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Abstract

In this paper, we investigate duality and Feller–Reuter–Riley (FRR) property of continuou
Markov chains (CTMCs). A criterion of dualq-functions is given in terms of theirq-matrices. For a
dualq-matrixQ, a necessary and sufficient conditions for the minimalQ-function to be a FRR trans
tion function are also given. Finally, by using dual technique, we give a criterion of FRRQ-functions
whenQ is monotone.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

In this paper, we study duality and Feller–Reuter–Riley property of continuous
Markov chains (CTMCs) (see [1–7]). We only consider CTMCs on a linear ordering
that is, the state spaceE = Z+ = {0,1,2, . . .}, and assume always that all transition fun
tions are standard and allq-matrices are stable, as in Anderson [1].

Definition 1.1 [10]. A transition functionP(t) = (pij (t); i, j ∈ E) is monotone if∑
j�k pij (t) is a non-decreasing function ofi, for fixedj ∈ E andt � 0.
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0022-247X/$ – see front matter 2005 Elsevier Inc. All rights reserved.
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Definition 1.2 [11]. A transition functionP(t) is a dual if
∑j

k=0 pik(t) ↓ 0 asi → ∞ for
j ∈ E andt � 0.

Definition 1.3 [9]. A transition functionP(t) is a Feller–Reuter–Riley transition functio
(briefly, FRR) if limi→∞ pij (t) = 0 for j ∈ E andt � 0.

Obviously, a dual transition function is FRR. Moreover, duality and monotonicity
the following relationship.

Proposition 1.4 (Siegmund’s theorem). A transition functionP(t) is monotone if and only
if there exists a dualP̃ (t) for P(t) (namely, if and only if there exists another transiti
functionP̃ (t)) such that

j∑
k=0

p̃ik(t) =
∞∑
k=i

pjk(t) (∀i, j ∈ E, t � 0). (1.1)

Siegmund’s theorem can be stated in an equivalent form: a transition functionP̃ (t) is a
dual if and only if there exists a monotoneP(t) satisfying (1.1).

An infinite matrixQ = (qij ; i, j ∈ E) is called to be a (stable)q-matrix, if

0� qij < +∞, (1.2)∑
j �=i

qij � −qii ≡ qi < +∞. (1.3)

A transition functionP(t) is called to be aQ-function if

P ′(0) = Q (componentwise). (1.4)

It is well known that for a givenq-matrix Q, there exists a minimalQ-functionF(t),
and that ifP(t) is an FRRq-function then it must be the minimal one (see [1]).

Two questions are considered in this paper.

Question 1 [11]. For a givenq-matrixQ, what are the necessary and sufficient conditi
for the minimalQ-functionF(t) to be a dualQ-function?

Question 2 [9]. For a givenq-matrix Q, what are the necessary and sufficient conditi
for the minimalQ-functions to be a FRRQ-functions?

Zhang and Chen [11] gave answer to Question 1. Unfortunately, one do not
whether their results [11, Theorem 4.6] are correct. Because they seem ignore th
sible difference between zero-entrance inl1 and inl+1 , and thus use incorrectly Reuter a
Riley’s result. Question 2 is raised by Reuter and Riley [9] and partially answered by
author (see [1,8,9,11], etc.). For instance, Zhang and Chen [11, Theorem 5.1] gav
teria of FRRQ-function whenQ is dual. However, this result is also not exactly corr
with the same reason as above.
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In present paper, we give a complete answer to Question 1 (see Theorem 3.2)
Question 2, the discussion is concentrated on two classes of importantq-matrices: dua
and monotoneq-matrices. A criteria of FRRq-functions for dualq-matrices is given in
Theorem 4.1, another criteria of FRRq-functions for monotoneq-matrices is given in
Theorem 4.3.

2. Zero-exit and zero-entrance

Definition 2.1. A q-matrix Q is zero-exit inl∞ or in l+∞ if l∞(λ) = 0 or l+∞(λ) = 0, re-
spectively, and is zero-entrance inl1 or in l+1 if l1(λ) = 0 or l+1 (λ) = 0, respectively, wher

l∞(λ) = {
x ∈ l∞ | (λI − Q)x = 0

}
, l+∞(λ) = {

x ∈ l∞(λ) | x � 0
};

l1(λ) = {
y ∈ l1 | y(λI − Q) = 0

}
, l+1 (λ) = {

y ∈ l1(λ) | y � 0
}
. (2.1)

It is well known that zero-exit inl∞ and in l+∞ are equivalent each to other, so on
briefly called it zero-exit. However, whether are zero-entrance inl1 and inl+1 equivalent?
This question is raised by Reuter–Riley [9] and remains open. For birth–death matr
branching matrix, we have an affirmative answer based on the following proposition

Proposition 2.2. If a q-matrixQ = (qij ; i, j ∈ E) satisfies

qij = 0, for i � j + 2, (2.2)

thenQ is zero-entrance inl1 if and only ifQ is zero-entrance inl+1 .

Proof. Necessity is obvious. To prove sufficiency, we assumey = (yk; k ∈ E) ∈ l1 such
thaty(λI −Q) = 0. We show that eithery ∈ l+1 or−y ∈ l+1 . To this end, we assume witho
lose of generality thaty0 > 0 (if y0 < 0, consideringy = (−yj ), and ify0 = 0, passing to
the first non-zero element), and claim thatyj > 0 for all j ∈ E. Indeed,y ∈ l1(λ) can be
written as

λyj =
∑
i∈E

yiqij for j ∈ E. (2.3)

Sum the above equality forj = 0 to j = m, and use (2.2), we obtain

m∑
j=0

λyj =
m∑

j=0

j+1∑
i=0

yiqij =
m∑

j=0

j+1∑
i=1

yiqij +
m∑

j=0

y0q0j =
m+1∑
i=1

m∑
j=i−1

yiqij +
m∑

j=0

y0q0j

= ym+1qm+1,m +
m∑

i=1

m∑
j=i−1

yiqij +
m∑

j=0

y0q0j .

Thus

ym+1qm+1,m =
m∑

yi

(
λ −

m∑
qij

)
+ y0

(
λ −

m∑
q0j

)
, m ∈ E. (2.4)
i=1 j=i−1 j=0
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j=i−1 qij � 0 for 1� i � m, it follows thatλ − ∑m
j=i−1 qij > 0 for 1� i � m

andλ − ∑m
j=0 q0j > 0. Thus (2.4), together with an induction argument, show thatyj > 0

for all j ∈ E, this meansy ∈ l+1 (λ), which implies thaty = 0 if Q is zero-entrance inl+1 .
Therefore we have proved thatQ is zero-entrance inl1 if Q is zero-entrance inl+1 . �
Remark. The birth–death matrix and branching matrix satisfy (2.2). Moreover, we
from the above proof that ifQ satisfies (2.2) and ify ∈ l1 is a solution of the equatio
y(λ − Q) = 0, then eithery ∈ l+1 or −y ∈ l+1 . But this is not always true. For example, l

Q =




0 0 0 0 0 . . .

1 −(6− 1) 0 0 0 . . .

6 6 −(62 − 1) 0 0 . . .

0 62 62 −(63 − 1) 0 . . .

. . . . . . . . . . . . . . . . . .


 .

It is easy to verify thaty = (1,−1
2, 1

22 ,− 1
23 , . . . , (−1)n 1

2n , . . .) ∈ l1 is a solution of the
equationy(I − Q) = 0.

3. Dual Q-functions

In this section, we give the characterization of dualq-functions in terms ofq-matrices.
We first give some notations.

Definition 3.1. A q-matrixQ = (qij ) is called to be dual if

j∑
k=0

qik �
j∑

k=0

qi+1,k, j �= i; (3.1)

Q is monotone if∑
k�j

qik �
∑
k�j

qi+1,k, j �= i + 1; (3.2)

Q is Feller–Reuter–Riley (FRR) if

qij → 0 asi → ∞ for everyj ∈ E. (3.3)

We then state our result.

Theorem 3.2. For a givenq-matrix Q = (qij ), the minimalQ-functionF(t) is a dual(of
some monotone one) if and only if

(i) Q is dual, and
(ii) either

(a) Q is FRR and zero-entrance inl1, or
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(b) for someλ > 0 (and hence for allλ > 0) the equations

λxi = di +
∞∑

k=0

qikxk, 0� xi � 1, i ∈ E, (3.4)

has a solutionx = (xi) satisfyingsupi∈E xi = 1. Hered = (di) = (−∑
j qij ) is

the nonconservative quantity ofQ.

Remark. Theorem 3.2 is slightly different from [11, Theorem 4.6]. The only differe
is wherel+1 instead ofl1 (in condition (ii)(a)). They [11] seem ignore the difference, a
incorrectly used Reuter–Riley’s result [9, Theorem 8] in their proof of sufficiency an
an “unsolved” conclusion.

Now sufficiency in above theorem is easy to obtain by using Reuter–Riley’s resu
Zhang and Chen’s method. However, we need prove necessity. To this end, we ne
prove lemmas in [1,3,11]. The following lemma can be seen from [1,3] for the case o
Q(1) is conservative.

Lemma 3.3 [1]. LetQ(1) be a monotoneq-matrix (that is,Q(1) satisfies(3.2))and define
the matrixQ(2) by

q
(2)
ij =

∞∑
k=i

(
q

(1)
jk − q

(1)
j−1,k

)
, i, j ∈ E, (3.5)

whereq
(1)
−1,k ≡ 0. Then:

(1) Q(2) is a FRRq-matrix.
(2) For i, j ∈ E, we have

j∑
k=0

q
(2)
ik =

∞∑
m=i

q
(1)
jm, (3.6)

q
(2)
i+1,j − q

(2)
i,j = q

(1)
j−1,i − q

(1)
j i . (3.7)

(3) Q(2) is dual, namely

j∑
k=0

q
(2)
ik �

j∑
k=0

q
(2)
i+1,k, j �= i. (3.8)

(4) Q(2) is conservative if and only ifQ(1) is Reuter, that is,
∑∞

k=j q
(1)
ik → 0 asi → ∞ for

everyj.

Proof. (1) and (4) can be seen from [1]. Sum (3.5) we get

j∑
q

(2)
ik =

j∑ ∞∑(
q

(1)
km − q

(1)
k−1,m

) =
∞∑ j∑(

q
(1)
km − q

(1)
k−1,m

) =
∞∑

q
(1)
jm
k=0 k=0 m=i m=i k=0 m=i
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which means that (3.6) holds. (3.7) is easy deduced from (3.5). By (3.6),
j∑

k=0

(
q

(2)
ik − q

(2)
i+1,k

) =
∞∑

m=i

q
(1)
jm −

∞∑
m=i+1

q
(1)
jm = qji � 0

for j �= i, which implies (3.8). �
The following lemma improve [3, Lemma 3.10].

Lemma 3.4. LetQ(1) be a monotoneq-matrix,Q(2) defined as in(3.5). If Q(1) is zero-exit,
thenQ(2) is zero-entrance inl1.

Proof. If Q(2) is not zero-entrance inl1, then there is ay ∈ l1 with y = (yj ) �= 0 such that
y(λI − Q(2)) = 0, that is,

λyj =
∞∑

k=0

ykq
(2)
kj , j ∈ E. (3.9)

Definex = (xi) by

xi =
i∑

k=0

yk, i ∈ E.

Then 0 �= x ∈ l∞ with ‖x‖∞ = supi∈E |xi | �
∑∞

k=0 |yk| = ‖y‖1. We claim that(λI −
Q(1))x = 0. Indeed, using (3.9) and (3.6) we can calculate as follows:

λ

i∑
j=0

yj =
i∑

j=0

∞∑
k=0

ykq
(2)
kj =

∞∑
k=0

yk

i∑
j=0

q
(2)
kj =

∞∑
k=0

yk

∞∑
m=k

q
(1)
im =

∞∑
m=0

q
(1)
im

m∑
k=0

yk

that is, λxi = ∑∞
m=0 q

(1)
im xm for every i ∈ E, and thusx = (xi) is a nonzero solution

of (λI − Q(1))x = 0. ThereforeQ(1) is nonzero-exit inl∞, which implies by [1, Theo-
rem 2.2.7] thatQ(1) is nonzero-exit (inl+∞). This contradicts to the assumption.�
Proof of Theorem 3.2. Sufficiency. If condition (a) in (ii) holds, then by Reuter and Riley
result [9, Theorem 8], the minimalQ-functionF(t) is FRR. The other proof is the sam
as in [11, Theorem 4.6].

Necessity. Let the minimalQ-function F(t) be a dual of a monotoneQ(1)-function
P (1)(t). Then the condition (i) can be seen from [11, Theorem 4.6]. To get (ii), we sup
(ii)(b) is not true, then it follows from the proof of necessity in [11, Theorem 4.6] thatQ is
FRR and zero-entrance inl+1 , and thatP (1)(t) is the minimalQ(1)-function. HenceP (1)(t)

must satisfy the Kolmogorov backward equations. Thus by [3, Theorem 2.5],

qij =
∞∑

k=0

(
q

(1)
jk − q

(1)
j−1,k

)
. (3.10)

Now, sinceP (1)(t) is monotone, it follows from [11, Theorem 3.1] thatQ(1) is zero-
exit. This, together with (3.10), implies by Lemma 3.4 (whereQ(1) = Q(1), Q(2) = Q) that
Q is zero-entrance inl1. Thus (iia) holds. We have proved (ii).�
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4. Feller–Reuter–Riley Q-functions

In this section, we consider Question 2 announced in the introduction. Our main in
is two classes ofq-matrices: dual and monotoneq-matrices. For dual case, we have
following result to remedy some inconsistencies in [11, Theorem 5.1] (wherel+1 instead
of l1).

Theorem 4.1. Let Q = (qij ) be a dualq-matrix. Then the minimalQ-functionF(t) =
(fij (t)) is FRR if and only if either:

(i) Q is FRR and zero-entrance inl1, or
(ii) for someλ > 0 (and hence for allλ > 0), the equations

λxi = di +
∞∑

k=0

qikxk, 0� xi � 1, i ∈ E, (4.1)

has a solutionx = (xi) satisfyingsupi∈E xi = 1.

Proof. SinceQ is dual, it follows from [11, Proposition 2.4] that

j∑
k=0

fik(t) �
j∑

k=0

fi+1,k(t), i, j ∈ E,

which implies thatF(t) is FRR if and only ifF(t) is dual. Thus the needed conclusi
follows from Theorem 3.2. �
Corollary 4.2. AssumeQ be a dualq-matrix and the nonconservative quantity{di} is
bounded. Then the minimalQ-function is FRR if and only if either(i) Q is FRR and zero
entrance inl1, or (ii) Q is nonzero-exit.

Proof. By [1, Proposition 4.3.3], the condition (ii) in Theorem 4.1 is equivalent to thaQ

is nonzero-exit if{di} is bounded. �
We then turn to the case of monotoneq-matrix. It is worth point that the monotone ca

is more fundamental and more difficult.

Theorem 4.3. Given a monotoneq-matrix Q, the minimalQ-function is FRR if and only
if either:

(i) Q is FRR and zero-entrance inl1, or
(ii) Q is nonzero-exit.

To prove this result, we need some lemmas.

Lemma 4.4. Let P(t) be a monotone transition function and̃P(t) the dual ofP(t). Then
P(t) is FRR if and only ifP̃ (t) is monotone.
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Proof. Necessity. SinceP(t) is monotone, it follows from Definition 1.1 that the limit

ci(t) = lim
j→∞

∞∑
k=i

pjk(t), i ∈ E, (4.2)

exists fori ∈ E andt � 0. SinceP(t) is also FRR, it follows that

ci(t) = lim
j→∞

∞∑
k=0

pjk(t) − lim
j→∞

i−1∑
k=0

pjk(t) = c0(t) (4.3)

which is independent ofi ∈ E for t � 0. Letting c̃i (t) = ∑∞
k=0 p̃ik(t) for i ∈ E andt � 0,

and using (1.1) we get

c̃i (t) = lim
j→∞

j∑
k=0

p̃ik(t) = lim
j→∞

∞∑
k=i

pjk(t) = ci(t) = c0(t) (4.4)

which is independent ofi for t � 0. Thus

∞∑
k=j

p̃ik(t) =
∞∑

k=0

p̃ik(t) −
j−1∑
k=0

p̃ik(t) = c0(t) −
j−1∑
k=0

p̃ik(t). (4.5)

Since
∑j−1

k=0 p̃ik(t)↓ as i → ∞ for j ∈ E and t � 0, it follows from above equality tha∑∞
k=j p̃ik(t)↑ asi → ∞ for j ∈ E andt � 0, which meansP̃ (t) is monotone.

Sufficiency. SinceP̃ (t) is dual, we have
k∑

j=0

p̃ij (t) �
k∑

j=0

p̃i+1,j (t) for k, i ∈ E andt � 0. (4.6)

Letting k → ∞ we get
∞∑

j=0

p̃ij (t) �
∞∑

j=0

p̃i+1,j (t) for i ∈ E andt � 0. (4.7)

On the other hand, monotonicity of̃P(t) implies that
∞∑

j=0

p̃ij (t) �
∞∑

j=0

p̃i+1,j (t). (4.8)

Thus
∑∞

j=0 p̃ij (t) = c(t) is independent ofi for t � 0. This, together with (1.1), implie
that the limit

lim
i→∞

∞∑
k=j

pik(t) = lim
i→∞

i∑
k=0

p̃jk(t) = c(t) (4.9)

exists and is independent ofj ∈ E for t � 0. Therefore,

lim
i→∞pij (t) = lim

i→∞

( ∞∑
k=j

pik(t) −
∞∑

k=j+1

pik(t)

)
= c(t) − c(t) = 0 (4.10)

for everyj ∈ E, which means thatP(t) is FRR. �
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According to above lemma, ifP(t) is monotone and FRR, then its dualP̃ (t) is also

monotone. Thus there exist another dual function˜̃
P(t) of P̃ (t), which is the twice dual o

P(t). Of course, ˜̃
P(t) is monotone, dual and FRR. Moreover, it also have the follow

properties which is useful to prove Theorem 4.3.

Lemma 4.5. Let P(t) be a FRR and monotone transition function with theq-matrix Q,

P̃ (t), ˜̃
P(t) be the dual and twice dual ofP(t) with theq-matrix Q̃ and ˜̃

Q, respectively
Then:

(i) the nonconservative quantitỹd = (d̃i),
˜̃
d = (

˜̃
di) are constant, namely,

d̃i = ˜̃
di = α � 0 for everyi ∈ E; (4.11)

(ii) the dual and twice dual function satisfy

∞∑
j=0

p̃ij (t) =
∞∑

j=0

˜̃pij (t) = e−αt (4.12)

which is independent ofi ∈ E, for t � 0;
(iii) ˜̃

Q = ( ˜̃qij ) can be denoted byQ,

˜̃qij =
{

qi−1,i−1 for i, j � 1,
−αδ0j for i = 0, j ∈ E,
di−1 − α for i � 1, j = 0.

(4.13)

Proof. (i) and (ii). By the proof of Lemma 4.4, we have

∞∑
j=0

p̃ij (t) = lim
k→∞

∞∑
j=0

pkj (t) = c(t) (4.14)

which is independent ofi ∈ E for t � 0. We claim thatc(t) satisfies:

(a) c(t) is continuously differentiable fort � 0, with c(0) = 1 andc′(0) = −α � 0; and
(b) c(t + s) = c(t)c(s).

Indeed, fori ∈ E, theith deficit function is

d̃i (t) = 1−
∞∑

j=0

p̃ij (t) = 1− c(t). (4.15)

By Anderson [1],d̃i (t) is continuously differentiable fort � 0 and

d

dt
d̃i(t)

∣∣
t=0 = d̃i for i ∈ E, (4.16)

where (4.16) valid sincẽP (t) satisfy the backward equation. Now conclusion (a) follo
from (4.15) and (4.16). By (4.14), we calculate as follows:
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c(t + s) =
∞∑

j=0

p̃ij (t + s) =
∞∑

j=0

∞∑
k=0

p̃ik(t)p̃kj (s)

=
∞∑

k=0

p̃ik(t)

∞∑
j=0

p̃kj (s) = c(s)

∞∑
k=0

p̃ik(t) = c(s)c(t),

which proves (b). It is easy from (a) and (b) to get

c(t) = e−αt . (4.17)

Thus it follows from (4.14)–(4.17) that

d̃i = α � 0 and
∞∑

j=0

p̃ij (t) = e−αt

which is independent ofi ∈ E for t � 0. SinceP̃ (t) is also monotone and FRR, it follow
from (4.14) that

∞∑
j=0

˜̃pij (t) = lim
k→∞

∞∑
j=0

p̃kj (t) = c(t) = e−αt

and

˜̃
di = d

dt

(
1−

∞∑
j=0

˜̃pij (t)

)∣∣∣∣∣
t=0

= d

dt
(1− e−αt )

∣∣
t=0 = α

which completes the proof of (4.11) and (4.12).
(iii) Using (1.1) and (4.12),we calculate

˜̃pij (t) =
∞∑
k=i

p̃jk(t) −
∞∑
k=i

p̃j−1,k(t) = e−αt −
i−1∑
k=0

p̃jk(t) −
(

e−αt −
i−1∑
k=0

p̃j−1,k(t)

)

=
∞∑

k=j−1

pi−1,k(t) −
∞∑

k=j

pi−1,k(t) = pi−1,j−1(t),

for i, j � 1. Differentiating above equality on two side att = 0, we get

˜̃qij = qi−1,j−1 for i � 1, j � 1,

which proved (4.13) for the case ofi, j � 1. Similarly, (4.13) holds for the case ofi = 0 or
j = 0. �
Lemma 4.6. Let P(t) be a monotone and FRRq-function with theq-matrix Q = (qij ).
ThenQ is FRR and zero-entrance inl1.

Proof. Let P̃ (t), ˜̃
P(t) be the dual and twice dual ofP(t) with q-matricesQ̃ and ˜̃

Q,
respectively. It follows from Lemma 4.5(ii) that

inf
i

∞∑ ˜̃pij (t) = e−αt > 0, (4.18)

j=0
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which implies, by [1] or [11], that the condition (ii)(b) in Theorem 3.2 does not hold. T

by Theorem 3.2 (wherẽ̃Q instead ofQ), we obtain that ˜̃Q must be FRR and zero-entran
in l1, which implies, by Lemma 4.5(iii), thatqij = ˜̃qi+1,j+1 → 0 as i → ∞ for every
j ∈ E. Namely,Q is FRR.

To prove thatQ is zero-entrance inl1, we supposey = (yk) ∈ l1 satisfyy(λI − Q) = 0
for someλ > 0. We show thaty = 0. Indeed, definez = (zk) ∈ l1 by

zk = yk−1 for k � 1, and z0 = 1

λ + ˜̃q0

∞∑
k=1

zk
˜̃qk0. (4.19)

Noting that ˜̃qk0 � ˜̃qk+1,0 for k � 1 (because˜̃
Q is dual), we obtain that

|z0| �
˜̃q1,0

λ + ˜̃q0
‖y‖1 < +∞,

which meansz0 is well defined andz = (zk) ∈ l1. Since
∑

k yk(λδkj − qkj ) = 0 for j ∈ E,
it follows from Lemma 4.5(iii) and (4.19) that, forj � 1,

∞∑
k=0

zk

(
λδkj − ˜̃qkj

) = z0(λ + α)δ0j +
∞∑

k=1

yk−1(λδkj − qk−1,j−1)

=
∞∑

k=0

yk(λδk+1,j − qk,j−1) =
∞∑

k=0

yk(λδk,j−1 − qk,j−1) = 0

and
∞∑

k=0

zk

(
λδk0 − ˜̃qk0

) = z0
(
λ + ˜̃q0

) −
∞∑

k=1

zk
˜̃qk0 = 0.

Thus we have proved thatz(λ − ˜̃
Q) = 0, which implies, by the zero-entrance of˜̃Q in l1,

that z = 0. This, together with (4.19), implies thaty = 0, and thusQ is zero-entrance
in l1. �

Now we can prove Theorem 4.3 by using above lemmas.

Proof of Theorem 4.3. Necessity. Assume that the minimalQ-functionF(t) is FRR. If
condition (ii) does not hold, thenQ is zero-exit. SinceQ is also monotone, it follows from
[11, Theorem 3.1] thatF(t) is monotone. Therefore it follows from Lemma 4.6 thatQ is
FRR and zero-entrance inl1.

Sufficiency. If condition (i) holds, namely,Q is FRR and zero-entrance inl1, then, by
Reuter and Riley’s result [9, Theorem 8]F(t) is FRR.

Assume condition (ii) hold, namely,Q is nonzero-exit. Add a state∆ /∈ E to form E∆

with order relation:∆ < 0< 1< · · ·, and define aq-matrix ∆Q = (∆qij ) onE∆ by

∆qij =
{

qij , i, j ∈ E,
di, i ∈ E, j = ∆,

0, i = ∆, j ∈ E∆,



472 Y. Li / J. Math. Anal. Appl. 313 (2006) 461–474

y
-
t

of
n.

if

wer is

ut
wheredi is the nonconservative quantity ofQ. Then∆Q is monotone (it is easy to verif
that∆Q is monotone if and only ifQ is) and conservative. Thus∆Q is dual and is nonzero
exit (in fact,∆Q is zero-exit if and only ifQ is). Thus it follows from Corollary 4.2 tha
the minimal∆Q-function∆F(t) is FRR. But∆ is an absorbing state for∆Q and thus

∆fij (t) = fij (t) for i, j ∈ E.

ThereforeF(t) is FRR. �

5. Questions and examples

The condition thatQ is zero-entrance inl1 in our result is important. Can it be instead
the condition thatQ is zero-entrance inl+1 ? That is, the following question remains ope

Question 5.1. Are our main result in Sections 3, 4 (i.e. Theorems 3.2, 4.1, 4.3) truel+1
instead ofl1?

If Q satisfies (2.2), that is, ifQ is a downward skip-freeQ-matrix, (which contains the
birth–death matrix and Markov branching matrix), then, by Proposition 2.2, the ans
affirmative. For wider case, Question 5.1 remains open.

Now we use two examples to illustrate our results.

Example 5.2 (birth–death process). Let Q = (qij ) be a birth–deathq-matrix, that is

qij =




λi if j = i + 1, i � 0,
µi if j = i − 1, i � 1,
−(λi + µi) if j = i, i � 0,
0 otherwise,

whereλi,µi � 0. ThenQ is monotone, and ifµ0 = 0, thenQ is dual (see [11]). Applying
our result (Theorems 3.2, 4.1, 4.3) and noting Proposition 2.2, we get the following.

Proposition 5.3. LetQ be a birth–death matrix andF(t) the minimalQ-function. Then

(i) F(t) is a dual function if and only ifS = ∞ or R < ∞; andµ0 = 0;
(ii) F(t) is FRR if and only ifS = ∞ or R < ∞,

where

S =
∞∑

n=1

1

µn+1

(
1+ λn

µn

+ λnλn−1

µnµn−1
+ · · · + λn . . . λ2λ1

µn . . .µ2µ1

)
,

R =
∞∑

n=1

(
1

λn

+ un

λnλn−1
+ · · · + µn . . .µ2

λn . . . λ2λ1

)
.

Remark. Above result (for the case of thatµ0 = 0) are also obtained by [11]. But witho
our Proposition 2.2, their proofs are incomplete.
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Example 5.4 (branching process). Recall that a branchingq-matrixQ is defined by

qij =
{

ibj−i+1 if j � i − 1,
0 otherwise,

wherebk � 0 (k �= 1) and
∑∞

k=0 bk = 0. Q is conservative, FRR, monotone and thus d
Further,Q is always zero-entrance inl+1 (see [1]), and thus, by Proposition 2.2,Q is zero-
entrance inl1. But Q is not always zero-exit (regular), the regular criteria can be
from [1]. Applying our result we obtain the following.

Proposition 5.5. LetF(t) be the minimal branchingQ-function. Then

(i) F(t) is always FRR;
(ii) F(t) is always a dualQ-function.

Note thatF(t) must be a dual of some monotoneQ(1)-functionP (1)(t) (here we might
call P (1)(t) to be pre-dual ofF(t)), we can calculate to get

q
(1)
ij =

{
0 if i < j − 1,
jbi−j+1 − ∑i−j

m=0 bm if i � j − 1.

ThusQ(1) is a upwardly skip-freeq-matrix; that is, the branching processF(t) must be
a dual of some upwardly skip-free processP (1)(t). AlthoughF(t) is FRR,P (1)(t) is not
necessarily FRR. In fact, we have

Proposition 5.6. P (1)(t) is FRR if and only ifQ is regular.

Proof. By Lemma 4.4,P (1)(t) is FRR if and only if its dualP (1)(t) is monotone. This is
equivalent to thatQ is zero-exit and thus regular.�
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