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The Riemann problem for the two-dimensional zero-pressure Euler equations is 
considered. The initial data are constant values in each quadrant, which satisfy an 
assumption that each initial discontinuity projects only one two-dimensional wave. 
The phenomenon of two-dimensional delta shock wave with a Dirac delta function in 
both density and internal energy is identified. Both generalized Rankine–Hugoniot 
relation and entropy condition for this type of two-dimensional delta shock wave 
are proposed. The qualitative behavior of entropy solutions to this relation with 
certain special initial data is established. Based on these preparations, we obtain 
twenty-three explicit solutions and their corresponding criteria. In particular, the 
Mach-reflection-like patterns arise in the exact solutions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that, there are some nonclassical situations, where in contrast to Lax’s and Glimm’s clas-
sical results [12,17], the initial value problem for some physical models does not possess a weak L∞-solution. 
While a type of generalized solution called delta shock wave solution is introduced as its solution. Roughly 
speaking, a delta shock wave solution is a solution such that at least one of the state variables contains 
a Dirac delta function [35]. The investigations of one-dimensional delta shock waves have been intensively 
developed in the past two decades [4–6,21,30,32,36] and the references therein. Interestingly, Danilov and 
Shelkovich [10], Panov and Shelkovich [26] introduced the one-dimensional δ(n)-shock wave solution, where 
δ(n), n = 1, 2, · · · , is nth derivative of the Dirac delta function, and shown that the solution to a one-
dimensional system of conservation laws involves not only Dirac delta functions but also their derivatives. 
Moreover, the one-dimensional delta shock wave with a Dirac delta function in multiple state variables has 
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been studied recently [8,24,25,28,37,38]. However, only little work has contributed to the investigations of 
two-dimensional and high dimensional delta shock waves.

One typical example of the systems admitting a two-dimensional delta shock wave solutions is the two-
dimensional zero-pressure gas dynamics

{
ρt + ∇ · (ρU) = 0,

(ρU)t + ∇ · (ρU ⊗ U) = 0,
(1.1)

where the variables ρ ≥ 0, U = (u, v) denote density and velocity, the ∇ is the gradient operator over 
the space variable X = (x, y), and the ⊗ is the usual tensor product of two vectors. The system (1.1)
is obtained by flux-splitting numerical schemes for the two-dimensional compressible Euler equations [4], 
or by letting pressure p = 0 on the two-dimensional isentropic Euler equations [18]. This system is used 
to describe the motion of free particles sticking together under collision and the formation of large-scale 
structures in the universe [1,27]. It has also been used for modeling dusty media which can be considered 
as having no pressure [16]. There have been numerous studies on this system. In one-dimensional case, with 
random initial data, Bouchut [4] given the Riemann solution and checked the solution satisfying (1.1) in the 
sense of measures. The behavior of global weak solutions with random initial data was analyzed by Weinan, 
Sinai and Rykov [11]. By viscous vanishing method, Sheng and Zhang [32] studied the Riemann problem for 
system (1.1) in one-dimensional case, and also constructed the solutions for system (1.1) with four constant 
values only involving contact discontinuities. Li and Zhang [20] established a complete form of generalized 
Rankine–Hugoniot relation of the two-dimensional delta shock wave, and obtained all the Riemann solutions 
to system (1.1) by solving this relation. Moreover, Li and Yang [19] considered the Riemann problem with 
two constant values separated by a hyperplane, and obtained the n-dimensional (n ≥ 3) plane delta shock 
wave dependent on a family of one parameter. For more investigations of high dimensional delta shock 
waves, the readers are also referred to articles [2,14,29,33,34]. It is noticed that the common feature of 
above-mentioned multi-dimensional delta shock waves is that only one state variable contains a Dirac delta 
function.

Mach-reflection-like pattern is a kind of important nonlinear phenomenon in multi-dimensional systems of 
conservation laws. Li, Zhang and Yang [21] studied the two-dimensional Riemann problem for system (1.1)
with four constant values, where, the two-dimensional delta shock wave with a Dirac delta function only 
in density emerges in the solution. Meanwhile, in some solutions, one two-dimensional delta shock wave 
bifurcates somewhere into two new two-dimensional delta shock waves, and there exists a triple-wave point 
where three delta shock waves match together. This structure is named as the Mach-reflection-like pattern, 
which is similar to the Mach reflection configuration in gas dynamics [9,40]. It also resembles the Gucken-
heimer structure which issues in two-dimensional single conservation law [13,31,39]. All of these result from 
the global (local and global) interactions of two-dimensional waves.

As was shown in [16], for modeling media which can be considered as having no pressure, it is necessary 
to consider energy transport. This motivates us to study the following two-dimensional zero-pressure Euler 
equations

⎧⎪⎪⎨
⎪⎪⎩

ρt + ∇ · (ρU) = 0,

(ρU)t + ∇ · (ρU ⊗ U) = 0,

(1
2ρ||U ||2 + ρe)t + ∇ · ((1

2ρ||U ||2 + ρe)U) = 0,

(1.2)

where the variable e ≥ 0 represents specific energy, and ||U ||2 = u2 + v2. The third equation of system (1.2)
expresses the conservation of energy. The system (1.2) can be derived by letting the pressure p = 0 on 
the two-dimensional compressible Euler equations. Kraiko [16] studied the system (1.2) in one-dimensional 
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case, and the discontinuities which would be different from classical ones and carry mass, impulse and 
energy, were used to construct the solution for arbitrary initial data. Nilsson, Rozanova and Shelkovich [22,
23] considered (1.2) in one-dimensional case by denoting the internal energy ρe by a new variable H, and 
shown the concentration processes of both mass and energy on the one-dimensional delta shock wave front. 
Subsequently, the corresponding one-dimensional Riemann problem was completely solved by Cheng [7]. 
Motivated by the works [22,23], we consider (1.2) in the following form

⎧⎪⎪⎨
⎪⎪⎩

ρt + ∇ · (ρU) = 0,

(ρU)t + ∇ · (ρU ⊗ U) = 0,

(1
2ρ||U ||2 + H)t + ∇ · ((1

2ρ||U ||2 + H)U) = 0,

(1.3)

where the state variable H ≥ 0 denotes internal energy.
Albeverio, Rozanova and Shelkovich [3] introduced the integral identities to define a multi-dimensional 

delta shock wave solution for system (1.3), and then derived the corresponding Rankine–Hugoniot condition. 
They also shown the concentration processes of both mass and internal energy on the multi-dimensional 
delta shock wave front. In the present paper, we study the two-dimensional Riemann problem for (1.3) with 
initial data

(ρ, U,H)(0, X) = (ρi, Ui, Hi), in the ith quadrant, i = 1, 2, 3, 4, (1.4)

where ρi > 0, Ui, Hi > 0 are constant values, satisfying assumption (H): Each initial discontinuity projects 
only one two-dimensional wave.

The self-similar bounded solutions are firstly analyzed. It is also proven that the ρ, ux, vx, uy, vy, H blow 
up simultaneously in a finite time under certain assumptions on the initial data. These facts show that 
two-dimensional delta shock wave with a Dirac delta function in both density and internal energy takes place 
in this situation. While, both generalized Rankine–Hugoniot relation and entropy condition for this type of 
two-dimensional delta shock wave are proposed. To construct the Riemann solutions in self-similar plane, the 
generalized Rankine–Hugoniot relation is reformulated to a system of ordinary differential equations, and 
the qualitative behavior of entropy solutions to this reformulated relation with four kinds of special initial 
data is analyzed. Finally, under the assumption (H), twenty-three explicit solutions and their corresponding 
criteria are obtained.

In the next section, we first present the self-similar bounded solutions. We analyze rigorously the phe-
nomenon of two-dimensional delta shock wave with a Dirac delta function in both density and internal 
energy, and propose both generalized Rankine–Hugoniot relation and entropy condition for this type of 
two-dimensional delta shock wave. We also reformulate the generalized Rankine–Hugoniot relation to a 
system of ordinary differential equations. In Section 3, we discuss the qualitative behavior of entropy solu-
tions to the reformulated generalized Rankine–Hugoniot relation with four kinds of special initial data. In 
Section 4, under the assumption (H), we divide the two-dimensional Riemann problem (1.3) and (1.4) into 
five cases, and construct all of exact solutions in self-similar plan. A brief conclusion is given in Section 5.

2. Preliminaries

Under the conditions ρ > 0 and H > 0, the system (1.3) in direction (μ, ν)(μ2 + ν2 = 1) has a 
quadruple eigenvalue λμ,ν = μu + νv, with the associated right eigenvectors rμ,ν1 = (1, 0, 0, 0)T , rμ,ν2 =
(0, −ν, μ, 0)T , rμ,ν3 = (0, 0, 0, 1)T , satisfying ∇λμ,ν · rμ,νi = 0, i = 1, 2, 3, where ∇ is the gradient opera-
tor with respect to the variables ρ, u, v, H. Thus (1.3) is a linearly degenerate and non-strictly hyperbolic 
system. Along the characteristic curve of system (1.3) defined as
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dX
dt = U, (2.1)

it holds that

dU
dt = 0, dρ

dt = −ρ∇ · U, dH
dt = −H∇ · U. (2.2)

These imply that all the characteristic curves are straight, and U keeps constant values along the charac-
teristic curve.

2.1. Self-similar bounded solutions

Since both (1.3) and (1.4) are self-similar, we seek self-similar solutions (ρ, U, H)(t, x, y) = (ρ, U, H)(Ξ)
(Ξ = (ξ, η), ξ = x/t, η = y/t). Considering smooth solutions, the two-dimensional Riemann problem (1.3)
and (1.4) becomes the following boundary value problem

AWξ + BWη = 0, (2.3)

with the boundary value at infinity

lim
ξ2+η2→∞, ξ/η=const.

W = Wi, if (ξ, η) is in the ith quadrant, i = 1, ..., 4,

where W = (ρ, u, v, H)T ,

A =

⎛
⎜⎝
−ξ + u ρ 0 0

0 ρ(−ξ + u) 0 0
0 0 ρ(−ξ + u) 0
0 H 0 −ξ + u

⎞
⎟⎠ ,

B =

⎛
⎜⎝
−η + v 0 ρ 0

0 ρ(−η + v) 0 0
0 0 ρ(−η + v) 0
0 0 H −η + v

⎞
⎟⎠ .

The system (2.3) has a quadruple eigenvalue (ρ > 0, H > 0),

λ = (v − η)(u− ξ)−1, (2.4)

with the associated right eigenvectors, r1 = (1, 0, 0, 0)T , r2 = (0, u − ξ, v − η, 0)T , r3 = (0, 0, 0, 1)T , which 
satisfy ∇λ · ri = 0, i = 1, 2, 3. Thus (2.3) is a linearly degenerate and non-strictly hyperbolic system.

Define the pseudo-characteristic curve of system (1.3) in (ξ, η)-plane by

dη
dξ = λ, (2.5)

which has a singular point (u, v). Along each pseudo-characteristic curve, it holds that dU/dξ = 0. Therefore, 
all pseudo-characteristic curves are straight. We postulate that the pseudo-characteristic line comes from 
the infinity and ends at its singular point.

We can see from (2.3) that, besides a constant state (ρ, U, H)(ξ, η) = Const. (ρ > 0, H > 0), the smooth 
solution of (1.3) contains a vacuum solution ρ, U, H)(ξ, η) = (0, U(ξ, η), 0), where U(ξ, η) is an arbitrary 
smooth vector-valued function.

Let us consider the bounded discontinuous solution. Let η = η(ξ), with the states (ρ−, u−, v−, H−) and 
(ρ+, u+, v+, H+) on its two sides, be a discontinuity of the bounded discontinuous solution. It is a surface 
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y = tη(x/t) with the normal direction (η − ξσ, σ, −1)(σ = η′(ξ)) in (t, x, y)-space. We solve the following 
Rankine–Hugoniot condition

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(η − ξσ, σ,−1) · ([ρ], [ρu], [ρv]) = 0,

(η − ξσ, σ,−1) · ([ρu], [ρu2], [ρuv]) = 0,

(η − ξσ, σ,−1) · ([ρv], [ρuv], [ρv2]) = 0,

(η − ξσ, σ,−1) · ([ 12ρ||U ||2 + H], [(1
2ρ||U ||2 + H)u], [(1

2ρ||U ||2 + H)v]) = 0,

(2.6)

to obtain ⎧⎨
⎩

σ = dη
dξ = η−v−

ξ−u−
= η−v+

ξ−u+
,

[v] = σ[u],
(2.7)

hereafter, [q] = q− − q+ be the jump of q across the discontinuity. This is a two-dimensional contact 
discontinuity, denoted by J , which is the pseudo-characteristic lines for both sides. It passes through the 
singular points Ξ− = (u−, v−) and Ξ+ = (u+, v+). We orient that a two-dimensional contact discontinuity 
comes from the infinity and ends at one of these two singular points.

2.2. Two-dimensional delta shock wave solution

As pointed out in the last subsection, the bounded discontinuous solution only involves the two-
dimensional contact discontinuity, where the pseudo-characteristic lines for both sides are coincident. We 
want to know that what type of singularity of solution to system (1.3) will develop when the pseudo-
characteristic lines from the different states overlap each other in (ξ, η)-plan. To this end, we first give some 
useful lemmas.

Lemma 2.1. [15] A C1 map X = f(α) from Rn to Rn is a C1 diffeomorphism if and only if f is a proper 
map, namely, ||f(α)|| → ∞ as ||α|| → ∞, and the det(∂f/∂α) never vanishes.

Lemma 2.2. Assume that initial data (ρ, U, H)(0, X) = (ρ0, U0, H0)(X) ∈ C1(R2) with bounded C0 norm, 
where ρ0(X) > 0, H0(X) > 0, then the characteristic lines passing through all the points on the initial plane 
t = 0 never intersect for all time t > 0 if and only if none of the eigenvalues of the Jacobi matrix

∂U0
∂X =

(
∂u0
∂x

∂u0
∂y

∂v0
∂x

∂v0
∂y

)
, ∀X ∈ R

2, (2.8)

is negative.

Proof. For any fixed t ≥ 0, the (2.1) with initial value X0 = (x0, y0) can define a map

f(X) = X0 + tU0(X0). (2.9)

Obviously, the (2.9) is a proper map for any fixed t ≥ 0 due to the bounded C0 norm of the initial data. 
Besides, we have by (2.9) that

∂f(X)
∂X0

=
(

1 + t∂u0
∂x0

t∂u0
∂y0

t ∂v0
∂x0

1 + t∂v0
∂y0

)
. (2.10)
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Let a1, a2 be eigenvalues of ∂U0
∂X , and b1, b2 be eigenvalues of ∂f(X)

∂X0
. We have

det(∂f(X)
∂X0

) = b1b2 = (1 + ta1)(1 + ta2) ≥ 1. (2.11)

Thus, the map (2.9) is a C1 diffeomorphism by Lemma 2.1, that is, the inverse of f exists, denoted by f−1.
For any given bounded domain Ω0 on the initial plane t = 0, let A0 > 0 be the area of the domain Ω0, 

Ωt0 be a domain generated by the projections of the characteristic lines passing through the domain Ω0
onto the plane t = t0, and A(t0) be the area of the domain Ωt0 . We calculate that

A(t0) =
∫ ∫

Ωt0

dX =
∫ ∫

Ω0

∣∣∣det
(∂f(X)

∂X0

)∣∣
t=t0

∣∣∣dX0

=
∫ ∫

Ω0

1 + t0(a1 + a2) + a1a2t
2
0 dX0

=A0 +
∫ ∫

Ω0

t0(a1 + a2) + t20a1a2 dX0.

This shows that the area of the domain Ωt0 is a nondecreasing function of t0, that is, the characteristic lines 
passing through all the points on the initial plane t = 0 never intersect each other for all time t > 0.

On the other hand, assume that (2.8) fails. Then, there exists a bounded domain Ω∗
0 on the initial plane 

t = 0, such that at least one of the a1 and a2 is negative in the domain Ω∗
0. This fact implies that there 

exists a T0 > 0, such that

det
(∂f(X)

∂X0

)
> 0, X0 ∈ Ω∗

0 for 0 ≤ t < T0,

and

det
(∂f(X)

∂X0

)
= 0, X0 ∈ Ω∗

0 for t = T0.

Thus, as 0 ≤ t0 < T0, X0 ∈ Ω∗
0, we deduce that

A∗(t0) =
∫ ∫

Ω∗
t0

dX =
∫∫
Ω∗

0

∣∣∣ det
(∂f(X)

∂X0

)∣∣
t=t0

∣∣∣dX0

=
∫ ∫

Ω∗
0

1 + t0(a1 + a2) + a1a2t
2
0 dX0

→ 0, as t0 → T0,

where Ω∗
t0 is a domain generated by the projections of the characteristic lines passing through the domain 

Ω∗
0 onto the plane t = t0, and A∗(t0) is the area of the domain Ω∗

t0 . Hence, the area of the domain Ω∗
t0 is not 

a nondecreasing function of t0, which contradicts to the fact that the characteristic lines passing through all 
the points on the initial plane t = 0 never intersect each other for all time t > 0. The proof is complete. �
Theorem 2.3. Assume that initial data (ρ, U, H)(0, X) = (ρ0, U0, H0)(X) ∈ C1(R2) with bounded C0 norm, 
where ρ0(X) > 0, H0(X) > 0, then (1.3) admits uniquely a global smooth solution on t > 0 if and only if 
the (2.8) holds.
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Proof. If the (2.8) holds, we can see from Lemma 2.2 that the map (2.9) is a C1 diffeomorphism. We then 
calculate that

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
= 1

det
(∂f(X)

∂X0

)
(

∂u0
∂x0

(
1 + t∂v0

∂y0

)
− t∂u0

∂y0
∂v0
∂x0

∂u0
∂y0

∂v0
∂x0

∂v0
∂y0

(
1 + t∂u0

∂x0

)
− t ∂v0

∂x0
∂u0
∂y0

)
. (2.12)

By solving (2.2) with the given initial data, we obtain uniquely a global smooth solution,

ρ = ρ0(f−1(X))

det
(∂f(X)

∂X0

(
f−1(X)

)) , U = U0(f−1(X)), H = H0(f−1(X))

det
(∂f(X)

∂X0

(
f−1(X)

)) . (2.13)

On the other hand, suppose that (2.8) fails. There exists a point A = (α1, α2) on the initial plane t = 0, 
such that at least one of the a1 and a2 is negative at the point A. This implies that there exists a T0 > 0, 
such that it holds that

det
(∂f(X)

∂X0

)∣∣
X0=A

> 0 for 0 ≤ t < T0,

and

det
(∂f(X)

∂X0

)∣∣
X0=A

= 0 for t = T0.

Thus, along the characteristic line passing through point A, we get det(∂f(X)
∂X0

)|X0=A → 0 as t → T0, then 
ρ → ∞, ∂u∂x → ∞, ∂u∂y → ∞, ∂v∂x → ∞, ∂v∂y → ∞, H → ∞ as t → T0 by (2.12) and (2.13). Thus the density ρ, 
the internal energy H and the first order partial derivatives of velocity U blow up simultaneously at a finite 
time, which contradicts to the fact that the (1.3) admits uniquely a global smooth solution on t > 0. The 
proof is complete. �

By a method as used in [21], we can prove that the overlapping of pseudo-characteristic lines in (ξ, η)-plan 
is equivalent to that of characteristic lines in (t, x, y)-space. Thus, when the pseudo-characteristic lines from 
the different states overlap each other, we can know from Lemma 2.2 and Theorem 2.3 that, the density ρ, 
the internal energy H and the first order partial derivatives of velocity U blow up simultaneously. This 
motivates us to seek two-dimensional delta shock wave solution which contains a Dirac delta function in 
both ρ and H.

Definition 2.4. The three-dimensional weighted Dirac delta function w(t, s)δ supported on a smooth surface 
S parameterized as x = x(t, s), y = y(t, s)(t ∈ [0, +∞), s ∈ [0, +∞)) is defined as

< w(t, s)δ, φ >=
+∞∫
0

+∞∫
0

w(t, s)φ(t, x(t, s), y(t, s))d tds,

for all the test functions φ ∈ C∞
0 ((0, ∞) × R

2).

Definition 2.5. The distribution (ρ, U, H) is a two-dimensional delta shock wave solution of (1.3) and (1.4)
in the sense of distribution if there exist a surface S and two functions w(t, s), h(t, s) ∈ C1(S), such that 
ρ = ρ̄(t, X) + w(t, s)δ, U = Ū(t, X), H = H̄(t, X) + h(t, s)δ, and
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

<ρ, φt > + < ρu, φx > + < ρv, φy >= 0,

<ρu, φt > + < ρu2, φx > + < ρuv, φy >= 0,

<ρv, φt > + < ρuv, φx > + < ρv2, φy >= 0,

<1
2ρ||U ||2 + H,φt > + < (1

2ρ||U ||2 + H)u, φx >

+ < (1
2ρ||U ||2 + H)v, φy >= 0,

(2.14)

for all the test functions φ ∈ C∞
0 ((0, +∞) × R

2), where ρ̄, Ū , H̄ ∈ L∞([0, +∞) × R
2; R), U |S = Uδ(t, s),

< ρ, φ > =
+∞∫
0

+∞∫
−∞

+∞∫
−∞

ρ̄φdXdt+ < w(t, s)δ, φ >,

< ρu, φ > =
+∞∫
0

+∞∫
−∞

+∞∫
−∞

ρ̄ūφdXdt+ < w(t, s)uδ(t, s)δ, φ >,

and H has the similar integral identities as above.

With Definitions 2.4–2.5, in the region where the characteristic lines intersect each other, we introduce 
a surface S : X = X(t, s) which divides this region into two subregion Ω− and Ω+, and seek the two-
dimensional delta shock wave solution,

(ρ, U,H) =

⎧⎪⎪⎨
⎪⎪⎩

(ρ−, U−, H−), (t,X) ∈ Ω−,

(w(t, s)δ(X −X(t, s)), Uδ(t, s), h(t, s)δ(X −X(t, s))), (t,X) ∈ S,

(ρ+, u+, H+), (t,X) ∈ Ω+,

(2.15)

where (ρi, Ui, Hi), i = −, + are smooth bounded solutions, δ is the standard Dirac measure supported on the 
surface S, and w(t, s), h(t, s) are the weights of the two-dimensional delta shock wave on the state variables 
ρ and H.

Applying Gauss’s theorem, we can obtain easily the following lemma.

Lemma 2.6. If the (2.15) satisfies the system of partial differential equations with unknowns X, w, Uδ, h,
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂X
∂t =Uδ(t, s),
∂w
∂t =([ρ], [ρU ]) · (Nt, NX),

∂(wUδ)
∂t =(ρU ⊗ U) · (Nt, NX),

∂
(1
2w||Uδ||2+h

)
∂t =([ 12ρ||U ||2 + H], [(1

2ρ||U ||2 + H)U ]) · (Nt, NX),

(2.16)

where (Nt, Nx, Ny) = (uδ
∂y
∂s − vδ

∂x
∂s , −

∂y
∂s , 

∂x
∂s ) is the normal direction of S, then, it is a two-dimensional 

delta shock wave solution of (1.3) and (1.4) in the sense of distribution.

In addition, we propose the following condition

U+ ·NX < Uδ ·NX < U− ·NX , (2.17)

to guarantee the uniqueness of two-dimensional delta shock wave solution, which means that all the char-
acteristic lines from the different states are incoming on both sides of the surface S.
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Definition 2.7. A discontinuity surface S satisfying (2.16) and (2.17) is called a two-dimensional delta shock 
wave, denoted by δ.

The (2.16) is called the generalized Rankine–Hugoniot relation of two-dimensional delta shock wave. 
It describes the location, propagation speed, and the weights of the two-dimensional delta shock wave. 
Meanwhile, the (2.17) is called the entropy condition of two-dimensional delta shock wave.

2.3. The Riemann problem with two pieces of initial data

Denote

[U−, U+,
∂X
∂s ] =

∣∣∣∣∣∣
u− v− 1
u+ v+ 1
∂x
∂s

∂y
∂s 0

∣∣∣∣∣∣ , [U−, U+,Ξ] =

∣∣∣∣∣
u− v− 1
u+ v+ 1
ξ η 1

∣∣∣∣∣ .
The generalized Rankine–Hugoniot relation (2.16) is converted into

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂X
∂t =Uδ(t, s),
∂w
∂t =ρ−[U−, Uδ,

∂X
∂s ] − ρ+[U+, Uδ,

∂X
∂s ],

∂(wUδ)
∂t =ρ−U−[U−, Uδ,

∂X
∂s ] − ρ+U+[U+, Uδ,

∂X
∂s ],

∂
(w
2 ||Uδ||2+h

)
∂t =(ρ−

2 ||U−||2 + H−)[U−, Uδ,
∂X
∂s ] − (ρ+

2 ||U+||2 + H+)[U+, Uδ,
∂X
∂s ],

(2.18)

and the entropy condition (2.17) becomes

[U−, Uδ,
∂X
∂s ] > 0, [U+, Uδ,

∂X
∂s ] < 0. (2.19)

Under the entropy condition (2.19), we can deduce from (2.18) that

{
∂w
∂t =ρ−[U−, Uδ,

∂X
∂s ] − ρ+[U+, Uδ,

∂X
∂s ] ≥ 0,

∂h
∂t =(ρ−

2 ||U− − Uδ||2 + H−)[U−, Uδ,
∂X
∂s ] − (ρ+

2 ||Uδ − U+||2 + H+)[U+, Uδ,
∂X
∂s ] ≥ 0.

(2.20)

These show that both w and h are non-decreasing functions of t.
Let the line L : μx + νy = 0 divide (x, y)-plane into two infinite regions Ω− and Ω+, and the normal 

direction N = (μ, ν)(μ2 + ν2 = 1) of L points from Ω− to Ω+. We consider the Riemann problem for 
system (1.3) with initial data

(ρ, U,H)(0, X) =
{

(ρ−, U−, H−), X ∈ Ω−,

(ρ+, U+, H+), X ∈ Ω+,
(2.21)

where ρi > 0, Hi > 0, i = −, +, are constant values. We can prove easily that the necessary and sufficient 
condition of the overlapping of characteristic lines from Ω− and Ω+ is

[U ] ·N > 0. (2.22)

Therefore, this Riemann problem can be divided into the following two cases.

(i) [U ] · N ≤ 0. In virtue of [U ] · N ≤ 0, the characteristic lines from the domains Ω− and Ω+ do not 
overlap. The vacuum will develop. The solution is expressed as
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(ρ, U,H)(t,X) =

⎧⎪⎪⎨
⎪⎪⎩

(ρ−, U−, H−), X ·N ≤ U1 ·Nt,

V ac., U1 ·Nt < X ·N < U2 ·Nt,

(ρ+, U+, H+), X ·N ≥ U2 ·Nt.

(2.23)

(ii) [U ] · N > 0. In this case, the characteristic lines from Ω− and Ω+ will overlap each other. Thus we 
seek a two-dimensional delta shock wave solution. We describe the initial data on L as

t = 0 : X(0, s) = (νs,−μs), U(0, s) = U0(s), w(0, s) = 0, h(0, s) = 0, (2.24)

with parameter s > 0, where U0(s) is undetermined. Under entropy condition (2.19), we solve initial value 
problem (2.18) and (2.24) to obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X(t, s) =Uδ(t, s)t + X(0, s),

Uδ(t, s) =
√
ρ−U−+√

ρ+U+√
ρ−+√

ρ+
,

w(t, s) =([U ] ·N)√ρ−ρ+t,

h(t, s) =
((ρ−ρ+||U−−U+||2

2(√ρ−+√
ρ+) + H−

√
ρ+ + H+

√
ρ−

) [U ]·N√
ρ−+√

ρ+
t.

(2.25)

Thus the solution can be expressed as follows,

(ρ, U,H)(t,X) =

⎧⎪⎪⎨
⎪⎪⎩

(ρ−, U−, H−), X ·N < Uδ ·Nt,

(w(t, s)δ(X −X(t, s)), Uδ, h(t, s)δ(X −X(t, s))), X ·N = Uδ ·Nt,

(ρ+, U+, H+), X ·N > Uδ ·Nt.

(2.26)

It is shown that the two-dimensional delta shock wave solution (2.26) is self-similar except the weights w
and h those are linear functions of t. To construct the solutions in (ξ, η)-plane, motivated by [21], introducing 
a pseudo-self-similar transformation X(t, s) = tΞ(s̄), Uδ(t, s) = Uδ(s̄), w(t, s) = tm(s̄), h(t, s) = tn(s̄), where 
s̄ = ln(s/t), we reformulate (2.18) and (2.19) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ′ =Ξ − Uδ,

m′ =m− (ρ−[U−, Uδ,Ξ] − ρ+[U+, Uδ,Ξ])e−s̄,

(mUδ)′ =mUδ − (ρ−U−[U−, Uδ,Ξ] − ρ+U+[U+, Uδ,Ξ])e−s̄,

(m2 ||Uδ||2 + n)′ =m
2 ||Uδ||2 + n−

(
(ρ−

2 ||U−||2 + H−)[U−, Uδ,Ξ]

− (ρ+
2 ||U+||2 + H+)[U+, Uδ,Ξ]

)
e−s̄,

(2.27)

and

[U−, Uδ,Ξ] > 0, [U+, Uδ,Ξ] < 0. (2.28)

With the second and third equalities in (2.27), it holds that

m[U−, U+, Uδ] = Ces̄, (2.29)

where C = m(s̄0)[U−, U+, Uδ(s̄0)]. Using the properties of the mixed product of the vectors, one can check 
easily that the solution of (1.3) is entropic if and only if the ordering of U−, Uδ, Ξ is counterclockwise and 
that of U+, Uδ, Ξ is clockwise.
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3. The qualitative behavior of solutions to relation (2.27)

We discuss the qualitative behavior of solutions to relation (2.27) with initial data

s̄ = 0 : Ξ(0) = Ξ0, Uδ(0) = U0
δ ,m(0) = m0 > 0, n(0) = n0 > 0. (3.1)

The following four special cases will be discussed in this section.

3.1. ρ−H− > 0, ρ+ = 0, H+ = 0, [U−, U0
δ , Ξ0] > 0

Since the algebraic system

⎧⎪⎪⎨
⎪⎪⎩

(m−m′) · 1 =1 · ρ−[U−, Uδ,Ξ]e−s̄ − 1 · ρ+[U+, Uδ,Ξ]e−s̄,

(muδ − (muδ)′) · 1 =u− · ρ−[U−, Uδ,Ξ]e−s̄ − u0
δ · ρ+[U+, Uδ,Ξ]e−s̄,

(mvδ − (mvδ)′) · 1 =v− · ρ−[U−, Uδ,Ξ]e−s̄ − v0
δ · ρ+[U+, Uδ,Ξ]e−s̄,

which consists of the second and third equalities of system (2.27), with unknowns 1, ρ−[U−, Uδ, Ξ]e−s̄ and 
ρ+[U+, Uδ, Ξ]e−s̄, has non-zero solution 1, ρ−[U−, Uδ, Ξ]e−s̄ and 0. This yields that

∣∣∣∣∣∣
m−m′ 1 1

muδ − (muδ)′ u− u0
δ

mvδ − (mvδ)′ v− v0
δ

∣∣∣∣∣∣ = 0,

which implies

m[U−, U
0
δ , Uδ] = m0[U−, U

0
δ , U

0
δ ] ≡ 0. (3.2)

Inserting the second equation of (2.27) into the third one, and using ρ+ = 0, we get

m(Uδ − U−) = m0(U0
δ − U−)es̄ �≡ 0. (3.3)

A combination of (3.2) and (3.3) shows [U−, U0
δ , Uδ] = 0, [U−, U0

δ , Ξ] = [U−, U0
δ , Ξ0]es̄, then

m2 −mm′ =ρ−m[U−, Uδ,Ξ]e−s̄ = ρ−[U−,m(Uδ − U−),Ξ]e−s̄

=ρ−[U−,m0(U0
δ − U−),Ξ] = ρ−m0[U−, U

0
δ ,Ξ]

=ρ−m0[U−, U
0
δ ,Ξ0]es̄.

Solving this differential equation yields that

m = ±
(
m2

0 + 2ρ−m0[U−, U
0
δ ,Ξ0](e−s̄ − 1)

)1/2
es̄. (3.4)

Inserting this fact into (3.3) and (2.27), we derive that

Uδ = U− + m0(U0
δ − U−) e

s̄

m , Ξ = U− + es̄(Ξ0 − U−) + U0
δ−U−

ρ−[U−,U0
δ ,Ξ0] (m−m0e

s̄).
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Fig. 3.1. The qualitative behavior of solution to Case 3.1.

Notice that,

[U−, Uδ,Ξ] =[U−, U− + m0(U0
δ − U−) e

s̄

m , U− + es̄(Ξ0 − U−) + U0
δ−U−

ρ−[U−,U0
δ ,Ξ0] (m−m0e

s̄)]

=m0e
s̄

m ([U−, U
0
δ , (Ξ0 − U−)es̄] + [U−, U

0
δ ,

U0
δ−U−

ρ−[U−,U0
δ ,Ξ0] (m−m0e

s̄)])

=m0e
2s̄

m [U−, U
0
δ ,Ξ0],

we can see m > 0 using entropy condition (2.28). Hence, the entropy solution can be shown as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ξ =U− + es̄(Ξ0 − U−) + U0
δ−U−

ρ−[U−,U0
δ ,Ξ0]

(
m−m0e

s̄
)
,

m =
(
m2

0 + 2ρ−m0[U−, U
0
δ ,Ξ0](e−s̄ − 1)

)1/2
es̄,

Uδ =U− + m0(U0
δ − U−) e

s̄

m ,

n =
(

||U0
δ ||2
2 m0 + n0 −

( ||U−||2
2 + H−

ρ−

)
m0

)
es̄ +

( ||U−||2
2 + H−

ρ−
− ||Uδ||2

2
)
m.

(3.5)

With a simple calculation, we can obtain the following lemma.

Lemma 3.1. Under the conditions ρ−H− > 0, ρ+ = 0, H+ = 0, [U−, U0
δ , Ξ0] > 0, the solution to (2.27)

and (3.1) has the following properties, shown in Fig. 3.1.

(1) lims̄→−∞(Ξ, m, Uδ, n) = (U−, 0, U−, 0);
(2) The Uδ = Uδ(s̄) lies on the line U0

δU− and approaches U− asymptotically;
(3) The Ξ = Ξ(s̄) protrudes to the line Ξ0U

0
δ and approaches U− asymptotically.

Remark 3.2. Under the conditions ρ+H+ > 0, ρ− = 0, H− = 0, [U+, U0
δ , Ξ0] < 0, we can solve (2.27)

and (3.1) in a similar manner as before.

3.2. ρ−H− > 0, ρ+H+ > 0, [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0, [U−, U+, U0
δ ] = 0

The combination of [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0 and [U−, U+, U0
δ ] = 0 implies that there exist 

μ0
− > 0, μ0

+ > 0 with μ0
− + μ0

+ = 1 such that

[U−, U+,Ξ0] > 0, U0
δ = μ0

−U− + μ0
+U+. (3.6)

While, it follows from (2.29) that
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m[U−, U+, Uδ] = m0[U−, U+, U
0
δ ]es̄ ≡ 0. (3.7)

Substituting the second equality of (2.27) into the third one, and integrating it from 0 to s̄, we obtain

m(Uδ − U−) = es̄
(
m0(U0

δ − U−) −
s̄∫

0

ρ+(U− − U+)[U+, Uδ,Ξ]e−2τdτ
)
�≡ 0. (3.8)

This fact together with (3.7) yields that

[U−, U+, Uδ] = 0, (3.9)

namely,

Uδ = μ−U− + μ+U+, μ− + μ+ = 1. (3.10)

Then, using (3.9) and (3.6), we deduce from Ξ − Ξ′ = Uδ that

[U−, U+,Ξ] = [U−, U+,Ξ0]es̄ > 0, (3.11)

then

[U−, Uδ,Ξ] = [U+, Uδ,Ξ] + [U−, U+,Ξ0]es̄. (3.12)

Hence, we can further derive from (2.27) that

m−m′ = ρ−[U−, U+,Ξ0] + (ρ− − ρ+)[U+, Uδ,Ξ]e−s̄, (3.13)

mUδ − (mUδ)′ = ρ−U−[U−, U+,Ξ0] + (ρ−U− − ρ+U+)[U+, Uδ,Ξ]e−s̄, (3.14)

(m2 ||Uδ||2 + n) − (m2 ||Uδ||2 + n)′ = (ρ−
2 ||U−||2 + H−)[U−, U+,Ξ0]

+ (ρ−
2 ||U−||2 + H− − ρ+

2 ||U+||2 −H+)[U+, Uδ,Ξ]e−s̄. (3.15)

When ρ− = ρ+. Integrating (3.13) from 0 to s̄ gives

m = es̄(m0 + ρ−[U−, U+,Ξ0](e−s̄ − 1)). (3.16)

Using (3.10) and (3.11), one can calculate from (3.14) that

m(μ+U− + μ−U+) = es̄
(
m0U

0
δ − ρ−[U−, U+,Ξ0]

s̄∫
0

(μ+U− + μ−U+)e−τdτ
)
.

Differentiating this equation with respect to s̄, we derive

μ′
−

2μ−−1 = ρ−[U−,U+,Ξ0]e−s̄

m0+ρ−[U−,U+,Ξ0](e−s̄−1) .

Solving this equation yields that

μ− = 1
2
(
1 + m2

0(2μ
0
−−1)

(m0+ρ−[U−,U+,Ξ0](e−s̄−1))2
)
,
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hence,

Uδ = 1
2 (U− + U+) + 1

2
m2

0(2μ
0
−−1)

(m0+ρ−[U−,U+,Ξ0](e−s̄−1))2 (U− − U+). (3.17)

By a simple calculation, we have that

Ξ =es̄
(
Ξ0 + m2

0(2μ
0
−−1)

2ρ−[U−,U+,Ξ0]
( 1
m0

− 1
m0+ρ−[U−,U+,Ξ0](e−s̄−1)

)
(U− − U+)

+ 1
2 (e−s̄ − 1)(U− + U+)

)
, (3.18)

n =es̄
(

(2μ0
−−1)m2

0
2ρ−

( 1
m0

− 1
m0+ρ−[U−,U+,Ξ0](e−s̄−1)

)
(ρ+

2 ||U+||2 + H+ − ρ−
2 ||U−||2 −H−) + n0

+ m0
2 ||U0

δ ||2 + e−s̄−1
2 [U−, U+,Ξ0](ρ−

2 ||U−||2 + H− + ρ+
2 ||U+||2 + H+)

)
− m

2 ||Uδ||2. (3.19)

Besides, we can calculate that

[U−, Uδ,Ξ]= es̄

2 (1 − m2
0(2μ

0
−−1)

(m0+ρ−[U−,U+,Ξ0](e−s̄−1))2 )[U−, U+,Ξ0]

= 2m2
0(1−μ0

−)+ρ−[U−,U+,Ξ0](e−s̄−1)(2m0+ρ−[U−,U+,Ξ0](e−s̄−1))
2(m0+ρ−[U−,U+,Ξ0](e−s̄−1))2 [U−, U+,Ξ0]es̄

>0,

[U+, Uδ,Ξ]= − es̄

2 (1 + m2
0(2μ

0
−−1)

(m0+ρ−[U−,U+,Ξ0](e−s̄−1))2 )[U−, U+,Ξ0]

= − 2μ0
−m2

0+ρ−[U−,U+,Ξ0](e−s̄−1)(2m0+ρ−[U−,U+,Ξ0](e−s̄−1))
2(m0+ρ−[U−,U+,Ξ0](e−s̄−1))2 [U−, U+,Ξ0]es̄

<0.

Therefore, the solution expressed in (3.16), (3.17), (3.18) and (3.19) is an entropy solution.
When ρ− �= ρ+. Comparing (3.13) with (3.14), we obtain

(m((ρ− − ρ+)Uδ − (ρ−U− − ρ+U+)))′ =m((ρ− − ρ+)Uδ − (ρ−U− − ρ+U+))

+ ρ−ρ+(U− − U+)[U−, U+,Ξ0]. (3.20)

Integrating it from 0 to s̄ leads to

m(ρ− − ρ+)Uδ =m0(ρ− − ρ+)U0
δ e

s̄ + (m−m0e
s̄)(ρ−U− − ρ+U+)

+ ρ−ρ+(U− − U+)[U−, U+,Ξ0](es̄ − 1),

then,

m2 −mm′ =ρ−[U−, U+,Ξ0]m + [U+, (ρ− − ρ+)mUδ,Ξ]e−s̄

=ρ−[U−, U+,Ξ0]m + [U+,m0(ρ− − ρ+)U0
δ e

s̄ + (m−m0e
s̄)(ρ−U− − ρ+U+)

+ ρ−ρ+(U− − U+)[U−, U+,Ξ0](es̄ − 1),Ξ]e−s̄

=m0(ρ−μ0
+ + ρ+μ

0
−)[U−, U+,Ξ0]es̄ + ρ−ρ+[U−, U+,Ξ0]2(1 − es̄). (3.21)

One solves (3.21) to derive
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m = ±es̄
√

G0(s̄), (3.22)

where G0(s̄) = m2
0 + 2m0(ρ−μ0

+ + ρ+μ
0
−)[U−, U+, Ξ0](e−s̄ − 1) + ρ−ρ+[U−, U+, Ξ0]2(e−s̄ − 1)2. We then get

Uδ = 1
ρ−−ρ+

(
ρ−U− − ρ+U+ + G1(s̄)

m

)
, (3.23)

here G1(s̄) = m0e
s̄((ρ− − ρ+)U0

δ − ρ−U− + ρ+U+) + ρ−ρ+(U− − U+)[U−, U+, Ξ0](es̄ − 1). Again note 
Ξ − Ξ′ = Uδ, we obtain that

Ξ = Ξ0e
s̄ + es̄

ρ−−ρ+

(
(ρ−U− − ρ+U+)(e−s̄ − 1) −

s̄∫
0

G1
m e−τdτ

)
. (3.24)

Also, inserting (3.13) into (3.15), we arrive at

((ρ− − ρ+)(m2 ||Uδ||2 + n) −m(ρ−
2 ||U−||2 + H− − ρ+

2 ||U+||2 −H+))′

=(ρ− − ρ+)(m2 ||Uδ||2 + n) −m(ρ−
2 ||U−||2 + H− − ρ+

2 ||U+||2 −H+)

+ (ρ+(ρ−
2 ||U−||2 + H−) − ρ−(ρ+

2 ||U+||2 + H+))[U−, U+,Ξ0],

which is solved to be

n = − m
2 ||Uδ||2 + (m0

2 ||U0
δ ||2 + n0)es̄

+ 1
ρ−−ρ+

(
(m−m0e

s̄)(ρ−
2 ||U−||2 + H− − ρ+

2 ||U+||2 −H+)

+ (ρ−(ρ+
2 ||U+||2 + H+) − ρ+(ρ−

2 ||U−||2 + H−))[U−, U+,Ξ0](1 − es̄)
)
. (3.25)

Let us single out an entropy solution. As m = es̄
√
G0(s̄), from

G0(s̄) − (m0 + ρ−[U−, U+,Ξ0](e−s̄ − 1))2

=
(
2m0μ

0
−[U−, U+,Ξ0](e−s̄ − 1) + ρ−[U−, U+,Ξ0]2(e−s̄ − 1)2

)
(ρ+ − ρ−),

G0(s̄) − (m0 + ρ+[U−, U+,Ξ0](e−s̄ − 1))2

=
(
2m0μ

0
+[U−, U+,Ξ0](e−s̄ − 1) + ρ+[U−, U+,Ξ0]2(e−s̄ − 1)2

)
(ρ− − ρ+),

we can deduce that

[U−, Uδ,Ξ]= e2s̄

m (m0μ
0
+ − ρ+

me−s̄−m0−ρ−[U−,U+,Ξ0](e−s̄−1)
ρ−−ρ+

)[U−, U+,Ξ0]

= e2s̄

m (m0μ
0
+ − ρ+

√
G0(s̄)−(m0+ρ−[U−,U+,Ξ0](e−s̄−1))

ρ−−ρ+
)[U−, U+,Ξ0]

>0,

[U+, Uδ,Ξ]= − e2s̄

m (m0μ
0
− + ρ−

me−s̄−m0−ρ+[U−,U+,Ξ0](e−s̄−1)
ρ−−ρ+

)[U−, U+,Ξ0]

= − e2s̄

m (m0μ
0
− + ρ−

√
G0(s̄)−(m0+ρ+[U−,U+,Ξ0](e−s̄−1))

ρ−−ρ+
)[U−, U+,Ξ0]

<0.
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Fig. 3.2. The qualitative behavior of solution to Case 3.2.

However, as m = −es̄
√

G0(s̄), if ρ− − ρ+ > 0, it yields that

[U−, Uδ,Ξ] = e2s̄

m (m0μ
0
+ − ρ+

me−s̄−m0−ρ−[U−,U+,Ξ0](e−s̄−1)
ρ−−ρ+

)[U−, U+,Ξ0] < 0. (3.26)

Therefore, we choose m = es̄
√

G0(s̄) by entropy condition (2.28). The entropy solution is given as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ =Ξ0e
s̄ + es̄

ρ−−ρ+

(
(ρ−U− − ρ+U+)(e−s̄ − 1) −

s̄∫
0

G1
m e−τdτ

)
,

m =es̄
√

G0(s̄),

Uδ = 1
ρ−−ρ+

(
ρ−U− − ρ+U+ + G1(s̄)

m

)
,

n = − m
2 ||Uδ||2 + (m0

2 ||U0
δ ||2 + n0)es̄

+ 1
ρ−−ρ+

(
(m−m0e

s̄)(ρ−
2 ||U−||2 + H− − ρ+

2 ||U+||2 −H+)

+ (ρ−(ρ+
2 ||U+||2 + H+) − ρ+(ρ−

2 ||U−||2 + H−))[U−, U+,Ξ0](1 − es̄)
)
.

(3.27)

With a simple calculation, we can obtain the following lemma.

Lemma 3.3. Under the conditions ρ−H− > 0, ρ+H+ > 0, [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0, [U−, U+, U0
δ ] =0, 

the solution to (2.27) and (3.1) given in (3.16), (3.17), (3.18) and (3.19) as ρ− = ρ+, or (3.27) as ρ− �= ρ+, 
has the following properties, as illustrated in Fig. 3.2.

(1) lims̄→−∞(Ξ, m, Uδ, n) = (U−+
δ , 

√
ρ−ρ+[U−, U+, Ξ0], U−+

δ , n−+), where U−+
δ =

√
ρ−U−+√

ρ+U+√
ρ−+√

ρ+
, n−+ =

[U−,U+,Ξ0]√
ρ−+√

ρ+

(√
ρ−(ρ+

2 ||U+||2 + H+ − ρ+
2 ||U−+

δ ||2) + √
ρ+(ρ−

2 ||U−||2 + H− − ρ−
2 ||U−+

δ ||2)
)
;

(2) The Uδ = Uδ(s̄) lies on the line U−U+ and approaches the point U−+
δ asymptotically;

(3) The Ξ = Ξ(s̄) protrudes to the line Ξ0U+ and approaches U−+
δ asymptotically.

Remark 3.4. Under the conditions ρ−H− > 0, ρ+H+ > 0, [U−, U+, Ξ0] > 0, Ξ(0) = Ξ0, Uδ(0) = U0
δ ,

m(0) = 0, n(0) = 0, one can solve (2.27) and (3.1) in a similar way. The entropy solution is shown as 
follows,



2050 Y. Pang / J. Math. Anal. Appl. 472 (2019) 2034–2074
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ =es̄
(
Ξ0 + Uδ(e−s̄ − 1)

)
,

m =√
ρ−ρ+[U−, U+,Ξ0](1 − es̄),

Uδ =
√
ρ−U−+√

ρ+U+√
ρ−+√

ρ+
,

n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(ρ−

2 ||U−||2 + H− + ρ+
2 ||U+||2 + H+

)
[U−, U+,Ξ0](1 − es̄)

− m
2 ||Uδ||2, if ρ− = ρ+,

1
ρ−−ρ+

(
m(ρ−

2 ||U−||2 + H− − ρ+
2 ||U+||2 −H+)

+
(
ρ−(ρ+

2 ||U+||2 + H+) − ρ+(ρ−
2 ||U−||2 + H−)

)
[U−, U+,Ξ0](1 − es̄)

)
− m

2 ||Uδ||2, if ρ− �= ρ+.

(3.28)

3.3. ρ−H− > 0, ρ+H+ > 0, [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0, [U−, U+, U0
δ ] > 0

The conditions [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0 imply that the straight line Ξ0U
0
δ intersects with the 

segment U−U+ in the interior, labeled Ũ0
δ by the intersection point, that is, Ũ0

δ = μ0
−U− + μ0

+U+, μ0
− > 0,

μ0
+ > 0, μ0

− + μ0
+ = 1. Let μ0 be the ratio of the length of segment U−Ũ0

δ and that of Ũ0
δU+, namely, 

μ0 = μ0
+/μ

0
−. If the solution of (2.27) and (3.1) satisfies entropy condition (2.28), we can define a similar 

μ = μ+/μ−, the ratio of the length of the segment U−Ũδ and that of ŨδU+, where Ũδ is the intersection 
point of the straight segments ΞUδ and U−U+, namely, Ũδ = μ−U− + μ+U+, μ− > 0, μ+ > 0, μ− + μ+ = 1.

Denote b0− = [U−, U0
δ , Ξ0], b0+ = −[U+, U0

δ , Ξ0], b− = [U−, Uδ, Ξ] and b+ = −[U+, Uδ, Ξ]. Then it holds 
that, μ0 = μ0

+/μ
0
− = b0−/b

0
+, μ = μ+/μ− = b−/b+. We then deduce from (2.27) that

μ′ = (ρ−μ2 − ρ+) [U−,U+,Ξ]
mes̄ . (3.29)

Solving this differential equation with initial value μ|s̄=0 = μ0 > 0, we get

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ =
√
ρ+/ρ−, if μ0 =

√
ρ+/ρ−,

√
ρ+/ρ−+μ√
ρ+/ρ−−μ

=
√

ρ+/ρ−+μ0√
ρ+/ρ−−μ0

exp
( s̄∫

0

−2√ρ−ρ+
[U−,U+,Ξ]

es̄m ds
)
, if μ0 �=

√
ρ+/ρ−.

(3.30)

We now present some lemmas.

Lemma 3.5. Under the conditions ρ− > 0, ρ+ > 0, [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0, [U−, U+, U0
δ ] > 0, let 

[U−, Uδ, Ξ] > 0, [U+, Uδ, Ξ] < 0, then the inequality holds

([U−, U+,Ξ] − [U−, U+, Uδ])e−s̄ > [U−, U+,Ξ0] − [U−, U+, U
0
δ ] > 0, ∀s̄ < 0. (3.31)

Proof. From the conditions [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0, we can see that [U−, U+, Ξ0] − [U−, U+, U0
δ ] =

[U−, U0
δ , Ξ0] − [U+, U0

δ , Ξ0] > 0. Similarly, the conditions [U−, Uδ, Ξ] > 0 and [U+, Uδ, Ξ] < 0 yield

[U−, U+,Ξ] − [U−, U+, Uδ] = [U−, Uδ,Ξ] − [U+, Uδ,Ξ] > 0, (3.32)

m = es̄
(
m0 +

0∫
s̄

(ρ−[U−, Uδ,Ξ] − ρ+[U+, Uδ,Ξ])e−2τdτ
)
> 0, (3.33)

that is,
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[U−,U+,Ξ]
m > [U−,U+,Uδ]

m > 0. (3.34)

Besides, by [U−, U+, U0
δ ] > 0, it follows from (2.29) that

[U−, U+, Uδ]/m > 0, [U−, U+, Uδ]′ = (m−m′)[U−, U+, Uδ]/m. (3.35)

In virtue of m −m′ = ρ−[U−, Uδ, Ξ] − ρ+[U+, Uδ, Ξ] > 0, we have [U−, U+, Uδ]′ > 0, then, (([U−, U+, Ξ] −
[U−, U+, Uδ])e−s̄)′ = −[U−, U+, Uδ]′e−s̄ < 0, ∀s̄ < 0. The proof is complete. �

Using (3.29), (3.30) and (3.34), we arrive at the following result.

Lemma 3.6. Under the conditions [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0, [U−, U+, U0
δ ] > 0, ρ− > 0, if 

[U−, Uδ, Ξ] > 0, [U+, Uδ, Ξ] < 0, then for all s̄ < 0, the solution to (3.29) with initial value μ|s̄=0 = μ0 > 0
possesses the following properties.

(1) If μ0 <
√

ρ+/ρ−, then μ′ < 0, 0 < μ0 < μ <
√
ρ+/ρ−;

(2) If μ0 =
√

ρ+/ρ−, then μ′ = 0, μ =
√
ρ+/ρ−;

(3) If μ0 >
√

ρ+/ρ−, then μ′ > 0, 
√

ρ+/ρ− < μ < μ0.

Lemma 3.7. Assume that [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0, [U−, U+, U0
δ ] > 0, ρ− > 0, ρ+ > 0, μ0 > 0. 

If there exists a unique solution to (2.27) and (3.1) for all s̄ ∈ (−∞, 0], then this solution satisfies entropy 
condition (2.28).

Proof. The contradiction method is used to prove this lemma. We only discuss the case μ0 <
√
ρ+/ρ−. The 

other cases can be done similarly. Let G = {s̄ ≤ 0|b−(τ) > 0, b+(τ) > 0, ∀τ ∈ [s̄, 0]}. With the conditions 
[U−, U0

δ , Ξ0] > 0, [U+, U0
δ , Ξ0] < 0, the continuity of b−, b+ shows that there exists a s̄1 < 0, such that 

b−(τ) > 0, b+(τ) > 0 for all τ ∈ [s̄1, 0]. Thus G is a non-empty set.
We proceed to prove inf G = −∞. Let s̄∗ = inf G > −∞. According to conditions [U−, U+, U0

δ ] > 0,
ρ− > 0, ρ+ > 0, μ0 > 0, when s̄ ∈ (s̄∗, 0], it holds that

0 < μ0 < μ = b−/b+ <
√

ρ+/ρ−, (3.36)

and ([U−, U+, Ξ] − [U−, U+, Uδ])e−s̄ > [U−, U+, Ξ0] − [U−, U+, U0
δ ] > 0 by Lemma 3.5, namely,

(b− + b+)e−s̄ > b0− + b0+ > 0. (3.37)

In virtue of continuity of b− and b+, we take respectively the limits in (3.36) and (3.37) to obtain 
b−(s̄∗)/b+(s̄∗) > 0, b−(s̄∗) + b+(s̄∗) > 0. These facts lead to b−(s̄∗) > 0, b+(s̄∗) > 0, which mean that 
G is a closed set. Thus, there exists a constant h > 0, such that b−(τ) > 0, b+(τ) > 0, ∀τ ∈ (s̄∗−h, 0], which 
contradicts to s̄∗ = inf G. The proof is complete. �
Theorem 3.8. Assume that [U−, U0

δ , Ξ0] > 0, [U+, U0
δ , Ξ0] < 0, [U−, U+, U0

δ ] > 0, ρ−H− > 0, ρ+H+ > 0,
μ0 > 0. For all s̄ < 0, there exists uniquely an entropy solution to (2.27) and (3.1).

Proof. It is trivially checked that the right side of (2.27) is a continuous vector-valued function and satisfies 
a local Lipschtiz condition. By the theorem on the existence and unique of solution to the system of ordinary 
differential equations, there exists uniquely a solution to (2.27) and (3.1) on an interval I, where the solution 
can be extended to the boundary of the region Ω = {(Ξ, Uδ, m, n, ̄s)|m > 0, n > 0, ̄s < 0}.
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If I is a finite interval, namely I = (A0, 0], where A0 < 0 is a constant, then it holds lims̄→A0(||Ξ|| +||Uδ|| +
|m| + |n|) = ∞. With a similar proof as in Lemma 3.7, we can see that b−(s̄) > 0, b+(s̄) > 0, ∀s̄ ∈ (A0, 0]. 
Hence as s̄ ∈ (A0, 0], it shows from Lemma 3.5 that

m−m′ ≥ min{ρ−, ρ+}(b− + b+)e−s̄ ≥ min{ρ−, ρ+}(b0− + b0+) = a0 > 0, (3.38)

hence,

m = m0e
A0 + eA0

A0∫
0

−(m−m′)e−τdτ ≥ m0e
A0 + a0(1 − eA0) > 0. (3.39)

Besides, notice that [U−, U+, U0
δ ] > 0, m0 > 0, it gives from (2.29) that

0 < [U−, U+, Uδ]e−s̄ = m0[U−,U+,U0
δ ]

m ≤ m0[U−,U+,U0
δ ]

m0eA0+a0(1−eA0 ) = l0, (3.40)

then, by Lemma 3.5,

0 <[U−, U+, Uδ] < [U−, U+,Ξ] = eA0
(
[U−, U+,Ξ0] −

A0∫
0

[U−, U+, Uδ]e−τdτ
)

≤eA0([U−, U+,Ξ0] −A0l0). (3.41)

This gives that

(b− + b+)e−s̄ =([U−, U+,Ξ] − [U−, U+, Uδ])e−s̄ ≤ ([U−, U+,Ξ])e−s̄

≤[U−, U+,Ξ0] −A0l0. (3.42)

Therefore, by these inequalities, it can be derived easily that

|m| =eA0
(
m0 −

A0∫
0

(ρ−b− + ρ+b+)e−2τdτ
)

≤eA0
(
m0 −

A0∫
0

max{ρ−, ρ+}(b− + b+)e−2τdτ
)

≤m0e
A0 + max{ρ−, ρ+}([U−, U+,Ξ0] −A0l0)(1 − eA0),

||Uδ|| =
∣∣∣∣∣∣ eA0

m

(
m0U

0
δ −

A0∫
0

(ρ−U−b− + ρ+U+b+)e−2τdτ
)∣∣∣∣∣∣

≤ eA0

m0eA0+a0(1−eA0 )

(
m0||U0

δ || +
0∫

A0

max{ρ−||U−||, ρ+||U+||}(b− + b+)e−2τdτ
)

≤ 1
m0eA0+a0(1−eA0 )

(
([U−, U+,Ξ0] −A0l0)(1 − eA0) max{ρ−||U−||, ρ+||U+||}

+ eA0m0||U0
δ ||

)
,
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||Ξ|| =
∣∣∣∣∣∣eA0

(
Ξ0 −

A0∫
0

Uδe
−τdτ

)∣∣∣∣∣∣ ≤ eA0
(
||Ξ0|| +

0∫
A0

||Uδ||e−τdτ
)

= 1−eA0

m0eA0+a0(1−eA0 )

(
([U−, U+,Ξ0] −A0l0)(1 − eA0) max{ρ−||U−||, ρ+||U+||}

+ eA0m0||U0
δ ||

)
+ eA0 ||Ξ0||,

|n| =
∣∣∣eA0

(
−

A0∫
0

((ρ−
2 ||U−||2 + H−)b− + (ρ+

2 ||U+||2 + H+)b+)e−2τdτ
)

+ eA0(m0
2 ||U0

δ ||2 + n0) − m
2 ||Uδ||2

∣∣∣
≤eA0

(
−

A0∫
0

max{(ρ−
2 ||U−||2 + H−), (ρ+

2 ||U+||2 + H+)}(b− + b+)e−2τdτ
)

+ eA0(m0
2 ||U0

δ ||2 + n0) + |m|
2 ||Uδ||2

≤max{(ρ−
2 ||U−||2 + H−), (ρ+

2 ||U+||2 + H+)}([U−, U+,Ξ0] −A0l0)(1 − eA0)

+ |m|
2 ||Uδ||2 + eA0(m0

2 ||U0
δ ||2 + n0).

These show that lims̄→A0(||Ξ|| + ||Uδ|| + |m| + |n|) < ∞, which contradicts to lims̄→A0(||Ξ|| + ||Uδ|| + |m| +
|n|) = ∞. Hence, there exists uniquely a solution to (2.27) and (3.1) for all s̄ < 0.

Furthermore, we can verify by Lemma 3.7 that the solution satisfies entropy condition (2.28). The proof 
is complete. �

We discuss subsequently the trajectory of Ξ = Ξ(s̄), ̄s < 0, in (ξ, η)-plane. To make the following presen-
tation more convenient, we choose a coordinate system such that U−+

δ is on the origin of (ξ, η)-plane, the 

line through U− and U+ coincides with η-axis, and the direction of −−−−→U+U− is the direction of η-axis.

Lemma 3.9. Suppose that [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0, [U−, U+, U0
δ ] > 0, ρ− > 0, ρ+ > 0, μ0 > 0. 

Denote Ξ = Ξ(s̄) by η = η(ξ), ̄s < 0, then η = η(ξ) possesses the following properties.

(1) If μ0 <
√

ρ+/ρ−, then d2η
dξ2 < 0;

(2) If μ0 =
√

ρ+/ρ−, then d2η
dξ2 = 0;

(3) If μ0 >
√

ρ+/ρ−, then d2η
dξ2 > 0.

Proof. We only prove (1). The other cases can be treated similarly. In our coordinate system, ũδ(s̄) = 0,
ṽδ(s̄) = μ−v− + μ+v+. Since μ0 <

√
ρ+/ρ−, it gives by Lemma 3.6 that

ṽδ
′ > 0, ∀s̄ < 0. (3.43)

Besides, by Theorem 3.8, it holds from (3.34) that

[U−, U+, Uδ] > 0, ∀s̄ < 0. (3.44)

This fact with (3.32) leads to [U−, U+, Ξ] = [U−, U+, Uδ] + [U−, Uδ, Ξ] − [U+, Uδ, Ξ] > 0, [U−, U+, Ξ′] =
[U−, U+, Ξ] − [U−, U+, Uδ] = [U−, Uδ, Ξ] − [U+, Uδ, Ξ] > 0, hence, ξ > 0, ξ′ > 0, ∀s̄ < 0. Thus, it yields that
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dη
dξ = η′

ξ′ = η−vδ
ξ−uδ

= η−ṽδ
ξ−ũδ

= η−ṽδ
ξ , d2η

dξ2 = − ṽδ
′

ξξ′ < 0. (3.45)

The proof is complete. �
We next study the trajectory of Uδ = Uδ(s̄), ̄s < 0, in (u, v)-plane. The (u, v)-plane is chosen in the 

same way as the previous (ξ, η)-plane. Hence, these two coordinate systems can be coincided. Let Uδ =
Uδ(s̄) = (uδ(s̄, vδ(s̄) by vδ = vδ(uδ). Its tangent line intersects with the line U−U+ at some point Ūδ, that 
is, Ūδ = (ūδ, v̄δ) = k−U− + k+U+, k− + k+ = 1. We have that

k+
k−

= lim
h→0

− [U−,Uδ(s̄+h),Uδ(s̄)]
[U+,Uδ(s̄+h),Uδ(s̄)] = lim

h→0
− ([U−,Uδ(s̄+h),Uδ(s̄)]−[U−,Uδ(s̄),Uδ(s̄)])/h

([U+,Uδ(s̄+h),Uδ(s̄)]−[U+,Uδ(s̄),Uδ(s̄)])/h

= − [U−,U ′
δ,Uδ]

[U+,U ′
δ,Uδ] = − [U−,mU ′

δ,Uδ]
[U+,mU ′

δ,Uδ] . (3.46)

Using (2.27), it follows that k+/k− = ρ+b+(ρ−b−)−1 = ρ+(ρ−μ)−1 > 0, which means that Ūδ lies in the 
interior of the segment U−U+.

Lemma 3.10. Assume that [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0, [U−, U+, U0
δ ] > 0, ρ−ρ+ > 0, μ|s̄=0 = μ0 > 0. 

In (u, v)-plane, the trajectory of curve vδ = vδ(uδ) is shown as follows.

(1) If μ0 <
√

ρ+/ρ−, then d2vδ
du2

δ
> 0;

(2) If μ0 =
√

ρ+/ρ−, then d2vδ
du2

δ
= 0;

(3) If μ0 >
√

ρ+/ρ−, then d2vδ
du2

δ
< 0.

Proof. In the chosen coordinate system, we have ūδ(s̄) = 0, ̄vδ(s̄) = k−v− + k+v+. As μ0 <
√

ρ+/ρ−, it 
holds that (k+/k−)′ > 0 by Lemma 3.6, then

v̄′δ < 0, ∀s̄ < 0. (3.47)

Notice that,

dvδ
duδ

= v′
δ

u′
δ

= vδ−v̄δ
uδ−ūδ

= vδ−v̄δ
uδ

, (3.48)

it is easy to see that d2vδ
du2

δ
= −v̄′δ(uδu

′
δ)−1. In view of Theorem 3.8, we have [U−, Uδ, Ξ] > 0, [U+, Uδ, Ξ] < 0. 

These facts with (3.35) and (3.33) yield [U−, U+, Uδ] > 0, [U−, U+, U ′
δ] > 0, which show uδ > 0, u′

δ > 0. 
Thus, we have d2vδ

du2
δ
> 0. The other cases can be done similarly. The proof is complete. �

Finally, we analyze the limit behaviors of Ξ(s̄) and Uδ(s̄) as s̄ → −∞.

Lemma 3.11. Under the conditions [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0, [U−, U+, U0
δ ] > 0, ρ−H− > 0,

ρ+H+ > 0, μ0 > 0, the Ξ(s̄) and Uδ(s̄) satisfy

lim
s̄→−∞

Ξ(s̄) = U−+
δ , lim

s̄→−∞
Uδ(s̄) = U−+

δ . (3.49)

Proof. In the chosen coordinate system, according to Theorem 3.8, it shows [U−, Uδ, Ξ] > 0, [U+, Uδ, Ξ] < 0. 
Using Lemma 3.5, the combination of (2.29) and (3.33) shows that 0 ≤ lims̄→−∞[U−, U+, Uδ] ≤
lims̄→−∞ Ces̄(m0e

s̄ + a0(1 − es̄))−1 = 0, so lims̄→−∞ uδ = 0. We further calculate that
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Fig. 3.3. The qualitative behavior of solution to Case 3.3 with μ0 <
√

ρ+/ρ−.

[U−, U+,Ξ] = es̄[U−, U+,Ξ0] − es̄
s̄∫

0

[U−, U+, Uδ]e−τdτ, (3.50)

which implies lims̄→−∞[U−, U+, Ξ] = 0, hence lims̄→−∞ ξ = 0, lims̄→−∞(b−+b+) = lims̄→−∞([U−, U+, Ξ] −
[U−, U+, Uδ]) = 0.

Next, we prove lims̄→−∞ vδ = 0, lims̄→−∞ η = 0. Here we only deal with the case μ0 <
√

ρ+/ρ−. The 
other cases can be done similarly. Both (3.45) and (3.48) imply that η = ṽδ+η′ξ(ξ′)−1, vδ = v̄δ+v′δuδ(u′

δ)−1. 
In virtue of μ0 <

√
ρ+/ρ−, Ξ − Ξ′ = Uδ, we deduce from Lemmas 3.9 and 3.10 that

−∞ < η′(0)/ξ′(0) < η′/ξ′ < v′δ/u
′
δ < v′δ(0)/u′

δ(0) < +∞, (3.51)

which shows both v′δ/u
′
δ and η′/ξ′ are bounded. Besides, it follows from (3.43) and (3.47) that

0 = μ−
√
ρ−+√

ρ+√
ρ−

√
ρ−v−+√

ρ+v+√
ρ−+√

ρ+
< μ−(v− + μv+) = ṽδ < ṽδ(0),

v̄δ(0) < v̄δ = k−(v− + ρ+
ρ−μv+) < k−

√
ρ−+√

ρ+√
ρ−

√
ρ−v−+√

ρ+v+√
ρ−+√

ρ+
= 0,

hence lims̄→−∞ η = lims̄→−∞ ṽδ ≥ 0, lims̄→−∞ vδ = lims̄→−∞ v̄δ ≤ 0. Since lims̄→−∞ ξ′ = lims̄→−∞(ξ −
uδ) = 0, we can obtain from (3.51) that lims̄→−∞ η − vδ = lims̄→−∞ η′ = 0. Hence, we arrive at 
lims̄→−∞ η = 0 and lims̄→−∞ vδ = 0. We finish the proof of this lemma. �

In all, the qualitative behavior of solution is obtained. Here we only present the qualitative behavior of 
solution for Case μ0 <

√
ρ+/ρ− in Fig. 3.3.

3.4. ρ−H− > 0, ρ+H+ > 0, [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0, [U−, U+, U0
δ ] < 0

We first prove some lemmas.

Lemma 3.12. Under the conditions ρ−H− > 0, ρ+H+ > 0, μ0 > 0, [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0,
[U−, U+, U0

δ ] < 0. If [U−, U+, Ξ0] > 0, then there exists a constant s̄1 > −∞, such that [U−, U+, Ξ(s̄1)] = 0.

Proof. The contradiction method is used to prove this lemma. Here we only consider the case μ0 <
√
ρ+/ρ−. 

The other cases can be proved similarly. In virtue of [U−, U+, Ξ0] > 0, assume that

[U−, U+,Ξ] > 0, ∀s̄ < 0. (3.52)
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Define G = {s̄ < 0|b−(τ) > 0, b+(τ) > 0, μ0 ≤ μ <
√
ρ+/ρ−, ∀τ ∈ [s̄, 0]}. Obviously, the set G is a 

non-empty set.
We show inf G = −∞. Suppose s̄∗ = inf G > −∞. Then as τ ∈ (s̄∗, 0], it holds that μ0 ≤ μ =

b−(τ)/b+(τ) <
√
ρ+/ρ−, b−(τ) + b+(τ) = [U−, U+, Ξ] − [U−, U+, Uδ] > 0, b−(τ) > 0, b+(τ) > 0. Notice 

that (3.29), we obtain b−(s̄∗) > 0, b+(s̄∗) > 0, μ0 ≤ μ(s̄∗) <
√

ρ+/ρ− by the continuity of b− and b+, which 
imply that G is a closed set. Thus there exists a constant h > 0, such that b−(τ) > 0, b+(τ) > 0, μ0 ≤ μ <√
ρ+/ρ−, ∀τ ∈ (s̄∗ − h, 0], which contradicts to s̄∗ = inf G.
We substitute (2.29) into (3.50), and conduce that

[U−, U+,Ξ] = es̄
(
[U−, U+,Ξ0] + C

0∫
s̄

m−1dτ
)
,

where, C = m0[U−, U+, U0
δ ] < 0. Noting [U−, U+, U0

δ ] < 0, b− > 0, b+ > 0, ∀s̄ < 0, it shows that

0 <m = es̄
(
m0 +

0∫
s̄

(m−m′)e−τdτ
)

<es̄m0 + max{ρ−, ρ+}([U−, U
0
δ ,Ξ0] − [U+, U

0
δ ,Ξ0])(1 − es̄)

<m0 + max{ρ−, ρ+}([U−, U
0
δ ,Ξ0] − [U+, U

0
δ ,Ξ0]),

which implies that 
∫ 0
s̄
m−1dτ is divergent. Thus, we have lims̄→∞[U−, U+, Ξ] < 0, which contradicts 

to (3.52). We complete the proof of this lemma. �
Lemma 3.13. Under the conditions ρ−H− > 0, ρ+H+ > 0, μ0 > 0, [U−, U0

δ , Ξ0] > 0, [U+, U0
δ , Ξ0] < 0,

[U−, U+, U0
δ ] < 0. There exists a constant s̄2 < s̄1, such that the entropy condition is violated, that is,

(1) If μ0 <
√

ρ+/ρ−, there exists a constant s̄2 < s̄1, such that b−(s̄2) = 0;
(2) If μ0 =

√
ρ+/ρ−, there exists a constant s̄2 < s̄1, such that b−(s̄2) = 0 and b+(s̄2) = 0;

(3) If μ0 >
√

ρ+/ρ−, there exists a constant s̄2 < s̄1, such that b+(s̄2) = 0.

Proof. We consider μ0 <
√

ρ+/ρ−. Let G = {s̄ < s̄1|b−(τ) > 0, b+(τ) > 0, τ ∈ (s̄, ̄s1]}. Obviously, G is 
a non-empty set. Denote s̄2 = inf G. We claim that s̄2 > −∞. In fact, if s̄2 = −∞, then it holds that 
b−(s̄) > 0, b+(s̄) > 0, ∀s̄ < 0. We then get [U−, U+, Ξ′] = [U−, U+, Ξ] − [U−, U+, Uδ] = b− + b+ > 0. Hence, 
letting s̄3 < s̄1, it holds that [U−, U+, Ξ(s̄3)] < [U−, U+, Ξ(s̄1)] = 0, μ(s̄3) <

√
ρ+/ρ−, [U−, U+, Uδ(s̄3)] <

[U−, U+, Ξ(s̄3)]. Integrating (3.29) from s̄3 to s̄, we obtain

√
ρ+/ρ−+μ√
ρ+/ρ−−μ

=
√

ρ+/ρ−+μ(s̄3)√
ρ+/ρ−−μ(s̄3)

exp
(
−

s̄∫
s̄3

2√ρ−ρ+
[U−,U+,Ξ]

eτm dτ
)
. (3.53)

Considering

−
s̄∫

s̄3

2√ρ−ρ+
[U−,U+,Ξ]

eτm dτ =
s̄3∫
s̄

2√ρ−ρ+
[U−,U+,Ξ][U−,U+,Uδ]

eτm[U−,U+,Uδ] dτ

≤
s̄3∫
s̄

2√ρ−ρ+
[U−,U+,Ξ(s̄3)]2

e2τC dτ,
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Fig. 3.4. The qualitative behavior of solution to Case 3.4 with μ0 <
√

ρ+/ρ−.

where C = m0[U−, U+, U0
δ ] < 0, it gives that the right-hand side of (3.53) tends to 0 as s̄ → −∞. This fact 

implies that there exists a constant s̄4 such that (
√
ρ+/ρ− + μ)(

√
ρ+/ρ− − μ)−1 = 1, that is b−(s̄4) = 0, 

which contradicts to s̄4 ∈ G. Thus, there exists a constant s̄2 < s̄1, such that b−(s̄2) = 0. The other cases 
can be treated similarly. We finish the proof of this lemma. �

With the similar manner as in Lemmas 3.9 and 3.10, we obtain the following lemmas.

Lemma 3.14. Under the conditions ρ−H− > 0, ρ+H+ > 0, μ0 > 0, [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0,
[U−, U+, U0

δ ] < 0, as [U−, U+, Ξ0] > 0, then for all s̄ ∈ (s̄2, 0], the curve η = η(ξ) preserves its convexity, 
namely, all the conclusions of Lemma 3.9 are true.

Lemma 3.15. Under the conditions ρ−H− > 0, ρ+H+ > 0, μ0 > 0, [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0,
[U−, U+, U0

δ ] < 0, as [U−, U+, Ξ0] > 0, the trajectory of curve vδ = vδ(uδ) is shown as follows.

(1) When μ0 <
√
ρ+/ρ−, as s̄ ∈ (s̄1, 0], then d2vδ

du2
δ
> 0, while as s̄ ∈ (s̄2, ̄s1), then d2vδ

du2
δ
< 0;

(2) When μ0 =
√
ρ+/ρ−, then d2vδ

du2
δ

= 0, ̄s ∈ (s̄2, 0];
(3) When μ0 >

√
ρ+/ρ−, as s̄ ∈ (s̄1, 0], then d2vδ

du2
δ
< 0, while as s̄ ∈ (s̄2, ̄s1), then d2vδ

du2
δ
> 0.

Remark 3.16. Under the conditions ρ−H− > 0, ρ+H+ > 0, μ0 > 0, [U−, U0
δ , Ξ0] > 0, [U+, U0

δ , Ξ0] < 0,
[U−, U+, U0

δ ] < 0, as [U−, U+, Ξ0] < 0, we can prove that for all s̄ ∈ (s̄2, 0), the convexity of curve vδ = vδ(uδ)
is the same as that of curve η = η(ξ).

Therefore, we obtain clearly the qualitative behavior of solution. Here we only illustrate the qualitative 
behavior of solution for Case μ0 <

√
ρ+/ρ− in Fig. 3.4.

4. The structures of solutions

In this section, we construct the solutions to (1.3) and (1.4) in (ξ, η)-plane. The construction of the 
solutions involves frequently the interactions of two two-dimensional waves, where their interaction point 
Ξ0 becomes a straight line X = Ξ0t in (t, X)-space. We will continue the solution of (1.3) at the Cauchy 
support t = s : X = Ξ0s up to t > s which corresponds to s̄ < 0. This is why we solve the reformulated 
Rankine–Hugoniot relation (2.27) s̄ < 0.

We present the following Schauder’s fixed point theorem.
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Fig. 4.1. The solution for Case 4.1(i).

Theorem 4.1. Suppose that K is a non-empty convex closed set in Banach space B, T is a continuous 
operator, and T (K) is a precompact set in B. Then, there exists x ∈ K such that Tx = x.

Besides, for the presentation more convenient, we orient the normal direction of discontinuity x = 0, y ≥ 0
as N = (1, 0), the normal direction of ray y = 0, x ≥ 0 as N = (0, −1), the normal direction of ray 
x = 0, y ≤ 0 as N = (−1, 0), and the normal direction of ray y = 0, x ≤ 0 as N = (0, 1). We also list the 
following notations,

i©: the state (ρi, Ui, Hi), Ξi: the point (ui, vi), ΞiΞj : the segment connecting points Ξi and Ξj ,
Ωi: the determination region of the state i©, where Ω1 = {(ξ, η)|ξ > u1, η > v1}, Ω2 = {(ξ, η)|ξ < u2,

η > v2}, Ω3 = {(ξ, η)|ξ < u3, η < v3}, Ω4 = {(ξ, η)|ξ > u4, η < v4},
Jij : the two-dimensional contact discontinuity connecting the states i© and j©,
δij : the two-dimensional delta shock wave connecting the states i© and j©,
δi: the two-dimensional delta shock wave connecting the state i© and the vacuum,
δAij : the two-dimensional delta shock wave emitting from point A and connecting the states i© and j©,
δAi : the two-dimensional delta shock wave emitting from point A and connecting the state i© and the 
vacuum,
mij : the weight of δij on the variable ρ,
nij : the weight of δij on the variable H,
the fine curve standing for the two-dimensional contact discontinuity,
the black curve representing the two-dimensional delta shock wave.

Next, we divide the two-dimensional Riemann problem (1.3) and (1.4) into five cases by the different 
combinations of two-dimensional waves, and construct the solutions to each case.

4.1. Four two-dimensional contact discontinuities

By (2.7), the initial data satisfy u1 = u2, v1 = v4, u3 = u4, v2 = v3. It can be divided into the following 
two cases.

(i) u1 = u2 > u3 = u4, v1 = v4 < v2 = v3. In this case, we can see that four determination regions Ωi, 
i = 1, 2, 3, 4 do not overlap, and that the pseudo-characteristic lines from the states i© (i = 1, 2, 3, 4) do 
not come into the rectangle Ξ1Ξ2Ξ3Ξ4. Thus, the contact discontinuities J12, J23, J34 and J41 stop at their 
singular points Ξ1, Ξ2, Ξ3 and Ξ4, while, the vacuum develops in the rectangle Ξ1Ξ2Ξ3Ξ4. The solution is 
shown in Fig. 4.1.
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Fig. 4.2. The solution for Case 4.1(ii).

(ii) u1 = u2 < u3 = u4, v1 = v4 < v2 = v3. J12 meets with J23 at the point Ξ2. One can see that the 
pseudo-characteristic lines from the states 1© and 3© intersect each other in the rectangle Ξ1Ξ2Ξ3Ξ4. Hence, 
a delta shock wave issues in this rectangle. The initial data for this delta shock wave are defined as

s̄ = 0,
{

Ξ(0) =Ξ2, Uδ(0) = 0,m(0) = 0, n(0) = 0,

(ρ−, U−, H−) =(ρ1, U1, H1), (ρ+, U+, H+) = (ρ3, U3, H3).
(4.1)

Besides, the u1 = u2 < u3, v1 < v2 = v3 lead to [U1, U3, Ξ2] > 0. Using Remark 3.4 and solving initial value 
problem (2.27) and (4.1), we obtain the exact solution expressed in (3.28), labeled by delta shock wave δΞ2

13 .
Similarly, J34 and J41 interact at the point Ξ4. The inequalities u1 < u3 = u4, v1 = v4 < v3 imply 

[U3, U1, Ξ4] > 0. By Remark 3.4, we solve initial value problem (2.27) with initial data

s̄ = 0,
{

Ξ(0) =Ξ4, Uδ(0) = 0,m(0) = 0, n(0) = 0,

(ρ−, U−, H−) =(ρ3, U3, H3), (ρ+, U+, H+) = (ρ1, U1, H1),
(4.2)

and obtain a delta shock wave δΞ4
13 . This δΞ4

13 finally matches with δΞ2
13 at the singular point U13

δ . The solution 
is shown in Fig. 4.2.

4.2. Four two-dimensional delta shock waves

From (2.22), the initial data satisfy u1 < u2, v1 < v4, u4 < u3, v2 < v3. It involves the following three 
cases.

(i) u4 < u3 < u1 < u2, v1 < v4 < v2 < v3. Let A be the intersection point of the delta shock wave δ12:
⎧⎨
⎩

ξ =
√
ρ1u1+

√
ρ2u2

ρ1+ρ2
, U12

δ =
√
ρ1U1+

√
ρ2U2√

ρ1+
√
ρ2

,

m12 =√
ρ1ρ2(u2 − u1), n12 =

(ρ1ρ2||U1−U2||2
2(√ρ1+

√
ρ2) + √

ρ2H1 + √
ρ1H2

)
u2−u1√
ρ1+

√
ρ2
,

(4.3)

and the line Ξ2Ξ3, B the intersection point of the delta shock wave δ41:
⎧⎨
⎩

η =
√
ρ4v4+

√
ρ1v1

ρ4+ρ1
, U41

δ =
√
ρ4U4+

√
ρ1U1√

ρ4+
√
ρ1

,

m41 =√
ρ4ρ1(v4 − v1), n41 =

(ρ4ρ1||U4−U1||2
2(√ρ4+

√
ρ1) + √

ρ1H4 + √
ρ4H1

)
v4−v1√
ρ4+

√
ρ1
,

(4.4)

and the line Ξ1Ξ2, C the intersection point of the delta shock wave δ34:
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⎧⎨
⎩

ξ =
√
ρ3u3+

√
ρ4u4

ρ3+ρ4
, U34

δ =
√
ρ3U3+

√
ρ4U4√

ρ3+
√
ρ4

,

m34 =√
ρ3ρ4(u3 − u4), n34 =

(ρ3ρ4||U3−U4||2
2(√ρ3+

√
ρ4) + √

ρ4H3 + √
ρ3H4

)
u3−u4√
ρ3+

√
ρ4
,

(4.5)

and the line Ξ1Ξ4, D the intersection point of the delta shock wave δ23:

⎧⎨
⎩

η =
√
ρ2v2+

√
ρ3v3

ρ2+ρ3
, U23

δ =
√
ρ2U2+

√
ρ3U3√

ρ2+
√
ρ3

,

m23 =√
ρ2ρ3(v3 − v2), n23 =

(ρ2ρ3||U2−U3||2
2(√ρ2+

√
ρ3) + √

ρ2H3 + √
ρ3H2

)
v3−v2√
ρ2+

√
ρ3
,

(4.6)

and the line Ξ3Ξ4, E = (u12
δ , v2), F = (u1, v41

δ ), G = (u34
δ , v4) and H = (u3, v23

δ ).
We analyze the structure of solution. Since u4 < u3 < u1 < u2, v1 < v4 < v2 < v3, the delta shock 

waves δ12, δ23, δ34, δ41 do not meet. While, there exists a domain, inside which no pseudo-characteristic 
lines from the states i© (i = 1, 2, 3, 4) comes. This fact implies that the vacuum emerges in this domain. 
Thus, the structure of solution is that these four delta shock waves separate the vacuum from the states i©, 
i = 1, 2, 3, 4, and finally match together.

We now construct rigorously the solution. Sine the weights and velocities of delta shock waves are actually 
changed at their intersection points, the delta shock waves can not propagate along their previous routes. 
Without loss of generality, let point Ξ1

0 ∈ AE. By the laws of conservation of mass, momentum and energy, 
the initial data at this point are given as follows,

s̄ = 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ξ(0) = Ξ1
0, Uδ(0) = U0

δ1 = m12U
12
δ +m∗

1U
∗
δ1

m12+m∗
1

, m(0) = m1
0 = m12 + m∗

1,

n(0) = n1
0 = n12 + n∗

1, (ρ−, U−, H−) = (ρ1, U1, H1),

(ρ+, U+, H+) = (0, U(ξ, η), 0), [U−, U
0
δ ,Ξ0] = [U1, U

0
δ1 ,Ξ

1
0] > 0,

(4.7)

where U∗
δ1

∈ �AEΞ2, m∗
1 ∈ [0, M∗], n∗

1 ∈ [0, N∗], and M∗ and N∗ are determined. By the result in Sub-
section 3.1, we solve initial value problem (2.27) and (4.7) to obtain the solution which is given in (3.5), 
denoted by delta shock wave δΞ1

0
1 .

Let Ξ2
0 be the intersection point of δΞ1

0
1 and δ41, where the weights and velocity of δΞ1

0
1 are m∗

2, n
∗
2 and U∗

δ2
. 

It shows by Lemma 3.1 that Ξ2
0 ∈ BF, U∗

δ2
∈ �BFΞ1. We claim that m∗

2 ∈ [0, M∗], n∗
2 ∈ [0, N∗].

In fact, denote m∗ = max{m12, m23, m34, m41}, n∗ = max{n12, n23, n34, n41}, S0 the area of quadrilateral 
Ξ1Ξ2Ξ3Ξ4,

L0 = max
{

max
U∗

δ1
∈�AEΞ2

||U∗
δ1 ||, ||U1||, ||U2||, ||U3||, ||U4||

}
,

p∗ = max
{ √

ρ4(v4−v1)
(√ρ4+

√
ρ1)(v2−v1) ,

√
ρ3(u3−u4)

(√ρ3+
√
ρ4)(u1−u4) ,

√
ρ2(v3−v2)

(√ρ2+
√
ρ3)(v3−v4) ,

√
ρ1(u2−u1)

(√ρ1+
√
ρ2)(u2−u3)

}
,

q∗ = max
{

||U1||
2 + H1

ρ1
, ||U2||

2 + H2
ρ2

, ||U3||
2 + H3

ρ3
, ||U4||

2 + H4
ρ4

}
.

In virtue of u4 < u3 < u1 < u2, v1 < v4 < v2 < v3, we have

lim
M→∞

{
(M+m∗)2p2

∗2ρ1(M+m∗)S0
M2

}
= p2

∗ < 1.

This fact implies that there exists a M∗ > 0 such that

(M∗ + m∗)2p2
∗ + 2ρ1(M∗ + m∗)S0 < (M∗)2. (4.8)

Similarly, since
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lim
N→∞

(N+n∗)p∗+L0p∗(M∗+m∗)/2+q∗M
∗

N = p∗ < 1,

there exists a N∗ > 0 such that

(N∗ + n∗)p∗ + L0p∗(M∗ + m∗)/2 + q∗M
∗ < N∗. (4.9)

Denote by s̄2 the value of s̄ at the point Ξ2
0. It follows from (3.5) that

v1 + es̄2(η1
0 − v1) + v0

δ1−v1

ρ1[U1,U0
δ1

,Ξ1
0]

(m(s̄2) −m1
0e

s̄2) =
√
ρ1v1+

√
ρ4v4

ρ1+ρ4
.

Since η1
0 − v1 > 0, v0

δ1
− v1 > 0, m(s̄2) −m1

0e
s̄2 > 0, [U1, U0

δ1
, Ξ1

0] > 0, we have

0 < es̄2 <
√
ρ4(v4−v1)

(ρ1+ρ4)(η1
0−v1) <

√
ρ4(v4−v1)

(ρ1+ρ4)(v2−v1) ≤ p∗ < 1. (4.10)

Combining this fact with (4.8) and (4.9), we deduce

m∗
2 =

(
(m1

0)2e2s̄ + 2ρ1m
1
0[U1, U

0
δ1 ,Ξ

1
0](es̄ − e2s̄)

)1/2

≤
(
(M∗ + m∗)2p2

∗ + 2ρ1(M∗ + m∗)S0

)1/2
< M∗,

n∗
2 =n1

0e
s̄2 + ||U0

δ1
||2

2 m1
0e

s̄2 +
( ||U1||2

2 + H1
ρ1

)
(m∗

2 −m1
0e

s̄2) − ||U∗
δ2

||2

2 m∗
2

≤(N∗ + n∗)p∗ + L0p∗(M∗ + m∗)/2 + q∗M
∗ < N∗,

which arrive at the desired claim.
We proceed to solve initial value problem (2.27) with initial data

s̄ = 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ξ(0) = Ξ2
0, Uδ(0) = U0

δ2 = m41U
41
δ +m∗

2U
∗
δ2

m41+m∗
2

, m(0) = m2
0 = m41 + m∗

2,

n(0) = n2
0 = n41 + n∗

2, (ρ−, U−, H−) = (ρ4, U4, H4),

(ρ+, U+, H+) = (0, U(ξ, η), 0), [U−, U
0
δ ,Ξ(0)] = [U4, U

0
δ2 ,Ξ

2
0] > 0,

and obtain a delta shock wave δΞ2
0

2 which intersects with δ34 at some point Ξ3
0. We don’t stop this process until 

the delta shock wave δΞ4
0

4 intersects with δ12 at a point Ξ5
0 ∈ AE, where U∗

δ5
∈ �AEΞ2, m∗

5 ∈ [0, M∗], n∗
5 ∈

[0, N∗].
Let K = K1 ×K2 ×K3 ×K4, where K1 = AE, K2 = �AEΞ2, K3 = [0, M∗], K4 = [0, N∗]. An operator 

T : K → K is defined as

T (Ξ1
0, U

∗
δ1 ,m

∗
1, n

∗
1) = (Ξ5

0, U
∗
δ5 ,m

∗
5, n

∗
5). (4.11)

We claim that there exists a fixed point (Ξ∗, U∗
δ , m

∗, n∗) ∈ K such that T (Ξ∗, U∗
δ , m

∗, n∗) = (Ξ∗, U∗
δ , m

∗, n∗). 
In fact, choose R6 as the Banach space B with the usual metric topology. K is a non-empty convex closed 
set in B. According to the property of the dependence of solutions of ordinary differential equations on its 
initial data continuously, we can deduce that the operator T is continuous. Since TK is bounded, TK is 
a precompact set in R6. Thus, by Theorem 4.1, there exists a fixed point (Ξ∗, U∗

δ , m
∗, n∗) ∈ K such that 

T (Ξ∗, U∗
δ , m

∗, n∗) = (Ξ∗, U∗
δ , m

∗, n∗).
Therefore, the global solution is constructed, as illustrated in Fig. 4.3.
We observe from Fig. 4.3 that, each of the δ12, δ23, δ34 and δ41 splits somewhere into two new delta shock 

waves before they reach their own singular points or end-points. While, there exists a triple-wave point 
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Fig. 4.3. The solution for Case 4.2(i).

where three delta shock waves match together. This structure is called the Mach-reflection-like pattern 
[21], which is similar to Mach reflection configuration in gas dynamics. Meanwhile, the mechanism for the 
formation of this configuration results from the global interactions of two-dimensional delta shock waves.

(ii) u1 < u2, u4 < u3, v1 < v4, v2 < v3, [U1, U3, U2] ≥ 0 and [U1, U3, U4] ≤ 0. The δ12 and δ23 collide at 
some point A. The initial data at this point can be shown as follows,

s̄ = 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ξ(0) = A = (
√
ρ1u1+

√
ρ2u2

ρ1+ρ2
,
√
ρ2v2+

√
ρ3v3

ρ2+ρ3
), Uδ(0) = m12U

12
δ +m23U

23
δ

m12+m23
,

m(0) = m12 + m23, n(0) = n12 + n23,

(ρ−, U−, H−) = (ρ1, U1, H1), (ρ+, U+, H+) = (ρ3, U3, H3).

(4.12)

The [U1, U3, U2] ≥ 0 implies that [U1, Uδ(0), A] > 0, [U3, Uδ(0), A] < 0, [U1, U3, Uδ(0)] > 0. Using the result 
given in Subsection 3.3, we solve initial value problem (2.27) and (4.12), and obtain a delta shock wave δA13. 
Without loss of generality, we only consider the case that the trajectory of δA13 protrudes to Ξ1Ξ3. This delta 
shock wave stops at the singular point U13

δ .
Meanwhile, the δ34 intersects with the δ41 at some point B. The initial data at this point are given as 

follows,

s̄ = 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ξ(0) = B = (
√
ρ3u3+

√
ρ4u4

ρ3+ρ4
,
√
ρ4v4+

√
ρ1v1

ρ4+ρ1
), Uδ(0) = m34U

34
δ +m41U

41
δ

m34+m41
,

m(0) = m34 + m41, n(0) = n34 + n41,

(ρ−, U−, H−) = (ρ3, U3, H3), (ρ+, U+, H+) = (ρ1, U1, H1).

(4.13)

It shows by [U1, U3, U4] ≤ 0 that, [U3, Uδ(0), B] > 0, [U1, Uδ(0), B] < 0, [U3, U1, Uδ(0)] > 0. We solve initial 
value problem (2.27) and (4.13), and obtain a delta shock wave δB13. This delta shock wave also stops at the 
singular point U13

δ . See Fig. 4.4.

(iii) u4 < u1 < u2 < u3, v1 < v4, v2 < v3, [U1, U3, U2] ≥ 0 and [U1, U3, U4] ≥ 0. The δ12 overtakes δ23 at 
the point A. The initial data at this point are (4.12). The [U1, U3, U2] ≥ 0 yields that [U1, Uδ(0), A] > 0,
[U3, Uδ(0), A] < 0, [U1, U3, Uδ(0)] > 0. Solving initial value problem (2.27) and (4.12), we obtain a delta 
shock wave δA13.

When v41
δ < v13

δ and u34
δ < u1. The δA13, δ34 and δ41 do not meet, and stop at their own end-points. Based 

on the result in Case (i) of this subsection, we can see that the Mach-reflection-like pattern appears in the 
solution. Specially, we take a point C on δA13 satisfying [Ξ3, Ξ4, C] > 0, such that a new delta shock wave δC1
emits from this point, which separates the state 1© from the vacuum. This δC1 overtakes δ41 at some point 
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Fig. 4.4. The solution for Case 4.2(ii).

Fig. 4.5. The solution for Case 4.2(iii)a.

D and produces a new delta shock wave δD4 connecting the state 4© and the vacuum. Subsequently, the δD4
intersects with δ34 at some point E, and generates a new delta shock wave δE3 which separates the state 4©
from the vacuum. This δE3 finally matches with δA13 at the point C. See Fig. 4.5.

When v41
δ < v13

δ and u34
δ > u1. The δ41 and δ34 interact at some point B, and the initial data at 

this point are shown in (4.13). Since [U1, U3, U2] ≥ 0, [U1, U3, U4] ≥ 0, it shows that [U3, Uδ(0), B] > 0,
[U1, Uδ(0), B] < 0, [U3, U1, Uδ(0)] < 0. By means of the result shown in Subsection 3.4, we solve initial 
value problem (2.27) and (4.13), and obtain a delta shock wave δB13. Without loss of generality, we only 
consider the case that the trajectory of δB13 protrudes to Ξ1Ξ4. According to Lemma 3.13, we know that the 
entropy condition of δB13 is violated before it reaches the singular point U13

δ . As δB13 meets with δA13 before its 
entropy condition fails, if we solve initial value problem at the intersection point locally, then no solution 
exists for this initial value problem. Based on the result in Case (i) of this subsection, it shows that the 
Mach-reflection-like pattern takes place in the solution. More precisely, let C be a point on δB13 satisfying 
[Ξ1, Ξ3, C] < 0, such that a new delta shock wave δC3 emits from this point connecting the state 3© with the 
vacuum. The δC3 overtakes δA13 at some point D, and generates another new delta shock wave δD1 connecting 
the state 1© and the vacuum. This δD1 finally matches with δB13 at the point C. See Fig. 4.6.

As the entropy condition of δB13 fails before it intersects with δA13, this situation can be treated in a similar 
way as the last case. The solution is shown in Fig. 4.6.

Therefore, this case has two types of solutions.
It is shown from Fig. 4.5 that the local interaction of δ12 and δ23 generates a new δA13 and then the 

global interactions among δA13, δ34, δ41 result in the Mach-reflection-like pattern. Besides, it is also observed 
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Fig. 4.6. The solution for Case 4.2(iii)b.

from Fig. 4.6 that the local interactions of δ12 and δ23, as well as the δ34 and δ41 generate the δA13, δ
B
13 and 

then the global interactions of δA13, δB13 bring about the Mach-reflection-like pattern. The mechanism for the 
formation of this configuration results from the local and global interactions of two-dimensional delta shock 
waves.

4.3. Three two-dimensional delta shock waves and one two-dimensional contact discontinuity

Without loss of generality, suppose that the initial continuity connecting the states 1© and 2© projects 
a contact discontinuity J12. By (2.7) and (2.22), the initial data satisfy u1 = u2, v1 < v4, u4 < u3, v2 < v3. 
We consider the following three cases.

(i) [U1, U2, U3] > 0, [U1, U2, U4] > 0 and v1 < v41
δ < v2. Denote by A = (u2, v41

δ ) the intersection point of 
δ41 and J12. Since all the pseudo-characteristic lines from the state 2© stop at the point Ξ2, the v1 < v41

δ < v2
shows that the state on the right of the point A is the vacuum. By solving initial value problem (2.27) with 
initial data

s̄ = 0,
{

Ξ(0) = A = (u2, v
41
δ ), Uδ(0) = U41

δ ,m(0) = m41, n(0) = n41,

(ρ−, U−, H−) = (ρ4, U4, H4), (ρ+, U+, H+) = (0, U(ξ, η), 0),
(4.14)

we obtain a delta shock wave δA4 .
When δ34 meets with δA4 earlier than it meets with δ23. The δ34 collides with δA4 at some point B, and 

forms a new delta shock wave δB3 which connects the state 3© with the vacuum. Then this δB3 overtakes 
δ23 at some point C, and generates another new delta shock wave δC2 which connects the state 2© with the 
vacuum. The δC2 finally stops at the point Ξ2, as illustrated in Fig. 4.7.

When δ34 meets with δ23 earlier than it meets with δA4 . The δ34 overtakes δ23 at some point B. Solving 
the initial value problem (2.27) with initial data,

s̄ = 0,

⎧⎪⎪⎨
⎪⎪⎩

Ξ(0) = B = (u34
δ , v23

δ ), Uδ(0) = m23U
23
δ +m34U

34
δ

m23+m34
,

m(0) = m23 + m34, n(0) = n23 + n34,

(ρ−, U−, H−) = (ρ2, U2, H2), (ρ+, U+, H+) = (ρ4, U4, H4),

(4.15)

we obtain a delta shock wave δB24 using the results in Subsection 3.3 if [U2, U4, Uδ(0)] > 0, or the results 
in Subsection 3.4 if [U2, U4, Uδ(0)] < 0. The interactions of δB24 and δA4 at some point C form a new delta 
shock wave δC2 which connects the state 2© with the vacuum. This δC2 finally vanishes at the point Ξ2. See 
Fig. 4.8.
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Fig. 4.7. The solution for Case 4.3(i)a.

Fig. 4.8. The solution for Case 4.3(i)b.

Therefore, the solutions show two exact structures.

(ii) [U1, U2, U3] > 0, [U1, U2, U4] > 0 and v1 < v2 < v41
δ . The J12 and δ41 interact at some point A, where 

the initial data are given as follows,

s̄ = 0,
{

Ξ(0) = A = (u1, v
41
δ ), Uδ(0) = U41

δ ,m(0) = m41, n(0) = n41,

(ρ−, U−, H−) = (ρ4, U4, H4), (ρ+, U+, H+) = (ρ2, U2, H2).
(4.16)

The u4 < u1 = u2, v1 < u2 < v41
δ lead to [U4, U2, Uδ(0)] < 0. We then solve initial value problem (2.27) and 

(4.16) to obtain a delta shock wave δA24. By Lemma 3.13, we can see that the entropy condition of δA24 is 
violated before it reaches the singular point U23

δ .
The interactions among δA24, δ34 and δ23 are the same as those of δA13, δ41 and δ34 in Case (iii) of Subsec-

tion 4.2. We only depict the solutions in Figs. 4.9 and 4.10.

(iii) [U1, U2, U3] < 0, [U1, U2, U4] < 0 and v1 < v2. The J12 meets with δ23 at some point A, where the 
initial data are given below,

s̄ = 0,
{

Ξ(0) = A = (u1, v
23
δ ), Uδ(0) = U23

δ ,m(0) = m23, n(0) = n23,

(ρ−, U−, H−) = (ρ1, U1, H1), (ρ+, U+, H+) = (ρ3, U3, H3).
(4.17)

The [U1, U2, U3] < 0, u1 < u2 and v1 < v2 yield [U1, U3, Uδ(0)] > 0. We solve initial value problem (2.27)
and (4.17) to obtain a delta shock wave δA13.
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Fig. 4.9. The solution for Case 4.3(ii)a.

Fig. 4.10. The solution for Case 4.3(ii)b.

Fig. 4.11. The solution for Case 4.3(iii).

Similarly, the δ34 overtakes δ41 at some point B, where the initial data are given in (4.13). There are 
two subcases: [U1, U3, U4] > 0, [U1, U3, U4] < 0. For the former, the structure of the solution is similar to 
Fig. 4.10. For the latter, it shows that [U3, U1, U0

δ ] > 0. We solve initial value problem (2.27) and (4.13) to 
obtain a new delta shock wave δB13, which matches with δA13 at the singular point U13

δ . See Fig. 4.11.
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Fig. 4.12. The solution for Case 4.4(1)(i)a.

4.4. Two two-dimensional delta shock waves and two two-dimensional contact discontinuities

We classify this situation into the following two cases, then construct the solution for each case.

(1) Two delta shock waves are neighboring. Without loss of generality, two delta shock waves δ34, δ41
connect the states 3© and 4©, as well as the states 4© and 1©, respectively. According to (2.7) and (2.22), 
we have u1 = u2, u4 < u3, v2 = v3, v1 < v4. This case is divided into the following three subcases.

(i) u4 < u3 < u1 = u2, v1 < v4, v1 < v41
δ < v2 = v3. Let A = (u2, v41

δ ) be the intersection point of δ41
and J12. In virtue of v1 < v41

δ < v2, the state on the right of the point A is the vacuum. We solve initial 
value problem (2.27) and (4.14), and obtain a delta shock wave δA4 .

As δ34 meets with δA4 earlier than it meets with J23. The δ34 collides with δA4 at some point C, and forms 
a new delta shock wave δC3 . It connects the state 3© with the vacuum, which finally stops at the point Ξ3. 
Meanwhile, the J23 stops at the singular point Ξ2. See Fig. 4.12.

As δ34 interacts with J23 earlier than it interacts with δA4 , which implies v2 = v3 < v4. Denote by B the 
intersection point of δ34 and J23, where the initial data are presented as follows,

s̄ = 0,
{

Ξ(0) = B = (u34
δ , v2, ), Uδ(0) = U34

δ ,m(0) = m34, n(0) = n34,

(ρ−, U−, H−) = (ρ2, U2, H2), (ρ+, U+, H+) = (ρ4, U4, H4).
(4.18)

Besides, it has [U2, U4, Uδ(0)] > 0 by u4 < u3 < u2, v2 = v3 < v4. Solving initial value problem (2.27) and 
(4.18), we obtain a delta shock wave δB24.

The δB24 meets with δA4 at some point C, and forms a new delta shock wave δC2 . This δC2 connects the 
state 2© with the vacuum, which finally stops at the point Ξ2. See Fig. 4.13.

Therefore, there exist two exact solutions.

(ii) u4 < u3 < u1 = u2, v2 = v3, v1 < v4, v1 < v2 < v41
δ . The J12 intersects with δ41 at some point A, where 

the initial data are given in (4.16). Besides, it holds [U4, U2, U0
δ ] < 0 due to u4 < u1 = u2, v1 < v2 < v4. So, 

we solve initial value problem (2.27) and (4.16), and then obtain a delta shock wave δA24. It is noticed that 
the entropy condition of δA24 is violated before it reaches the singular point U24

δ .
Denote by B the intersection point of J23 and δ34, where the initial data are given by (4.18). From 

v2 = v3 < v4, u4 < u3 < u2, one has [U2, U4, U0
δ ] > 0. Solving initial value problem (2.27) and (4.18), we 

obtain a delta shock wave δB24.
The interactions of δA24 and δB24 are the same as those of δA13 and δB13 in Case (iii) of Subsection 4.2. We 

only describe the solution in Fig. 4.14.
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Fig. 4.13. The solution for Case 4.4(1)(i)b.

Fig. 4.14. The solution for Case 4.4(1)(ii).

Fig. 4.15. The solution for Case 4.4(1)(iii).

(iii) u4 < u3 < u1 = u2, v3 = v2 < v1 < v4. In this case, the δ41 overtakes J12 at some point A. The initial 
data at this point are (4.16). By u4 < u1 = u2, v2 < v1 < v4, it shows [U4, U2, U0

δ ] > 0. We solve initial 
value problem (2.27) and (4.16) to obtain a delta shock wave δA24. Symmetrically, the δ34 and J23 interact at 
some point B. The u4 < u3 < u2, v2 = v3 < v4 lead to [U2, U4, U0

δ ] > 0. Solving initial value problem (2.27)
and (4.18), we get a delta shock wave δB24. This δB24 finally matches with δA24 at the singular point U24

δ . The 
solution is shown in Fig. 4.15.



Y. Pang / J. Math. Anal. Appl. 472 (2019) 2034–2074 2069
Fig. 4.16. The solution for Case 4.4(1)(iv)a.

Fig. 4.17. The solution for Case 4.4(1)(iv)b.

(iv) u4 < u1 = u2 < u3, v1 < v2 = v3, v1 < v4. The J12 meets with J23 at the point Ξ2. The u1 = u2 < u3,

v1 < v2 = v3 yield that [U1, U3, Ξ2] > 0. We solve initial value problem (2.27) and (4.1) to obtain a delta 
shock wave δΞ2

13 .
The sequent interactions among δΞ2

13 , δ34 and δ41 are the same as those of δA13, δ34 and δ41 in Case (iii) of 
Subsection 4.2. We only depict the solutions in Figs. 4.16 and 4.17.

(v) u1 = u2 < u4 < u3, v1 < v2 = v3, v1 < v4. The J12 and J23 interact at the point Ξ2. The u1 = u2 < u3,

v1 < v2 = v3 lead to [U1, U3, Ξ2] > 0. Hence, we solve initial value problem (2.27) and (4.1) at this point to 
obtain a delta shock wave δΞ2

13 .
Meanwhile, the δ34 overtakes δ41 at some point B, where the initial data are shown in (4.13). There are 

two subcases: [U1, U3, U4] > 0, [U1, U3, U4] < 0. For the former, the structure of the solution is similar to 
Fig. 4.17. For the latter, one has [U3, U1, U0

δ ] > 0. We solve initial value problem (2.27) and (4.13), and 
obtain a delta shock wave δB13. This δB13 finally matches with δA13 at the singular point U13

δ . The solution is 
illustrated in Fig. 4.18.

(2) Two delta shock waves are not neighboring. Without loss of generality, assume that two delta shock 
waves δ23, δ41 connect the states 2© and 3©, as well as the states 4© and 1© respectively. From (2.7) and 
(2.22), the initial data satisfy u3 = u4, u1 = u2, v2 < v3, v1 < u4. We only consider the subcase u3 = u4 <

u1 = u2, v1 < v41
δ < v2 < v3, v1 < v4 < v23

δ < v3, because the solutions to the other subcases are similar to 
those in Cases (1)(i)–(iii) of this subsection.
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Fig. 4.18. The solution for Case 4.4(1)(v).

Fig. 4.19. The solution for Case 4.4(2).

In this subcase, the δ41 and J12 interact at some point A. Since v1 < v41
δ < v2, we solve initial value 

problem (2.27) and (4.14), and obtain a delta shock wave δA4 . This delta shock wave vanishes at the
point Ξ4.

Meanwhile, the J34 meets with δ23 at some point B. In virtue of v4 < v23
δ < v3, the initial data at this 

point are as follows,

s̄ = 0,
{

Ξ(0) = B = (u3, v
23
δ ), Uδ(0) = U23

δ ,m(0) = m23, n(0) = n23,

(ρ−, U−, H−) = (ρ2, U2, H2), (ρ+, U+, H+) = (0, U(ξ, η), 0).
(4.19)

We solve initial value problem (2.27) and (4.19) to get a delta shock wave δB2 . This delta shock wave stops 
finally at the point Ξ2. The solution is depicted in Fig. 4.19.

4.5. One two-dimensional delta shock wave and three two-dimensional contact discontinuities

Without loss of generality, assume that a delta shock waves δ12 connects the states 1© and 2©. We have 
can see from (2.7) and (2.22) that, u1 < u2, v1 = v4, u3 = u4, v2 = v3. The following two cases are discussed.

(i) u3 = u4 < u1 < u2, v4 = v1 < v2 = v3. The δ12 overtakes J23 at some point A = (u12
δ , v2). The initial 

data at this point are
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Fig. 4.20. The solution for Case 4.5(i).

s̄ = 0,
{

Ξ(0) = A = (u12
δ , v2), Uδ(0) = U12

δ ,m(0) = m12, n(0) = n12,

(ρ−, U−, H−) = (ρ1, U1, H1), (ρ+, U+, H+) = (0, U(ξ, η), 0),
(4.20)

due to u3 < u1 < u12
δ < u2. Solving initial value problem (2.27) and (4.20), we get a new delta shock 

wave δA1 . This delta shock wave vanishes at the point Ξ1.
Meanwhile, the J34 and J41 also stop finally at their respective singular points Ξ3 and Ξ4. The solution 

is given in Fig. 4.20.

(ii) u1 < u2, u1 < u3 = u4, v4 = v1 < v2 = v3. The J34 and J41 meet at the point Ξ4. The u1 < u3 = u4,

v4 = v1 < v2 = v3 yield [U3, U1, Ξ4] > 0. We solve initial value problem (2.27) and (4.2) to obtain a delta 
shock wave δΞ4

13 .
Meanwhile, δ12 interacts with J23 at some point B. When u1 < u12

δ < u3 < u2, the initial data at this 
point are

s̄ = 0,
{

Ξ(0) = B = (u12
δ , v2), Uδ(0) = U12

δ ,m(0) = m12, n(0) = n12,

(ρ−, U−, H−) = (ρ1, U1, H1), (ρ+, U+, H+) = (ρ3, U3, H3).
(4.21)

Besides, the u1 < u12
δ < u3 < u2, v1 < v2 = v3 lead to [U1, U3, Uδ(0)] < 0. Solving initial value problem 

(2.27) and (4.21), we obtain a delta shock wave δB13. It is noticed that the entropy condition of δB13 is violated 
before it reaches the singular point U13

δ . The interactions of δB13 and δΞ4
13 are the same as those of δB13 and 

δA13 in Case (iii) of Subsection 4.2. We only picture the solution in Fig. 4.21.
When u1 < u3 < u12

δ < u2, the initial data at the point B are

s̄ = 0,
{

Ξ(0) = B = (u12
δ , v2), Uδ(0) = U12

δ ,m(0) = m12, n(0) = n12,

(ρ−, U−, H−) = (ρ1, U1, H1), (ρ+, U+, H+) = (0, U(ξ, η), 0).
(4.22)

We solve initial value problem (2.27) and (4.22) to obtain a new delta shock wave δB1 . The δB1 and δΞ4
13 collide 

at some point C, and form a new delta shock wave δC3 . This δC3 connects the state 3© and the vacuum, and 
finally vanishes at the point Ξ3. See Fig. 4.22.

When u1 < u12
δ < u2 < u3, the initial data are shown in (4.21). Besides, the u1 < u12

δ < u2 < u3, v1 <

v2 = v3 yield [U1, U3, Uδ(0)] > 0. Hence, by solving initial value problem (2.27) and (4.21), we obtain a 
delta shock wave δB13. The δB13 matches finally with δΞ4

13 at the singular point U13
δ , as shown in Fig. 4.23.

Therefore, this case contains three exact solutions.
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Fig. 4.21. The solution for Case 4.5(ii)a.

Fig. 4.22. The solution for Case 4.5(ii)b.

Fig. 4.23. The solution for Case 4.5(ii)c.

5. Conclusion

We analyzed completely the exact solutions to the two-dimensional Riemann problem (1.3) and (1.4). 
Under the assumption (H), twenty-three explicit solutions and their corresponding criteria are obtained. The 
occurrence of two-dimensional delta shock wave with a Dirac delta function in both density and internal 
energy is confirmed rigorously. The mechanism for the formation of this kind of two-dimensional delta 
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shock wave results from the overlapping of the linearly degenerate characteristic lines. It is also shown 
that the Mach-reflection-like patterns appear in solutions. Precisely, in some solutions, one two-dimensional 
delta shock wave splits somewhere into two new two-dimensional delta shock waves, that is, there exists 
a triple-wave point where three two-dimensional delta shock waves match together. The mechanism for 
the formation of this pattern results from the global (or local and global) interactions of this type of 
two-dimensional delta shock waves, or the interactions of this type of two-dimensional delta shock waves 
with the two-dimensional contact discontinuities. To the best of our knowledge, this type of mechanism for 
the formation of Mach-reflection-like pattern has not been found in the previous studies.
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