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Multipliers between kernels of Toeplitz operators are characterised in terms of 
test functions (so-called maximal vectors for the kernels); these maximal vectors 
may easily be parametrised in terms of inner and outer factorisations. Immediate 
applications to model spaces are derived. The case of surjective multipliers is also 
analysed. These ideas are applied to describing equivalences between two Toeplitz 
kernels.
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1. Introduction

The starting point for this work is a result of Fricain, Hartmann and Ross [12], which gives a necessary 
and sufficient condition for a function g to multiply a model space Kθ into another model space Kφ (all 
notation and definitions will be given later in this section). This in turn was motivated by a more restrictive 
version of this question due to Crofoot [9].

The main result of [12] says that w multiplies Kθ into Kφ if and only if:
(i) w multiplies the function S∗θ into Kφ (here S∗ denotes the backward shift), and
(ii) w multiplies Kθ into H2 (this may be expressed as a Carleson measure condition).

Now model spaces are kernels of particular Toeplitz operators, indeed Kθ = kerTθ, and thus the question 
may be posed more generally for kernels of Toeplitz operators. We may also ask whether more general test 
functions can be used, other than S∗θ.

In this paper we address these questions, obtaining the result above as an immediate corollary. To do 
this we need to bring in some of the theory of Toeplitz kernels, particularly ideas developed by the authors 
in [3,6]. That work was done in the context of Hardy spaces on the half-plane, and we reformulate it for the 
disc, showing also how the multiplier problem is solved for the half-plane.
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In Section 2, we establish the notion of minimal kernels and maximal vectors for kernels of Toeplitz 
operators on H2, and then use these to give a characterisation of multipliers from one Toeplitz kernel to 
another by using the maximal vectors as test functions. From this we easily recover results on model spaces 
as special cases.

We also use the theory of multipliers to obtain results on the structure of Toeplitz kernels, linked to 
factorisation results for their symbols, together with theorems linking an equivalence between kernels with 
an equivalence between their symbols.

In Section 3, we obtain necessary and sufficient conditions for surjective multipliers between Toeplitz 
kernels, recovering Crofoot’s result as a very special case.

In Section 4, we give a brief discussion of the situation for the upper half-plane, which can be obtained 
independently or by using the unitary equivalence of the corresponding Hardy spaces.

1.1. Notation

We use H2 to denote the standard Hardy space of the unit disc D, which embeds isometrically into L2(T), 
where T denotes the unit circle with normalised Lebesgue measure m. Its orthogonal complement is written 
H2

0 or zH2. Here z denotes the independent variable. The space H∞ is the Banach algebra of bounded 
analytic functions on D, of which the set of invertible elements will be denoted by GH∞. Moreover, Hol(D)
denotes the space of all analytic functions on D.

We refer the reader to [10,14,15,19] for standard results on Hardy spaces and the factorisation of Hardy-
class functions into inner and outer factors.

An observation that we shall use several times is that f ∈ H2 if and only if zf ∈ H2
0 , and likewise f ∈ H2

0
if and only if zf ∈ H2.

The shift operator S : H2 → H2 is the operator of multiplication by the independent variable z.
The Toeplitz operator Tg with symbol g ∈ L∞(T) is the operator on H2 defined by Tgf = PH2(gf), for 

f ∈ H2, where PH2 denotes the orthogonal projection from L2(T) onto H2. If θ is an inner function, then 
kerTθ is the model space Kθ = H2 � θH2 = H2 ∩ θH2

0 , which is invariant under the backward shift S∗.
For g, h ∈ L∞ = L∞(T) we write M(kerTg, kerTh) for the space of multipliers w ∈ Hol(D) such that 

wf ∈ kerTh for all f ∈ kerTg and we use the notation M∞(kerTg, kerTh) = M(kerTg, kerTh) ∩ L∞(T)
and M2(kerTg, kerTh) = M(kerTg, kerTh) ∩ L2(T).

In fact, as we shall see later (Remark 2.4), the multipliers between model spaces are necessarily contained 
in H2; this is not the case for general Toeplitz kernels, although they must lie in the Smirnov class.

2. Multipliers and maximal vectors

Definition 2.1. For a function k ∈ H2 \ {0} we write Kmin(k) for the minimal Toeplitz kernel containing k; 
that is, Kmin(k) = kerTv for some v ∈ L∞, with k ∈ Kmin(k), while kerTv ⊂ kerTw for every w ∈ L∞ such 
that k ∈ kerTw.

We say that k is a maximal vector for kerTg if kerTg = Kmin(k).

The existence of minimal kernels and maximal vectors was established in [3, Thm 5.1 and Cor 5.1] in the 
context of the upper half-plane. Let us sketch the corresponding argument for the disc.

Suppose that k = θp, where θ is inner and p is outer. Then we assert that Kmin(k) = kerTv, where 
v = zθp/p. Since vk = zp, we have k ∈ kerTv.

Now suppose that k ∈ kerTw for some w ∈ L∞, and that g ∈ kerTv. Thus gv ∈ H2
0 and kw ∈ H2

0 .
Then gw = gvkw/(vk) = (gv)(kw)/(zp); that is, gw lies in L2, and zgw = zgvzkw/p, which means that 

zgw is in the Smirnov class (the ratio of an H1 function and an outer H2 function) as well as L2(T). By the 
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generalised maximum principle (e.g. [10, Thm. 2.11],[19, Thm. 4.4.5]) it is therefore in H2. Thus gw ∈ H2
0

and g ∈ kerTw, and so Kmin(k) = kerTv.
Moreover, by [21, Lemma 1], every Toeplitz kernel K is kerTzθp/p for some inner function θ and outer 

function p and thus K = Kmin(θp).
In fact, we can characterise all the maximal vectors for a Toeplitz kernel, as follows.

Theorem 2.2. Let g ∈ L∞ \ {0} be such that kerTg is non-trivial. Then k is a maximal vector for kerTg if 
and only if k ∈ H2 and k = g−1z p, where p is outer in H2.

Proof. Note first that if kerTg is non-trivial, then gf ∈ H2
0 for some nonzero f ∈ H2, and so g �= 0 almost 

everywhere and we can define g−1.
Now if Kmin(k) = kerTg, then we have gk = zp, where p ∈ H2. Also p is outer, since if p = φq, where φ

is inner and non-constant, and q is outer, then k ∈ kerTφg � kerTg, which contradicts the assumption.
Conversely, if k = g−1z p, where p is outer, then k ∈ kerTg. If also k ∈ kerTh with h ∈ L∞, then 

zhk ∈ H2, and if f ∈ kerTg we have gf ∈ H2
0 , so zgf ∈ H2.

Then

zhf = zhk
f

k
= zhk

zgf

zgk
= zhk

zgf

p
,

which is in L2(T) and the Smirnov class, hence in H2. Thus hf ∈ H2
0 and f ∈ kerTh; so kerTg ⊂ kerTh

and kerTg = Kmin(k). �
In the special case of a model space, we obtain immediately a disc version of [6, Thm. 5.2].

Corollary 2.3. Let θ be inner. Then Kθ = Kmin(k) if and only if k ∈ H2 and k = θzp, where p is outer 
in H2.

Proof. Take g = θ and apply Theorem 2.2. �
We are now ready to state a theorem characterising multipliers of Toeplitz kernels. Recall that μ is a 

Carleson measure for a subspace X of H2 if there is a constant C > 0 such that
∫
T

|f |2 dμ ≤ C‖f‖2
2 for all f ∈ X.

In fact the measures that arise here will be supported on T, not D, and be absolutely continuous with 
respect to Lebesgue measure, but it is convenient to see them in this more general perspective. The natural 
choices for X will be Toeplitz kernels, including model spaces.

Carleson measures for kerTg may be better understood if we use the fact that kerTg is nearly invariant, 
and thus by Hitt’s result [13] kerTg = FKθ for some isometric multiplier F (which is outer) and θ inner.

We require w to satisfy

‖wFk‖2 ≤ C‖Fk‖2 = C‖k‖2

for each k ∈ Kθ. Thus the study of Carleson measures for Toeplitz kernels reduces to that of the special 
case where the Toeplitz kernel is a model space. There is information on how to find an appropriate θ in 
Sarason’s paper [21].

Descriptions of Carleson measures for certain model spaces were given in [8,22], with a complete answer 
in a recent preprint [16].
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We say that w ∈ C(kerTv) whenever |w2|dm is a Carleson measure for kerTg, that is w kerTg ⊂ L2(T).

Remark 2.4. Note that every nontrivial Toeplitz kernel contains an outer function, because if θp ∈ kerTg, 
where θ is inner and p is outer, then p ∈ kerTg since gp = θ(gθp) ∈ H2

0 . Hence multipliers must be 
holomorphic in D, and indeed lie in the Smirnov class N+. Moreover, a multiplier w from a model space Kθ, 
where θ is an inner function, into another Toeplitz kernel must be in H2, since we must have w (1 −θ(0) θ) ∈
H2, and 1 − θ(0) θ is invertible in H∞.

Since Toeplitz kernels have the near-invariance property that θp ∈ kerTg implies that p ∈ kerTg, it 
follows easily that the space of multipliers has a similar property. Thus a non-zero multiplier space contains 
an outer function.

However, note that multipliers between two general Toeplitz kernels need not lie in H2. For example, the 
function z 
→ (z−1)1/2 spans a 1-dimensional Toeplitz kernel kerTg, where g(z) = z−3/2 with arg z ∈ [0, 2π)
on T. This can be shown directly, or by using known results on the half-plane from [3] together with the 
methods of Section 4 below. Hence the function w(z) = (z − 1)−1/2 multiplies kerTg onto the model space 
Kz = kerTz̄ consisting only of the constant functions, although w is not an H2 function. It is easy to see 
that in fact w satisfies conditions (ii) and (iii) in the following theorem.

Theorem 2.5. Let g, h ∈ L∞(T) \ {0} such that kerTg and kerTh are nontrivial. Then the following are 
equivalent:
(i) w ∈ M(kerTg, kerTh);
(ii) w ∈ C(kerTg) and wk ∈ kerTh for some (and hence all) maximal vectors k of kerTg;
(iii) w ∈ C(kerTg) and hg−1w ∈ N+.

Proof. First we prove that (i)⇔(ii). Clearly, the two conditions in (ii) are necessary for (i). So assume that 
(ii) holds, and write k = θp, where θ is inner and p is outer. Now kerTg = kerTzθp/p, as detailed above, and 

thus without loss of generality we may take g = zθp/p.
We have that wkh ∈ H2

0 , since wk ∈ kerTh. Suppose now that f ∈ kerTg, so that fg ∈ H2
0 . Now

wfh = (wkh) f

θp
= (wkh)zfg

p
.

Then wfh ∈ L2(T), since wf ∈ L2(T) by the Carleson condition. Also wkh and fg are in H2
0 so zwfh =

zwkh zfg/p is in the Smirnov class of the disc as well as L2(T). Once again, we deduce that zwfh ∈ H2

and so wfh ∈ H2
0 , and finally wf ∈ kerTh.

Let now w ∈ C(kerTg). To show that (ii)⇒(iii), assume that k is a maximal vector for kerTg; then by 
Theorem 2.2 we have k = g−1z̄p̄ where p is outer in H2. If w kerTg ⊂ kerTh, then

hwk = hwg−1z̄p̄ = ψ− ∈ H2
0

so hwg−1 = z ψ−
p̄ ∈ N+.

Conversely, if hwg−1 ∈ N+ then, for any maximal function k of kerTg, for which gk ∈ H2
0 , we have

h(wk) = hwg−1(gk) ∈ z̄N+ ∩ L2(T) = H2
0

so wk ∈ kerTh. �
When g = h and ḡ is an inner function θ, from Theorem 2.5 we get the well-known result that 

M(Kθ, Kθ) = C.
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Note that if k is not a maximal vector of kerTg, then k cannot be used as a test function for multipliers 
from kerTg; for example in this case the function w(z) ≡ 1 is not a multiplier from kerTg into Kmin(k), 
even though wk ∈ Kmin(k).

Corollary 2.6. With the same assumptions as in Theorem 2.5, and assuming moreover that hg−1 ∈ L∞(T),

w ∈ M2(kerTg, Th) ⇔ w ∈ C(kerTg) ∩ kerTz̄hg−1 .

Proof. Assume that w ∈ M2(kerTg, Th); then w ∈ H2 and from Theorem 2.5(iii) it follows that w ∈
C(kerTg) and z̄hg−1w ∈ H2

0 , so that w ∈ kerTz̄hg−1 . Conversely, if w ∈ kerTz̄hg−1 then hg−1w ∈ H2 ⊂ N+, 
and the result follows from Theorem 2.5. �

Regarding the assumption that hg−1 ∈ L∞(T) in the corollary above, note that by [[21], Lemma 1], for 
every Toeplitz kernel K there exists g ∈ L∞(T) with |g| = 1 a.e. such that K = kerTg.

By considering in particular g = θ̄, where θ is an inner function, we obtain the following, which slightly 
generalises a result in [12].

Corollary 2.7. Let θ be inner and h ∈ L∞(T) \ {0} such that kerTh is nontrivial. Then the following are 
equivalent:
(i) w ∈ M(Kθ, kerTh);
(ii) wS∗θ ∈ kerTh, and w ∈ C(Kθ);
(iii) w ∈ kerTz̄θh ∩ C(Kθ).

Proof. Since S∗θ = θzp, where p = 1 − θ(0)θ, which is outer, we see that Kθ = Kmin(S∗θ). Thus the 
equivalence of (i) and (ii) follows directly from Theorem 2.5.

Finally, note that the first condition in (ii) asserts that hwS∗θ ∈ H2
0 and w ∈ kerTz̄θh asserts that 

hwθz ∈ H2
0 . These conditions are equivalent since S∗θ = θz(1 − θ(0)θ), where the last factor is invertible 

in H∞. �
Note that, unlike S∗θ, the reproducing kernel used as a test function in many other contexts, beginning 

perhaps with [2], is not maximal for Kθ. For with

ka(z) = 1 − θ(a)θ(z)
1 − az

,

we have

θzka(z) = θ(z) − θ(a)
z − a

,

which is not outer in general.
Corollaries 2.6 and 2.7 bring out a close connection between the existence of non-zero multipliers in L2(T)

and their description, on the one hand, and the question of injectivity of an associated Toeplitz operator 
Tz̄ g−1h (or Tz̄θh) and the characterisation of its kernel, on the other hand.

It is well known that various properties of Toeplitz operators, in particular Toeplitz kernels, can be 
described in terms of a factorisation of their symbols.

Recall that a function f ∈ Hp \ {0} with 0 < p < ∞ is said to be rigid, if for any g ∈ Hp with g/f > 0
on T we have g = λf for some λ > 0. A rigid function is outer, and every rigid function in Hp is the square 
of an outer function in H2p. A function f ∈ H2 spans a 1-dimensional Toeplitz kernel if and only if f2 is 
rigid in H1 [21].

The following result generalises Theorems 3.7 and 3.10 in [4], see also [18].
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Theorem 2.8. If g ∈ L∞(T) admits a factorisation

g = g− θ−Ng−1
+ (2.1)

where g− and g+ are outer functions in H2, g2
+ is rigid in H1, θ is an inner function and N ∈ Z, then

kerTg �= {0} ⇔ N > 0.

If N > 0 and θ is a finite Blaschke product of degree n, then dimkerTg = nN ; if θ is not a finite Blaschke 
product, then dim kerTg = ∞.

Proof. (i) For N < 0, it follows from Theorem 3.7 in [4] (proved in the context of L2(R)) that kerTg = {0}.
(ii) If N = 0, we have g = g− g−1

+ and kerTg consists of the functions φ+ ∈ H2 such that gφ+ = z̄ ψ+
with ψ+ ∈ H2. We have

g− g−1
+ φ+ = z̄ ψ+ ⇔ z̄

g−
g+

g+

g+
φ+ = z̄2 ψ+ ⇔ z̄

g+

g+
φ+ = z̄2 g+

g−
ψ+. (2.2)

The left-hand side of the last equality belongs to L2(T) while the right-hand side belongs to z̄2N+, so we 
conclude that z̄2 g+

g−
ψ+ ∈ z̄2H2 ⊂ H2

0 and, therefore, φ+ ∈ kerT
z̄

g+
g+

. Since g2
+ is rigid in H1, kerT

z̄
g+
g+

=

span{g+} ([21]): thus φ+ = Ag+ with A ∈ C. Now from the last equality in (2.2) it follows that Ag+ = z̄ψ+, 
so we cannot have g− outer in H2 unless A = 0, i.e., φ+ = 0.

(iii) let now N > 0. We have

gφ+ ∈ H2
0 ⇔ g− θ−Ng−1

+ φ+ ∈ H2
0 ;

any function φ+ = g+ kθa, with |a| < 1, satisfies that condition and therefore belongs to kerTg. This shows 
that kerTg �= {0} and dim kerTg = ∞ if θ is not a finite Blaschke product. If θ is a finite Blaschke product 
of degree n, then θ = h− znh+ with rational left and right factors h± ∈ GH∞; it then follows from Theorem 
3.7 in [4] that dim kerTg = nN . �
Example 2.9. Let g = (z−1)8/15

z2 , h = (z−1)2(z+1)1/5

z4 where the branches of (z − 1)8/15 and (z + 1)1/5 are 
analytic in D. We have

kerTg = span{(z − 1)7/15} , kerTh = span{(z + 1)4/5 , (z + 1)−1/5}

and

z̄g−1h = g−θ̄g
−1
+ ,

where g− = 1 − z̄ is such that g− ∈ H2 is outer, g+ = (z−1)8/15

(z−1)(z+1)1/5 ∈ H2 is such that g2
+ is rigid (because 

kerT
z̄

g+
g+

= span{g+}) and θ = z2. By solving the Riemann–Hilbert problem

z̄ g−1hφ+ = z̄ψ+

with ψ+ ∈ H2, we obtain

kerTz̄ g−1h =
{

Az + B
7/15 1/5 : A,B ∈ C

}

(z − 1) (z + 1)
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= span
{

(z − 1)8/15

(z + 1)1/5
,

1
(z − 1)7/15(z + 1)1/5

}
.

From Corollary 2.6 it follows that

M2(kerTg , kerTh) = span
{

(z − 1)8/15

(z + 1)1/5

}
.

The representation (2.1) generalises the so called L2-factorisation, which is a representation of g as a 
product

g = g− d g−1
+ (2.3)

where g±1
+ ∈ H2 , g±1

− ∈ H2 and d = zk , k ∈ Z ([17]. If g is invertible in L∞(T) and admits an 
L2-factorisation, then dim kerTg = |k| if k ≤ 0, dim kerT ∗

g = k if k ≥ 0. The factorisation (2.3) is called a 

bounded factorisation when g+
±1 , g±1

− ∈ H∞. In various subalgebras of L∞(T), every invertible element 
admits a factorisation (2.3) where d is an inner function ([17]). This is the case of the algebra of functions 
continuous on T (including all rational functions without zeroes or poles on T) and the algebra AP of almost 
periodic functions on the real line. In the latter case d is a singular inner function, d(ξ) = exp(−iλξ) with 
λ ∈ R ([7],[11]), and we have that if g ∈ AP is invertible in L∞(R) then kerTg is either trivial or isomorphic 
to an infinite dimensional model space Kθ with θ(ξ) = exp(iλξ), depending on whether λ ≤ 0 or λ > 0.

Various results regarding the dimension of kerTz̄θh can also be found in [4] and [6]. Namely, if θ is a finite 
Blaschke product, kerTz̄θh and kerTz̄h are both finite dimensional or not and, for dim kerTz̄h < ∞, we have

dim kerTz̄θh = max{0, dim kerTz̄h − k},

where k is the degree of θ ([6] Theorem 6.2).

Example 2.10. For θ(z) = exp( z+1
z−1 ) , φ(z) = exp( z−1

z+1 ), we have kerTz̄θφ̄ = {0} ([6], Example 6.3); therefore 
M(Kθ, Kφ) = {0}.

For two inner functions φ, θ ∈ H∞ we write φ � θ if φ divides θ in H∞; that is, θ = φψ for some ψ ∈ H∞. 
If we have strict inequality, that is, φ divides θ but not conversely, then we write φ ≺ θ.

Example 2.11. Let θ , φ be two inner functions with φ � θ (the case θ ≺ φ will be considered in Exam-
ple 2.14). Then dim kerTz̄θφ̄ ≤ 1, since θφ̄ ∈ H∞ and kerTθφ̄ = 0 (see [1]). We have kerTz̄θφ̄ = C if φ = aθ

with a ∈ C , |a| = 1, and kerTz̄θφ̄ = {0} if φ ≺ θ. Therefore M(Kθ, Kφ) �= {0} if and only if Kθ = Kφ, in 
which case M(Kθ, Kφ) = C.

In [12] there is a supplementary theorem describing M∞(Kθ, Kφ) = M(Kθ, Kφ) ∩ H∞. Starting with 
Theorem 2.5, we immediately have the following general result on noting that the Carleson measure condition 
is redundant for bounded w.

Corollary 2.12. Let g, h ∈ L∞(T) \ {0} such that kerTg and kerTh are nontrivial. Then the following 
conditions are equivalent.
(i) w ∈ M∞(kerTg, kerTh) = M(kerTg, kerTh) ∩H∞;
(ii) w ∈ H∞ and wk ∈ kerTh for some maximal vector k ∈ kerTg;
(iii) w ∈ H∞ and whg−1 ∈ H∞ (assuming hg−1 ∈ L∞(T)).

If w ∈ H2,

w ∈ M∞(kerTg, kerTh) ⇔ w ∈ kerTz̄hg−1 ∩H∞
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and if moreover kerTg contains a maximal vector k with k, k−1 ∈ L∞(T), then

w ∈ M∞(kerTg, kerTh) ⇔ wk ∈ kerTh ∩H∞.

For model spaces, we therefore recover the main theorem on bounded multipliers from [12].

Corollary 2.13. [12] Let θ and φ be inner functions and let w ∈ H2. Then the following are equivalent:
(i) w ∈ M∞(Kθ, Kφ);
(ii) w ∈ kerTφθz ∩H∞;
(iii) wS∗θ ∈ Kφ ∩H∞;
(iv) w ∈ H∞ and φ̄ θ w ∈ H∞.

Proof. The equivalence of (i) and (ii) is contained in Corollary 2.6. The equivalence with (iii) follows since 
S∗θ is a maximal vector for Kθ that is invertible in L∞(T) and the equivalence with (iv) follows from 
Corollary 2.12 (iii). �
Example 2.14. Let θ ≺ φ; then kerTz̄θφ̄ = Kzθ̄φ and we have M∞(Kθ, Kφ) = Kzθ̄φ ∩ H∞. If φ is a finite 
Blaschke product, then

M2(Kθ,Kφ) = M∞(Kθ,Kφ) = Kzθ̄φ.

Example 2.15. It is easy to see that a function w+ ∈ H∞, with an inverse in the same space, is a bounded 
multiplier for Toeplitz kernels. Namely, w+ kerTg = kerTg w−1

+
⊂ kerTg w−1

+ f−
for any g ∈ L∞(T) , f− ∈

H∞.

Applying the results of Corollary 2.12 to w = 1, we also have:

Proposition 2.16. Let g, h ∈ L∞(T) \ {0}, such that kerTg and kerTh are nontrivial. Then the following 
conditions are equivalent.
(i) kerTg ⊂ kerTh;
(ii) hg−1 ∈ N+;
(iii) there exists a maximal function for kerTg, k, such that k ∈ kerTh.

If moreover kerTg contains a maximal vector k with k, k−1 ∈ L∞(T), then each of the above conditions 
is equivalent to
(iv) k ∈ kerTh ∩H∞.

Corollary 2.17. With the same assumptions as in Proposition 2.16, if hg−1 ∈ L∞(T), then

kerTg ⊂ kerTh ⇔ hg−1 ∈ H∞

Remark 2.18. Assuming without loss of generality that hg−1 ∈ L∞(T), we see from the corollary above 
that if kerTg ⊂ kerTh then h = g f+ with f+ ∈ H∞. Let θ denote the inner factor of f+. Since kerTh =
kerTgf+

= kerTg θ̄, denoting gθ̄ = g̃ we conclude that a Toeplitz kernel is contained in another Toeplitz 
kernel if and only they take the form kerTg̃ and kerTθ g̃ respectively, for some inner θ and g̃ ∈ L∞(T).

Corollary 2.19. Let g, h ∈ L∞(T) \ {0}, such that kerTg and kerTh are nontrivial. Then kerTg = kerTh if 
and only if there are outer functions p, q ∈ H2 such that g

h
= p

q
.

If moreover hg−1 ∈ GL∞(T), we have

kerTg = kerTh ⇔ hg−1 ∈ GH∞.
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It follows from Corollary 2.19, in particular, that if h ∈ L∞(T) then kerTh is a model space Kθ if and 
only if h = θh− with h− ∈ GH∞.

In view of Corollary 2.19, one may also ask which Toeplitz kernels are contained in a model space and 
vice-versa.

Regarding the first question, it is clear that if g ∈ GL∞(T) and θ is an inner function, then kerTg ⊂ Kθ

if and only if

g = θ(f+
−1) with f+ ∈ H∞. (2.4)

If f+ = αO is an inner–outer factorisation with α inner and O an outer function, from (2.4) we see that 
Ō ∈ GH∞ because Ō−1 = gθᾱ ∈ N+ ∩ L∞(T) = H∞ and therefore we must have kerTg = kerTθ̄α. In 
particular if g = ᾱ where α is an inner function, we get the known relation Kα ⊂ Kθ ⇔ α � θ.

Regarding the second question, we have Kθ ⊂ kerTg with g ∈ L∞(T) if and only if g ∈ θH∞. In particular 
if g = φ̄ where φ is an inner function, we get the known relation Kθ ⊂ Kφ ⇔ θ � φ.

Example 2.20. Let θ(z) = z2, so that Kθ = kerTz̄2 is the 2-dimensional space spanned by 1 and z. The 
maximal vectors for this Toeplitz kernel have the form k = a + bz, where θza + bz is outer. That is, az + b

is outer, so 0 ≤ |a| ≤ |b| (we should exclude the case a = b = 0).
In other words, the non-trivial Toeplitz kernels properly contained in Kθ are 1-dimensional and spanned 

by functions 1 + bz with |b| < 1, of the form (1 + bz)Kz = kerT(z̄)2 z+b̄
1+bz

where z+b̄
1+bz is an inner function. For 

b = 0 we obtain the model space Kz.
Note that for the non-maximal vectors f(z) = 1 + bz for |b| < 1 the function w(z) = 1/(1 + bz) satisfies 

wf ∈ Kθ, and |w|2 dm is a Carleson measure for Kθ; however w does not multiply Kθ into itself.

Using Proposition 2.16 and the previous results, we can study in particular the multipliers for Toeplitz 
kernels related by inclusion.

Proposition 2.21. Let g, h ∈ L∞(T) \ {0}, with hg−1 ∈ L∞(T).
(i) If kerTg ⊂ kerTh, then

M2(kerTg, kerTh) = C(kerTg) ∩Kzα

where α is the inner factor in an inner–outer factorisation of hg−1 ∈ H∞.
(ii) If kerTh ⊂ kerTg, then M2(kerTg, kerTh) = {0} unless kerTg = kerTh.

Proof. (i) If kerTg ⊂ kerTh then, by Corollary 2.16, hg−1 = f+ ∈ H∞. Let α and O denote the inner and 
outer factors of f+, respectively. Since kerTz̄ f+

= kerTz̄ᾱ, we have from Corollary 2.6 that

w ∈ M2(kerTg, Th) ⇔ w ∈ C(kerTg) ∩Kzα.

(ii) If kerTh ⊂ kerTg, then hg−1 = (f+)−1 with f+ ∈ H∞. We have

w ∈ kerTz̄ (f+)−1 ⇔ w ∈ H2 , z̄ (f+)−1w = f− ∈ H2
0 .

Since f− f+ ∈ H2
0 , it follows that z̄w ∈ H2

0 , i.e. w ∈ Kz = C. If w = A ∈ C \ {0}, then f+ ∈ C \ {0} because

z̄A = f− f+ ⇒ A = f+(zf−) with zf− ∈ H2

and, from the uniqueness of the inner–outer factorisation (modulo constants) it follows that f+ is a con-
stant. �
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Example 2.22. Let α and θ be inner with α ≺ θ; then M2(Kθ, Kα) = {0} and M2(Kα , Kθ) = C(Kα) ∩Kz θ ᾱ. 
For instance, if θ = zm , α = zn with n ≤ m, then M(Kzn , Kzm) = M2(Kzn , Kzm) = M∞(Kzn , Kzm) =
Kzm−n+1 .

We can generalise the results of Propositions 2.16 and 2.21 for Toeplitz kernels that are equivalent in a 
certain sense ([6]).

Definition 2.23. If g1 , g2 ∈ L∞(T), we say that g1 ∼ g2 if and only if there are functions h+ ∈ GH∞ , h− ∈
GH∞, such that

g1 = h−g2h+. (2.5)

It is easy to see that we have g1 = h−g2h+ and g1 = h̃−g2h̃+ with h+ , ̃h+ ∈ GH∞ and h− , ̃h− ∈ GH∞, 
if and only if h−

h̃−
= h̃+

h+
= c ∈ C \ {0}. If |g1| = |g2| = 1 we can choose h± in (2.5) such that ‖h−‖∞ =

‖h+‖∞ = 1.

Definition 2.24. If g1 , g2 ∈ L∞(T) \ {0}, such that kerTg1 , kerTg2 are nontrivial, we say that kerTg1 ∼
kerTg2 if and only if

kerTg1 = h+ kerTg2 with h+ ∈ GH∞. (2.6)

It is clear that g1 ∼ g2 ⇒ kerTg1 ∼ kerTg2 since

kerTg1 = kerTh−g2h+ = h−1
+ kerTg2 .

It follows from Corollary 2.19 that, if g1g2
−1 ∈ GL∞(T), the converse is true since

kerTg1 = h−1
+ kerTg2 ⇔ kerTg1 = kerTg2h+ ⇔ g1 g2

−1h+
−1 ∈ GH∞.

Therefore, if h+ ∈ GH∞,

kerTg1 = h−1
+ kerTg2 ⇔ g1 = h− g2 h+ with h− ∈ GH∞. (2.7)

If θ1 is a finite Blaschke product, then it is easy to see that θ1 = h− zN1h+ where h+ ∈ GH∞ , h− ∈ GH∞
are rational and N1 is the degree of θ1. Thus θ1 ∼ z−N1 . We have Kθ1 ∼ Kθ2 if and only if θ2 is also a finite 
Blaschke product of the same degree. Moreover, if θ1 and θ2 are finite Blaschke products with θ1 ∼ z−N1

and θ2 ∼ z−N2 , then θ1 θ2 ∼ zN1−N2 and we have

kerTθ1 θ2
= {0} if N2 ≤ N1 , kerTθ1 θ2

∼ KzN1−N2 if N1 > N2.

Proposition 2.25. Let g, h ∈ L∞(T) \ {0}, with hg−1 ∈ L∞(T).
(i) kerTg ∼ kerTg̃ ⊂ kerTh for some g̃ ∈ L∞(T) if and only if there exists h+ ∈ GH∞ such that hg−1h+ ∈
H∞.
(ii) If kerTg ∼ kerTg̃ ⊂ kerTh for some g̃ ∈ L∞(T), with kerTg = h+

−1 kerTg̃ where h+ ∈ GH∞, then

M2(kerTg, Th) = h−1
+ M2(kerTg̃, kerTh) = C(kerTg) ∩ h+Kzα

where α is the inner factor of an inner–outer factorisation of hg−1h+ ∈ H∞.
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Proof. (i) If kerTg ∼ kerTg̃ then by Definition 2.24 and (2.7) there exist h+ ∈ GH∞ , h− ∈ GH∞, such that 
g = h−g̃h+; on the other hand, by Corollary 2.19

kerTg̃ ⊂ kerTh ⇔ hg̃−1 ∈ H∞ ⇔ hh−g
−1h+ ∈ H∞ ⇔ hg−1h+ ∈ H∞.

Conversely, if there exists h+ ∈ GH∞ such that hg−1h+ ∈ H∞, then kerTgh−1
+

⊂ kerTh and taking g̃ = gh−1
+

we conclude that kerTg ∼ kerTg̃ ⊂ kerTh.
(ii) If kerTg = h+

−1 kerTg̃, we have M(kerTg, kerTh) = h+
−1M(kerTg̃,ker Th

) and by Proposition 2.21

M2(kerTg̃, kerTh) = C(kerTg̃) ∩Kzα

where α is the inner factor of hg̃−1 ∈ H∞, which is equal to the inner factor of hg−1h+ ∈ H∞. �
3. Surjective multipliers

The original context of Crofoot’s work [9] is where the multiplication operator between two model spaces 
is surjective. We may obtain similar results in the more general context of Toeplitz kernels.

Lemma 3.1. Let g ∈ L∞(T), let k be a maximal vector for kerTg, and suppose that w kerTg is a Toeplitz 
kernel. Then w kerTg = Kmin(wk).

Proof. Let h ∈ L∞(T) be such that w kerTg = kerTh. We have wk ∈ kerTh and kerTh = w kerTg ⊂
Kmin(wk) by Theorem 2.5. Hence kerTh = Kmin(wk). �
Theorem 3.2. Let g, h ∈ L∞(T) such that kerTg and kerTh are nontrivial. Then a function w ∈ Hol(D)
satisfies w kerTg = kerTh if and only if
(i) w ∈ C(kerTg) and w−1 ∈ C(kerTh);
(ii) for some (or indeed, for every) maximal vector k ∈ kerTg, the function wk is a maximal vector for 
kerTh.

Proof. Suppose that the conditions are satisfied. Then by Theorem 2.5 w is a multiplier from kerTg into 
kerTh and w−1 is a multiplier from kerTh into kerTg. Since the multiplication operator is injective, we see 
that we have w kerTg = kerTh.

Conversely, if w kerTg = kerTh, then condition (i) is clearly satisfied, and (ii) follows from Lemma 3.1. �
We also have the following necessary and sufficient condition:

Theorem 3.3. Let g, h ∈ L∞(T) such that kerTg and kerTh are nontrivial. Then w kerTg = kerTh if and 
only if w ∈ C(kerTg) , w−1 ∈ C(kerTh) and

h = g
w

w

q

p
(3.1)

for some outer functions p, q ∈ H2.

Proof. Note that w must be outer, as functions in a Toeplitz kernel cannot share a common inner factor, 
since if f ∈ kerTg and θ is inner with f/θ ∈ H2, then f/θ ∈ kerTg.

Now let k = θu be a maximal vector for kerTg, where θ is inner and u is outer. Then kerTg = kerTzθu/u. 
We write g0 = zθu/u. Also the inner–outer factorisation of wk, which is a maximal vector for kerTh, is 
wk = θ(wu), so we have kerTh = kerTzθwu/(wu). We write h0 = zθwu/(wu).



568 M.C. Câmara, J.R. Partington / J. Math. Anal. Appl. 465 (2018) 557–570
By Corollary 2.19 we have outer functions r and s such that g = g0r/s. So

kerTh = kerTh0 = kerTg0w/w = kerTg0wr/(ws) = kerTgw/w.

Finally, by Corollary 2.19 we have (3.1).
For the converse, we see that (3.1) implies that kerTh = kerTgw/w. Then if f ∈ kerTg we have 

(fw)(gw/w) = fgw ∈ H2
0 and so fw ∈ kerTgw/w = kerTh. Also if f ∈ kerTh then fg/w = (fgw/w)/w ∈

H2
0 , and so f/w ∈ kerTg. �

Remark 3.4. In the case of model spaces, suppose that wKθ = Kφ; then we apply the above results to g = θ

and h = φ, so we have Kφ = kerTθw/w. Now θw/w ∈ L∞(T) (indeed it is unimodular), but it also equals 
φp/q from (3.1), and this is in the Smirnov class; so it lies in H∞ and is inner.

Thus Kφ = Kθw/w, and so φ = αθw/w, with α ∈ C and |α| = 1, which is Crofoot’s result.

The equivalence relation of Definition 2.24 is closely related to the question of existence of surjective 
multipliers between two Toeplitz kernels. Indeed, any w = w+ ∈ GH∞ is a surjective multiplier from any 
given kerTg onto another Toeplitz kernel kerTw+−1g = w+ kerTg. One may ask if the same is true for model 
spaces, i.e., given w+ ∈ GH∞ and an inner function θ, is there always another inner function φ such that 
w+Kθ ⊂ Kφ?

The answer to this question is negative. In fact, if θ is a finite Blaschke product then Kθ = kerTθ̄ and 
w+Kθ = kerTw+−1θ̄ must both be finite dimensional, with the same dimension. If w+Kθ = Kφ with φ inner, 
then we must have, on the one hand, w+θφ̄ ∈ GH∞ and on the other hand, since θ ∼ z−N , φ ∼ z−N for 
some N ∈ N, we must have h−w+h+ = f− for some rational h− ∈ GH∞ , h+ ∈ GH∞ and f− ∈ GH∞. It 
follows that w+h+ = A ∈ C and therefore w+Kθ = Kφ only if w+ is a rational function in GH∞.

4. The upper half-plane

The results on Toeplitz kernels in [3,6] were originally derived for the Hardy space H2(C+) of the upper 
half-plane. There are additional motivations here, in that Paley–Wiener spaces appear naturally in the 
context of model spaces corresponding to the inner functions θ(s) = eiλs for λ > 0: for this and other 
motivations we refer to the introduction of [5].

Recall that we have the relation H2(C−) = L2(R) �H2(C+), and f ∈ H2(C−) if and only if f ∈ H2(C+).
Moreover it is well known (see, e.g. [20, pp. 23–24]) that g ∈ Lp(R) for some 1 ≤ p < ∞ if and only if 

the function Vpg defined by

Vpg(z) = 22/pπ1/p(1 + z)−2/pg(i(1 − z)/(1 + z)) (4.1)

lies in Lp(T). Indeed, Vp is an isometric map which preserves the corresponding Hardy spaces, with Hp(C+)
mapping to Hp(D).

The analogue of Theorem 2.5 is the following. We now use m to refer to Lebesgue measure on R, and Tg

etc. to refer to Toeplitz operators on H2(C+).

Theorem 4.1. Let g, h ∈ L∞(R) such that kerTg and kerTh are nontrivial. Then a function w ∈ Hol(C+)
lies in M(kerTg, kerTh) if and only if
(i) wk ∈ kerTh for some (and hence all) maximal vectors k of kerTg;
(ii) w kerTg ⊂ L2(R); that is |w|2 dm is a Carleson measure for kerTg.
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Proof. Clearly, the two conditions are necessary. So assume that (i) and (ii) hold, and write k = θp, where 
θ is inner and p is outer. Now kerTg = kerTθp/p, as detailed above, and thus without loss of generality we 

may take g = θp/p.
We have that wkh ∈ H2(C−), since wk ∈ kerTh. Suppose now that f ∈ kerTg, so that fg ∈ H2(C−). 

Now

wfh = (wkh) f

θp
= (wkh)fg

p
.

Then wfh ∈ L2(R), since wf ∈ L2(R) by the Carleson condition.
Also wkh and fg are in H2(C−) so wfh = wkh fg/p is in the Smirnov class of the half-plane (the ratio 

of an H1(C+) function and an outer H2 function) as well as L2(R). The generalised maximum principle 
applies also to the half-plane, as can be seen using the isometric equivalences in (4.1). We conclude that 
wfh ∈ H2(C+) and so wfh ∈ H2(C−), and finally wf ∈ kerTh. �

The method of proof of Theorem 2.2 shows that the maximal vectors for a nontrivial Toeplitz kernel 
kerTg ⊂ H2(C+) are functions of the form g−1p, where p ∈ H2(C+) outer. Maximal vectors for model 
spaces Kθ = kerTθ have already been characterised in [6, Thm 5.2] as functions in H2(C+) of the form θp
with p outer. One such is k(s) = (θ(s) − θ(i))/(s − i), the backward shift of the function θ, although θ itself 
is not in H2(C+). Since k(s) = θ(s)(1 − θ(i)θ(s))/(s − i) for s ∈ R we see that this k is an appropriate test 
function to use.

One special case of interest is when kerTg consists entirely of bounded functions, since then any H2

function w automatically satisfies the Carleson condition in Theorems 2.5 and 4.1: this property is discussed 
for model spaces in [6]. For the disc, Kθ ⊂ H∞ if and only if Kθ is finite-dimensional, that is, θ is rational, 
but for the half-plane there are other possibilities, for example θ(s) = eiλs with λ > 0. We refer to [6] for 
further details.

Finally, we remark that Theorems 3.2 and 3.3 hold in the case of the half-plane with obvious modifications.
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