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Abstract

In this paper, we investigate duality and Feller—Reuter—Riley (FRR) property of continuous-time
Markov chains (CTMCs). A criterion of dugtfunctions is given in terms of their-matrices. For a
dualg-matrix Q, a necessary and sufficient conditions for the mini@&linction to be a FRR transi-
tion function are also given. Finally, by using dual technique, we give a criterion of @Rictions
when Q is monotone.
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1. Introduction and preliminaries

In this paper, we study duality and Feller—Reuter—Riley property of continuous time
Markov chains (CTMCs) (see [1-7]). We only consider CTMCs on a linear ordering set,
that is, the state spade=Z, = {0, 1, 2, ...}, and assume always that all transition func-
tions are standard and altmatrices are stable, as in Anderson [1].

Definition 1.1 [10]. A transition function P(¢) = (p;;(t); i, j € E) is monotone if
Zj}k pij(t) is a non-decreasing function gffor fixed j € E andr > 0.
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Definition 1.2 [11]. A transition functionP (¢) is a dual if2£:o pik(t) | 0 asi — oo for
j € Eandr > 0.

Definition 1.3 [9]. A transition functionP (¢) is a Feller—Reuter—Riley transition function,
(briefly, FRR) if lim; -, o pij(t) =0 for j € E andt > 0.

Obviously, a dual transition function is FRR. Moreover, duality and monotonicity have
the following relationship.

Proposition 1.4 (Siegmund’s theoremA transition function? (z) is monotone if and only
if there exists a duaP () for P(z) (namely, if and only if there exists another transition
function P(¢)) such that

J 00
Y B =Y pit) (Vi,j€E, 1>0). (1.1)
k=0 k=i

Siegmund’s theorem can be stated in an equivalent form: a transition furittiofis a
dual if and only if there exists a monotoir) satisfying (1.1).
An infinite matrix Q = (¢;;; i, j € E) is called to be a (stable}matrix, if

quij < 400, (12)
> 4ij < —qii = gqi < +oo. (1.3)
J#

A transition functionP (¢) is called to be a)-function if
P'(0)=Q (componentwise) (1.4)

It is well known that for a givery-matrix Q, there exists a minimap-function F (),
and that if P (¢) is an FRRg-function then it must be the minimal one (see [1]).
Two questions are considered in this paper.

Question 1 [11]. For a giveng-matrix Q, what are the necessary and sufficient conditions
for the minimalQ-function F(¢) to be a dualp-function?

Question 2 [9]. For a giveng-matrix Q, what are the necessary and sufficient conditions
for the minimalQ-functions to be a FRR)-functions?

Zhang and Chen [11] gave answer to Question 1. Unfortunately, one do not know
whether their results [11, Theorem 4.6] are correct. Because they seem ignore the pos-
sible difference between zero-entrancéjiand in/;", and thus use incorrectly Reuter and
Riley’s result. Question 2 is raised by Reuter and Riley [9] and partially answered by many
author (see [1,8,9,11], etc.). For instance, Zhang and Chen [11, Theorem 5.1] gave a cri-
teria of FRRQ-function whenQ is dual. However, this result is also not exactly correct
with the same reason as above.
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In present paper, we give a complete answer to Question 1 (see Theorem 3.2). As to
Question 2, the discussion is concentrated on two classes of impgrmaatrices: dual
and monotone-matrices. A criteria of FRRy-functions for dualy-matrices is given in
Theorem 4.1, another criteria of FRRfunctions for monotoneg-matrices is given in
Theorem 4.3.

2. Zero-exit and zero-entrance

Definition 2.1. A g-matrix Q is zero-exit inls, or in I1 if Io(X) =0 orit (A) =0, re-
spectively, and is zero-entrancel/inor in lf if 1(A) =0 orlf(k) =0, respectively, where

loW) ={x €loo | A = Qx =0}, 1L (W) ={x€loo(®) | x>0}
L) ={yel|ytl - Q) =0}, Iy ) ={yeh®|y=>0} (2.1)

It is well known that zero-exit i, and inl}, are equivalent each to other, so ones
briefly called it zero-exit. However, whether are zero-entrande and inlIL equivalent?
This question is raised by Reuter—Riley [9] and remains open. For birth—death matrix and
branching matrix, we have an affirmative answer based on the following proposition.

Proposition 2.2. If a g-matrix Q = (¢;j; i, j € E) satisfies
qij=0, fori>j+2 (2.2)

thenQ is zero-entrance ity if and only if Q is zero-entrance imf.

Proof. Necessity is obvious. To prove sufficiency, we assume (yx; k € E) € I3 such
thaty(xI — Q) = 0. We show that either € /" or —y € /]". To this end, we assume without
lose of generality thago > O (if yo < O, consideringy = (—y;), and if yo = 0, passing to
the first non-zero element), and claim that> 0 for all j € E. Indeed,y € [1(1) can be
written as

)‘yj = Zytqu forj eE. (23)
icE

Sum the above equality fgr= 0 to j = m, and use (2.2), we obtain

m m j+1 m j+1 m+1l m
Z)‘yj_zzyth _Zzqu’/ +Zyoqo, Z Z yqu/+Zyoqo/
j=0 j=0i= j=0i=1 i=1j=i—1
= Ym+1qm+1m + Z Z vidij + Z Y040; -
i=1j=i—-1

Thus

m m m
msamian =3 (x— 5 q,,-) +yo<X—Zq0j), web, (@4
j=0

i=1 j=i—1
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SinceY"; 14ij <0 for 1<i <m, it follows thata — Y7, ;g;j > 0 for 1<i <m
andx — ZTzo go;j > 0. Thus (2.4), together with an induction argument, show that 0
for all j € E, this meany € lf(k), which implies thaty = 0 if Q is zero-entrance itf.
Therefore we have proved th@tis zero-entrance ify if Q is zero-entrance itir . O

Remark. The birth—death matrix and branching matrix satisfy (2.2). Moreover, we get
from the above proof that i) satisfies (2.2) and i € /1 is a solution of the equation
y(» — Q) =0, then eithey € [ or —y € []". But this is not always true. For example, let

0 0 0 0 0
1 —6-1) 0 0 0
o=1| 6 6 —(62-1) 0 0
0 6 6° -6%-1) o0
It is easy to verify thaty = (1, —3, 2. —5%..... (~1)"5....) € l1 is a solution of the

equationy(/ — Q) =

3. Dual @-functions

In this section, we give the characterization of dgdlinctions in terms of;-matrices.
We first give some notations.

Definition 3.1. A g-matrix Q = (gi;) is called to be dual if

Z Z%Hk, Bk (3.1)
k=0
Q is monotone if

Yoaik <Y qivik JEI+L (3.2)

k=j kzj
Q is Feller-Reuter—Riley (FRR) if
gij— 0 asi ->oo foreveryjekE. (3.3)
We then state our result.

Theorem 3.2. For a giveng-matrix Q = (¢;;), the minimalQ-function F(¢) is a dual(of
some monotone ohi and only if

(i) Qisdual, and
(ii) either
(&) Q is FRR and zero-entrance ip, or
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(b) for somer > 0 (and hence for alk > 0) the equations

oo
Xx,-:di-l-Zqikxk, O0<xi<l i€k, (34)
k=0

has a solutionx = (x;) satisfyingsup g x; = 1. Hered = (d;) = (— Z/ gij) is
the nonconservative quantity ¢f. '

Remark. Theorem 3.2 is slightly different from [11, Theorem 4.6]. The only difference
is wherelir instead ofl; (in condition (ii)(a)). They [11] seem ignore the difference, and
incorrectly used Reuter—Riley’s result [9, Theorem 8] in their proof of sufficiency and get
an “unsolved” conclusion.

Now sufficiency in above theorem is easy to obtain by using Reuter—Riley’s result and
Zhang and Chen’s method. However, we need prove necessity. To this end, we need im-
prove lemmas in [1,3,11]. The following lemma can be seen from [1,3] for the case of that
0D is conservative.

Lemma 3.3[1]. Let 0D be a monotone-matrix (that is, Q1 satisfieq3.2))and define
the matrixQ® by

o0

2 1 1 .

ay =2 (@i —4jas). LJ€E (3.5)
k=i

Whereq(_li «=0.Then

(1) 0@ is a FRRg-matrix.
(2) Fori, j € E, we have

J 00
E : (2 § : D
k=0

m=i

@) @ _ @ @
9iv1,j — 49 =9j-1i —9ji - (3.7)

(3) 0@ is dual, namely

J J
2 2 .
Yoap => e i (3.8)
k=0 k=0
(4) Q@ is conservative if and only P is Reuter, thatisy ;2 ; ¢ — 0 asi — oo for
every;.

Proof. (1) and (4) can be seen from [1]. Sum (3.5) we get

/ 2 U 1 1 > 1 1 = 1
Y g =" i — 0t = DY (i — ) =D
k=0 m=i

k=0m=i m=i k=0
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which means that (3.6) holds. (3.7) is easy deduced from (3.5). By (3.6),

J 00
@ _© @ @ _
Z(qzk _ql+1k Zq Z qjm=4ji 20
k=0 m=i+1
for j =i, which implies (3.8). a

The following lemma improve [3, Lemma 3.10].

Lemma 3.4. Let 0 be a monotong-matrix, 0@ defined as if3.5). If 0 is zero-exit,
then Q@ is zero-entrance ithy.

Proof. If 0@ is not zero-entrance i, then there is @ € [; with y = (y;) # 0 such that
y(ul — 0@) =0, that s,

Ayj = Zyqu,, jEE. (3.9)

Definex = (x,~) by

i
ZZY’“ iekE
k=0

Then 0+# x € I With [Ix]lcc = SURcg 1xi] < D peglykl = llyllz. We claim that(Al —
0M)x = 0. Indeed, using (3.9) and (3.6) we can calculate as follows:

i i oo 00 i
_ 2 _ @ D
DRIEDIIT DI Zy S - Z%m Zyk
j=0 j=0k=0 k=0 j=0 m=k
that is, Ax; = > o Oql(i)xm for everyi € E, and thusx = (x;) is a nonzero solution
of (A, — QD)x = 0. ThereforeQ™® is nonzero-exit i, which implies by [1, Theo-
rem 2.2.7] thaipV is nonzero-exit (iM%). This contradicts to the assumptionO

Proof of Theorem 3.2. Sufficiencylf condition (a) in (ii) holds, then by Reuter and Riley’s
result [9, Theorem 8], the minima)-function F (¢) is FRR. The other proof is the same
asin[11, Theorem 4.6].

NecessityLet the minimal Q-function F(r) be a dual of a monoton@®-function
PD(1). Then the condition (i) can be seen from [11, Theorem 4.6]. To get (i), we suppose
(ii)(b) is not true, then it follows from the proof of necessity in [11, Theorem 4.6] that
FRR and zero-entranceiii, and thatPD(¢) is the minimalQ®-function. HenceP™® (r)
must satisfy the Kolmogorov backward equations. Thus by [3, Theorem 2.5],

oo
aij = ) (4 —45-1.0)- (3.10)
k=0

Now, sinceP® (r) is monotone, it follows from [11, Theorem 3.1] that? is zero-
exit. This, together with (3.10), implies by Lemma 3.4 (whe¥é = 0D, 0@ = Q) that
Q is zero-entrance ify. Thus (iia) holds. We have proved (ii).0
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4. Feller—Reuter—Riley @-functions

In this section, we consider Question 2 announced in the introduction. Our main interest
is two classes ofi-matrices: dual and monotorematrices. For dual case, we have the
following result to remedy some inconsistencies in [11, Theorem 5.1] (V\lg“emstead
of 11).

Theorem 4.1. Let Q = (¢;;) be a dualg-matrix. Then the minimaQ-function F(¢) =
(fij(®) is FRR if and only if either

(i) Qis FRR and zero-entrance i, or
(i) for somex > 0 (and hence for alk > 0), the equations

S
)»xiZdi—i-Zqikxk, 0<x; <1l i€E, (4.2)
k=0

has a solutiony = (x;) satisfyingsup.g x; = 1.

Proof. SinceQ is dual, it follows from [11, Proposition 2.4] that

J J
Y fa® =) fiar), i je€E,
k=0 k=0

which implies thatF (¢) is FRR if and only if F(¢) is dual. Thus the needed conclusion
follows from Theorem 3.2. O

Corollary 4.2. AssumeQ be a dualg-matrix and the nonconservative quanti;} is
bounded. Then the minim@l-function is FRR if and only if eithgf) O is FRR and zero-
entrance in1, or (i) Q is nonzero-exit.

Proof. By [1, Proposition 4.3.3], the condition (ii) in Theorem 4.1 is equivalent to ¢hat
is nonzero-exit if{d;} is bounded. O

We then turn to the case of monotapenatrix. It is worth point that the monotone case
is more fundamental and more difficult.

Theorem 4.3. Given a monotong-matrix Q, the minimalQ-function is FRR if and only
if either:

() Q is FRR and zero-entrance i, or
(i) Q is nonzero-exit.

To prove this result, we need some lemmas.

Lemmad4.4. Let P(¢r) be a monotone transition function am{r) the dual ofP(z). Then
P(¢) is FRR if and only ifP (¢) is monotone.
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Proof. NecessitySinceP (¢) is monotone, it follows from Definition 1.1 that the limit

o
ci(t) = lim (), i€E, 4.2
i j%ookX:; Pjk ( )
exists fori € E andr > 0. SinceP (¢) is also FRR, it follows that
o0 i—1
ci(t) = jgmm};)pjkm - jumw;pjk<r> = co(t) (4.3)

which is independent aofe E for 7 > 0. Lettingc; (1) = Y 7o pix (t) for i € E andz >0,
and using (1.1) we get

J 00
&) = fim 3 pu() = fim > pju(t) =i (0) = co(t) (4.4)
k=0 ; k=i

which is independent affor ¢t > 0. Thus
00 00 j—1 j—1
Y B =Y pi() =Y pi(t) =cot) = Y pir(®). (4.5)
k=j k=0 k=0 k=0

Sincez,{;é pik(t)} asi — oo for j € E andr > 0, it follows from above equality that
Z,fij pir (1)1 asi — oo for j € E andt > 0, which mean () is monotone.
SufficiencySincef’(t) is dual, we have

k k
Zﬁ,-j(t) > Zﬁiﬂ,j(t) fork,i € E andt > 0. (4.6)
=0 =0

Lettingk — oo we get

o0 o0
Zﬁij(t) > Zﬁi+1,j(z) fori € E andt > 0. 4.7)
=0 =0

On the other hand, monotonicity &(r) implies that
o0 o
D B <Y pira ). (4.8)
j=0 j=0

Thust?‘;o pij(t) = c(¢) is independent of for r > 0. This, together with (1.1), implies
that the limit

00 i
lim > " pic() = lim > pji(t) =c(t) (4.9)
k=j k=0
exists and is independent pfe E for r > 0. Therefore,
o o
lim_pij(6) = lim <kZ pik(®) —kzlpikm) =c(t) —c(t)=0 (4.10)
=j =j+

for everyj € E, which means thaP (¢) is FRR. O
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According to above lemma, iP(¢) is monotone and FRR, then its duBlz) is also
monotone. Thus Ehere exist another dual functitam) of P(¢), which is the twice dual of
P(t). Of course,P(¢) is monotone, dual and FRR. Moreover, it also have the following

properties which is useful to prove Theorem 4.3.

Lemmg 45. Let P(r) be a FRR and monotone transition function Wit~h thenatrix Q,
P (1), P(r) be the dual and twice dual @ (r) with theg-matrix O and Q, respectively.

Then

() the nonconservative quantidy= (d;), 5 = (5,-) are constant, namely,

di=di=a>0 foreveryicE;

(ii) the dual and twice dual function satisfy

Yo b= pijty=e
j=0 j=0

which is independent dfe E, forz > 0;
(i) O = (§ij) can be denoted bg,

5 gi-1i-1 fori,j>1,
5ij= —Ol80j fori:O,jeE,
di_1—a fori>=1, j=0.

Proof. (i) and (ii). By the proof of Lemma 4.4, we have

> pi = fim 3" piy) =c(r)
j=0 ~i0

which is independent afe E for ¢ >> 0. We claim that(¢) satisfies:

(4.11)

(4.12)

(4.13)

(4.14)

(@) c(¢r) is continuously differentiable far> 0, with ¢(0) = 1 andc’(0) = —a < 0; and

(b) c( +s5)=c(t)c(s).

Indeed, fori € E, theith deficit function is

di(ty=1=73 pij(0)=1=c().

Jj=0

By Anderson [1]4; (¢) is continuously differentiable far> 0 and

d - .
—d;(1)|,_g=d; forieE,
dt =

(4.15)

(4.16)

where (4.16) valid sincé (¢) satisfy the backward equation. Now conclusion (a) follows

from (4.15) and (4.16). By (4.14), we calculate as follows:
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ct+)=Y pijt+)=>_ piu(t)prj(s)

j=0 j=0k=0
=D hik®) Y pri(s) =) Y pix(t) = c(s)e(),
k=0 j=0 k=0
which proves (b). It is easy from (a) and (b) to get
c(t)=e ™, (4.17)

Thus it follows from (4.14)—(4.17) that
o
d~,' =a>0 and Zf),‘j(l) =e
j=0

which is independent afe E for ¢ > 0. SinceP(z) is also monotone and FRR, it follows
from (4.14) that

E:iA0=JM1§:ﬁwar:dn=eﬂf
j=0 0

and
d _
:—dt(l—e at)|[:():a

b3 d .
di = d_(l_ Zﬁij(ﬂ)
t >
j=0 t=0

which completes the proof of (4.11) and (4.12).
(iii) Using (1.1) and (4.12),we calculate

00 00 i—1 i—1
Pii =Y P =Y Piax®)=e"* =" pit) - (e“” -> ﬁ‘;_i,ka))
k=0 k=0

k=i k=i

= Z Pi-1k(1) — ZPi—Lk(Z) =pi-1,j-1(1),

k=j-1 k=j
for i, j > 1. Differentiating above equality on two siderat 0, we get
Z}ij =qi—1j-1 fori>1 j>1
which proved (4.13) for the case ifj > 1. Similarly, (4.13) holds for the case 0& 0 or
j=0. O

Lemma 4.6. Let P(r) be a monotone and FRizfunction with theg-matrix O = (g;;).
ThenQ is FRR and zero-entrance ip.

Proof. Let P (1), F:’(t) be the dual and twice dual a?(s) with ¢g-matricesQ and é
respectively. It follows from Lemma 4.5(ii) that

o
inf> " pij(t)=e"* >0, (4.18)
1 /_0
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which implies, by [1] or [11], that the condition (ii)(b) in Theorem 3.2 does not hold. Thus

by Theorem 3.2 (wher@ instead ofQ), we obtain that) must be FRR and zero-entrance
in Iy, which implies, by Lemma 4.5(iii), thag;; = ‘}i+l,j+1 — 0 asi — oo for every
Jj € E. Namely,Q is FRR.
To prove thatQ is zero-entrance ify, we suppose = (yx) € /1 satisfyy(Al — Q) =
for somex > 0. We show thay = 0. Indeed, define = (z;) €11 by

2k = Yk—1 for k = 1, and 70 =

szo (4.19)

Clokl

Noting thatgo > gx41.0 fork >1 (becaus@ is dual), we obtain that

0
—lyll1 < +o0,
+ 40

which meang is well defined and = (zx) € [1. Since)_; yx(A6x; — qxj) =0for j € E,
it follows from Lemma 4.5(iii) and (4.19) that, fgr> 1,

lzol <

oo
Z (ASk; —qk, = zo(A + @)do; +ZYI< 1(A8kj — qr—1,j-1)
k=0 k=1

oo [ee)
=Y O8ki1j —qrj-1) =D (A j-1— qij-1) =0
k=0 k=0

and

o0
>z £ (28k0 — Gro) = zo(% + o) — Zquko—
k=0

Thus we have proved thati — Q) = 0, which implies, by the zero-entrance éfin 1,
that z = 0. This, together with (4.19), implies that= 0, and thusQ is zero-entrance
inl/1. O

Now we can prove Theorem 4.3 by using above lemmas.

Proof of Theorem 4.3. NecessityAssume that the minimap-function F(¢) is FRR. If
condition (ii) does not hold, the@ is zero-exit. Since is also monotone, it follows from
[11, Theorem 3.1] thaF (¢) is monotone. Therefore it follows from Lemma 4.6 this
FRR and zero-entrance Ip.
Sufficiencyf condition (i) holds, namelyQ is FRR and zero-entrance ip, then, by
Reuter and Riley’s result [9, Theorem B]r) is FRR.
Assume condition (ii) hold, namely) is nonzero-exit. Add a stata ¢ E to form E 4
with order relation'A <0< 1< - -+, and define g-matrix QO = (ag;;) ON E4 by
gij, i, J€E,
Aqij = dl', iGE,j:A
0, i=A,jeEn,
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whered; is the nonconservative quantity ¢f. Then, Q is monotone (it is easy to verify
that 4 O is monotone if and only i is) and conservative. ThusQ is dual and is nonzero-
exit (in fact, 5 Q is zero-exit if and only ifQ is). Thus it follows from Corollary 4.2 that
the minimal 4 Q-function 4 F () is FRR. ButA is an absorbing state forQ and thus

afij(t) = fij(t) fori,jeE.
ThereforeF (r) is FRR. O

5. Questionsand examples

The condition thap is zero-entrance il in our result is important. Can it be instead of
the condition thaD is zero-entrance itf[? That is, the following question remains open.

Question 5.1. Are our main result in Sections 3, 4 (i.e. Theorems 3.2, 4.1, 4.3) trq“e if
instead of1?

If O satisfies (2.2), that s, i is a downward skip-fre@-matrix, (which contains the
birth—death matrix and Markov branching matrix), then, by Proposition 2.2, the answer is
affirmative. For wider case, Question 5.1 remains open.

Now we use two examples to illustrate our results.

Example 5.2 (birth—death process)et Q = (g;;) be a birth—deathp-matrix, that is

A if j=i+1,i>0,
e if j=i—1,i>1,
WY —Gi+up) ifj=i,i>0,

0 otherwise,

wherei;, u; > 0. ThenQ is monotone, and iftg = 0, thenQ is dual (see [11]). Applying
our result (Theorems 3.2, 4.1, 4.3) and noting Proposition 2.2, we get the following.

Proposition 5.3. Let Q be a birth—death matrix and'(¢) the minimalQ-function. Then

(i) F(¢)is adual function if and only if = co or R < co; and g = 0;
(i) F(¢)is FRRifand only ifS = oo or R < oo,

where

00
1 A ApAn— Ap . A2A

SZE (1+i+ non l+...+”—21)’
g Mntl Mn  MnMn-1 Mn ... L2101

o0
1 Un un-..uz>
R=Y =+ o)
;(An Anhn_1 M. A2y

Remark. Above result (for the case of thap = 0) are also obtained by [11]. But without
our Proposition 2.2, their proofs are incomplete.
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Example 5.4 (branching processirRecall that a branching-matrix Q is defined by

ibjipa (i1,
% =10 otherwise,

whereb; >0 (k # 1) and) ;2 ,bx = 0. Q is conservative, FRR, monotone and thus dual.
Further,Q is always zero-entrance Iﬁf (see [1]), and thus, by Proposition 2@,is zero-
entrance in;. But Q is not always zero-exit (regular), the regular criteria can be seen
from [1]. Applying our result we obtain the following.

Proposition 5.5. Let F (¢) be the minimal branching-function. Then

(i) F(r)isalways FRR
(iiy F(2) is always a dualQ-function.

Note thatF (r) must be a dual of some monoto@? -function P (¢) (here we might
call PD(r) to be pre-dual o' (1)), we can calculate to get

%ij = jbifjJrl_Zin_:]obm ifi>j—1.

Thus Q@ is a upwardly skip-fregi-matrix; that is, the branching proceggr) must be
a dual of some upwardly skip-free proceRs" (r). Although F(r) is FRR, PP (r) is not
necessarily FRR. In fact, we have

Proposition 5.6. PP (r) is FRR if and only ifQ is regular.

Proof. By Lemma 4.4,P™(r) is FRR if and only if its dualP ™ (¢) is monotone. This is
equivalent to thap is zero-exit and thus regular.c
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