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A new analytic model for left-invertible operators, which extends both Shimorin’s 
analytic model for left-invertible and analytic operators and Gellar’s model for 
bilateral weighted shift is introduced and investigated. We show that a left-invertible 
operator T , which satisfies certain conditions can be modeled as a multiplication 
operator Mz on a reproducing kernel Hilbert space of vector-valued analytic 
functions on an annulus or a disc. A similar result for composition operators in 
�2-spaces is established.
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1. Introduction

The classical Wold decomposition theorem (see [60]) states that if U is isometry on Hilbert space H, then 
H is the direct sum of two subspaces reducing U , H = Hu ⊕ Hp such that U |Hu

∈ B(Hu) is unitary and 
U |Hp

∈ B(Hp) is unitarily equivalent to a unilateral shift. This decomposition is unique and the canonical 
subspaces are defined by

Hu :=
∞⋂

n=1
UnH and Hp :=

∞⊕
n=1

UnE,

where E := N (U∗) = H � UH. The Wold decomposition theorem and results analogous to this theorem 
plays an important role in many areas of operator theory, including the invariant subspace problem for 
Hilbert spaces of holomorphic functions. The interested reader is referred to [11,12,33,34,38,42,50,55,52].
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One of the key ideas in operator theory is that of viewing an operator as multiplication by z on a Hilbert 
space consisting of (vector-valued) holomorphic functions. The point is that this multiplication operator is 
much easier to analyze than is the case in the original setting because of the richer structure of a space 
of holomorphic functions. This is its great advantage and one of the reasons why it attracts attention of 
researchers. An excellent example of an interplay between weighted shift operators and analytic functions 
is the problem of describing all invariant subspaces of weighted shifts and the celebrated Beurling-Lax 
theorem. There are numerous results in the literature relating analytic models for the operators in certain 
classes. We mention some selected models:

• the Sz.-Nagy-Foiaş model for contraction (see [3]),
• the analytic model for weighted shifts (see [24]),
• the analytic model of a pure hyponormal operator T with rank one self-commutators [T ∗, T ] (see [46]),
• the model for the class F of pure operators T on a Hilbert space H satisfying

〈Tmg, Tnh〉 = 0, g, h ∈ [T ∗, T ]H, m �= n, m, n ∈ N,

where [T ∗, T ] := T ∗T − TT ∗ (see [64]),
• Shimorin’s analytic model for left-invertible analytic operators (see [52]),
• the analytic model of doubly commuting contractions (see [4]).

The interested reader is referred to [15,32,61–64] for further information.
In [52] S. Shimorin obtain a weak analog of the Wold decomposition theorem, representing operator 

close to isometry in some sense as a direct sum of a unitary operator and a shift operator acting in some 
reproducing kernel Hilbert space of vector-valued holomorphic functions defined on a disc. The construction 
of the Shimorin’s model for a left-invertible analytic operator T ∈ B(H) is as follows. Let E := N (T ∗) and 
define a vector-valued holomorphic functions Ux as

Ux(z) =
∞∑

n=0
(PET

′∗nx)zn, z ∈ D(r(T ′)−1),

where T ′ is the Cauchy dual of T . Then we equip the obtained space of analytic functions H := {Ux : x ∈ H}
with the inner product induced by H. The operator U : H � x → Ux ∈ H becomes a unitary isomorphism. 
It turns out that the operator T is unitarily equivalent to the operator Mz of multiplication by z on H
and T ′∗ is unitarily equivalent to the operator L given by

(L f)(z) = f(z) − f(0)
z

, f ∈ H .

Moreover, Shimorin proved that H is a reproducing kernel Hilbert space in the following sense: the re-
producing kernel for H (see [52]) is an B(E)-valued function of two variables κH : Ω × Ω → B(E) such 
that

(i) for any e ∈ E and λ ∈ Ω

κH (·, λ)e ∈ H ,

(ii) for any e ∈ E, f ∈ H and λ ∈ Ω

〈f(λ), e〉E = 〈f, κH (·, λ)e〉H ,



P. Pietrzycki / J. Math. Anal. Appl. 477 (2019) 885–911 887
where Ω ⊂ C. The interested reader is referred to [56] and [57] for further facts concerning the reproducing 
kernel Hilbert space and its multiplication operators.

The substitution operation is basic to mathematics therefore composition operators naturally appear in 
many areas of mathematics. They play an important role in ergodic theory and functional analysis. The 
class of composition operators is related to other areas of operator theory in somewhat surprising ways. S. 
Banach and M. Stone proved that a surjective linear isometry T : C(X) → C(Y ) is a weighted composition 
operator. The analogical result for the Hardy spaces Hp(D) (with p � 1 and p �= 2) was shown by Forelli 
in [22]. Furthermore, commutants of many analytic Toeplitz operators are generated by composition and 
multiplication operators. The literature on this subject and related topics is vast and still growing (see e.g., 
[2,6,8,13,14,19,21,26,36,37,35,40,41,43,53,54,59]).

The class of weighted shifts on a directed tree was introduced in [27] and intensively studied since then 
(see e.g., [5–7,9,15,16,23,28,39]). Z.J. Jabłoński, I.B. Jung and J. Stochel realized the importance of this 
class as a vehicle to collect a number of interesting examples and counterexamples (see e.g., [10,20,28–31,
43,44,58]).

The analytic aspects of the theory of composition operators, weighted shifts and weighted shifts on a 
directed tree were studied by many authors. As was mentioned by A.L. Shields in the paper [51] the fact that 
weighted shift can be viewed as multiplication by z on a Hilbert space of formal power series has been long 
folklore and this point of view was taken by R. Gellar (see [24,25]). He showed that the commutant of any 
weighted shift operator consists of certain formal power series in the operator, and hence that the commutant 
is abelian. According to [51] the spectrum of weighted shift operator is either an annulus or a disk. Some 
results on the spectrum and commutants of composition operators were obtained in [47] and [14]. In [15]
S. Chavan and S. Trivedi showed that a weighted shift Sλ on a rooted directed tree with finite branching 
index is analytic therefore can be modeled as a multiplication operator Mz on a reproducing kernel Hilbert 
space H of E-valued holomorphic functions on a disc centered at the origin, where E := N (S∗

λ). Moreover, 
they proved that the reproducing kernel associated with H is multi-diagonal. It is worth pointing out that 
the commutant and reflexivity for n-tuples of multiplication operators by independent variables z1, . . . , zn
on a reproducing Hilbert space of vector-valued holomorphic functions were studied in the paper [17].

Recently, the analytic structure of weighted shifts on directed trees was also studied by P. Budzyński, 
P. Dymek, A. Płaneta and M. Ptak. In [7] they showed that a weighted shift on a rooted directed tree is 
related to a multiplier algebra of coefficients of analytic functions. They used this relation to provide a kind 
of functional calculus for functions from multiplier algebras and to study spectral properties of weighted 
shift on a rooted directed tree. Moreover in [20] they extended the notion of multipliers to left-invertible and 
analytic operators and characterize the commutant of such operators in terms of generalized multipliers. 
This line of investigation was continued in [45].

In this paper, we provide a new analytic model for left-invertible operators, which extends both Shimorin’s 
analytic model for left-invertible and analytic operators (see Theorem 3.3) and Gellar’s model for a bilateral 
weighted shift (see Example 5.2). We show that a left-invertible operator T , which satisfies certain conditions 
can be modeled as a multiplication operator Mz on a reproducing kernel Hilbert space of vector-valued 
analytic functions on an annulus or a disc (see Theorem 3.2). As an application of this model, we obtain 
significantly improved model for weighted composition operator upon provided the symbol of this operator 
has finite branching index (see Theorem 4.3). In particular, we describe the inner and outer radius of 
convergence for weighted composition operators only in terms of its weight and symbol.

2. Preliminaries

In this paper, we use the following notation. The fields of rational, real and complex numbers are denoted 
by Q, R and C, respectively. The symbols Z, Z+ and N stand for the sets of integers, positive integers and 
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nonnegative integers, respectively. Set D(r) := {z ∈ C : |z| < r} and A(r−, r+) := {z ∈ C : r− < |z| < r+}
for r, r−, r+ ∈ [0, ∞). The expression “a countable set” means a finite set or a countably infinite set.

All Hilbert spaces considered in this paper are assumed to be complex. Let W be a subset of H. Then 
linW , 

∨
W stands for the smallest linear subspace, closed subspace generated by W , respectively. We use 

the notation 〈x〉 in place of lin{x}, for x ∈ H. Let T be a linear operator in a complex Hilbert space H. 
Denote by T ∗ the adjoint of T . We write B(H) for the C∗-algebra of all bounded operators. The spectrum, 
point spectrum and spectral radius of T ∈ B(H) is denoted by σ(T ), σp(T ) and r(T ) respectively. We say 
that T ∈ B(H) is left-invertible if there exists S ∈ B(H) such that ST = I. The Cauchy dual operator T ′

of a left-invertible operator T ∈ B(H) is defined by

T ′ := T (T ∗T )−1.

Note that T is left-invertible if and only if there exists a constant c > 0 such that T ∗T � cI. The notion 
of the Cauchy dual operator has been introduced and studied by Shimorin in the context of the wandering 
subspace problem for Bergman-type operators [52]. We call T analytic if H∞ :=

⋂∞
i=1 T

iH = {0}. Let Ω ⊂ C

be such that intΩ = Ω �= ∅. A function f : Ω → H is said to be holomorphic on Ω if f is differentiable.
Let X be a set and ϕ : X → X. If n ∈ Z+, then the n-th iterate of ϕ is given by ϕ(n) := ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸

n

, 

ϕ composed with itself n-times and ϕ(0) is identity function. For x ∈ X the set

[x]ϕ := {y ∈ X : there exist i, j ∈ N such that ϕ(i)(x) = ϕ(j)(y)}

is called the orbit of ϕ containing x. If x ∈ X and ϕ(i)(x) = x for some i ∈ Z+, then the cycle of ϕ

containing x is the set

Cϕ := {ϕ(i)(x) : i ∈ N}.

Define the function [ϕ] : X → Z by

(i) [ϕ](x) = 0 if x is in the cycle of ϕ,
(ii) [ϕ](x∗) = 0, where x∗ is a fixed element of orbit F of ϕ not containing a cycle,
(iii) [ϕ](ϕ(x)) = [ϕ](x) − 1 if x is not in a cycle of ϕ.

We set

Genϕ (m,n) := {x ∈ X : m � [ϕ](x) � n}

for m, n ∈ Z.
Let (X, A , μ) be a μ-finite measure space, ϕ : X → X and w : X → C be measurable transformations. 

By a weighted composition operator Cϕ,w in L2(μ) we mean a mapping

D(Cϕ,w) := {f ∈ L2(μ) : w(f ◦ ϕ) ∈ L2(μ)},
Cϕ,wf := w(f ◦ ϕ), f ∈ D(Cϕ,w).

We call ϕ and w the symbol and the weight of Cϕ,w respectively.
Let us recall some useful properties of composition operator we need in this paper:

Lemma 2.1. Let X be a countable set, ϕ : X → X and w : X → C be measurable transformations. If 
Cϕ,w ∈ B(�2(X)), then for any x ∈ X and n ∈ Z+
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(i) C∗
ϕ,wex = w(x)eϕ(x),

(ii) Cϕ,wex =
∑

y∈ϕ−1(x) w(y)ey,
(iii) C∗n

ϕ,wex = w(x)w(ϕ(x)) · · ·w(ϕ(n−1)(x))eϕ(n)(x),
(iv) Cn

ϕ,wex =
∑

y∈ϕ−n(x) w(y)w(ϕ(y)) · · ·w(ϕ(n−1)(y))ey,

(v) C∗
ϕ,wCϕ,wex =

(∑
y∈ϕ−1(x) |w(y)|2

)
ex.

Proof. (i) and (ii) See [14, page 633].
(iii) and (iv) Apply (i), (ii) and induction on n.
(v) This follows from (i) and (ii). �
We now describe Cauchy dual of weighted composition operator.

Lemma 2.2. Let X be a countable set, ϕ : X → X and w : X → C be measurable transformations. 
If Cϕ,w ∈ B(�2(X)) is left-invertible operator, then the Cauchy dual C ′

ϕ,w of Cϕ,w is also a weighted 
composition operator Cϕ′,w with the same symbol ϕ : X → X and weight w′ : X → C defined by

w′(x) := w(x)(∑
y∈ϕ−1(ϕ(x)) |w(y)|2

) .
Proof. This is a direct consequence of assertions (i) and (ii) of Lemma 2.1. �

Let T = (V ; E) be a directed tree (V and E are the sets of vertices and edges of T , respectively). For any 
vertex u ∈ V we put Chi(u) = {v ∈ V : (u, v) ∈ E}. Denote by par the partial function from V to V which 
assigns to a vertex u a unique v ∈ V such that (v, u) ∈ E. A vertex u ∈ V is called a root of T if u has no 
parent. If T has a root, we denote it by root. Put V ◦ = V \ {root} if T has a root and V ◦ = V otherwise. 
The Hilbert space of square summable complex functions on V equipped with the standard inner product 
is denoted by �2(V ). For u ∈ V , we define eu ∈ �2(V ) to be the characteristic function of the set {u}. It 
turns out that the set {ev}v∈V is an orthonormal basis of �2(V ). We put V≺ := {v ∈ V : card(Chi(v)) � 2}
and call the member of this set a branching vertex of T .

Given a system λ = {λv}v∈V ◦ of complex numbers, we define the operator Sλ in �2(V ), which is called 
a weighted shift on T with weights λ, as follows

D(Sλ) := {f ∈ �2(V ) : ΛT f ∈ �2(V )} and Sλf := ΛT f for f ∈ D(Sλ),

where

(ΛT f)(v) :=
{

λvf(par(v)) if v ∈ V ◦,
0 otherwise.

Lemma 2.3 (Proposition 3.5.1 [27]). If Sλ is a densely defined weighted shift on a directed tree T with 
weights λ = {λv}v∈V ◦ , then

N (S∗
λ) =

{
〈eroot〉 ⊕

⊕
u∈V≺

(�2(Chi(u)) � 〈λu〉) if T has a root,⊕
u∈V≺

(�2(Chi(u)) � 〈λu〉) otherwise,

where λu ∈ �2(Chi(u)) is given by λu : �2(Chi(u)) � v → λv ∈ C.

A subgraph of a directed tree T which itself is a directed tree will be called a subtree of T . We refer 
the reader to [27] for more details on weighted shifts on directed trees.
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3. Analytic model

This section provides an analytic model for left-invertible operators. We show that a left-invertible oper-
ator, which satisfies certain conditions can be modeled as a multiplication operator on a reproducing kernel 
Hilbert space of vector-valued analytic functions on an annulus or a disc.

Let T ∈ B(H) be a left-invertible operator and E be a subspace of H denote by [E]T∗,T ′ the following 
subspace of H:

[E]T∗,T ′ :=
∨(

{T ∗nx : x ∈ E, n ∈ N} ∪ {T ′nx : x ∈ E, n ∈ N}
)
,

where T ′ is the Cauchy dual of T .
To avoid the repetition, we state the following assumption which will be used frequently in this section.

The operator T ∈ B(H) is left-invertible and E is a closed subspace
of H such that [E]T∗,T ′ = H.

(♣)

Suppose (♣) holds. In this case, we may construct a Hilbert space H associated with T , of formal Laurent 
series with vector coefficients. We proceed as follows. For each x ∈ H, define a formal Laurent series Ux

with vector coefficients as

Ux(z) =
∞∑

n=1
(PET

nx) 1
zn

+
∞∑

n=0
(PET

′∗nx)zn. (3.1)

Let H denote the vector space of formal Laurent series with vector coefficients of the form Ux, x ∈ H. 
Consider the map U : H → H defined by Ux := Ux. As shown in Lemma 3.1 below, by the assumption U
is injective. In particular, we may equip the space H with the inner product induced from H, so that U is 
unitary isomorphism. Observe that every f ∈ H can be represented as follows

f(z) =
∞∑

n=−∞
f̂(n)zn,

where

f̂(n) =
{

PET
′∗nU∗f if n ∈ N,

PET
−nU∗f if n ∈ Z \N.

Lemma 3.1. Suppose (♣) holds and H , U are as above. Then N (U) = {0}.

Proof. Suppose that x ∈ H is such that

PET
nx = 0 and PET

′∗nx = 0, n ∈ N.

Then for every y ∈ E

〈Tnx, y〉 = 0 and 〈T ′∗nx, y〉 = 0, n ∈ N.

This implies

〈x, T ∗ny〉 = 0 and 〈x, T ′ny〉 = 0, n ∈ N.
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We see that the above condition is equivalent to the following one

x⊥ [E]T∗,T ′(= H).

This completes the proof. �
As shown below, the operator T is unitary equivalent to the operator Mz : H → H of multiplication 

by z on H given by

(Mzf)(z) = zf(z), f ∈ H ,

and operator T ′∗ is unitary equivalent to the operator L : H → H given by

(L f)(z) =
f(z) − (PN (M∗

z )f)(z)
z

, f ∈ H .

Theorem 3.2. Suppose (♣) holds. Then the following assertions are valid:

(i) UT = MzU ,
(ii) UT ′∗ = LU .

Proof. (i) Let x ∈ H. Applying (3.1) to operator T and vector Tx, we see that

(UTx)(z) =
∞∑

n=1
(PET

nTx) 1
zn

+
∞∑

n=0
(PET

′∗nTx)zn

=
∞∑

n=1
(PET

n+1x) 1
zn

+ (PETx) +
∞∑

n=1
(PET

′∗n−1x)zn

= z(Ux)(z).

(ii) Since

(UT ′∗x)(z) =
∞∑

n=1
(PET

nT ′∗x) 1
zn

+
∞∑

n=0
(PET

′∗n+1x)zn

=
∞∑

n=1
(PET

n−1(I − PN (T∗))x) 1
zn

+
∞∑

n=0
(PET

′∗n+1x)zn

=
(Ux)(z) − (UPN (T∗)x)(z)

z
= (LUx)(z)

the proof is complete. �
Now we show that in the case of a left-invertible and analytic operators our analytic model with E :=

N (T ∗) coincides with the Shimorin’s analytic model.

Theorem 3.3. Let T ∈ B(H) be left-invertible and analytic, H1, U1 be the Hilbert space and the unitary 
isomorphism constructed in (3.1) with E := N (T ∗) and H2, U2 be the Hilbert space and the unitary iso-
morphism obtained in Shimorin’s construction. Then H1 = H2 and U1 = U2.
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Proof. Set H∞ :=
⋂∞

i=0 T
iH. By [52, Proposition 2.7], H⊥

∞ = [E]T ′ . Since T is analytic H∞ = {0}, we see 
that [E]T ′ = H. Therefore, condition (♣) is satisfied. By kernel-range decomposition, PN (T∗)T

n = 0 for 
n ∈ Z+. Hence, the first sum in (3.1) vanishes. This completes the proof. �

Now we describe how to obtain a collection of subspaces of H with property (♣) from a single subspace 
with this property.

Theorem 3.4. Suppose (♣) holds. Then for every m ∈ N the following assertions hold:

(i) T ′mE is a closed supspace and [T ′mE]T∗,T ′ = H,
(ii) the mapping Φm : H0 → Hm defined by

Φm

( ∞∑
n=−∞

anz
n
)

:=
∞∑

n=−∞
(Vmam+n)zn,

∞∑
n=−∞

anz
n ∈ H0

is a unitary isomorphism, where Hk for k ∈ N is the Hilbert space constructed in (3.1) with subspace 
T ′kE and Vk : E → T ′kE for k ∈ N is defined by,

V e = PT ′kET
ke, e ∈ E.

Proof. (i) Since T ∗T ′ = I, we get that [T ′mE]T∗,T ′ = [E]T∗,T ′ , m ∈ N. This in turn implies that 
[T ′mE]T∗,T ′ = H. The operator T ′m is left-infertible and hence bounded below. This implies that the 
subspace T ′mE is closed.

(ii) We will denote by Uk, k ∈ N the unitary operator of the form (3.1) between H and Hk. Fix m ∈ N. 
First, we note that for every e ∈ E and n ∈ N, we have

〈Tnx, T ′me〉 =
{

〈Tn−mx, e〉 if n � m,
〈T ′∗m−nx, e〉 if n < m.

(3.2)

Take y ∈ T ′mE. Then there exists e ∈ E such that y = T ′me. Employing (3.2), we verify that

〈 ̂(Umx)(−n), y〉 = 〈PT ′mET
nx, y〉 = 〈Tnx, T ′me〉 (3.2)= 〈̂(U0x)(m− n), e〉

= 〈̂(U0x)(m− n), T ∗mT ′me〉 = 〈Tm̂(U0x)(m− n), T ′me〉

= 〈PT ′mET
m̂(U0x)(m− n), y〉,

for n ∈ N. This implies that

̂(Umx)(−n) = PT ′mET
m̂(U0x)(m− n), n ∈ N. (3.3)

Arguing as above, we deduce that

〈 ̂(Umx)(n), y〉 = 〈PT ′mET
′∗nx, y〉 = 〈T ′∗nx, T ′me〉=〈T ′∗n+mx, e〉

= 〈PET
′∗n+mx, T ∗mT ′me〉 = 〈TmPET

′∗n+mx, T ′me〉

= 〈PT ′mET
m̂(U0x)(m + n), y〉,

for n ∈ N. As a consequence, we see that
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̂(Umx)(n) = PT ′mET
m̂(U0x)(m + n), n ∈ N.

This and (3.3) imply that Φm is an isomorphism. Since the Hilbert space structure on Hk for k ∈ N is 
induced from H, we deduce that Φm is unitary. This completes the proof. �

For left-invertible operator T ∈ B(H), among all subspaces satisfying condition (♣) we distinguish those 
subspaces E which satisfy the following condition

E ⊥ TnE and E ⊥ T ′nE, n ∈ Z+. (♠)

A similar condition was studied in the context of 2-isometries in [1] where analog of Wold decompositions 
was obtained.

Theorem 3.5. Suppose (♣) holds. Then the following assertions hold:

(i) if additionally (♠) holds, then U(E) is a copy of E in H , the subspace consisting of constant functions; 
moreover, E-valued polynomials in z are included in H ,

(ii) (M ∗
z Mz)−1M ∗

z = L .

Proof. (i) This is obvious.
(ii) Fix any x ∈ H. Combining Theorem 3.2 and the kernel-range decomposition, we deduce that

(L MzUx)(z) =
(MzUx)(z) − (UPN (T∗)U

−1MzUx)(z)
z

=
z(Ux)(z) − (UPN (T∗)Tx)(z)

z
= (Ux)(z),

which means that L is a left-inverse of Mz. Since

L Mz = I and (M ∗
z Mz)−1M ∗

z Mz = I,

we see that L |R(Mz) = (M ∗
z Mz)−1M ∗

z |R(Mz). One can verify that

L |N (Mz) = (M ∗
z Mz)−1M ∗

z |N (Mz),

which completes the proof. �
Now we shall discuss the extent to which our formal Laurent series actually represent analytic functions. 

If the series (3.1) is convergent in E on an open and nonempty subset Ω ⊂ C for every x ∈ H, then based 
upon Lemma 3.6 below we regard the Hilbert space H as a space of vector-valued holomorphic functions 
on Ω by identifying each formal Laurent series (3.1) with the function

Ũx : Ω � z →
∞∑

n=1
(PET

nx) 1
zn

+
∞∑

n=0
(PET

′∗nx)zn ∈ E.

Lemma 3.6. Let 
∑∞

n=−∞ anz
n be the formal Laurent series which represent constant zero function on an 

open and nonempty subset Ω ⊂ C. Then an = 0, n ∈ Z.

Proof. Take e ∈ E. Then the function Ω � z →
∑∞

n=−∞〈an, e〉zn ∈ C is holomorphic, on the one hand, 
and identically equal to zero, on the other. By Identity theorem 〈an, e〉 = 0, n ∈ Z. This shows that an = 0, 
n ∈ Z and hence completes the proof. �
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Theorem 3.7. Suppose (♣) holds. Let

r+ := inf
x∈H

lim inf
n→∞

‖PET
′∗nx‖−

1
n ,

r− := sup
x∈H

lim sup
n→∞

‖PET
nx‖

1
n .

If r+ > r−, then formal Laurent series (3.1) represent analytic functions on annulus A(r−, r+).

Proof. Fix x ∈ H. An application of the root test [49, page 198] shows that the radius of convergence of 
the regular part of the series (3.1) is

R(x) = lim inf
n→∞

‖PET
′∗nx‖−

1
n ,

and the radius of convergence of the principal part of this series is

r(x) = lim sup
n→∞

‖PET
nx‖

1
n .

This implies that the regular part and principal part are convergent for every x ∈ H in the disc D(r+) and 
in the set C \D(r−), respectively. This completes the proof. �

As will be shown below, if the series (3.1) is convergent in E on Ω ⊂ C for every x ∈ H, then H is a 
reproducing kernel Hilbert space of vector-valued holomorphic functions on Ω.

Theorem 3.8. Suppose (♣) holds and the series (3.1) is convergent in E on an annulus A(r−, r+) with 
r− < r+ and r−, r+ ∈ [0, ∞) for every x ∈ H. Then H is a reproducing kernel Hilbert space of E-valued 
holomorphic functions on A(r−, r+). The reproducing kernel κH : A(r−, r+) ×A(r−, r+) → B(E) associated 
with H is given by

κH (z, λ) =
∑
i,j�1

PET
iT ∗j |E

1
zi

1
λ̄j

+
∑

i�1,j�0
PET

iT ′j |E
1
zi
λ̄j (3.4)

+
∑

i�0,j�1
PET

′∗iT ∗j |Ezi
1
λ̄j

+
∑
i,j�0

PET
′∗iT ′j |Eziλ̄j ,

for any z, λ ∈ A(r−, r+). Moreover, the following assertions hold.

(i) For any λ ∈ A(r−, r+)

∞∑
n=1

(PET
n) 1

λn
+

∞∑
n=0

(PET
∗′n)λn ∈ B(H, E), (3.5)

∞∑
n=1

T ∗n 1
λn

+
∞∑

n=0
T ′nλn ∈ B(E,H). (3.6)

(ii) The series (3.4), (3.5) and (3.6) converges absolutely and uniformly in operator norm on any compact 
set contained in A(r−, r+) ×A(r−, r+), A(r−, r+) and A(r−, r+), respectively.

(iii) The function A(r−, r+) � λ → κH (·, ̄λ)e ∈ H , e ∈ E is holomorphic and given by

κH (·, λ̄)e =
∞∑

n=1
UT ∗ne

1
λn

+
∞∑

n=0
UT ′neλn, λ ∈ A(r−, r+).
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Proof. We claim that series

∞∑
n=0

(PET
′∗n)λn,

converges absolutely and uniformly in the norm of B(H, E) on any compact set contained in A(r−, r+). 
Fix r < r+. It follows from our assumptions on the series in (3.1) that series

∞∑
n=0

(PET
′∗nx)rn,

converges for every x ∈ H. Thus, there exists a constant C(r, x) > 0 such that

‖(PET
′∗nx)rn‖ < C(r, x), n ∈ N.

By uniform boundedness principle (see [48, Theorem 2.6]) we obtain that there exists a constant M(r) > 0
such that

‖(PET
′∗n)rn‖ < M(r), n ∈ N.

If |λ| < r, then applying the above, we see that

‖
∞∑

n=0
(PET

′∗n)λn‖ �
∞∑

n=0
‖(PET

′∗n)λn‖ �
∞∑

n=0
‖(PET

′∗n)rn‖
[ |λ|
r

]n

� M(r)
∞∑

n=0

[ |λ|
r

]n
.

This proves our claim. Following steps analogous to those above, we obtain that

∞∑
n=1

(PET
n) 1

λn

also converges absolutely and uniformly in the norm of B(H, E) on any compact set contained in A(r−, r+). 
It follows from what has already been proved that the same conclusion holds also for the series in (3.5). This 
implies that the series (3.6) converges absolutely and uniformly in the norm of B(E, H) on any compact 
set contained in A(r−, r+). Since the operator (3.4) is a composition of the operators in (3.5) and (3.6), the 
assertions (i) and (ii) are justified.

Let λ ∈ A(r−, r+) and e ∈ E. Then

〈f(λ), e〉E = 〈
∞∑

n=1
(PET

nU−1f) 1
λn

+
∞∑

n=0
(PET

′∗nU−1f)λn, e〉E

= 〈U−1f,

∞∑
n=1

T ∗ne
1
λ̄n

+
∞∑

n=0
T ′neλ̄n〉H

for any f ∈ H . As a consequence, we obtain

κH (·, λ) = U
( ∞∑

T ∗n 1
λ̄n

+
∞∑

T ′nλ̄n
)
. (3.7)
n=1 n=0
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This implies that

〈κH (z, λ)e0, e1〉E = 〈κH (·, λ)e0, κH (·, z)e1〉H

=
〈 ∞∑

n=1
T ∗ne0

1
λn

+
∞∑

n=0
T ′nλne0,

∞∑
n=1

T ∗ne1
1
zn

+
∞∑

n=0
T ′ne1z

n
〉
E
,

for e0, e1 ∈ E and thus H is a reproducing kernel Hilbert space of E-valued holomorphic functions on 
A(r−, r+) and the reproducing kernel is given by (3.4).

The assertion (iii) is a direct consequence of (3.7) and (ii). This completes the proof. �
Now, we turn to the properties of the Cauchy dual operator T ′. The Cauchy dual operator T ′ of a 

left-invertible operator T is itself left-invertible. Assume now that there exist a subspace E ⊂ H such that 
[E]T∗,T ′ = H and [E]T ′,T = H hold. Then for both operators T and T ′ we can construct Hilbert spaces H
and H ′ of E-valued Laurent series. Therefore, by (3.1) the formal Laurent series U ′

x takes the form

U ′
x(z) :=

∞∑
n=1

(PET
′nx) 1

zn
+

∞∑
n=0

(PET
∗nx)zn

and H ′ is the space of Laurent series of the form U ′
x, x ∈ H.

Theorem 3.9. Let T ∈ B(H) be left-invertible, E ⊂ H be a closed subspace and U , H , U ′, H ′ are as above. 
Suppose that [E]T∗,T ′ = H, [E]T ′∗,T = H and (♠) holds. Let f ∈ H and g ∈ H ′ be E-valued series

f(z) =
∞∑

n=0
anz

n and g(z) =
∞∑

n=0
bnz

n.

Then

〈U−1f, U ′=1g〉 =
∞∑

n=0
〈an, bn〉.

Proof. It suffices to consider the case f(z) = e0z
n and g(z) = e1z

m, m, n ∈ N, e0, e1 ∈ E. Observe that

〈U−1f, U ′−1g〉 =
{

〈Tn−me0, e1〉 if n � m,
〈T ′m−ne0, e1〉 otherwise.

Since (♠), we deduce that 〈U−1f, U ′−1g〉 = δm−n〈e0, e1〉. This finishes the proof. �
Now we use analytic model constructed in this section to discuss spectral theory of left-invertible operators 

and its adjoints. Perhaps it is appropriate at this point to note that the condition (iv) below appeared in 
[18, Definition 1.2].

Theorem 3.10. Suppose (♣) holds and the series (3.1) is convergent in E for every x ∈ H on open nonempty 
subset Ω ⊂ C. Then the following assertions hold:

(i) the point spectrum of T is empty, that is σp(T ) = ∅,
(ii) M ∗

z κH (·, μ)g = μ̄κH (·, μ)g, for every μ ∈ Ω, g ∈ E,
(iii) Ω̄ ⊂ σp(T ∗),
(iv)

∨
{N (T ∗ − μ̄) : μ ∈ U} = H, where U ⊂ Ω and intU �= ∅.
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Proof. (i) Suppose, to derive a contradiction, that μ ∈ σp(T ). Then by Theorem 3.2, μ ∈ σp(Mz). Let 
f(z) =

∑∞
n=−∞ anz

n ∈ H be such that (Mz − μ)f = 0. Using the properties of reproducing kernel, one 
gets the following

〈(Mz − μ)f, κH (·, λ)e〉 = 0, λ ∈ Ω, e ∈ E.

Since the series f(z) =
∑∞

n=−∞ anz
n is convergent on Ω, we see that the above equality is equivalent to the 

following one

(λ− μ)
∞∑

n=−∞
〈an, e〉λn = 0, λ ∈ Ω, e ∈ E.

If μ = 0, then by Identity theorem

〈an, e〉 = 0, e ∈ E, n ∈ Z.

As a consequence, we get an = 0 for n ∈ Z. This shows that f = 0, which gives (i). We now consider the 
other case when μ �= 0. Using Identity theorem again, we see that

〈an, e〉 = μ−n〈a0, e〉, n ∈ Z. (3.8)

Suppose that there exist some e ∈ E such that 〈a0, e〉 �= 0. Therefore, by (3.8)

∞∑
n=−∞

〈an, e〉λn = 〈a0, e〉
∞∑

n=−∞

(λ
μ

)n
, λ ∈ Ω, e ∈ E.

Clearly, 
∑∞

n=−∞( z
λ )n is divergent, which contradicts our assumption that 〈a0, e〉 �= 0. This and (3.8) shows 

that an = 0 for n ∈ Z. As a consequence, we get f = 0. This completes the proof of (i).
(ii) By Theorem 3.8, we have

〈Ux,M
∗
z κH (·, λ)g〉 = 〈MzUx, κH (·, λ)g〉 = 〈λUx(λ), g〉

= 〈Ux(λ), λ̄g〉 = 〈Ux, λ̄κH (·, λ)g〉,

for x ∈ H, λ ∈ Ω and g ∈ E. This gives the equality

M ∗
z κH (·, λ)g = λ̄κH (·, λ)g.

(iii) This is a direct consequence of (ii).
(iv) Suppose that f(z) =

∑∞
n=−∞ anz

n ∈ H is orthogonal to the subspace 
∨
{N (M ∗

z − μ̄) : μ ∈ U}. 
Since, by (ii), κH (·, μ)e ∈ N (M ∗

z − μ̄) for every e ∈ E, the following equalities hold

∞∑
n=−∞

〈an, e〉λn = 〈f(λ), e〉 = 〈f, κH (·, λ)e〉 = 0, λ ∈ U, e ∈ E.

By Identity theorem this implies that an = 0 for every n ∈ Z. Thus f = 0 and 
∨
{N (M ∗

z − μ̄) : μ ∈ U} =
H . �



898 P. Pietrzycki / J. Math. Anal. Appl. 477 (2019) 885–911
Fig. 1. An example of directed graph (X,Eϕ) induced by self-map ϕ.

4. Weighted composition operators

In this section as an application of the model presented in Section 3, we obtain significantly improved 
model for weighted composition operator upon provided the symbol of this operator has finite branching 
index.

We begin by recalling the definition of finite branching index. Let T = (V, E) be a rootless directed tree. 
Following [15], we say that T has finite branching index if there exist m ∈ N such that

Chik(V≺) ∩ V≺ = ∅, k � m, k ∈ N.

The next lemma shows that in the case of rootless directed tree with finite branching index there exist some 
special vertex.

Lemma 4.1 ([15]). Let T = (V, E) be a rootless directed tree with finite branching index m ∈ N. Then there 
exists a vertex ω ∈ V≺ such that

card(Chi(par(n)(ω))) = 1, n ∈ Z+. (4.1)

Moreover, if V≺ is non-empty, then there exists a unique ω ∈ V≺ satisfying (4.1).

The vertex ω ∈ V≺ appearing in the statement of Lemma 4.1 is called generalized root. We put x∗ :=
par(ω) in the definition of function [ϕ] : X → Z for orbit F of ϕ not containing a cycle (see Section 2). 
Since any self-map ϕ : X → X induces a directed graph (X, Eϕ) (see Fig. 1) given by

Eϕ = {(x, y) ∈ X ×X : x = ϕ(y)} (4.2)

it is natural to extend the notion of finite branching index to self-maps. We say that ϕ has finite branching 
index if

sup
{
|[ϕ](x)| : card(ϕ−1(x)) � 2, x ∈ X

}
< ∞.

Perhaps it is appropriate at this point to note that a self-map with one orbit can have at most one cycle.
Recall that a weighted shift on a rootless directed tree can be identified with composition operator in 

L2-spaces (see [28, Lemma 4.3.1]).
Let X be a countable set, w : X → C be a complex function on X, ϕ : X → X be a transformation 

of X and Cϕ,w be a weighted composition operator in �2(X). We will need only consider composition 
functions with one orbit, since an orbit induces a reducing subspace to which the restriction of the weighted 
composition operator is again a weighted composition operator.
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The following lemma describes a subspace E ⊂ �2(X) of the operator Cϕ,w which satisfies condition (♠)
with Cϕ,w and Cϕ′,w in place of T . It requires considering two distinct cases.

Lemma 4.2. Let X be a countable set, w : X → C be a complex function on X and ϕ : X → X be a 
transformation of X, which has finite branching index. Let Cϕ,w be a weighted composition operator in 
�2(X) and

E :=
{⊕

x∈Genϕ(1,1)〈ex〉 ⊕ N ((Cϕ,w|�2(Des(x)))∗) when ϕ has a cycle,
〈eω〉 ⊕ N (C∗

ϕ,w) otherwise,
(4.3)

where Des(x) :=
⋃∞

n=0 ϕ
(−n)(x) and ω is a generalized root of the tree defined by (4.2). Then the subspace 

E has the following properties:

(i) [E]C∗
ϕ,w,Cϕ′,w = �2(X) and [E]Cϕ,w,C∗

ϕ′,w
= �2(X),

(ii) E ⊥ Cn
ϕ,wE and E ⊥ Cn

ϕ′,wE, n ∈ Z+.

Proof. (i) First, we consider the case when ϕ does not have a cycle. Clearly, the weighted composition 
operator Cϕ,w can be identified with a weighted shift Sλ on a rootless directed tree given by (4.2). We show 
that the subspace E := 〈eω〉 ⊕N (Sλ

∗) satisfies (♠) and [E]S∗
λ,Sλ′ = �2(X). Note that the space �2(Des(ω))

is invariant for Sλ. We will denote by Sλ→(ω) the operator Sλ|�2(Des(ω)). The subtree TDes(ω) of T is a 
directed tree with root ω and by Lemma 2.3, N (Sλ→(ω)) = 〈eω〉 ⊕N (Sλ

∗). Since by [15, Lemma 3.3] Sλ→(ω)
is analytic, it follows from Shimorin’s analytic model that [E]Sλ→(ω) = �2(Des(ω)). Hence,

∨
{Sn

λx : x ∈ E, n ∈ N} = [E]Sλ→(ω) = �2(Des(ω)). (4.4)

By [52, Proposition 2.7], we have [E](Sλ→(ω))′ = �2(Des(ω)). Note that the subspace �2(Des(ω)) is invariant 
for Sλ and S∗

λSλ is diagonal. Recall that if T ∈ B(H) and closed subspace G is invariant for T , then 
(T |G)∗ = PGT

∗|G . Therefore, we have

(Sλ→(ω))′ = Sλ|�2(Des(ω))((Sλ|�2(Des(ω)))∗Sλ|�2(Des(ω)))−1

= Sλ|�2(Des(ω))(P�2(Des(ω))S
∗
λ|�2(Des(ω))Sλ|�2(Des(ω)))−1

= Sλ(S∗
λSλ)−1|�2(Des(ω)) = Sλ′ |�2(Des(ω)).

This implies that

∨
{Sn

λ′x : x ∈ E, n ∈ N} = [E](Sλ|�2(Des(ω)))′ = �2(Des(ω)). (4.5)

The assertion (i) of Lemma 2.1, shows that

∨
{S∗n

λ x : x ∈ E, n ∈ N} = �2(X \ Des(ω)),∨
{S∗n

λ′ x : x ∈ E, n ∈ N} = �2(X \ Des(ω)).

This together with (4.4) and (4.5) yields [E]S∗
λ,Sλ′ = �2(X) and [E]Sλ,S∗

λ′ = �2(X).
If ϕ has a cycle, then the operator

Cϕ,w|�2(Des(x)) for x ∈ Genϕ(1, 1)
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is a weighted shift on directed tree with root x. Using [15, Lemma 3.4] again and arguing as in the previous 
case we obtain

∨
{Cn

ϕ′,wy : y ∈ 〈ex〉 ⊕ N ((Cϕ,w|�2(Des(x)))∗), n ∈ N} = �2(Des(x)), x ∈ Genϕ(1, 1), (4.6)∨
{Cn

ϕ,wy : y ∈ 〈ex〉 ⊕ N ((Cϕ,w|�2(Des(x)))∗), n ∈ N} = �2(Des(x)), x ∈ Genϕ(1, 1).

Applying the assertion (i) of Lemma 2.1 again, we see that
∨

{Cn
ϕ,wx : x ∈ E, n ∈ N} = �2(X \

⋃
x∈Genϕ(1,1)

Des(x)),

∨
{Cn

ϕ′,wx : x ∈ E, n ∈ N} = �2(X \
⋃

x∈Genϕ(1,1)

Des(x)).

This and (4.6), implies that [E]C∗
ϕ,w,Cϕ′,w = �2(X) and [E]Cϕ,w,C∗

ϕ′,w
= �2(X).

(ii) First, we consider the case when ϕ does not have a cycle. According to Lemma 2.3, E = 〈eω〉 ⊕
N (C∗

ϕ,w). If e, f ∈ E and n ∈ N, then

〈C∗n
ϕ,we, f〉 = 〈C∗n

ϕ,wP〈eω〉e, f〉 = 0,

〈C∗n
ϕ′,we, f〉 = 〈C∗n

ϕ′,wP〈eω〉e, f〉 = 0,

where in the last step we used assertion (iii) of Lemma 2.1. This immediately yields that condition (♠)
holds, which completes the proof of the case when ϕ does not have a cycle.

If ϕ has a cycle, then similar reasoning leads to the equalities

〈C∗n
ϕ,we, f〉 = 〈C∗n

ϕ,wPẼe, f〉 = 0,

〈C∗n
ϕ′,we, f〉 = 〈C∗n

ϕ′,wPẼe, f〉 = 0,

where Ẽ :=
∨
{ex : x ∈ Genϕ(1, 1)}. This completes the proof. �

Before we turn to the main theorem of this section, we need to give some definitions. Suppose (♣) holds 
with Cϕ,w in place of T . Let ϕ be a self-map of X and E be a subspace of �2(X). Define

kϕ(E) := min{n ∈ N : E ⊂
∨

{ex : Genϕ(1, n)}}.

A number kϕ(E) will be called an index of E with respect to ϕ. Now, we can define some subsets of X by

WE,ϕ
0 := Genϕ(1, kϕ(E)),

and then

WE,ϕ
n :=

{
ϕ(−n)(WE,ϕ

0 ) n ∈ N when ϕ has a cycle
ϕ(−n)(WE,ϕ

0 ) n ∈ Z otherwise.

Finally, we are ready to define radii of convergence for Cϕ,w. The non-negative number

r+
w,ϕ := lim inf

n→∞

( ∑
x∈WE,ϕ

n

|w′(x)w′(ϕ(x)) · · ·w′(ϕ(n−1)(x))|2
)− 1

2n (4.7)
n�0
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will be called the outer radius of convergence for Cϕ,w, and similarly the non-negative number

r−w,ϕ :=
{

τ

√∏
x∈Cϕ

|w(x)| if ϕ has a cycle,
lim supn→∞

n
√

|w(ϕ1(ω))w(ϕ2(ω)) . . . w(ϕn(ω))| otherwise,
(4.8)

where τ := cardCϕ will be called the inner radius of convergence for Cϕ,w.
Now we are in a position to prove the main result of this section (compare with [15, Theorem 2.2]).

Theorem 4.3. Let X be a countable set, w : X → C be a complex function on X and ϕ : X → X be a trans-
formation of X, which has finite branching index. Let Cϕ,w be a left-invertible weighted composition operator 
in �2(X). If r+

w,ϕ > r−w,ϕ, then there exist a z-invariant reproducing kernel Hilbert space H of E-valued 
holomorphic functions defined on the annulus A(r−w,ϕ, r

+
w,ϕ) and a unitary isomorphism U : �2(X) → H

such that MzU = UCϕ,w, where Mz denotes the operator of multiplication by z on H and E is as in (4.3). 
Moreover, the following assertions hold:

(i) the reproducing kernel κH : A(r−w,ϕ, r
+
w,ϕ)×A(r−w,ϕ, r

+
w,ϕ) → B(E) associated with H has the property 

that κH (·, w)g ∈ H and 〈Uf, κH (·, w)g〉 = 〈(Uf)(w), g〉 for f, g ∈ �2(X),
(ii) the reproducing kernel κH has the following form:

κH (z, λ) =
∑
i,j�1

Ai,j
1
zi

1
λ̄j

+
∑

i�1,j�0
Bi,j

1
zi
λ̄j

+
∑

i�0,j�1
Ci,jz

i 1
λ̄j

+
∑
i,j�0

Di,jz
iλ̄j ,

where Ai,j , Bi,j , Ci,j , Di,j ∈ B(E); if additionally ϕ has no cycle, then

Ai,j = 0 if |i− j| > kϕ(E),

Bi,j = 0 if i + j > kϕ(E),

Ci,j = 0 if i + j > kϕ(E),

Di,j = 0 if |i− j| > kϕ(E),

(iii) if ϕ does not have a cycle, then the linear subspace generated by E-valued polynomials in z and Ẽ-valued 
polynomials involving only negative powers of z is dense in H , that is

∨
({znE : n ∈ N} ∪ { 1

zn
Ẽ : n ∈ Z+}) = H ,

where Ẽ :=
∨
{ex : x ∈ Genϕ(1, 1)}; if ϕ has a cycle Cϕ with τ := cardCϕ, then there exist τ functions 

f1, . . . , fτ on A(r−w,ϕ, r
+
w,ϕ) given by the following Laurent series

fi(z) :=
∞∑
k=0

τ∑
i=1

ΛkAi
1

zkτ+i
, i = 1, ..., τ,

where Λ :=
∏

x∈Cϕ
w(x) and Ai ∈ Ẽ, i = 1, . . . , τ such that the linear subspace generated by E-valued 

polynomials in z and the above functions is dense in H , that is
∨

({znE : n ∈ N} ∪ {fi : i ∈ {1, . . . τ}}) = H .
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Proof. We begin by showing that the E-valued series

∞∑
n=0

PEC
∗n
ϕ′,wfz

n

converges absolutely in E on the disc D(r+
w,ϕ). Let f =

∑
x∈X f(x)ex. Applying Lemma 2.1, we obtain

PEC
∗n
ϕ′,wf =

∑
x∈X

f(x)w′(x)w′(ϕ(x)) · · ·w′(ϕ(n−1)(x))PEeϕ(n)(x)

=
∑

x∈WE,ϕ
n

f(x)w′(x)w′(ϕ(x)) · · ·w′(ϕ(n−1)(x))PEeϕ(n)(x).

Observe that WE,ϕ
n ∩WE,ϕ

m = ∅ for |m − n| > kϕ(E), m, n ∈ N. As a consequence, we have

∑
x∈WE,ϕ

n
n�0

|f(x)|2 � (kϕ(E) + 1)
∑
x∈X

|f(x)|2 = (kϕ(E) + 1)‖f‖2. (4.9)

By the Cauchy-Schwarz inequality, we have

‖
k∑

n=0
PEC

∗n
ϕ′,wfz

n‖ �
∑

x∈WE,ϕ
n

n�0

|f(x)w′(x)w′(ϕ(x)) · · ·w′(ϕ(n−1)(x))zn|

�
( ∑

x∈WE,ϕ
n

n�0

|f(x)|2
) 1

2
( ∑

x∈WE,ϕ
n

n�0

|w′(x)w′(ϕ(x)) · · ·w′(ϕ(n−1)(x))zn|2
) 1

2

(4.9)
�

√
kϕ(E) + 1 ‖f‖

( ∑
x∈WE,ϕ

n
n�0

|w′(x)w′(ϕ(x)) · · ·w′(ϕ(n−1)(x))zn|2
) 1

2
.

An application of the root test [49, page 198] shows that the above series converges on the disc D(r+
w,ϕ).

Now we show that the E-valued series

∞∑
n=0

PEC
n
ϕ,wf

1
zn

converges absolutely in E on C \ D(r−w,ϕ). First, we consider the case when ϕ does not have a cycle. For 
this, note that using Lemma 2.1 again,

PEC
n
ϕ,wf =

∑
x∈X

f(x)
∑

y∈ϕ−n(x)

w(y)w(ϕ(y)) · · ·w(ϕ(n−1)(y))PEey

=
∑

x∈WE,ϕ
−n

f(x)
∑

y∈ϕ−n(x)

w(y)w(ϕ(y)) · · ·w(ϕ(n−1)(y))PEey

=
∑

x∈WE,ϕ
−n

f(x)w(ϕ−1(x))w(ϕ−2(x)) · · ·w(ϕ[ϕ](x)(x))PEC
n+[ϕ](x)
ϕ,w eϕ[ϕ](x)(x),

for n � kϕ(E). Put M := max{1, ‖Cϕ,w‖kϕ(E)}. Note that n +[ϕ](x) � kϕ(E) and thus, ‖PEC
n+[ϕ](x)
ϕ,w ‖ � M . 

Repeating the argument in (4.9), we see that
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∑
x∈WE,ϕ

−n

n�kϕ(E)

|f(x)|2 � (kϕ(E) + 1)‖f‖2.

Hence, by the Cauchy-Schwarz inequality again, we have

‖
k∑

n=kϕ(E)

PEC
n
ϕ,wf

1
zn

‖ � M
∑

x∈WE,ϕ
−n

n�kϕ(E)

|f(x)w(ϕ−1(x))w(ϕ−2(x)) · · ·w(ϕ[ϕ](x)(x)) 1
zn

|

� M
( ∑

x∈WE,ϕ
−n

n�kϕ(E)

|f(x)|2
) 1

2
( ∑

x∈WE,ϕ
−n

n�kϕ(E)

|w(ϕ−1(x))w(ϕ−2(x)) · · ·w(ϕ[ϕ](x)(x)) 1
zn

|2
) 1

2

� M
√
kϕ(E) + 1 ‖f‖

( ∑
x∈WE,ϕ

−n

n�kϕ(E)

w(ϕ−1(x))w(ϕ−2(x)) · · ·w(ϕ[ϕ](x)(x) 1
zn

|2
) 1

2
,

for k � kϕ(E). Since the series on the right-hand side converges absolutely on C \ D(r−w,ϕ), we are done. It 
remains to consider the other case when ϕ has a cycle. It is easily seen that

∞∑
n=0

PEC
n
ϕ,wfz

n =
∞∑

n=0
PEC

n
ϕ,wPHϕ

fzn +
∞∑

n=0
PEC

n
ϕ,wPH⊥

ϕ
fzn,

where Hϕ := lin {ex : x ∈ Cϕ}. We show that both above series converge. Observe that if h ∈ H⊥
ϕ ∩∨

{ex : x ∈ Genϕ(m,n)} for m, n ∈ N, then Cϕ,wh ∈
∨
{ex : x ∈ Genϕ (m + 1, n + 1)}. This, together with 

the fact that E ⊂
∨
{ex : x ∈ Genϕ (1, kϕ(E))} yields

∥∥∥ ∞∑
n=0

PEC
n
ϕ,wPH⊥

ϕ
fzn

∥∥∥ =
∥∥∥ kϕ(E)∑

n=0
PEC

n
ϕ,wPH⊥

ϕ
fzn

∥∥∥ �
kϕ(E)∑
n=0

‖Cϕ,w‖n ‖f‖ zn.

Let us now observe that

PWi
Cn+τ

ϕ,w ex = ΛPWi
Cn

ϕ,wex, x ∈ Cϕ, (4.10)

where Wi =
∨

{ex : x ∈ Genϕ(i, i)}, i ∈ N. We now apply this observation to estimate the following sum.

∞∑
n=0

PEC
n
ϕ,wPHϕ

f
1
zn

=
∞∑

n=0
PEC

n
ϕ,w

( ∑
x∈Cϕ

f(x)ex
) 1
zn

=
∑
x∈Cϕ

f(x)
∞∑

n=0
PEC

n
ϕ,wex

1
zn

=
∑
x∈Cϕ

kϕ(E)∑
i=0

f(x)
∞∑

n=0
PEPWi

Cn
ϕ,wex

1
zn

=
∑
x∈Cϕ

kϕ(E)∑
i=0

τ∑
j=0

f(x)
∞∑

n=0
PEPWi

Cnτ+j
ϕ,w ex

1
znτ+j

=
∑
x∈Cϕ

kϕ(E)∑
i=0

τ∑
j=0

f(x)
∞∑

n=0
ΛnPEPWi

Cj
ϕ,wex

1
znτ+j

.
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The above series is a finite sum of a geometric series with ratio Λ
zτ and hence converges absolutely on 

C \ D(r−w,ϕ). Putting these results together, we conclude that if r+
w,ϕ > r−w,ϕ, then the series (3.1) with 

Cϕ,w in place of T converges absolutely on A(r−w,ϕ, r
+
w,ϕ). Moreover, combining Theorems 3.2 and 3.8 with 

Lemma 4.2, we deduce that there exist a z-invariant reproducing kernel Hilbert space H of E-valued 
holomorphic functions defined on the annulus A(r−w,ϕ, r

+
w,ϕ) and a unitary mapping U : �2(X) → H such 

that MzU = UCϕ,w.
Now we turn to the proof of the “moreover” part.
(i) This assertion is a direct consequence of Theorem 3.8.
(ii) Recall that by (3.4), the kernel has the following form

κH (z, λ) =
∑
i,j�1

Ai,j
1
zi

1
λj

+
∑

i�1,j�0
Bi,j

1
zi
λj

+
∑

i�0,j�1
Ci,jz

i 1
λj

+
∑
i,j�0

Di,jz
iλj ,

where

Ai,j = PEC
i
ϕ,wC

∗j
ϕ,w|E , Bi,j = PEC

i
ϕ,wCϕ′,w

j |E ,
Ci,j = PEC

∗i
ϕ′,wC

∗j
ϕ,w|E , Di,j = PEC

∗i
ϕ′,wC

j
ϕ′,w|E .

Observe that

C∗m
ϕ′,wC

n
ϕ′,wE ⊂

∨
{ex : x ∈ WE,ϕ

n−m}, Cm
ϕ,wC

n
ϕ′,wE ⊂

∨
{ex : x ∈ WE,ϕ

m+n},

C∗m
ϕ′,wC

∗n
ϕ,wE ⊂

∨
{ex : x ∈ WE,ϕ

−m−n}, Cm
ϕ,wC

∗n
ϕ,wE ⊂

∨
{ex : x ∈ WE,ϕ

m−n}.

Since E ⊂
∨
{ex : x ∈ WE,ϕ

0 }, the subspace E is orthogonal to 
∨
{ex : x ∈ WE,ϕ

k } if |k| > kϕ(E). This 
completes the proof of (ii).

(iii) It follows from Lemma 4.2 that
∨

({Cn
ϕ,wE : n ∈ N} ∪ {C∗n

ϕ′,wE : n ∈ N}) = H.

We now consider two disjunctive cases which cover all possibilities. First we consider the case when ϕ does 
not have a cycle. Since Cϕ,w is unitarily equivalent to Mz, we see that

U(
∨

{Cn
ϕ,wE : n ∈ N}) =

∨
{M n

z (E) : n ∈ N}. (4.11)

Note that

U(C∗n
ϕ′,weω) =

( n−1∏
i=0

w(ϕ(i)(ω))w′(ϕ(i)(ω)
)
eω

1
zn

, n ∈ Z+. (4.12)

It follows from (4.3) and equality N (C∗
ϕ′,w) = N (C∗

ϕ,w) that

∨
{C∗n

ϕ′,wE : n ∈ N} =
∨

{C∗n
ϕ′,weω : n ∈ N}.

Combining this with (4.11) and (4.12) completes the proof of the case when ϕ does not have a cycle. It 
remains to consider the other case when ϕ has a cycle. Looking at the formula (4.3), we deduce that
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Fig. 2. The directed graph (X,Eϕ) induced by self-map ϕ whose all vertices are contained in the cycle.

C∗
ϕ′,we =

{
w′(x)eϕ(x) if e = ex, x ∈ Genϕ(1, 1)
0 if e ∈

⊕
x∈Genϕ(1,1) N ((Cϕ,w|�2(Des(x)))∗)

(4.13)

Note that if x ∈ Genϕ(1, 1) ∪ Cϕ, then ϕ(x) ∈ Cϕ. This, combined with (4.13), yields

∨
{C∗n

ϕ′,wE : n ∈ Z+} =
∨

{ex : x ∈ Cϕ}.

We now describe the value of the map U : H → H at ex, x ∈ Cϕ. In view of (4.10), we can deduce from 
(3.1) that U(ex), x ∈ Cϕ has the following form

U(ex) =
∞∑
k=0

τ∑
i=1

ΛkAx
i

1
zkτ+i

,

for some Ax
i ∈ Ẽ, i = 1, . . . , τ . This completes the proof. �

5. Examples

In this section, we illustrate Theorem 4.3 by considering several interesting examples. We begin by giving 
an example of left-invertible weighted composition operator for which the series in (3.1) does not converge 
absolutely on any open subset of C.

Example 5.1. Fix m ∈ N and set X = {0, 1, . . . ,m}. Let w : X → C be a function and define a mapping 
ϕ : X → X by

ϕ(i) :=
{

i + 1 if i < m

0 if i = m

(see Fig. 2). Set Λ := w(0)w(1) . . . w(m). Let Cϕ,w be the left-invertible composition operator in Cm+1. The 
matrix of this operator is of the form

Cϕ,w =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 w(0) 0 · · · 0
0 0 w(1) · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

w(m) 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Let E := lin {e1}. It is easy to see that [E]C∗
ϕ,w,Cϕ′,w = �2(X). Using Lemma 2.1 and Lemma 2.2, one can o 

verify that
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Fig. 3. The directed graph (X,Eϕ) induced by self-map ϕ, which not have a cycle whose all vertices have valency one.

PEC
mk+r
ϕ,w x = Λk

( r−1∏
i=0

w(i)
)
xre0,

PEC
′∗(mk+r)
ϕ,w x = 1

Λk

( m∏
i=m+1−r

w(i)
)−1

xn+1−re0,

for r < n, r, k ∈ N. This shows that formal Laurent series in (3.1) takes the following form:

Ux(z) =
∞∑
k=1

n−1∑
r=0

(
Λk
( r−1∏

i=0
w(i)

)
xre0

) 1
znk+r

+
∞∑
k=0

( n−1∑
r=0

1
Λk

( m∏
i=m+1−r

w(i)
)−1

xn+1−re0

)
znk+r.

Since C∗
ϕ,w acts on the finite dimensional space, the spectrum of C∗

ϕ,w is finite. Therefore, by assertion (iii) 
of Theorem 3.10 the above series does not converge absolutely on any open subset of C. Alternatively, one 
can prove this fact directly by calculating convergences radii.

The next example shows that our analytic model generalizes the Gellar’s analytic model for bilateral 
weighted shift [24].

Example 5.2 (Bilateral weighted shift). Let Sλ : �2(Z) → �2(Z) be a bilateral weighted shift with weights 
{λn}n∈Z and {en}n∈Z be the standard orthonormal basis of �2(Z). Then

Sλen := λn+1en+1, n ∈ Z

(see Fig. 3). Let E := lin {e0}. It is easy to see that [E]S∗
λ,S

′
λ

= H. It is worth noting that N (S∗
λ) = {0} and 

thus [N (S∗
λ)]S∗

λ,S
′
λ

= {0}. This phenomenon is quite different comparing with the case of left-invertible and 
analytic operators in which [N (T ∗)]T∗,T ′ = H, where T is in this class.

It is a matter of routine to verify that the adjoint of the Cauchy dual S′∗
λ of Sλ has the following form

S′∗
λ en = 1

λn
en−1, n ∈ Z.

It is now easily seen that

PE(S′∗
λ )nx =

( n∏
i=1

λi

)−1
xne0, n ∈ Z+,

and

PES
n
λx =

( 0∏
i=−n+1

λi

)
x−ne0, n ∈ Z+.

Therefore, by (3.1) the formal Laurent series takes the form
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Fig. 4. The directed graph (X,Eϕ) whose vertices, all but one, have valency one induced by self-map ϕ, which has a cycle.

Ux(z) =
∞∑

n=1

( 0∏
i=−n+1

λi

)
x−n

1
zn

+
∞∑

n=0

( n∏
i=1

λi

)−1
xnz

n.

Comparing the above series with the formal Laurent series in [24, Section 2] one can realize that our analytic 
model and the Gellar analytic model coincide in the case of left-invertible bilateral weighted shifts. Noting 
that WE,ϕ

n = {n} for n ∈ Z, we infer from (4.7) and (4.8) that

r+
w,ϕ = lim inf

n→∞
n

√√√√ n∏
i=1

|λi|

and

r−w,ϕ = lim sup
n→∞

n

√√√√ 0∏
i=−n+1

|λi|.

In this case, the reproducing kernel κH : A(r−, r+) ×A(r−, r+) → B(E) is diagonal and given by

κH (z, λ) =
∞∑
i=1

0∏
i=−n+1

|λi|2
1

(zλ̄)i
+

∞∑
i=0

( n∏
i=1

|λi|2
)−1

(zλ̄)i.

Now we provide two more examples of left-invertible compositions operators over connected directed 
graphs induced by self-maps whose vertices, all but one, have valency one and the valency of the remaining 
vertex is nonzero.

Example 5.3. Set m ∈ N and X = {0, 1, . . .m} � {(0, i) : i ∈ N}. Let w : X → C be a measurable function 
and ϕ : X → X be transformation of X defined by

ϕ(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, i− 1) for x = (0, i), i ∈ N \ {0},
m for x = (0, 0),
i− 1 for x = i and i ∈ {1, . . . ,m},
m for x = 0,

(see Fig. 4). Let Cϕ,w : �2(X) → �2(X) be a left-invertible composition operator. It is easily seen that

Cϕ,wex =

⎧⎪⎨
⎪⎩

w(0, i + 1)e(0,i+1) for x = (0, i), i ∈ Z+
w(i + 1)ei+1 for x = i and i ∈ {0, 1, . . . ,m}
w(0)e + w(0, 0)e for x = m.
0 (0,0)
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It is routine to verify that N (C∗
ϕ,w) = lin{w(0, 0)e0 − w(0)e(0,0)}. Let E := lin{e(0,0)}. One can check that 

this one-dimensional subspace satisfies (♣). This implies that1

PE(C∗
ϕ′,w)nx =

( n∏
i=1

w(0, i)
)−1

xne(0,0),

PEC
nm+r+1
ϕ,w x = Λnw(0, 0)

( r−1∏
i=0

w(m− i)
)
xm−re(0,0),

for r < m, r, n ∈ N. Hence, by (3.1) the Hilbert space H consist of the functions of the form

Ux(z) =
∞∑

n=1

k∑
r=0

Λkw(0, 0)
( r−1∏

i=0
w(m− i)

)
xm−r

1
znm+r+1

+
∞∑

n=0

( n∏
i=1

w(0, i)
)−1

xnz
n.

The formulas for the inner and outer radius of convergence take the following form

r+
w,ϕ = lim inf

n→∞
n

√√√√ n∏
i=1

|w(0, i)|

and

r−w,ϕ = m+1

√√√√ m∏
i=0

|w(i)|.

The reproducing kernel κH : A(r−, r+) ×A(r−, r+) → B(E) by Theorem 3.8 takes the form

κH (z, λ) =
∑

i�1,j�1
ΛiΛ̄j |w(1, 0)|2

( r−1∏
i=0

|w(m− i)|2
) 1
zim+r+1λ̄jm+r+1

+
∞∑
i=0

( n∏
i=1

|w(0, i)|2
)−1

(zλ̄)i.

In Example 5.4 below, we demonstrate composition operator which can be identified with weighted shift 
on a rootless directed tree. A weighted shift on a directed tree is a circular operator [27, Theorem 3.3.1.]. 
Hence, without loss of generality we can assume that the weight is positive.

Example 5.4. Set m ∈ N and X = N � {(i, j) : i ∈ {0, 1} , j ∈ N}. Let w : X → (0, ∞) be a measurable 
function and ϕ : X → X be transformation of X defined by

ϕ(x) =

⎧⎪⎨
⎪⎩

(i, j − 1) for x = (i, j), i ∈ Z+, j ∈ {0, 1},
0 for x ∈ {(0, 0), (1, 0)},
x + 1 for x ∈ N,

1 To make the notation more readable, we adopt the convention that ∏m
i=n ai = 1 if n > m.
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Fig. 5. The directed graph (X,Eϕ) whose vertices, all but one, have valency one induced by self-map ϕ, which not have a cycle.

(see Fig. 5). Let Cϕ,w ∈ B(�2(X)) be a left-invertible composition operator. As an immediate consequence 
of the definition, we obtain

Cϕ,wex =

⎧⎪⎨
⎪⎩

w(i, j + 1)e(i,j+1) for x = (i, j), i ∈ {0, 1}, j ∈ N,
w(i− 1)ei−1 for x = i and i ∈ Z+,
w(1, 0)e(1,0) + w((1, 0))e(1,0) for x = 0.

Applying Lemma 2.3, we get N (C∗
ϕ,w) = lin{w(0, 0)e(1,0) − w(1, 0)e(0,0)}. Therefore, by Lemma 4.2 E =

lin{e0, w(2, 0)e(1,0) − w(2, 0)e(1,0)}. By more or less elementary calculations, one can verify that

PEC
n
ϕ,wx =

( n−1∏
i=0

w(i)
)
xne0,

PE(C∗
ϕ′,w)nx = W

[
w(0, 0)

( n−1∏
i=1

w(0, i)
)−1

x(0,n−1) + w(1, 0)
( n−1∏

i=1
w(1, i)

)−1
x(1,n−1)

]
e0

+
[( n∏

i=1
w(1, i)

)−1
w(1, 0)x(0,n) −

( n∏
i=1

w(1, i)
)−1

w(0, 0)x(1,n)

]
ẽ,

for n ∈ Z+, where

W = 1
w2(0, 0) + w2(1, 0) , ẽ =

w(1, 0)e(0,0) − w(0, 0)e(1,0)

w2(0, 0) + w2(1, 0) .

Therefore, by (3.1) the formal Laurent series takes the form

Ux(z) =
∞∑

n=1

( n−1∏
i=0

w(i)
)
xne0

1
zn

+
∞∑

n=0
W
[
w(0, 0)

( n−1∏
i=1

w(0, i)
)−1

x(0,n−1) + w(1, 0)
( n−1∏

i=1
w(1, i)

)−1
x(1,n−1)

]
e0

+
[( n∏

i=1
w(1, i)

)−1
w(1, 0)x(0,n) −

( n∏
i=1

w(0, i)
)−1

w(0, 0)x(1,n)

]
ẽ]zn

We infer from (4.7) and (4.8) that the formulas for the inner and outer radius of convergence take the 
following form

r+
w,ϕ := lim inf

n→∞

( 1∑
( 1
w2(i, 0) + 1

w2(i, n + 1))
n∏ 1

w2(i, j)

)− 1
2n
i=0 j=1
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and

r−w,ϕ := lim sup
n→∞

n

√√√√n−1∏
i=0

|w(i)|.
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