with m := 1
|Ω|

∫
Ω u0dx and ϕ(v) = v, Winkler and Djie

[21] proved that the solutions remain uniformly bounded in time if α + β < 2/n, under the

assumption that D(u) 
 u−α and S(u) 
 uβ for large u with α ≥ 0 and β ∈ R, whereas there

exist solutions that blow up in either finite or infinite time when α+ β > 2/n [2]. Recently,

[17] proved that (1.3) possesses a unique globally bounded classical solution if α + β < 1

and k ≥ 1, which exhibited the effect of the signal-dependent sensitivity on the interaction

between the self-diffusivity and the density-dependent sensitivity.

In the present paper, we will find a criterion that ensures the existence of gobally bounded
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solution and explore the effect of the signal-dependent sensitivity. We assume that the signal-

dependent sensitivity ϕ ∈ C2+ω
loc ((0,∞)) (0 < ω < 1) fulfills

0 < ϕ′(v) ≤ χ

vk
for any v > 0 (1.4)

with χ > 0 and k ≥ 1. In addition, we suppose that the diffusivity D ∈ C2([0,∞)) and the

density-dependent sensitivity S ∈ C2([0,∞)) with S(0) = 0 satisfy

D(u) = a0(u+ 1)−α, 0 ≤ S(u) ≤ b0(u+ 1)β for all u ≥ 0, (1.5)

where a0, b0 > 0 and α, β ∈ R are constants.

Under these hypotheses, we have following result about solution to the problem (1.1).

Theorem 1.1 Let Ω ⊆ Rn(n ≥ 2) be a bounded domain with smooth boundary, (1.4)-(1.5)

hold with α ≥ 0. Suppose that k ≥ 1 and α + β < 1, then for any initial data u0 and v0
fulfilling (1.2), the problem (1.1) possesses a globally bounded and classical solution (u, v).

Remark 1 For the corresponding problem (1.3), the solutions remain bounded globally pro-

vided α + β < 1 and k ≥ 1 [17], thus it is obvious that our result coincides with the one for

the parabolic-elliptic model.

Remark 2 Suppose that ϕ(v) = v in (1.1), we can deduce from [20] that there exist radial

blow-up solutions if 2
n < α + β < 1 with n ≥ 3 in symmetric setting. Comparably when

ϕ(v) = log v, Theorem 1.1 asserts the global boundedness of solutions to (1.1) under the

condition α + β < 1, this result is different from that for quasilinear fully parabolic system

(1.1) with k = 0 and χ = 1, which shows the signal-dependent sensitivity benefiting the

global boundedness of solutions. Meanwhile our theorem solves the open problem that Fujie

etal. proposed in [7].

2 Preliminaries

In this section, we assert some basic facts that will be used later. It is easy to check the mass

conservation of u in the model, namely,∫
Ω
u(x, t)dx =

∫
Ω
u0(x)dx =: M, for all t > 0. (2.1)

Let v(x, t) solve the second equation of (1.1) with u ∈ C0(Ω̄ × (0, T )) satisfying (2.1). We

know from [6, Lemma 2.2] that

v(x, t) ≥ η > 0, for all x ∈ Ω and t > 0, (2.2)

where η is independent of t. Now we begin with the local existence of classical solutions to

(1.1), which is established in [7].
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Lemma 2.1 Let Ω ⊂ R
n (n ≥ 2) be a bounded domain with smooth boundary. Assume that

ϕ ∈ C2+ω
loc ((0,∞)) with 0 < ω < 1, and D,S ∈ C2([0,∞)) with D(u) > 0 for u ≥ 0 and

S(0) = 0. Furthermore, suppose that the initial data u0 and v0 satisfy (1.2). Then there

exist the maximal existence time Tmax ∈ (0,∞] and a pair (u, v) of nonnegative functions

from C2,1(Ω̄× (0, Tmax))∩C(Ω̄× [0, Tmax)) solving problem (1.1) classically in Ω× [0, Tmax).

Moreover, if Tmax < ∞, then

lim
t→Tmax

‖u(·, t)‖L∞(Ω) = ∞. (2.3)

Lemma 2.2 ([6, Lemma 2.4]) Let 1 ≤ θ, μ ≤ ∞ and (u, v) satisfies the problem (1.1),

(i) If n
2 (

1
θ − 1

μ) < 1, then there exists a positive constant C independent of t such that

‖v(·, t)‖Lμ(Ω) ≤ C(1 + sup ‖u(·, s)‖Lθ(Ω)), for all t > 0.

(ii) If 1
2 + n

2 (
1
θ − 1

μ) < 1, then there exists a positive constant C independent of t such that

‖∇v(·, t)‖Lμ(Ω) ≤ C(1 + sup ‖u(·, s)‖Lθ(Ω)), for all t > 0.

Lastly, we will use an extended version of the Gagliardo-Nirenberg inequality (see e.g.[3,

12]).

Gagliardo-Nirenberg inequality. Let Ω ⊂ R
n be a bounded domain with smooth bound-

ary, φ ∈ W 1,2(Ω) ∩ Lr(Ω) with 0 < r ≤ ∞. If q ∈ (0,∞] is such that

a :=

1
r − 1

q
1
r +

1
n − 1

2

∈ (0, 1),

then

‖φ‖Lq(Ω) ≤ CGN

(‖∇φ‖aL2(Ω)‖φ‖1−a
Lr(Ω) + ‖φ‖Lr(Ω)

)
with CGN > 0 depending on n, r, a and Ω.

3 A priori estimates

In this section, we will give a priori estimates for the local classical solution (u, v) of (1.1)

ensured by Lemma 2.1.

Lemma 3.1 Let (u,v) be a solution of the problem (1.1), ϕ satisfies (1.4) and (1.5) is valid

for D and S. If α+ β < 1, then for any p > max{1, 1− α, 2− 2α− 2β} and ε1 > 0, we can

find a positive constant C1 = C1(p, α, β, η, k, ε1) such that

d

dt

∫
Ω
(u+ 1)p+αdx+

a0(p+ α)(p+ α− 1)

2

∫
Ω
(u+ 1)p−2|∇u|2dx

≤ ε1

∫
Ω

|∇v|2
v2k+γ

(u+ 1)p+α+β−1dx+ C1

∫
Ω
|∇v|2dx, for all t > 0

with γ = 2k(1−α−β)
p+2α+2β−2 > 0.
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Proof. Multiplying the first equation in (1.1) by (p + α)(u + 1)p+α−1, integrating by parts

over Ω, we obtain with considering (1.4) and (1.5) that

d

dt

∫
Ω
(u+ 1)p+αdx = −(p+ α)(p+ α− 1)

∫
Ω
D(u)(u+ 1)p+α−2|∇u|2dx

+ (p+ α)(p+ α− 1)

∫
Ω
S(u)(u+ 1)p+α−2∇u∇ϕ(v)dx

≤ −(p+ α)(p+ α− 1)a0

∫
Ω
(u+ 1)p−2|∇u|2dx

+ (p+ α)(p+ α− 1)b0

∫
Ω
(u+ 1)p+α+β−2 χ

vk
|∇u||∇v|dx. (3.1)

Cauchy’s inequality indicates that∫
Ω
(u+ 1)p+α+β−2 χ

vk
|∇u||∇v|dx ≤ a0

2b0

∫
Ω
(u+ 1)p−2|∇u|2dx

+
b0χ

2

2a0

∫
Ω

|∇v|2
v2k

(u+ 1)p+2α+2β−2dx, (3.2)

where the last integral can be estimated by Young’s inequality

b0χ
2

2a0

∫
Ω

|∇v|2
v2k

(u+ 1)p+2α+2β−2dx

≤ ε1

∫
Ω

|∇v|2
v2k+γ

(u+ 1)p+α+β−1dx+ C1

∫
Ω
|∇v|2dx. (3.3)

Hence the claim follows by (3.1)-(3.3). �

Lemma 3.2 Let (u,v) be a solution of (1.1), ϕ satisfies (1.4) and (1.5) is valid for D and S

with α ≥ 0. If k ≥ 1 and α+β < 1, then for any ε2 > 0, γ > 0 and p > max{2, 2−2α−2β},
we can find a positive constant C2 = C2(p, α, β, η, k, ε2, γ) fulfilling

d

dt

∫
Ω

(u+ 1)p+α+β−1

v2k+γ−2
dx+

(2k + γ − 1)(2k + γ − 2)

4

∫
Ω

|∇v|2
v2k+γ

(u+ 1)p+α+β−1dx

≤ ε2
2

∫
Ω
(u+ 1)p−2|∇u|2dx+ C2

∫
Ω

|∇v|2
v2k

dx+ C2

∫
Ω
(u+ 1)pdx, for all t > 0.

Proof. Differentiate
∫
Ω

(u+1)p+α+β−1

v2k+γ−2 dx respect with to t, we have

d

dt

∫
Ω

(u+ 1)p+α+β−1

v2k+γ−2
dx = (p+ α+ β − 1)

∫
Ω

(u+ 1)p+α+β−2

v2k+γ−2
utdx

− (2k + γ − 2)

∫
Ω

(u+ 1)p+α+β−1

v2k+γ−1
vtdx

= (p+ α+ β − 1)

∫
Ω

(u+ 1)p+α+β−2

v2k+γ−2
∇ · (D(u)∇u− S(u)∇ϕ(v))dx
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− (2k + γ − 2)

∫
Ω

(u+ 1)p+α+β−1

v2k+γ−1
(Δv − v + u)dx. (3.4)

Integrating by parts and considering (1.4)-(1.5) tell that∫
Ω

(u+ 1)p+α+β−2

v2k+γ−2
∇ · (D(u)∇u− S(u)∇ϕ(v))dx

≤ −a0(p+ α+ β − 2)

∫
Ω

|∇u|2
v2k+γ−2

(u+ 1)p+β−3dx

+ a0(2k + γ − 2)

∫
Ω

(u+ 1)p+β−2

v2k+γ−1
|∇u||∇v|dx

− χ(2k + γ − 2)

∫
Ω

|∇v|2
v3k+γ−1

(u+ 1)p+α+β−2S(u)dx

+ χb0(p+ α+ β − 2)

∫
Ω

(u+ 1)p+α+2β−3

v3k+γ−2
|∇u||∇v|dx (3.5)

and ∫
Ω

(u+ 1)p+α+β−1

v2k+γ−1
(Δv − v + u)dx = (2k + γ − 1)

∫
Ω

|∇v|2
v2k+γ

(u+ 1)p+α+β−1dx

− (p+ α+ β − 1)

∫
Ω

(u+ 1)p+α+β−2

v2k+γ−1
∇u∇vdx

−
∫
Ω

(u+ 1)p+α+β−1

v2k+γ−2
dx+

∫
Ω

(u+ 1)p+α+β−1u

v2k+γ−1
dx. (3.6)

It follows from (3.4)–(3.6) that

d

dt

∫
Ω

(u+ 1)p+α+β−1

v2k+γ−2
dx+ (2k + γ − 1)(2k + γ − 2)

∫
Ω

|∇v|2
v2k+γ

(u+ 1)p+α+β−1dx

≤ a0(p+ α+ β − 1)(2k + γ − 2)

∫
Ω

(u+ 1)p+β−2

v2k+γ−1
|∇u||∇v|dx

+ χb0(p+ α+ β − 1)(p+ α+ β − 2)

∫
Ω

(u+ 1)p+α+2β−3

v3k+γ−2
|∇u||∇v|dx

+ (p+ α+ β − 1)(2k + γ − 2)

∫
Ω

(u+ 1)p+α+β−2

v2k+γ−1
∇u∇vdx

+ (2k + γ − 2)

∫
Ω

(u+ 1)p+α+β−1

v2k+γ−2
dx

= I1 + I2 + I3 + I4. (3.7)

where

I1 := a0(p+ α+ β − 1)(2k + γ − 2)

∫
Ω

(u+ 1)p+β−2

v2k+γ−1
|∇u||∇v|dx,

I2 := χb0(p+ α+ β − 1)(p+ α+ β − 2)

∫
Ω

(u+ 1)p+α+2β−3

v3k+γ−2
|∇u||∇v|dx,
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I3 := (p+ α+ β − 1)(2k + γ − 2)

∫
Ω

(u+ 1)p+α+β−2

v2k+γ−1
∇u∇vdx,

I4 := (2k + γ − 2)

∫
Ω

(u+ 1)p+α+β−1

v2k+γ−2
dx.

Now we estimate I1-I4 respectively. For any ε2 > 0, it can be obtained upon the fact α ≥ 0

and Young’s inequality that

I1 ≤ a0(p+ α+ β − 1)(2k + γ − 2)

∫
Ω

(u+ 1)p+α+β−2

v2k+γ−1
|∇u||∇v|dx

≤ ε2
8

∫
Ω
(u+ 1)p−2|∇u|2dx+ C3

∫
Ω

|∇v|2
v4k+2γ−2

(u+ 1)p+2(α+β)−2dx

≤ ε2
8

∫
Ω
(u+ 1)p−2|∇u|2dx+

C3

η2k+γ−2

∫
Ω

|∇v|2
v2k+γ

(u+ 1)p+2(α+β)−2dx

≤ ε2
8

∫
Ω
(u+ 1)p−2|∇u|2dx+

(2k + γ − 1)(2k + γ − 2)

4

∫
Ω

|∇v|2
v2k+γ

(u+ 1)p+α+β−1dx

+ C4

∫
Ω

|∇v|2
v2k+γ

dx (3.8)

with C3 = C3(p, α, β, k, ε2, γ) > 0, C4 = C4(p, α, β, η, k, ε2, γ) > 0. Next we do the term I2
through applying Young’s inequality

I2 ≤ χb0(p+ α+ β − 1)(p+ α+ β − 2)

∫
Ω

(u+ 1)p+α+β−2

v3k+γ−2
|∇u||∇v|dx

≤ χb0(p+ α+ β − 1)(p+ α+ β − 2)

ηk−1

∫
Ω

(u+ 1)p+α+β−2

v2k+γ−1
|∇u||∇v|dx

≤ ε2
8

∫
Ω
(u+ 1)p−2|∇u|2dx+

(2k + γ − 1)(2k + γ − 2)

4

∫
Ω

|∇v|2
v2k+γ

(u+ 1)p+α+β−1dx

+ C5

∫
Ω

|∇v|2
v2k+γ

dx (3.9)

with C5 = C5(p, α, β, η, k, ε2, γ) > 0, here we use the fact β < 1. Proceeding to estimate I3
and obtain

I3 ≤ (p+ α+ β − 1)(2k + γ − 2)

∫
Ω

(u+ 1)p+α+β−2

v2k+γ−1
|∇u||∇v|dx

≤ ε2
8

∫
Ω
(u+ 1)p−2|∇u|2dx+

(2k + γ − 1)(2k + γ − 2)

4

∫
Ω

|∇v|2
v2k+γ

(u+ 1)p+α+β−1dx

+ C6

∫
Ω

|∇v|2
v2k+γ

dx (3.10)

with C6 = C6(p, α, β, η, k, ε2, γ) > 0. It is apparent that

I4 ≤ 2k + γ − 2

η2k+γ−2

∫
Ω
(u+ 1)pdx. (3.11)

7



In view of (3.7)-(3.11), we arrive at

d

dt

∫
Ω

(u+ 1)p+α+β−1

v2k+γ−2
dx+

(2k + γ − 1)(2k + γ − 2)

4

∫
Ω

|∇v|2
v2k+γ

(u+ 1)p+α+β−1dx

≤ ε2
2

∫
Ω
(u+ 1)p−2|∇u|2dx+ C7

∫
Ω

|∇v|2
v2k+γ

dx+ C7

∫
Ω
(u+ 1)pdx (3.12)

with C7 = max{C4 + C5 + C6,
2k+γ−2
η2k+γ−2 }. This ends our proof. �

4 Proof of Theorem 1.1

In this concluding section, we will prove our main result in conjunction with the estimates

above. Now we give the description that the bound of u(·, t) in Lp(Ω) with p large enough

can be turned into the bound in L∞(Ω), which is exhibited in Lemma 4.1.

Define

p∗ := max
{
n, (n+ 2)β+, λ0, 1− (1− α)(n+ 2)

2
,
nα

2

}
with β+ = max{β, 0} and

λ0 := inf{λ ≥ 0 : p2 + (n− αn− α− (n+ 2)β+)p+ α(n+ 2)β+ > 0 for all p ∈ (λ,∞)}.

Lemma 4.1 Under the conditions of Theorem 1.1, if there exists p > p∗ such that

‖u(·, t)‖Lp ≤ Cp, for all t > 0

with Cp > 0, then we can find C > 0 satisfying

‖u(·, t)‖L∞ ≤ C, for all t > 0.

Proof. Since p > n, we can invoke the Lemma 2.2 (ii) to (1.1)2 and get

‖∇v(·, t)‖L∞ ≤ C, for all t > 0

with C > 0. Then our statement is supposed to be derived by similar arguments in Lemma

4.1 in [17] and Lemma A.1 in [15]. �
Now we are in a position to prove our theorem.

Proof of Theorem 1.1. For some p0 > max{p∗, 2−α−β}, by setting ε1 =
(2k+γ0−1)(2k+γ0−2)

4

in Lemma 3.1 and ε2 =
a0(p0+α)(p0+α−1)

2 in Lemma 3.2, we know that

d

dt

( ∫
Ω
(u+ 1)p0+αdx+

∫
Ω

(u+ 1)p0+α+β−1

v2k+γ0−2
dx

)

8



+
a0(p0 + α)(p0 + α− 1)

4

∫
Ω
(u+ 1)p0−2|∇u|2dx

≤ C8

∫
Ω

|∇v|2
v2k+γ0

dx+ C8

∫
Ω
|∇v|2 + C8

∫
Ω
(u+ 1)p0dx

≤ C9

∫
Ω
|∇v|2 + C8

∫
Ω
(u+ 1)p0dx, (4.1)

with γ0 =
2k(1−α−β)

p0+2α+2β−2 > 0, C8 = C8(p0, α, β, η, k) > 0 and C9 = C8+
C8

η2k+γ0
. Multiplying the

second equation in (1.1) by v, integrating by parts and using Cauchy’s inequality result in

d

dt

∫
Ω
v2dx+ 2

∫
Ω
|∇v|2dx = −2

∫
Ω
v2dx+ 2

∫
Ω
uvdx ≤ −

∫
Ω
v2dx+

∫
Ω
u2dx. (4.2)

By virtue of (4.1) and (4.2),

d

dt

(∫
Ω
(u+ 1)p0+αdx+

∫
Ω

(u+ 1)p0+α+β−1

v2k+γ0−2
dx+ C9

∫
Ω
v2dx

)

+
a0(p0 + α)(p0 + α− 1)

4

∫
Ω
(u+ 1)p0−2|∇u|2dx+ C9

∫
Ω
v2dx

≤ C8

∫
Ω
(u+ 1)p0dx+ C9

∫
Ω
u2dx. (4.3)

Through an application of the Gagliardo-Nirenberg inequality,∫
Ω
(u+ 1)p0+αdx = ‖(u+ 1)

p0
2 ‖

2(p0+α)
p0

L
2(p0+α)

p0 (Ω)

≤ CGN

(
‖∇(u+ 1)

p0
2 ‖θ1

L2(Ω)
‖(u+ 1)

p0
2 ‖1−θ1

L
2
p0 (Ω)

+ ‖(u+ 1)
p0
2 ‖

L
2
p0 (Ω)

) 2(p0+α)
p0

with θ1 = p0(p0+α)n−p0n
(p0+α)(p0n+2−n) ∈ (0, 1) due to p0 > (n2 − 1)α, thus there exist positive constants

C10 = C10(p0, α,Ω,M) and C11 = C11(p0, α,Ω,M) fulfilling

C10

( ∫
Ω
(u+ 1)p0+αdx

) p0n+2−n
(p0+α)n−n

≤ a0(p0 + α)(p0 + α− 1)

16

∫
Ω
(u+ 1)p0−2|∇u|2dx+ C11. (4.4)

Still by utilizing the Gagliardo-Nirenberg inequality, we can find C12 = C12(p0, α, β, η, k,Ω,M) >

0 and θ2 =
p0n−n

p0n+2−n ∈ (0, 1) satisfying

C8

∫
Ω
(u+ 1)p0dx = C8‖(u+ 1)

p0
2 ‖2L2(Ω)

≤ C8CGN

(
‖∇(u+ 1)

p0
2 ‖θ2

L2(Ω)
‖(u+ 1)

p0
2 ‖1−θ2

L
2
p0 (Ω)

+ ‖(u+ 1)
p0
2 ‖

L
2
p0 (Ω)

)2

≤ C12

( ∫
Ω
(u+ 1)p0−2|∇u|2dx)θ2 + C12,
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which along with Young’s inequality,

C8

∫
Ω
(u+ 1)p0dx ≤ a0(p0 + α)(p0 + α− 1)

16

∫
Ω
(u+ 1)p0−2|∇u|2dx+ C13 (4.5)

with C13 = C13(p0, α, β, η, k,Ω,M) > 0. Moreover in light of (4.5) and Young’s inequality,

we have∫
Ω

(u+ 1)p0+α+β−1

v2k+γ0−2
dx ≤ 1

η2k+γ0−2

∫
Ω
(u+ 1)p0+α+β−1dx ≤ C8

∫
Ω
(u+ 1)p0dx+ C14

≤ a0(p0 + α)(p0 + α− 1)

16

∫
Ω
(u+ 1)p0−2|∇u|2dx+ C13 + C14, (4.6)

with C14 = C14(p0, α, β, η, k) > 0. It follows from (4.5) that

C8

∫
Ω
u2dx ≤ C8

∫
Ω
(u+ 1)p0

≤ a0(p0 + α)(p0 + α− 1)

16

∫
Ω
(u+ 1)p0−2|∇u|2dx+ C13 (4.7)

due to p0 > 2. As a consequence of (4.3)-(4.7), we see that

d

dt

(∫
Ω
(u+ 1)p0+αdx+

∫
Ω

(u+ 1)p0+α+β−1

v2k+γ0−2
dx+ C9

∫
Ω
v2dx

)

+ C10

( ∫
Ω
(u+ 1)p0+αdx

) pn+2−n
(p0+α)n−n +

∫
Ω

(u+ 1)p0+α+β−1

v2k+γ0−2
dx+ C8

∫
Ω
v2dx

≤ C11 + 3C13 + C14. (4.8)

Let

y(t) :=

∫
Ω
(u+ 1)p0+α(·, t)dx+

∫
Ω

(u+ 1)p0+α+β−1(·, t)
v2k+γ0−2(·, t) dx+ C9

∫
Ω
v2(·, t)dx, t > 0.

Then (4.8) yields that y(t) satisfies

y′(t) + C15y
κ(t) ≤ C16, for all t > 0

with κ := min{ p0n+2−n
(p0+α)n−n , 1}, C15 = C15(p0, α, β, η, k,Ω,M) > 0 and C16 = C16(p0, α, β, η, k,Ω,M) >

0. Therefore by a simple argument of ODI, it can be verified that

sup
t∈[0,Tmax)

∫
Ω
(u+ 1)p0+α(·, t)dx < ∞,

which together with Lemma 4.1 guarantees that

sup
t∈[0,Tmax)

‖u(·, t)‖L∞(Ω) < ∞.

10



The proof is complete. �
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