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1. Introduction

In this paper we study the large time behaviour in Fourier norms of the solution to the incompressible
Navier-Stokes equations in three spatial dimensions

Ou — Au+u.Vu= —Vpin Rt x R3
(NS)< divu =0 in RT x R?

w(0,2) = u’(x) in R3,
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where u = u(t, ) = (u1, uz, uz) and p = p(t, ) denote respectively the unknown velocity and the unknown
pressure of the fluid at the point (¢,2) € Rt x R3, and (u.Vu) := uid1u + ugdou + uzdzu, while u® =
(ug(x),u§(z),us(x)) is an initial given velocity. If u° is quite regular, the divergence free condition determines
the pressure p. We recall in our case it was assumed the viscosity is unitary (v = 1) in order to simplify the
calculations and the proofs of our results.

The Navier-Stokes system has the following scaling property: If uw = u(t,z) is a solution of (N.S) with
initial date u® = u°(z) on the interval [0, T], then for all A > 0,uy = Au(\?t, Ax) is a solution of (NS) with
initial data ux(0,2) = Au®(Az) on the interval [0, 25]. A functional space (X, ||.|[x) is called critical space
of (NS) system if ||fr]lx = |fllx; YA >0, Vf e X, where fy(x) = Af(Az). Particularly, L3, H'/? and
X1 are critical spaces for the system (NS), where X7 is defined as follows

X°(R%) = {f € S'(R%)/ [ € L}, and / €71 7(€)lde < oo}
R3

In order to explain the idea of studying the (NS) system in the space L?NX ~!, by making the intersection
with the energy space L2, we obtain similar results with that the Sobolev spaces H® = L2 N H* for s > 0,
(see [5] and [9]).

It is well-known that X' is a subspace of homogeneous Besov space Bo_o]:l' Using this inclusion and

Bo_ol,1 — Bo_ol,q for 1 < g < oo (see [2]) we get X~ — Bo_ol,q which is critical in the scaling sense for (NS)
(A = 2%, k € Z). Unfortunately, the (NS) is ill posed in Bo_ol’q forall 1 < g < oo (see [10]). So, it is interesting
to consider reasonable substitution of Bo_ol)q, where X! is a good choice for the global well-posedness of
(NS). Notice that X~! is also a subspace of BMO™!, where the global well-posedness of (N.S) in BMO~!
holds (see [7]). On the technical side, the choice of the space X1 is a bit special because it is not comparable
with homogenous Sobolev space H'/? (see [3]). But it is also defined by the Fourier transformation which
helps us to prove the principle result, by dividing the global solution into low and high frequencies.

The goal of this paper is to establish uniform decay rates in X°(R3) spaces and for the L? in space. The
decay proof idea is new for the X?(R3) norms, but the decay for the L? norm will follow using idea of [5],
(see also [4]). The decay study in L? is inspired by [5], precisely we cut u into high and low frequencies:
ws = F 1 (1qje1<syt), vs = F H(Lg>s34). We start by showing that limsups_,osup; ., [|ws(t)[|z2 = 0.
For high frequencies we prove that (¢t — |lvs(t)||z2) € L*(RT) N C(R™), which gives the existence of a
time tg = to(e) and dg = do(e) > 0 such that |lu(to)||rz < ||ws,(fo)llrz + ||vs,(to)|lz2z < €, which ends
the case L?. The decay study for the X° norms returns to the study of the case ¢ = —1 which is based
on the fundamental lemma (see Lemma 2.5 and Remark 2.6): if f is a continuous function of Rt in R™
verifying f(t) < Moy + 01 f(0at), with 01,62 € (0, 1), then limsup,_,  f(¢) < My/(1 — 61). Precisely the case
—3/2 < 0 < —1 is deduced in a direct way by interpolation of the spaces L? and X~!. The case o > —1 is
due to the analytic property of the (NS) solution with small initial data (see [1]) and the decay result in
XL

Before treating the decay rates of global solutions, we show a result of local existence and global existence
if the initial data is small in X~1(R3). Our first result is the following.

Theorem 1.1. Let u® € X~1(R3) N L?(R?) be a divergence free vector fields, then there is a time T > 0 and
unique solution u € C([0,T], X ~1(R3) N L2(R3)). Moreover u € L'([0,T], X*(R®)). If ||[u®||x-1 < 1, then u
is global.

Remark 1.2. (i) If the maximal time T is finite then fOT* [lu(t)]| 41 = +o0. Indeed: The integral form of the
system (NS):
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t
u(t) = et?ul — /e(t_z)AP(u.Vu)dz
0

implies

< [letA a0 g2 + fy e AP (u. V)| r2dz
t

< [Ju0| 2 —|—f0 [luVul||r2dz

< a2 + fy Nl p2 |Vl - de.

[u(®)] 2

Using the fact ||Vul|p~ < (27)73|ulx1 and Gronwall’s lemma we get
t
lu(®)llz2 < [[u®]| 12 exp ((277)73/”“”2(1)- (1.1)
0

Then, if fOT* [lu| 21 is finite we get u € C([0,T%), L2 NX~1)NL>([0,T*), L2NX~!). Then the solution lives
beyond the time T which contradicts the fact that 7% is the maximum time of existence.

(i) If lu®||x-1 < 1/2, the above remark and [3] imply the global existence of solution u of (NS) with
u€ Cp(RT, X~HNnLYRF, X)) NnC(RT, L?). Moreover,

t
1
@+ [ eller < s ¥ 20, (12)
0

(iii) Using (i)-(ii) and [3], we get if v € C(RT,L2 N X~!) is a global solution of (NS), then
u € LY(RT, X1(R3)).

(iv) Using (i)-(ii)-(iii) and [3], we get if u € C(R*,L? N X~1) is a global solution of (NS), then u €
Cy(RT, L2(R?)). Indeed: By [3] there is a time 5 > 0 such that ||u(to)||x-1 < 1/2. Then (i)-(ii) imply for
t> 1

)]z < [u(to)l L2 exp ((277)’3/\\U(Z)|Ix1d2)

< Jlulto) ||z exp ((2m) ~*2lu(to) | x-)
< lu(to)||z2 exp ((2m) )
< 2fulto)]|z2,

which implies
< > 0.
)l < 2 mas e, ¥ 2 0
Particularly, if [|u°||x-1 < 1/2 we get
lu@®)llz2 < 2||u’l|z2, Yt > 0.

Before stating the result of decay for the global solution of (NS), we recall the following results which
will be useful in the following:
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Theorem 1.3. ([1]) There exists a positive constant eg > 0 such that for any initial data u® in X~ (R3) with
[u®|| x-1 < €0, the solution of Navier-Stokes system is analytic in the sense that

t
1
lexp(VE[D])u(t)l| -1 + 3 / lexp(vz[Dl)u(2) | a2 dz < 2[|u°|| -1, ¥t > 0.
0

Theorem 1.4. (/3]) Let u € C(RT, X71(R?)) be a global solution of Navier-Stokes system. Then
Hm flu(@)|[x— = 0.

Theorem 1.5. (/6]) For any initial data u® € H*(R3), s > 5/2, with divu® = 0, there exists a unique solution
u € C([0,Tp], H*(R3)) such that Ty = To(s, ||u®||g).

Our second result is the following.

Theorem 1.6. Let u € C(RT, X1 (R3) N L2(R?3)) be a global solution of Navier-Stokes system. Then

(1) limy oo lu(®)|x-+ =0,
(i) Timg s oo [Ju(t)]] 22 =0,
(iii) [|u(t)||x—1 = o(t=1/%); t = +oo,
(iv) For all o > —3/2, we have ||u(t)||x- = o(t=o+3)/4): ¢t & foo0.

Remark 1.7. The new parts of our theorem are (iii)-(iv), the part (i) is treated by [3] and the part (ii) is
treated by many authors but with other hypothesis.

The remainder of our paper is organized as follows. In the second section we give some notations, defini-
tions and preliminary results. Section 3 is devoted to prove the well posedness of (NS) in L2NX ! space, this
proof used the Fixed Point Theorem with a good choice of space X = C([0,T], L2NX~1)NLY([0,7], X1). In
section 4 we prove the decay of global solutions in LZN X !, this proof used a Fourier analysis and standard
techniques. The last part of section 4 is devoted to prove the decay results of the global solution in X7, this
proof uses in a fundamental way the decay in L2 N X 1.

2. Notations and preliminary results
2.1. Notations
In this section, we collect some notations and definitions that will be used later.

e The Fourier transformation is normalized as

~

FNE) = F©) = [ expl-in)f(@)do, € = (61.62.80) € B,
]RS
e The inverse Fourier formula is

F U g)(x) = (2m)"° / exp(i€.2)g(€)dE, = = (1,2, 73) € R®,
R3
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e The convolution product of a suitable pair of function f and g on R? is given by
(4 9)@) = [ 1wt~ ).
R3

o If f=1(f1, f2, f3) and g = (g1, g2, g3) are two vector fields, we set

f®g:=(g1f 92f,93f),

and

div (f ® g) := (div (91.f), div (g2.f), div (g3 )).

Moreover, if divg = 0 we obtain

div (f ® g) := g101f + g202f + 9303f := g.V f.

e Let (B,]|.||), be a Banach space, 1 < p < oo and T' > 0. We define L%.(B) the space of all measurable
functions [0,t] 5 t — f(t) € B such that t — ||f(¢)|| € LP(]0,T1]).

e The Sobolev space H*(R3) = {f € S'(R3); (1 + |¢|? )3/2]?6 L2(R3)}.

e The homogeneous Sobolev space H*(R3) = {f cS'(R3); fe Lloc and |¢|°f € L2(R®)}.

e The Lei-Lin space X7 (R3) = {f € §'(R3); f € LL_and [¢]° f € L*(R3)}.

loc

2.2. Preliminary results

In this section, we recall some classical results and we give new technical lemmas.

Lemma 2.1. We have X~1(R3?) N X1(R3) — X°(R3). Precisely, we have

1 lxomsy < 112 @ 1F 1 ¥Ry, VF € X7HR®) N AL(R?). (2.1)
Proof. We can write
1y 2 WO
910 = [ e e
]Rs

Cauchy-Schwartz inequality gives the result. O

Lemma 2.2. Let 0,5 € R such that 0 < o + 3 < s. Then H*(R?) < X°(R?). Precisely, there is a constant
C = C(s,0) such that

+3
1_7
£l ey < ClF N2l 12 gays VF € H*(R?). (2.2)
Proof. For A > 0, we have
[fllxe = In+ Jx,

with
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L= / €1 1F(©)lde, Ty = / €17 F(©))de.

{€eR3/[gI<A} {€eR3/[EI>A}
We have
1/2
Lo (Seemspigron 6270€) TUfIe < AT S,
< (freereon |§|2("‘S)al£)1/2 < s_a_%A”TSHfIIHs-
For A= (||l z+/IIfllz2)*/#, we obtain the desired result. O

Lemma 2.3. Let 09 > —3/2. If we have
X7 (R®*) N LA(R?) — X7(R®); V—3/2< 0 < op.

Precisely

N
+
Q

1 £llzee < coll FIlz= L %w0s  Veo = el00,0), 6= : (2.3)

[\][9N]
_|_
Q
o

Proof. For A > 0, we have
[fllxe = A(N) + B(N),
with

A = / €717 (©)lde. BOY) = / €17 7€) de.
{€eR3/|¢|<A} {E€R3/|E|>A}

We have

IN

1/2
AN < Jieersierony [6970€) NI le < oA IS Ds
B(A) < [recrsepsny 1T FE)dE < X7 flxeo,

which imply

[fllxe < ATFE(| fll 2 + AT f | o

V20 +3
For A = (||fllacwo /|| fll2)"/*/2+7), we obtain

og—0o ‘7+3

1flle < comoll L IF1 50" O
Lemma 2.4. Let f,g € L (X 1 (R3) N L2(R3)) N LL (XY (R?)) such that div f = 0 almost everywhere. Then

t

1 2 1/2 1/2 1/2
s || [ IRz < I e I e gl o g e (2.4)



J. Benameur, M. Bennaceur / J. Math. Anal. Appl. 482 (2020) 123566 7

t

OiltlET” eITIRP(F.Vg)dz L2 < (2m) 73| fllLse r2y gl Loy (2.5)
T t
-z 1/2 1/2 1/2 1 2
/Il/eu JAP(f.Vg)dz| xrdt < Hf||L/%C(X71)Hf||L/1T(X1)HgHL%(X gl / (2.6)
0 0

Proof. e Proof of (2.4): We can write

| fy e PAP(£.Vg)dz]|x—1 < [y et DAP(£.Vg) || x-1dz
< fJ 1£. Vgl x-2dz
< S 1div (f © g)lla-1dz
< Jy 17 ®glodz
< TN f Lo gl xod
< Jo IFIZLAINE g2, gl ¥ d=
< AN iy 9l 2 ey So I NgNY dz
< A ey L ey N ey 3

e Proof of (2.5): We can write

| [y e AP (£.Vg)dz| 2 < [y et AP (£.Vg)| 2dz

< Jy £Vl r2dz

< fo I f-Vgllr2dz

< [T F 221V g poedz

< @m) 3 flls 2y fy gllxrdz
@m) N Flless w2y lgll Ly oy

IN

e Proof of (2.6): We can write

Sl Jo e=DAP(f.Vg)dz||xrdt < [y [y [l AP(£.Vg) || x1dzdt
< ST fs € DL F (div (f @ 9)) (=, €)|dEdzdt
< ST fps e CIIPIERUF(f @ g)(2,€)|dedzdt
< Jus K2( S Jo e @ NPIF(f @ g) (2, €)ldzdt ) de
< oo 1612 (1P |7 (f @ )8, €)1 0, )
< S 612 (1l s 0,2 IF (S © 9) (5l o, ) d

gl

< Joo IEP (=5 ) VF(f © ) (2, €)dt ) e

< ) s |F(f @ 9)(t,€)|dedt

< Jy1f @ g(t)]| xodt

< J) Ilf @ gllxodz

< fOT 1fllx0llgl xodz

< Jy I A2 a2 gl de

<A e 9125 ey S LIS g1 =

< ||f|\2g§(x_1)an;f(xl)\|g||i/;(x_1)||g||LlT(X1). O
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Lemma 2.5. Let T > 0 and f : [0,T] — R be continuous function such that
ft) < Mo+0,f(62t); VO<t<T (2.7)

with Mo > 0 and 61,65 € (0,1). Then

Proof. As f is a positive and continuous function, then there is a time ¢y € [0, 7] such that

0< fto) = Jnax f(t).

Applying (2.7) at t = tg we get

f(to) < Mo+ 01 f(62to) < Mo + 01f(to)

which implies f(tg) < 1]\_431 . As f(to) = maxg<i<r f(t), we get the desired result. O

Remark 2.6. Applying Lemma 2.5 to a positive continuous function f : Ry — R satisfying
f(t) < Mo+ 01f(02t); VE>0

with My > 0 and 64,602 € (0,1), we obtain

lim su t) < .
HOopf()_ T

3. Well posedness results in L2(R3) N X ~1(R3)

In this section we prove Theorem 1.1. To prove the existence result we need the following remark: For
fe LR NXHR?) and gy > 0 there is A > 0 such that

M) lx=r = [ fllx-+ and [[Af(A)][z> < €0

Precisely, just take A = ﬁiﬁ. Then we can choose Ag > 0 such that
[Aou® o)1 = [[u’[lx-1 and [|Aou® (No.) 22 < %~
Consider then the Navier-Stokes system
0w —Av+v.Vv= —Vgin Rt xR3

(NSy,){dive =0 in Rt x R3
v(0,2) = Au’(Noz) in R3.

If the system (N Sy,) has a unique solution v in C([0, 7], L2ZNX 1), then u = Ay 'v(\y t, Ay '2) is a solution
of Navier-Stokes system starting by u°. Therefore, we can assume in the following that

1
0
2 < —. .1
el < — (3.1)
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Let’s go back to the proof of Theorem 1.1. A uniqueness in L? N X! is given by the uniqueness in X!,

(see [8]). It remains a proven existence, for this let & € N* such that

G
d¢ < —.
€] 16
{€€R3/|¢|>k}
Put
a® = F 1 (11g<xu®(€)), 10 =u’ —a® = F1(1jg55u0(€)).
‘We have
a’ € H*(R?), Vs >0,
and
1
VPlly-1 < —.
801 < =
Moreover

la®z2 < [lu®lr2 and (6% 2 < fu”] Lo

(3.2)

(3.3)

(3.4)

There is a time Tp > 0 such that the system (N.S) has a unique solution a in C([0, Tp], H*(R?)) with initial

condition a® (see [6]). Using the fact (see Lemma 2.2)
HY(R3) — L*(R3) N X H(R3) N xL(R3),
we get
a € C([0,To), L2(R*) n X~ H(R3) n XH(R?)).

Using the regularity of the function a and inequality (3.4), we obtain
t
la(t)||Z- +2/||Va(2)l\i2 = [[a’l12: < [[W°||72, Vt € [0, Tp).
0

Put b = u — a, b satisfies the following system

Ob— Ab+b.Vb+bVa+aVb= —Vgin Rt x R?
(RNS)< divb=0in RT x R3
b(0,x) =b°(x) in R3.

The integral form of (RNS) is

t t

t
b=1(b) = e " — / e"TAP (4. Vh) — / e"TAP(b.Va) — / e(TTAP(b.VD).
0

0 0

Put
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e!®b0 : the constant part

L(b) = — [y e DAP(a.Vb) —
Q(b) = — [ et=DAP(b.VD) :

For T' > 0 put the space
Xr=C([0,T], L*(R*) n X~

This vector space is equipped with the norm

1l = fllege ) + 1l oge -

fot e=TAP(h.Va) : the linear part

the nonlinear part.

HR?) N LY([0, T], X (R?)).

v+ [ fllza -

For e,T > 0 (to fixed later), such that 7' < Tp, put the closed subset of Xt defined by

[ fllzgeczzy < 2[0° 2
B(e,T) = {f € Xri{ [fllgpr-n) < 2Wllar }
Ifllcs ey <e
T
Explanation of the choice of € and T: We have
[ foll ge (x-1) < [0 x—
[ follLes 2y < [[0°]| 2
R —~
I follz. ey = fo Jrs €SV IEL|00(8) | dedt

= Jos (S at) €10 (©)lae

_ ~7|¢|?
= Jrs ( 16k

_ Tl )\bfllélg)\dg_

= fRS

Dominated Convergence Theorem implies

Am [ foll g, ey = 0.

Let 0 < e <1/24 and 0 < T < Ty such that

) I€l18°(¢) g

1/2 1/2 1/2 B0 -
1 ”a”/ ‘1)||a||L/1 (x1) \/_\/_HbOH/ < ”f -

L (X

H2) 0|2 + 2[lal s o) 80 2 < Loz
1/2 1/2 1 2
F13) a2 oo Nl e VEVEIROIL, < /3

(H1)
(H2)

(H3)

(H4) €+2Hb0||L2 <1/12
(H5) V2VE°| 2 < 1/12
(H6) [[follLy.(xny < /3
(HT) 2v/2¢||bo|lx—1 < 1/12
(H8)
(H9)

||‘1||L;°(X—
lallzy. ) < 1/24.
These choices are possible just use the equations (3.3)-(3.
Fixed Point Theorem, for this we prove the following

yllallpy ey < 1/12

5)-(3.7). Now we want to prepare to apply the
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(B(e,T)) C B(e,T). (3.8)

[¥(e1) — ¥(az)]lr < %Ilal — ollr, Yo, a0 € B(e,T). (3.9)

Proof of (3.8): Using inequality (2.4), we obtain

1 2 1/2 1 2 1/2
L) g1y < llalle o lall e 1Bl o o) 1817y
1 2 1/2 1 2
< lall}2 v llall e V2 \beOII 2
< w (by (H1))
1Q) e -1y < [1bllzge (=) 1Bl Ly aen)
< 2[|b]| x—
Y
Then
10(®) s (x-1) < 2||6%| x-1, Vb € B(e, T). (3.10)
Similarly, inequality (2.5) gives
ILO)zgez2y < llallnse oy by xry + [0l s 22y lall Ly xny
< [la® z2e + 2llall £y aen) 180 2
bO
< e by (12))
1Q(V)Lge(z2) < [IbllLse L2y 1Bl L1 21
< 2|t .
< 102
Then
190|522y < 2[16°] 2, Wb € B(e, T). (3.11)
Finally, inequality (2.6) gives
2 1/2 1 2 1/2
L) gy < lall2 e 12 s 111

1)||a||L%(X1

1/2 1 2
< ||a\|L%O(X_1)||a||L<T<X1 V2 fubon 2
e/3, (by (H3))

Lip(X")

A

IN

1RO Ly.xr) < M1BllLge (- 1Bl Ly )

2¢16%| -
e/3, (by (3.3)).

INIA A

Then,
160 |y <& Vb e B(e,T). (3.12)

Therefore inequalities (3.10)-(3.11)-(3.12) imply (3.8).
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Proof of (3.9): Using inequality (2.4), we obtain

[L(a1) = La2)||zge(x-1) < [ L(a1 — @2)llpge(x-1)
< llall o oo lall 4 oy lon = all2 oy lon = a2l
SWM@@lNNUZ)anwmI
< Lllor — asllerr, (by (H8))

1Q(c) — Q(QZ)”L%‘J(X*) = || ft e "DAP (g — o2). Vo + 2.V (ay — 042))HL°°(X*1)

IA

1/2 1/2 1/2
(zﬂ%mgwlﬂmn/p)mn—wmﬁwlmm sl

2¢wﬂwwﬂnm—aﬁT
llar — as|lz, (by (HT)).

IN A

Then

1
(1) = (e2)lLge -1y < gl = s, Yai,as € B(e,T). (3.13)

Similarly, inequality (2.5) gives

|L(ar) = L{a2)l s 22y < [L(ea — a2)llpse (22
< llallzgez2yllean — a2z a1y + llally ey lor — azllLse 2
< (llall g s + lallzy ey ) lon = asllr
< (a2 + llall Ly (xry ) llew — azllr
< (I®llze + lall gy ) ) llon — ozl
< (% + llallyn ) lax = sz, by (3.1))
< Lllon — asllr, (by (H9))

Q) = Qlaz)llLy ) = |l fot e UTHAP (g — a2).Va + 2.V (a1 — a2)) |1z (12
< [Jax — a2||L°°(L2)HO‘1HL1 (x1) + ||a2||L°°(L2 llon — a2||L1T(X1)
< (g ey + lazllzze (z2)) o = azllr
< (e +2[0°l|2) s — asllr
< (e + 2[[u||2)llos — aslr
< llan = asllr, (by (H4)).

Then

1
[1(ar) = (ae) L2y < 6||041 — azllr, Yo, a2 € B(e,T). (3.14)

Finally, inequality (2.6) gives
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[L(c1) = L(a2)llsxty = [L(a1 — a2)lLs (an)

1/2 1 2 1/2 1/2

< Jall e s lalli e oy lon = aslle oo llas = a2l oy
1/2 1 2

< lall 2 - lall s / anllar — azllr

IA

Lo - aallr (b (113)
Q1) — Q(a2)|lL1. a1y = | f (=2AP((ay — a2). Var + a2.V (1 — a2)) |11 (a1

1/2 1 2 1/2
(Z 12 ey el 5 ey Ve = @22 ol = aall )

1/2 1 2
(ZnazHL&(X wlleill [ llas = azlr

23 \beOIIl” [P
Sllar — asllz, (by (H5)).

IA

IN

IN A

Then,

1
l¥(a1) = ¥laz)llLy(ar) < gllar — azllr, You, a2 € Ble, T). (3.15)

Therefore inequalities (3.13)-(3.14)-(3.15) give

() = Plaz)|r < %”041 —az|, You,az € B(e,T). (3.16)

Fixed Point Theorem gives the existence and uniqueness of solution of (RNS) in Cr(L? N X~ N LL(x1).
Therefore, we can deduce the existence and uniqueness of a local solution for Navier-Stokes system.

4. Proof of Theorem 1.6
Proof of (i): Let u € C(R*,L? N X~!) be global solution of (N.S). By [3] we have
lim sup [Ju(t)||x-1 = 0.
t—o00

Proof of (ii): To prove the long time decay in L? we use Benameur-Selmi method (see [5]). Let u €
C(RT,L? N X~1) be global solution of (NS). Now we want to prove that limsup,_, . ||u(t)||zz = 0. For
a strictly positive real number § and a given distribution f, we define the operators As(D) and Bs(D),
respectively, by the following:

As(D)f = F (1ger<arf),
By(D)f = F 7 (1es1f)-

Let u be a solution of (N.S). Denote by ws = A5( Ju and vs = Bs(D)u, respectively, the low-frequency part
and the high-frequency part of u and so on w5 and vg for the initial data u°. Applying the pseudo-differential
operator As(D) to the (NS), we get

Oyws — Aws + As(D)P(u.Vu) =0 (4.1)

Taking the L?(R3)-inner product and using the fact As5(D)? = As(D), we obtain
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sarlws@)IZz + [Vws(®)17: < [(As(D)P(u.Vu)(t)/ws(t)) 2]
P (u.Vu)(t)/As(D)ws (1)) 2|
P (u.Vu)(t) /ws(t)) L2 |

)) L2

(
(
(
(u.Vu(t) /P (ws(t))) L
(
(
(

N

M)

(
u.Vu(t)/ws(t)) 2|
(div (u @ w))(t)/ws(t)) 2]
u @ u(t)/Vws(t)) 2|

[u@u@)| L1 [[Vws (8)]| Lo
@m) P llu®lZ: lws (®)l]

(AN VAN VAN VAN VANR VAN VANRN VAR VAN

Integrating with respect to time and using Remark 1.2-(iv), we obtain

t

s ()22 < [lwl]22 + mo / s ()| 2 s,

where mg = (2m) ?||u|| oo (r+,12)- Also using Remark 1.2-(iii) we get [|ws(t)[|3. < Mj, where

(o]
= N3+ mo [ uws(s)] .

On the one hand, it is clear that lims_,q [|w)||?. = 0. On the other, we have lims_o [|ws(t)||x1 = 0 and
lws(t)]| 21 < |lu(#)||xr € L1([0,00)). Then Dominated Convergence Theorem implies that

%1_1)1%)/||w5(5)||;(1ds:0.
0

Hence, lims_,o Ms = 0 and thus

lim sup w5 (t)||22 — 0. (4.2)
30 ¢>0

Let us investigate the high-frequency part. To do so, one applies the pseudo-differential operator Bs(D) to
the (N.S) to get

Ows — Avs + Bs(D)P(u.Vu) = 0. (4.3)

The integral form of vs is

t
vs(t) = P — /e(t_T)AB5(D)]P’(u.Vu)dT
0

Taking the L?(R3) norm, we obtain

€209 22 + [y [le®= A Bs(D)P (u.Vu)|| p2dr
,té ||U(5)||L2 —|—f0 —(t—7)8? ||uVu||deT

2
e w0 2 + [ e D || 2| V| e .

[[vs (£)]] 2

I/\ I/\ IA
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Then
t
o)z < 5 +mo [ =0 ulr) s = G
0
‘We have
Gs(t)dt < w2 mo
s(t)dt < 5zt 5—2Hu||L1(R+,X1) < 0.

0

This leads to the fact that the function (¢ — |lvs(¢)||r2) is both continuous and Lebesgue integrable over
R*. Let € > 0 be positive real number small enough. Firstly, equation (4.2) implies that some . > 0 exists
such that

llws. ()2 <e/2, Vt>O0. (4.4)
Secondly, consider the set Rs. defined by
Rs, = {t > 0, |lvs, (¢)]1z2 > £/2}. (4.5)
If we denote by A;(Rjs.) the Lebesgue measure of Rs_, we have

3
[l @lzzde = [ fos.Ollowoydt = Sru(Bs ).
0 Rs

€

By this, we can deduce that A\1(Rj;.) < 7., where T. = (2/e) [, ||lvs. (t)]| L2(r2)dt. Then, there is t. €
[0,T% + 1] such that . does not belong to Rs_. This implies that

[vs. (te)ll L2y < €/2. (4.6)

Equations (4.4) and (4.6) together with triangular inequality imply that [lu(t.)|/z2®s) < €. For t > t., we
have

lu(®)llze < llute)llzz exp((2m) = [ [lu(2)]| 21 d2)

<
< eexp((27)73 fooo lullx1)-
It suffices to replace € by eexp(—(2m) ™3 [ |lullx1) in (4.4)-(4.5)-(4.6) we get the desired result.

Proof of (iii): In this subsection we want to give a precision for the decay of ||u(t)||x-1 at co. Let € > 0 such
that € < eg(€p is given by Theorem 1.3), by Theorem 1.4 and Theorem 1.6-(ii) we can suppose that,

1
|u®|| x-1 < min(e, 5) and [[u®|z> < g/2.

Then, by Remark 1.2-(ii)-(iv) we get ||u(t)||2 < 2|[u°||z2 < € for all t > 0 and

t
1 1
Ju®llas + 5 [ Tz lands < [l < 5, Ve o (47)
0
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For A > 0 and ¢ > 0, we have

lu(t)]|x-1 = Ix(t) + Jx(2),

with
u u(t,
no- | |(|§|€)I e ma 0= [ <|€|s>| k.
{€eR3/|E|<A} {€eR3/|€|>A}
We have
: Vi VAl
L < ( T a€)"Nills < eV M) 22 < VAo
{€eR3/[g]<A}
and

I(t) < / o= VIT2IE| T2 |17(|1f§,|£)|df < e—mx/eM|£| W'tf)dg.
{€€R)J¢[> 0} s

For a fixed time ¢ > 0 the v : (z,2) — u($ + z,2) satisfies [|[v(0)[|x-1 < € and it is the unique global
solution of the following system,

oww—Av+v.Vv= —Vq
dive =0
v(0,z) = u(%, z).

By Theorem 1.3, we get

/mlv g + L // Ve deas < 200

or

[l e // e <2/| &

R3 0 R3
For z = £, we get Je em‘g‘%dg < |lu(t/2)[|x-1, which implies
Ia(t) < eV |u(t/2)]| 1.
Then
()]l a2 < et VA2 + eV [u(t/2)]] -1
Multiplying this inequality by ¢!/4

@)1 < e VX 0 + 20V (G EYUA (2/2) s
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and choose A > 0 such that

21n 2
21/4e V2 — 1/2 = \ /120 = 5/4In2 = A = 5v2In2

NG

we obtain
1t
4 u(t) -1 < Mo + 5(5)1/4||U(t/2)||9571
with
5v21n 2
My = o(T)WIIuOIILz.

Applying Lemma 2.5 and Remark 2.6 with
f@) =t u) | p-1, 61 =0,=1/2,
we get

lim sup t/4||w(t)|| x—1 < 2Mo.
t——+o0

Applying this result to the solution of the following system, for a > 0
Ow— Aw+w.Vw= —Vhin Rt x R3

dive =0 in Rt x R3

w(0,x) = u(a,z) in R3,
we obtain

5v21n2

) (@) -

lim sup t/4||u(t)]| x—1 < cof
t—o00

Then the fact lim, o0 ||[u(a)| 2z = 0 implies the desired result.
Proof of (iv): In this section we want to prove the long time decay in X7, for o > —3/2. To do that we
distinguish two cases.

First case : —3/2 < o < —1. For A > 0 and t > 0, we have

[u@®)lxe = Lt A) + I2(t, A)
with

L) = / €17 (t, €)[de and Ly(t, \) = / €7 a(t, €)|de.
{£eR3/[g] <A} {€eR3/|E[>N}
‘We have
20 1/2’\ o+3/2
e < ([ lae) el < e R )
[E]<A

and
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L B e P L]
{€€R3/|¢|>A}
We get ||u(t)||xe = ANT3/2 4 BATH .= o(\), with
A=collu(®)|[r2 and B = [lu(t)| x-1.
The study of the function ¢ gives
©'(\) = (64 3/2)AXNTY2 4 (6 + 1) BN,
then

For A = \g, we get

—(140)B \2¢ —(14+0)B\2¢
A(_(U(Jr—g/z))A)2 4 B((a(+3—/2))A)2 2

CUA72072BB+20 .

[u()] 2

IANIA

Then

lu(®)llae < ¢ ([lul)llz) 7> (Jut)]a-2)>2

Using the fact ||u(t)||x-1 = o(t~*/*) and |ju(t)||z> — 0, which given by Theorem 1.6-(ii)-(iii), we get the
desired result.
Second case : —1 < 0. By Theorem 1.4 we can assume that ||u®||x-1 < €y/2 and Theorem 1.3 gives,

s e~ Vi/2el|g|o 1 VE/21E] W_(tf”dg
e J (Vi) i

[[u()]| 2

< Ot eﬁm lacs 2,s>\d§
< 20t 5 u(t/2) 21,

with C' = sup,5 2°"'e™*. Combining this result with the fact [[u(t/2)|[x-1 = o(t=/*) we get the desired
result.
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