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Given two random variables X and Y , stochastic monotonicity describes a monotone 
influence of X on Y . We prove two different characterizations of stochastically mono-
tone 2-copulas using the isomorphism between 2-copulas and Markov operators. The 
first approach establishes a one-to-one correspondence between stochastically mono-
tone copulas and monotonicity-preserving Markov operators. The second approach 
characterizes stochastically monotone copulas by their monotonicity property with 
respect to the Markov product. Applying the latter result, we identify all idempotent 
stochastically monotone copulas as ordinal sums of the independence copula Π.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Describing the relationship between random variables is at the core of dependence modelling. In this 
work, we will focus on stochastic monotonicity, a concept that captures a monotone influence of one ran-
dom variable X on another one Y . More precisely, we call Y stochastically increasing in X whenever the 
corresponding conditional distribution functions are pointwise decreasing, i.e. one has

P (Y ≤ y | X = x2) ≤ P (Y ≤ y | X = x1)

for almost all x1 ≤ x2 in the support of X; in other words, [Y | X = x1] is stochastically dominated by 
[Y | X = x2]. Similarly, Y is stochastically decreasing in X if P (Y ≤ y | X = x) is increasing in x.

Stochastic monotonicity has become an important tool in applications, e.g. to study the long-term be-
haviour of economic models such as stochastic recursions of the form Xn+1 = f(Xn, Zn) a.s. (see [25] or 
[12] for details). Concrete data examples which exhibit stochastic monotonicity are given by the connection 
between expenditures and income of a household or the income mobility from one generation to the next, 
and can be found in [15].
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To investigate the connection between stochastic monotonicity and the Markov product for copulas, it is 
necessary to assume that X and Y are continuous random variables. In this case, X and Y have a unique 
copula C defined on [0, 1]2, and Y is stochastically increasing, respectively decreasing, in X if and only if u �→
∂1C(u, v) is decreasing, respectively increasing, for almost all u ∈ [0, 1] and all v ∈ [0, 1]. It is well-known that 
this is equivalent to the concavity, respectively convexity, of C with regard to the first component; any such 
copula will be called stochastically monotone. The concept of stochastic monotonicity for random variables 
or copulas has been investigated in the literature under various different terms, including conditionally 
increasing property ([19]), positive regression dependence ([16]), and concavity in u.

Related, but much more restrictive, is the notion of componentwise concavity requiring that a copula 
C is concave in each component, when the other one is held fixed; see, e.g. [2], [9] and [8]. One obvious 
drawback of this concept is the loss of a directed influence between random variables, as it suggests a circular 
interaction: an increase in X leads to an increase in Y , which in turn leads to higher values in X, and so 
on.

The aim of this work is to characterize stochastically monotone copulas and their corresponding Markov 
operators, and to investigate the connection between stochastic monotonicity and the Markov product of 
copulas introduced in [5] as

(C1 ∗ C2)(u, v) =
1∫

0

∂2C1(u, t)∂1C2(t, v) dt .

Central to our study is the result by Olsen et al. [21] stating that the set of copulas endowed with the 
Markov product is isomorphic to the set of Markov operators on L1([0, 1]) equipped with the composition.

Building upon this isomorphism, we show in Theorem 3.9 that stochastically monotone copulas are in 
one-to-one correspondence with monotonicity-preserving Markov operators. As a by-product, this implies 
that the set of stochastically monotone copulas is closed under the action of the Markov product.

Next, Theorem 4.2 characterizes stochastically increasing copulas by their monotonicity property under 
the Markov product with respect to the stochastic dominance ordering. More precisely, we prove that a 
copula C is stochastically increasing if and only if D ∗C ≤ C holds pointwise for all copulas D. This is used 
in Theorem 5.1 to identify all idempotent (i.e., C ∗C = C) stochastically monotone copulas as ordinal sums 
of the independence copula Π.

Finally, we apply that the algebraic property of a copula C being idempotent translates into the stochastic 
property of its Markov operator TC being a conditional expectation on L∞([0, 1], B([0, 1]), λ). This implies 
Theorem 5.10 stating that a conditional expectation is monotonicity-preserving or -reversing if and only if 
it is pointwise an averaging operator.

The paper is structured as follows. Section 2 introduces the necessary notation and definitions. Section 3
provides a characterization of stochastically monotone copulas in terms of Markov operators as well as some 
topological closure properties of stochastically monotone copulas. Section 4 contains the aforementioned 
characterization of stochastic monotonicity in terms of the Markov product. Section 5 uses the previous 
characterizations to identify the idempotent, stochastically monotone copulas as ordinal sums of Π.

2. Notation and preliminaries

In this section, we introduce our notation and collect some preliminary results.
A 2-copula is a bivariate distribution function on [0, 1]2 with uniform margins. We refer to the lower 

Fréchet-Hoeffding-bound by C−, to the product copula by Π and to the upper Fréchet-Hoeffding-bound 
by C+; see [20] for details. Darsow et al. [5] first introduced a product structure on the set of all bivariate 
copulas C2, which constitutes a continuous analogue to the multiplication of doubly stochastic matrices.
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Definition 2.1. The Markov product of two 2-copulas C1, C2 is the 2-copula

(C1 ∗ C2)(u, v) :=
1∫

0

∂2C1(u, t)∂1C2(t, v) dt .

Note that the partial derivative of a copula C is only defined almost everywhere. The Markov product 
has been applied, for example, in the study of extremal points of C2 (see, e.g., [5]) and the treatment of 
complete dependence. Furthermore, (C2, ∗) is closely linked to a class of integral-preserving linear operators 
equipped with the composition.

Definition 2.2. A linear operator T : L1([0, 1]) → L1([0, 1]) is called a Markov operator if

1. T is positive, that is Tf ≥ 0 if f ≥ 0.
2. T has the fixed point 1[0,1].
3. T is integral-preserving, i.e.

1∫
0

Tf(t) dt =
1∫

0

f(t) dt

holds for all f ∈ L1([0, 1]).

Olsen et al. [21] established the existence of an isomorphism between 2-copulas and Markov operators 
which translates the Markov product into the composition of the corresponding Markov operators.

Theorem 2.3. Let C be a 2-copula and T be a Markov operator. Then

CT (u, v) :=
u∫

0

T1[0,v](t) dt and TCf(u) := ∂u

1∫
0

∂vC(u, v)f(v) dv

define a 2-copula and a Markov operator, respectively. This correspondence is one-to-one with TCT
= T and 

CTC
= C for all 2-copulas C and all Markov operators T . Moreover, for all 2-copulas C1 and C2, it holds 

that

TC1∗C2 = TC1 ◦ TC2 .

Markov operators are closely related to conditional expectations (see, [10] and [11] for an in-depth treat-
ment of this connection).

Proposition 2.4. For a 2-copula C and its corresponding Markov operator TC , the following assertions are 
equivalent

1. C is idempotent, i.e. C ∗ C = C.
2. TC is idempotent, i.e. TC ◦ TC = TC .
3. TC is a conditional expectation restricted to L∞([0, 1], B([0, 1]), λ), i.e.

TCf = E(f | G)

holds for all f ∈ L1, where G := {A ∈ B([0, 1]) | TC1A = 1A}.
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Lastly, we will review the concept of ordinal sums, see, for example, [20].

Definition 2.5. Let ((ak, bk))k∈I be a countable family of disjoint intervals in (0, 1) and (Ck)k∈I a family of 
2-copulas. A 2-copula C is called an ordinal sum of (Ck)k∈I with respect to ((ak, bk))k∈I if

C(u, v) =

⎧⎨
⎩ak + (bk − ak)Ck

(
u−ak

bk−ak
, v−ak

bk−ak

)
if (u, v) ∈ (ak, bk)2

C+(u, v) else
.

We use the short-hand notation C = (〈(ak, bk) , Ck〉)k∈I presented in [10].

3. Stochastic monotonicity for copulas and Markov operators

Definition 3.1. A 2-copula C is called stochastically increasing (decreasing) in the i-th component if ui �→
∂iC(u1, u2) is decreasing (increasing) for almost all ui ∈ [0, 1].

Whenever the meaning is clear, we will drop the specification “in the i-th component”. If the distinction 
between u �→ ∂iC(u, v) being increasing or decreasing for all v ∈ [0, 1] is of no concern, we will call C simply 
stochastically monotone. Furthermore, we will state many results only with respect to the first component, 
from which the result in the other component follows by transposition. We denote the set of all in the first 
component stochastically increasing (decreasing) copulas by CSI (CSD). Note that stochastically increasing
2-copulas have a decreasing partial derivative. This is due to the fact that for real random variables X and 
Y , X ≤st Y if and only if

FX(t) ≥ FY (t)

holds for all t ∈ R.
We will begin by presenting some well-known examples of stochastically monotone 2-copulas.

Example 3.2. An Archimedean 2-copula

C(u, v) = φ(φ[−1](u) + φ[−1](v))

with twice-differentiable additive generator φ is stochastically increasing in both components if and only if 
log (−φ′) is convex (see Proposition 3.3 in [4]). The independence copula Π with generator φ(t) = exp(−t)
is stochastically increasing.

Example 3.3. The class of extreme value copulas

C(u, v) = exp
(

log(uv)A
(

log u
log uv

))
,

where A : [0, 1] → [0, 1] is a convex function fulfilling max (t, 1 − t) ≤ A(t) ≤ 1 for t ∈ [0, 1], is stochastically 
increasing in both components (see, Theorem 1 in [13]). This class includes both Π and C+ as examples 
with A(t) = 1 and A(t) = max (t, 1 − t), respectively.

All of these examples are stochastically increasing in both components, thus not allowing for an only 
unidirectional positive influence between the random variables. Many common construction methods using 
2-copulas as building blocks also preserve the stochastic increasing property, such as convex combinations 
and ordinal sums of stochastically increasing 2-copulas (see [9]). A 2-copula which is stochastically increasing 
in the first component, but not in the second is given by the following example.
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Fig. 1. Plots of the partial derivative of the checkerboard copula C#(A) with respect to the first and second component.

Example 3.4. A straight-forward calculation shows that the checkerboard-copula

C#
3 (A)(u, v) =

3∑
k,�=1

ak�

u∫
0

1[ k−1
n , kn

](s) ds
v∫

0

1[ �−1
n , �

n

](t) dt ,

with the doubly stochastic matrix A = (ak�)k,�=1,2,3 ∈ R3×3

A =
(2/3 0 1/3

1/3 1/3 1/3
0 2/3 1/3

)

is stochastically increasing in the first but not the second component. A plot of the partial derivatives of 
C#

3 (A) is depicted in Fig. 1.

To simplify subsequent proofs, we will first present a direct connection between stochastically increasing 
and decreasing copulas, allowing us to transfer results obtained for stochastically increasing copulas to 
stochastically decreasing ones and vice versa.

Lemma 3.5. The mapping C �→ (C− ∗ C) is an involution between CSI and CSD.

Proof. The claim follows immediately from ∂1(C− ∗ C)(u, v) = ∂1C(1 − u, v) for all u, v ∈ [0, 1] and any 
2-copula C. �

The class of stochastically monotone copulas also provides additional structure to strengthen convergence 
properties since the monotonicity yields the equivalence of uniform convergence, the pointwise convergence 
of the partial derivative and the weak conditional convergence introduced in [14]. The extension to weakly 
conditional convergent copulas was communicated to us by Wolfgang Trutschnig.

Proposition 3.6. Let (Cn)n∈N be a sequence of 2-copulas, which are stochastically monotone in the first 
component. Then the following are equivalent:

1. Cn converges uniformly towards C.
2. ∂1Cn(u, v) converges pointwise towards ∂1C(u, v) for all v in [0, 1] and almost all u in [0, 1].
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3. Cn converges weakly conditional towards C, i.e. the associated Markov kernels2 KCn
(u, ·) converge weakly 

towards KC(u, ·) for almost all u ∈ [0, 1].

Proof. Using Lemma 7 in [26], (3) implies (1). Conversely, suppose Cn converges uniformly towards C. Due 
to Cn(·, v) and C(·, v) being concave (convex) for all v ∈ [0, 1], Lemma 1 in [29] implies

lim
n→∞

∂1Cn(u, v) = ∂1C(u, v)

for almost all u ∈ [0, 1] and all v ∈ [0, 1]. This yields the assertion (1) to (2). Lastly, suppose (2) holds, 
i.e. ∂1Cn(u, v) converges pointwise towards ∂1C(u, v) for all v and almost all u. Let Kn and K denote the 
Markov kernel associated with Cn and C, respectively. Then there exists for any v ∈ [0, 1] ∩Q a set Λv such 
that λ(Λv) = 1 and Kn(u, [0, v]) = ∂1Cn(u, v) holds for all u ∈ Λv. Thus,

Kn(u, [0, v]) → K(u, [0, v]) for all u ∈ Λ :=
⋂

v∈[0,1]∩Q
Λv

and all v ∈ [0, 1] ∩ Q. The pointwise convergence of the distribution functions on a dense set then yields 
the convergence in all continuity points. Thus, Kn(u, ·) converges weakly towards K(u, ·) for almost all u
in [0, 1] and the assertion follows. �
Remark 3.7. Proposition 3.6 yields the equivalence of the uniform convergence and the D1-convergence for 
stochastically monotone copulas, where the metric D1 (see, [26]) is defined by

D1(C1, C2) :=
∫

[0,1]2

|∂1C1(u, v) − ∂1C2(u, v)| dλ(u, v) .

Moreover, CSI and CSD are closed with respect to d∞ and D1.

Remark 3.8. The equivalence of (1) to (2) in Proposition 3.6 also holds for completely dependent copulas 
and their corresponding Markov operators, so-called Markov embeddings, a proof of which can be found in 
Theorem 13.11 in [11].

We will now give the main result of this section and characterize the behaviour of stochastically monotone 
2-copulas and their corresponding Markov operators. We say f ∈ L1([0, 1]) is monotone if there exists a 
monotone function g : [0, 1] → R such that f = g holds almost everywhere.

Theorem 3.9. Suppose X and Y are continuous random variables with copula C. Then the following are 
equivalent

1. Y is stochastically increasing (decreasing) in X.
2. C is stochastically increasing (decreasing) in the first component.
3. C(u, v) is concave (convex) in u for all v ∈ [0, 1].
4. TC is a monotonicity-preserving (monotonicity-reversing) Markov operator, i.e. T maps decreasing inte-

grable functions onto decreasing (increasing) functions.
5. E(f(Y ) | X = x) is decreasing (increasing) for every decreasing function f such that the expectation 

exists.

2 See, e.g., [10] for a definition and a comprehensive overview on Markov kernels.
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Proof of Theorem 3.9. We give the proof for stochastically increasing random variables; the case of stochas-
tically decreasing random variables is similar and left to the reader. The equivalence of (1), (2) and (3) is 
shown in [20]. Suppose (4) holds, then f = 1[0,v] yields (2). For the implication (2) to (4), note that TC

maps decreasing indicator functions onto decreasing functions due to

TC1[0,v](·) = ∂1C(·, v)

being decreasing for all v ∈ [0, 1]. Using the approximation of monotone functions via monotone indicator 
functions and applying the monotone convergence theorem, (4) follows as outlined in [18]. Similarly, (1) and 
(5) are equivalent using

E(1[0,y](Y ) | X = x) = P (Y ≤ y | X = x) . �
4. The Markov product of stochastically monotone copulas

The characterization given in Theorem 3.9 guarantees that the composition of monotonicity-preserving 
Markov operators is again monotonicity-preserving. Using the isomorphism between (C2, ∗) and Markov 
operators equipped with the composition, we establish the following closure property of CSI and CSD with 
respect to the Markov product.

Corollary 4.1. Suppose C1, C2 ∈ C2 are stochastically monotone in the first component. Then C1 ∗ C2 is 
again stochastically monotone in the first component. More precisely, C1 ∗ C2 is

1. stochastically increasing if both C1 and C2 are either stochastically increasing or stochastically decreasing.
2. stochastically decreasing if one is stochastically increasing and one is stochastically decreasing.

Proof. If C1 and C2 are stochastically monotone in the first component, using Theorem 3.9, TC1 and 
TC2 map monotone functions onto monotone functions. Their composition therefore also maps monotone 
functions onto monotone functions. Assertions (1) and (2) follow immediately from a case-by-case analysis 
using Property (4) of Theorem 3.9. �

This closure property is only one aspect of the interplay between stochastically monotone 2-copulas and 
the Markov product. The next result shows that stochastically increasing 2-copulas maximize the Markov 
product. A similar property was observed for tail dependence functions in Theorem 4.1 of [24].

Theorem 4.2. Let C be a 2-copula. C is stochastically increasing in the first component if and only if

(D ∗ C)(u, v) ≤ C(u, v)

holds for all 2-copulas D and all u, v ∈ [0, 1]. On the other hand, C is stochastically decreasing in the first 
component if and only if

C(u, v) ≤ (D ∗ C)(u, v)

holds for all 2-copulas D and all u, v ∈ [0, 1].

Naturally, Theorem 4.2 also yields that the Markov operator TC is monotonicity-preserving if and only if

TD ◦ TCf ≤ TCf
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for all decreasing functions f ∈ L1([0, 1]) and all Markov operators TD.

Proof. We will only show the first equivalence, the second follows similarly and is left to the reader. Since

v∫
0

∂2D(u, t) dt = D(u, v) ≤ C+(u, v) =
v∫

0

1[0,u](t) dt

holds for all u, v in [0, 1], an application of Hardy’s Lemma (see, Proposition 3.6 in [3]) yields

(D ∗ C)(u, v) =
1∫

0

∂2D(u, t)∂1C(t, v) dt ≤
1∫

0

1[0,u](t)∂1C(t, v) dt = C(u, v) .

Now, let us turn to the converse implication and assume D ∗C ≤ C holds for all 2-copulas D. Let v ∈ (0, 1)
be arbitrary and set f(u) := ∂1C(u, v). Using Proposition 3 in [22], there exists a measure-preserving 
transformation σ : [0, 1] → [0, 1] and a decreasing function g : [0, 1] → [0, 1] such that

∂1C(u, v) = f(u) = g(σ(u)) = Tσg(u) ,

where Tσ is a left-invertible Markov operator (commonly known as a Koopman operator). Using Theo-
rem 2.3, Tσ corresponds to a left-invertible 2-copula Cσ. An application of the adjoint T ′

σ together with the 
left-invertibility of Tσ yields

g(u) = T ′
σ∂1C(·, v)(u) = ∂1(C�

σ ∗ C)(u, v) .

Setting D := C�
σ ∗ C, we have ∂1D(u, v) = g(u) almost everywhere. Therefore u �→ ∂1D(u, v) is decreasing 

and fulfils

D(u, v) = (C�
σ ∗ C)(u, v) ≤ C(u, v) .

On the other hand, the Hardy-Littlewood-Inequality (see, (6.1) in [7]) yields

C(u, v) =
u∫

0

∂1C(t, v) dt ≤
u∫

0

∂1D(t, v) dt = D(u, v) ≤ C(u, v) .

Thus, C(·, v) = D(·, v) and u �→ ∂1C(u, v) must be decreasing. �
Remark 4.3. Theorem 4.2 yields an alternative approach to derive the positive quadrant dependence of 
stochastically increasing copulas. That is,

Π(u, v) = (Π ∗ C)(u, v) ≤ C(u, v)

holds for any stochastically increasing 2-copula C.

Remark 4.4. Analogously to the previous remark, any stochastically decreasing 2-copula C is negative 
quadrant dependent due to

C(u, v) ≤ (Π ∗ C)(u, v) = Π(u, v) .
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With a similar approach, it also characterizes stochastically increasing, completely dependent copulas.

Remark 4.5. A 2-copula C is called completely dependent, or left-invertible, if C� ∗ C = C+. Due to 
Theorem 4.2, any complete dependent and stochastically increasing copula C fulfils

C+ = C� ∗ C ≤ C� ≤ C+

so that C = C+ holds.

5. Idempotents of stochastically monotone copulas

The rest of this article aims to characterize idempotent, stochastically monotone 2-copulas and 
monotonicity-preserving conditional expectations. While the idempotency of C appears to be a purely alge-
braic property, it translates to the fundamental stochastic property of TC being a conditional expectation 
on L∞.

It is well-known that any idempotent 2-copula C is necessarily symmetric, see for example [6] or [27]. 
Therefore, whenever it is stochastically monotone in one component, it is stochastically monotone in the 
same sense in the other component. Thus, it suffices to require C to be stochastically monotone in either 
component and we will simply call C stochastically monotone. With this in mind, let us state the main 
result of this section.

Theorem 5.1. Suppose C is a 2-copula. C is stochastically monotone and idempotent if and only if it is an 
ordinal sum of Π.

We split the proof of Theorem 5.1 into two parts. We will begin with the result concerning stochastically 
decreasing copulas.

Proposition 5.2. The product copula Π(u, v) = uv is the only idempotent 2-copula which is stochastically 
decreasing.

Proof. Let C be an arbitrary stochastically decreasing idempotent copula. Corollary 4.1 together with C
being idempotent yields that C = C ∗C is stochastically increasing. Thus, ∂1C(u, v) = cv ∈ [0, 1] must hold 
for almost all u ∈ [0, 1], which combined with the uniform margin property of copulas leads to

v =
1∫

0

∂1C(u, v) du =
1∫

0

cv du = cv .

Integrating then gives the assertion C(u, v) = uv = Π(u, v). �
Proposition 5.2 states that the only idempotent copula in the class of stochastically decreasing copulas 

is the product copula. It is natural to ask whether the same holds true inside the larger class of negative 
quadrant dependent copulas; see Remark 4.4. Indeed, this is the case as the following proposition shows.

Proposition 5.3. The product copula Π(u, v) = uv is the only idempotent 2-copula which is negative quadrant 
dependent.

Proof. Since every idempotent copula is symmetric (see Thm. 6.1 in [6]) we can apply Prop. 17 from [23]
with an equality and, together with the assumption that C(u, v) ≤ Π(u, v), obtain that the so-called Sobolev 
norm ‖C‖ satisfies
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‖C‖2 = 2
1∫

0

(C ∗ C)(u, u) du = 2
1∫

0

C(u, u) du ≤ 2
1∫

0

Π(u, u) du = 2
3 .

Now Thm. 18 in [23] implies ‖C‖2 = 2/3 and, consequently, C = Π. �
Since Proposition 5.2 already characterizes all idempotent, stochastically decreasing copulas, in the fol-

lowing, it remains to analyze the behaviour of stochastically increasing copulas. The next lemma provides a 
crucial technical property for the proof of Theorem 5.1 by relating the partial derivative of a stochastically 
increasing copula C to the rate of change from C(v, v) to v of C.

Lemma 5.4. Let C be an idempotent, stochastically increasing 2-copula. Then

(v − C(v, v))∂−
2 C(u, v) = C(u, v) − C(u,C(v, v))

holds for all u, v ∈ (0, 1), where ∂−
2 C denotes the left-hand derivative of C with respect to the second 

component.

Proof. Suppose C is stochastically increasing, then the left-hand partial derivative ∂−
2 C(u, t) exists every-

where and is decreasing. Furthermore, due to C(t, v) ≤ C+(t, v) ≤ t, we have

(C ∗ C)(u, v) =
1∫

0

∂2C(u, t)∂1C(t, v) dt =
1∫

0

∂−
2 C(u, t)∂1C(t, v) dt

≤
1∫

0

∂−
2 C(u,C+(t, v))∂1C(t, v) dt

≤
v∫

0

∂−
2 C(u,C(t, v))∂1C(t, v) dt +

1∫
v

∂−
2 C(u,C+(t, v))∂1C(t, v) dt

≤
1∫

0

∂−
2 C(u,C(t, v))∂1C(t, v) dt =

C(1,v)=v∫
C(0,v)=0

∂−
2 C(u, z) dz = C(u, v) .

The change of variables is possible due to the Riemann-integrability of t �→ ∂1C(t, v) and t �→ ∂2C(u, t). 
Now, as (C ∗ C)(u, v) = C(u, v) holds, all inequalities are in fact equalities. This yields

C(u, v) =
v∫

0

∂−
2 C(u,C(t, v))∂1C(t, v) dt +

1∫
v

∂−
2 C(u,C+(t, v))∂1C(t, v) dt

=
v∫

0

∂−
2 C(u,C(t, v))∂1C(t, v) dt +

1∫
v

∂−
2 C(u, v)∂1C(t, v) dt

=
C(v,v)∫

C(0,v)=0

∂−
2 C(u, z) dz + ∂−

2 C(u, v) (v − C(v, v))

= C(u,C(v, v)) + ∂−
2 C(u, v) (v − C(v, v)) . �
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This property of the partial derivative is the cornerstone to prove the desired characterization of idempo-
tent, stochastically increasing copulas. The only difficulty remains in the term (v−C(v, v)) ≥ 0. Whenever 
the latter is strictly positive, the following lemma characterizes the corresponding copula completely. If 
(v − C(v, v)) = 0, we will need to consider the behaviour of C more closely in Theorem 5.6.

Lemma 5.5. Suppose C is a 2-copula with C(v, v) < v for all v ∈ (0, 1). Then C is stochastically monotone 
and idempotent if and only if C(u, v) = uv = Π(u, v).

Proof. The assertion for stochastically decreasing copulas follows from Proposition 5.2. Thus, applying 
Lemma 5.4 in combination with C being stochastically increasing, we obtain for arbitrary u, v in [0, 1]

∂−
2 C(u, v) = C(u, v) − C(u,C(v, v))

v − C(v, v) = 1
v − C(v, v)

v∫
C(v,v)

∂−
2 C(u, t) dt

≥ 1
v − C(v, v)

v∫
C(v,v)

∂−
2 C(u, v) dt = ∂−

2 C(u, v) .

Therefore, the inequality above is actually an equality, and the partial derivative, not only the left-hand 
derivative, fulfils ∂2C(u, t) = cu ∈ [0, 1] almost everywhere on (C(v, v), v). Since C(v, v) < v holds for all 
v ∈ (0, 1), we obtain a (non-disjoint) covering {(C(v, v), v)}v∈(0,1) of (0, 1) with intervals having nonempty 
interior. Consequently, we must have ∂2C(u, t) = cu for almost all t ∈ (0, 1). Hence,

u = C(u, 1) =
1∫

0

∂2C(u, t)dt =
1∫

0

cudt = cu

which implies C(u, v) = uv = Π(u, v). �
With the previous lemma, we are now able to characterize all possible idempotent stochastically increasing 

2-copulas. The assertion of Theorem 5.1 then follows from a combination of Proposition 5.2 and Theorem 5.6.

Theorem 5.6. Ordinal sums of Π are the only idempotent 2-copulas which are stochastically increasing.

Proof. The proof treats three distinct cases, depending on the behaviour along the diagonal. Suppose C is 
stochastically increasing and idempotent. If C(v, v) < v for all v ∈ (0, 1), then C = Π = 〈(0, 1) , Π〉 due 
to Lemma 5.5. If on the other hand C(v, v) = v holds for all v ∈ (0, 1), then C = C+ = 〈(ak, bk) , Π〉k∈∅. 
Lastly, if C(v, v) = v holds for some v ∈ (0, 1) and C 
= C+, Corollary 3.2 and 3.3 from [17] yield that C is 
the ordinal sum of ordinally irreducible 2-copulas

C = (〈(ak, bk) , Ck〉)k∈I .

Due to Theorem 3.2.1 in [20], ordinally irreducible copulas Ck fulfil Ck(v, v) < v for all v ∈ (0, 1). The-
orem 3.1 from [1] then states that C is idempotent if and only if every Ck is idempotent. Moreover, the 
ordinal sum C is stochastically increasing if and only if every Ck is stochastically increasing. Thus, every Ck

is idempotent, stochastically increasing and fulfils Ck(v, v) < v on (0, 1). Lemma 5.5 then implies Ck = Π
which yields

C = (〈(ak, bk) , Π〉) . �
k∈I
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Fig. 2. Stochastically monotone idempotent ordinal sums of Π with respect to different families of disjoint intervals.

Example 5.7. Apart from the extreme cases Π and C+, ordinal sums of Π can take various forms. Three 
different configurations, namely

(〈(
0, 1

3

)
, Π

〉
,

〈(
5
6 , 1

)
, Π

〉)
,

〈(
1
3 , 1

)
, Π

〉
and

(〈(
k

6 ,
k + 1

6

)
, Π

〉)
k∈{0,...,5}

,

are depicted in Fig. 2.

Proposition 5.8. Suppose C is stochastically increasing in the first component. Then there exists a family of 
intervals (ak, bk)k∈I such that

C∗n(u, v) → (〈(ak, bk) , Π〉)k∈I (u, v)

converges pointwise.

A similar behaviour was established for Cesáro averages of iterates of quasi-constrictive Markov operators 
in [28].

Remark 5.9. Since the 2-copulas C∗n are stochastically increasing in the first component (see Corollary 4.1), 
an application of Proposition 3.6 yields that the pointwise convergence of

C∗n(u, v) → (〈(ak, bk) , Π〉)k∈I (u, v)

is equivalent to the pointwise convergence of the partial derivatives and the weakly conditional convergence.

Proof. Due to Corollary 4.1, C∗n is stochastically increasing for all n ∈ N. By Theorem 4.2,

0 ≤ C∗n(u, v) = (C ∗ C∗(n−1))(u, v) ≤ C∗(n−1)(u, v)

follows for all u, v ∈ [0, 1]. Thus, C∗n is a decreasing sequence of copulas and as such, converges pointwise 
against some C∗ ∈ C2. The pointwise limit of the concave functions u �→ C∗n(u, v) is again concave, 
therefore C∗ is stochastically increasing in the first component. Furthermore, due to the Markov product 
being continuous with respect to the pointwise convergence in one component, we have that

C ∗ C∗ = lim C ∗ C∗n = C∗

n→∞
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holds. An inductive argument now yields

C∗ ∗ C∗ = lim
n→∞

C∗n ∗ C∗ = lim
n→∞

C∗ = C∗ .

Thus C∗ is idempotent. An application of Theorem 5.6 then guarantees the existence of a family of intervals 
(ak, bk)k∈I such that C∗ = (〈(ak, bk) , Π〉)k∈I . �

Finally, we will translate the results of this section into the language of Markov operators and conditional 
expectations. Following Proposition 2.4, a 2-copula C is idempotent if and only if TC is a conditional 
expectation restricted to L∞([0, 1], B([0, 1]), λ). Thus, it follows immediately that a conditional expectation 
is monotonicity-preserving if and only if it is pointwise either an average operator or the identity.

Theorem 5.10. Suppose T is a conditional expectation on L∞([0, 1], B([0, 1]), λ). Then T preserves or reverses 
the monotonicity if and only if there exists a countable family of disjoint intervals ((ak, bk))k∈I in (0, 1)
with P := ∪k∈I(ak, bk) such that

TCf(u) =
|I|∑
k=0

1(ak,bk)(u) 1
bk − ak

bk∫
ak

f(t) dt + 1PC (u)f(u) .
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