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Abstract

In this work well-posedness and stability properties of the abstract spline problem are studied in the
framework of reflexive spaces. Tykhonov well-posedness is proved without restrictive assumptions. In the
context of Hilbert spaces, also the stronger notion of Levitin–Polyak well-posedness is established. A se-
quence of parametric problems converging to the given abstract spline problem is considered in order to
study stability. Under natural assumptions, convergence results for sequences of solutions of the perturbed
problems are obtained.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Spline functions play a fundamental role in many fields of numerical analysis and statistics
and they are involved in many important applications, for instance in engineering, economics,
biology and medicine.

The variational approach to interpolation techniques has been fruitfully employed to obtain
existence and uniqueness results for interpolating spline functions (for a comprehensive expo-
sition see, e.g., [4] and the references therein). An abstract unifying framework for this topic
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is classically developed in the setting of Hilbert spaces [2]. Here, following the approach intro-
duced in [7], we consider the problem in the more general setting of reflexive spaces. The aim of
this work is to study well-posedness and stability properties of the abstract spline problem.

The property of well-posedness of an optimization problem essentially requires that the min-
imizing sequences are well-behaved. This is a relevant feature in order to individuate those
problems that can be studied through direct methods and to develop efficient numerical pro-
cedures. Here, we show that the same assumptions that usually ensure existence and uniqueness
of a solution for an abstract spline problem also imply the stronger property of well-posedness.

The study of the stability properties of some special parametric families of abstract spline
problems has already been developed, e.g., in [3,5,7,12,13]. We use some variational techniques
to obtain stability results for a general version of the abstract spline problem. These results are
refined in the special case where the admissible region is an affine set and, in particular, it is
determined by a set of evaluation functionals, as in the classical interpolation problem.

The structure of the paper is the following. Section 2 is devoted to introduce some notations
and to recall some known results used in the sequel. In Section 3, we study the well-posedness of
the abstract spline problem both in the sense of Tykhonov and of Levitin–Polyak. In Section 4,
we prove some technical results about the convergence of the images of a sequence of linear
operators. Finally, in Section 5, we use the results of the previous section to study the convergence
properties of the solutions of a sequence of perturbed abstract spline problems.

2. Notations and preliminaries

Let X, Y be Banach spaces, endowed respectively with the norms ‖.‖X and ‖.‖Y . By X∗ and
Y ∗ we denote the topological dual spaces of X and Y endowed with their corresponding dual
norms ‖.‖X∗ and ‖.‖Y ∗ . We denote by 〈f,x〉 the value f (x) of the functional f ∈ X∗ at x ∈ X.
Let {xn} ⊂ X be a sequence, we denote by xn → x or x = limn→∞ xn the convergence of {xn}
to x with respect to the norm-topology and by xn ⇀ x or x = w- limn→∞ xn the convergence of
{xn} to x with respect to the weak topology. We denote by L(X,Y ) the space of the bounded
linear operators between X and Y endowed with the usual norm of the operators ‖.‖L(X,Y ).

In this paper some geometrical properties of the spaces under consideration play a crucial
role. We recall that a Banach space is strictly convex if for each x1, x2 ∈ X,‖x1‖X = ‖x2‖X = 1,
x1 
= x2 and for each 0 < t < 1, we have∥∥tx1 + (1 − t)x2

∥∥
X

< 1.

Moreover X has the Kadeč–Klee property when xn ⇀ x and ‖xn‖X → ‖x‖X imply xn → x.
A Banach space X is said to be an E-space if it is reflexive, strictly convex and has the

Kadeč–Klee property.
The notion of E-space has an important role in the study of the convex best approximation

problem, i.e. of problem

min
c∈C

‖x0 − c‖X (BA)

where x0 ∈ X is a fixed point and C ⊂ X is a closed convex set. We denote by S(C|x0) the set
of the solutions of the problem (BA). When the best approximation problem (BA) has a unique
solution, i.e. when S(C|x0) is a singleton, we set S(C|x0) = sC(x0). We recall that a solution
of problem (BA) exists whenever X is a reflexive space; moreover, if X is also strictly convex,
problem (BA) has a unique solution.
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One of the aims of this paper is to study the properties of well-posedness of the abstract spline
problem.

Here we introduce the notion of well-posedness for the general optimization problem

min
x∈A

f (x) (P)

where A is a subset of X and f :X → (−∞,∞] is a lower semicontinuous function.
Problem (P) is said to be Tykhonov well-posed when

1. there exists a unique x̄ ∈ A such that x̄ is a solution of problem (P),
2. every sequence {xn} ⊂ A such that f (xn) → infx∈A f (x) is such that xn → x̄.

In the case of constrained problems, it is also interesting to consider minimizing sequences
that are not necessarily included in the admissible region. Hence we consider the notion of
Levitin–Polyak well-posedness.

Problem (P) is said to be Levitin–Polyak well-posed when

1. there exists a unique x̄ ∈ A such that x̄ is a solution of problem (P),
2. every sequence {xn} ⊂ X such that d(xn,A) → 0 and f (xn) → infx∈A f (x) is such that

xn → x̄.

For an extensive exposition on this topic, see e.g. the monographs [6,9]. There is a strong rela-
tionship between the well-posedness of the convex best approximation problem and the structure
of the space. Indeed, the E-spaces are characterized through the well-posedness of every convex
best approximation problem.

Theorem 2.1. (See [9].) Let X be a Banach space. X is an E-space if and only if for every
x0 ∈ X and for every closed convex set C ⊂ X, the problem (BA) is Tykhonov well-posed.

In order to study the stability of the abstract spline problem we use the notion of set-
convergence introduced by U. Mosco in [11].

Given a sequence of sets {An} in X, we say that An converges to A in the sense of Mosco
(An

M−→ A) when

w-LsAn ⊂ A ⊂ LiAn

where

LiAn =
{
x ∈ X: x = lim

n→∞xn, xn ∈ An, for all large n
}
,

w-LsAn =
{
x ∈ X: x = w- lim

s→∞xs, xs ∈ Ans , {ns} subsequence of {n}
}
.

We remark that the limit set of a Mosco converging sequence of sets is closed. Moreover, the
limit of a sequence of convex sets is convex.

Finally, we quote a result (see, e.g., [9]) concerning the convergence of the solutions of a
sequence of convex best approximation problems.

Theorem 2.2. Let X be an E-space and Cn,C ⊂ X be closed convex sets. If Cn
M−→ C then

sCn(x) → sC(x) for every x ∈ X.
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3. Well-posedness of abstract spline problems

This section is devoted to the study of the well-posedness properties of the abstract spline
problem.

Let X, Y be Banach spaces and let R ∈ L(X,Y ).
We consider the following optimization problem

min
x∈K

∥∥R(x)
∥∥

Y
(ASP)

where K is a nonempty closed convex subset of X. This problem is known as the abstract spline
problem (see, e.g., [8]).

The following result introduces some sufficient conditions for the Tykhonov well-posedness
of the abstract spline problem.

In the statement of the theorem, we denote the affine hull of a set K ⊂ X by AffK .

Theorem 3.1. Let X be a Banach space and Y be an E-space. Let R ∈ L(X,Y ). If

1. R has closed range,
2. R(K) is closed in Y ,
3. KerR ∩ V = {0}, where V is a closed subspace of X such that

cl(AffK) = k + V

with k ∈ K ,
4. R(V ) is closed in Y ,

then the problem (ASP) is Tykhonov well-posed.

Proof. The existence of a solution for problem (ASP) follows immediately from the reflexivity
of Y and from the convexity and the closedness of R(K). The strict convexity of Y implies also
that the solution sR(K)(0) of the problem

min
y∈R(K)

‖y‖Y (1)

is unique and we denote it by y0. The solutions of problem (ASP) are the elements of the set
R−1(y0). By assumption 3. it is easy to see that R−1(y0) is a singleton. We denote the unique so-
lution of problem (ASP) by x0. Since Y is an E-space, by Theorem 2.1, problem (1) is Tykhonov
well-posed in Y .

Let {xn} ⊂ K be a minimizing sequence for problem (ASP), i.e.∥∥R(xn)
∥∥

Y
→ ∥∥R(x0)

∥∥
Y
.

Since the sequence {R(xn)} ⊂ R(K) is a minimizing sequence for problem (1), we have
R(xn) → R(x0), hence R(xn − x0) → 0, where xn − x0 ∈ V , for every n.

By assumption 4., the restriction of R to the subspace V has closed range. Moreover, assump-
tion 3. implies that R is injective on V . Hence, Theorem 2.5 in [1] ensures that the restriction of
R to V is a bounded below operator, i.e. there exists a real number α > 0 such that∥∥R(v)

∥∥
Y

� α‖v‖X for every v ∈ V.

Therefore, from R(xn − x0) → 0, we obtain xn → x0. �
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In the special case where the kernel of the spline operator R is finite dimensional, which is
commonly verified in a number of concrete spline problems, the assumptions of the previous
theorem can be considerably simplified.

Remark 3.2. If KerR is a finite dimensional subspace of X, the assumptions 2. and 4. in the
previous theorem can be omitted. Indeed, we can observe that K∞ ⊂ V , where K∞ = {x ∈ X:
k + tx ∈ K, ∀t � 0, ∀k ∈ K}. Hence, by assumption 3., K∞ ∩ KerR = {0}. From the local
compactness of KerR, we obtain that K + KerR is closed in X (see Lemma in 15D [8]). Since
the closedness of R(K) in Y is equivalent to the closedness of K + KerR in X (see Lemma in
17H [8]), assumption 2. holds. Moreover, by the same argument, we can conclude that R(V ) is
also closed.

In the classical formulation of abstract spline problem [2] the set K is an affine subspace of X,
determined as the counterimage of a fixed element z0 in a normed space Z through a continuous
linear operator L. Hence we consider also the following problem

min
x∈L−1(z0)

∥∥R(x)
∥∥

Y
(LSP)

where L ∈ L(X,Z) and z0 ∈ Z fixed. In this case the previous theorem can be restated as follows.

Corollary 3.3. Let X be Banach space, Y an E-space and Z a normed space. Let R ∈ L(X,Y )

and L ∈ L(X,Z). If

1. R has closed range and L is surjective,
2. R(KerL) is closed in Y ,
3. KerR ∩ KerL = {0},

then problem (LSP) is Tykhonov well-posed.

Proof. The proof follows directly from Theorem 3.1 with K = L−1(z0) = x0 + KerL and V =
KerL where x0 is the solution of (LSP). �

We conclude this section with a result on the stronger notion of Levitin–Polyak well-
posedness, that is especially fit for constrained problems. Since a key tool in our proof is the
Projection Theorem, we restrict to the classical setting where X is a Hilbert space.

Theorem 3.4. Let X be a Hilbert space, Y be an E-space and Z be a normed space. Let R ∈
L(X,Y ) and L ∈ L(X,Z). If

1. R has closed range and L is surjective,
2. R(KerL) is closed in Y ,
3. KerR ∩ KerL = {0},

then the problem (LSP) is Levitin–Polyak well-posed.

Proof. Following the same arguments of the proof of Theorem 3.1, we can show that problem
(LSP) has a unique solution x0 ∈ L−1(z). Let {xn} ⊂ X be an LP-minimizing sequence, i.e. {xn}
is such that∥∥R(xn)

∥∥ → ∥∥R(x0)
∥∥ (2)
Y Y
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and

inf
a∈L−1(z)

‖xn − a‖X → 0. (3)

By the classical Projection Theorem in the Hilbert spaces, we have

xn = sKerL(xn) + s(KerL)⊥(xn) for every n,

where (KerL)⊥ = {x ∈ X: 〈x, v〉 = 0 for every v ∈ KerL}. Hence we have

xn = s(KerL)⊥(x0) + sKerL(xn) + s(KerL)⊥(xn − x0).

Now, we can easily observe that

s(x0+KerL)(xn) = sKerL(xn) + s(KerL)⊥(x0) for every n.

Therefore, we obtain

xn = s(x0+KerL)(xn) + s(KerL)⊥(xn − x0). (4)

Since L−1(z) = x0 + KerL, we can rewrite relation (3) as∥∥xn − s(x0+KerL)(xn)
∥∥

X
→ 0.

Hence we obtain that

s(KerL)⊥(xn − x0) → 0. (5)

Now we can prove that {s(x0+KerL)(xn)} is a minimizing sequence in the sense of Tykhonov
for problem (LSP). Indeed it holds that

R
(
s(x0+KerL)(xn)

) = R(xn) − R
(
s(KerL)⊥(xn − x0)

)
for every n.

Hence, recalling that x0 is the solution of the problem, we have∥∥R(x0)
∥∥

Y
�

∥∥R
(
s(x0+KerL)(xn)

)∥∥
Y

�
∥∥R(xn)

∥∥
Y

+ ∥∥R
(
s(KerL)⊥(xn − x0)

)∥∥
Y
.

Therefore, by (2) and (5), we obtain that∥∥R
(
s(x0+KerL)(xn)

)∥∥
Y

→ ∥∥R(x0)
∥∥

Y
.

By Corollary 3.3, we can conclude that s(x0+KerL)(xn) → x0. Finally, by (4) and (5) we obtain
xn → x0. �

We underline that the assumptions of Corollary 3.3 and Theorem 3.4 coincide with the condi-
tions that guarantee the existence and the uniqueness of the solution of problem (LSP) (see [2]).
Here, without additional hypotheses, we obtain the stronger property of well-posedness.

4. A result on linear operators

This section is devoted to prove a technical result concerning the convergence of the image
of a converging sequence of convex sets through a converging sequence of continuous linear op-
erators. More precisely, we state and prove a new sufficient condition to ensure the convergence
of the mentioned sequence of sets. This condition seems to be more suitable to study the stabil-
ity properties of the abstract spline problem than others known in the literature (see, e.g., [14]),
where the injectivity of the operator is required.
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For the convenience of the reader, we recall here two notions that will be used in the sequel.
Let A ⊂ X be a convex set, the recession cone A∞ is defined as follows:

A∞ = {x ∈ X: a + tx ∈ A, ∀t � 0, ∀a ∈ A}.
A closed subspace W ⊂ X is complementable whenever there exists a closed subspace W such

that X = W ⊕T . It is well known that every finite dimensional subspace of X is complementable.

Lemma 4.1. Let X,Y be Banach spaces. Let us suppose that

1. T , Tn ∈ L(X,Y ) such that ‖Tn − T ‖L(X,Y ) → 0;
2. T is a closed range operator with a finite dimensional kernel;
3. An ⊂ X are closed and convex sets such that An

M−→ A;
4. KerT ∩ (A)∞ = {0}.

If {xn} is a sequence such that xn ∈ An and {Tn(xn)} ⊂ Y is a bounded sequence then {xn} is
a bounded sequence.

Proof. Let {xn} be a sequence such that xn ∈ An and {Tn(xn)} ⊂ Y is a bounded sequence. Since
KerT is a finite dimensional subspace, there exists a closed subspace V of X such that X =
KerT ⊕V . Hence, there exist two sequences {vn} ⊂ V and {un} ⊂ KerT such that xn = vn +un,
for every integer n.

Since Tn(u) → T (u) = 0 for every u ∈ KerT , we have that Tn(un) → 0. From the bounded-
ness of {Tn(xn)}, it follows that also {Tn(vn)} is a bounded sequence.

By Theorem 2.5 in [1], there exists a positive real number α such that∥∥T (v)
∥∥

Y
� 2α‖v‖X for every v ∈ V.

Hence, the following inequalities hold∥∥Tn(v)
∥∥

Y
�

∥∥T (v)
∥∥

Y
− ∥∥T (v) − Tn(v)

∥∥
Y

� 2α‖v‖X − ‖T − Tn‖L(X,Y )‖v‖X

for every v ∈ V . By assumption 1., there exists n0 ∈ N such that for every integer n � n it holds:∥∥Tn(v)
∥∥

Y
� α‖v‖X for every v ∈ V. (6)

The inequality (6) and the boundedness of {Tn(vn)} imply that {vn} is a bounded sequence.
Now we show that {un} is also a bounded sequence. Indeed, by contradiction, we suppose

that ‖un‖ → +∞. Since dim KerT < ∞, the sequence { un‖un‖ } ⊂ KerT converges (up to a subse-
quence) to an element u ∈ KerT , u 
= 0. Moreover, we can show that u ∈ (A)∞, i.e. a + λu ∈ A

for every a ∈ A and λ > 0. Indeed, we can always find a sequence {an} such that an ∈ An and
an → a. By the convexity of the sets An,

an + α(xn − an) ∈ An for every α ∈ [0,1].
Choosing α = λ

‖un‖ (for n large enough), it holds

an + λ

(
xn − an

‖un‖
)

∈ An.

Since

an + λ

(
xn − an

)
= an + λ

(
vn − an + un

)
→ a + λu ∈ A,
‖un‖ ‖un‖ ‖un‖
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we have u ∈ KerT ∩ (A)∞, against assumption 4. The thesis follows immediately, since xn =
vn + un. �

In [14] the same thesis is proved under a different assumption (named condition (H5)) that
implies the injectivity of the operators Tn, eventually. This condition is not satisfied in most of
the families of spline problems existing in the literature. Even in the classical problem of the
determination of the natural cubic spline, where the spline operator R is the second derivative,
the assumption of injectivity is not satisfied.

Now we can prove a result concerning the Mosco convergence of the images of a sequence
of linear operators. A finite dimensional version of the same result can be found in the proof of
Theorem 4.1 in [10], in a completely different context. Once the thesis of Lemma 4.1 is obtained,
the proof of this theorem can follow the lines of the proof of Theorem 3.4 in [14]. Here we give
an explicit proof for the convenience of the reader.

Theorem 4.2. Let X be a reflexive Banach space and Y be a Banach space. Let us suppose that:

1. T , Tn ∈ T (X,Y ) such that Tn
L(X,Y )−−−−→ T ;

2. T is a closed range operator with a finite dimensional kernel;
3. An ⊂ X are closed and convex sets such that An

M−→ A;
4. KerT ∩ (A)∞ = {0};

then Tn(An)
M−→ T (A).

Proof. First we prove the upper part of the Mosco convergence of Tn(An) to T (A). By con-
tradiction, there exists a sequence {yk} such that yk ∈ Tnk

(Ank
) and yk ⇀ y /∈ T (A). Now let

xk ∈ Ank
such that Tnk

(xk) = yk .
By Lemma 4.1 we can conclude that {xk} is a bounded sequence, hence there exists a subse-

quence {xks } weakly converging to an element x ∈ A. Assumption 1. implies that

Tnks
(xks ) ⇀ T (x) ∈ T (A)

(see, e.g., [14]). Since T (x) = y, we have a contradiction.
Now we prove the lower part of the Mosco convergence of Tn(An) to T (A). Let y ∈ T (A),

then there exists x ∈ A such that T (x) = y. By assumption 3. there exists a sequence {xn} con-
vergent to x where xn ∈ An for every n. Then

Tn(xn) → T (x). �
We conclude this section with a result on the special case where the sequence of operators

{Tn} reduces to a constant sequence.

Proposition 4.3. Let X,Y be Banach spaces, T ∈ L(X,Y ) be a closed range operator with a
finite dimensional kernel. Let An ⊂ X be closed and convex sets such that An

M−→ A and KerT ∩
(A)∞ = {0}. If {xn} is a sequence such that xn ∈ An and there exists an element ȳ ∈ Y such that
T (xn) → ȳ, then {xn} has a convergent subsequence {xnk

} such that xnk
→ x̄ ∈ T −1(ȳ) ∩ A.

Proof. Let {xn} be a sequence such that xn ∈ An and T (xn) → ȳ. Since KerT is a finite dimen-
sional subspace, there exists a closed subspace V of X such that X = KerT ⊕ V . Hence, there
exist two sequences {vn} ⊂ V and {un} ⊂ KerT such that xn = vn + un, for every integer n. It
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follows that T (vn) → ȳ. Since T (X) = T (V ) is a closed subspace of Y , there exists an element
v̄ ∈ V such that T (v̄) = ȳ.

By Theorem 2.5 in [1], there exists a positive real number α such that∥∥T (v)
∥∥

Y
� α‖v‖X

for every v ∈ V . Hence ‖T (vn − v̄)‖Y � α‖vn − v̄‖X . Since T (vn) → T (v̄) we have vn → v̄.
Following the same arguments as in the proof of Lemma 4.1, we can prove that {un} is a

bounded sequence. Since KerT is a finite dimensional subspace of X, we can extract a subse-
quence {unk

} with unk
→ ū ∈ KerT . Now let xnk

= vnk
+ unk

and x̄ = v̄ + ū. Trivially, it holds
xnk

→ x̄ ∈ T −1(ȳ) ∩ A. �
5. Stability of the abstract spline problem

In this section we apply the results obtained in Section 4 to the study of the convergence
properties of the solutions of a sequence of perturbed abstract spline problems. It is remark-
able that the assumptions on the limit problem that allow us to prove our results are the natural
requirements to ensure the existence of a solution of the limit problem itself (see, e.g., [8, 21B]).

We begin to study the general formulation of the abstract spline problem (ASP). We obtain
here a result on the weak convergence of a sequence of solutions of the perturbed problem to a
solution of the original problem (ASP).

Theorem 5.1. Let X be a reflexive space and Y be an E-space. Let R, Rn ∈ L(X,Y ) such that
‖Rn−R‖L(X,Y ) → 0 and R be a closed range operator with a finite dimensional kernel. Let {Kn}
be a sequence of nonempty closed convex subsets of X such that Kn

M−→ K and KerR ∩ (K)∞ =
{0}. If the problem

min
x∈Kn

∥∥Rn(x)
∥∥

Y
(ASPn)

has a solution x̂n ∈ Kn for every n, then the sequence {x̂n} admits a subsequence weakly con-
verging to a solution of problem (ASP).

Proof. Let x̂n be a solution of (ASPn) problem. Clearly it is

Rn(x̂n) = sRn(Kn)(0) = scl(Rn(Kn))(0) for every n.

Now Theorem 4.2 implies that Rn(Kn)
M−→ R(K) or, equivalently,

cl
(
Rn(Kn)

)
M−→ cl

(
R(K)

)
.

Hence Rn(x̂n) → sR(K)(0) by Theorem 2.2. By Lemma 4.1, we show that {x̂n} is a bounded se-
quence. Hence {x̂n} admits a subsequence {x̂ns } such that x̂ns ⇀ x̂. Finally, since the assumption
‖Rn − R‖L(X,Y ) → 0 implies that Rns (x̂ns ) ⇀ R(x̂), it is easy to verify that

R(x̂) = sR(K)(0),

i.e. x̂ is a solution of the problem (ASP). �
Remark 5.2. If the problem (ASP) has a unique solution x̂, we can easily guarantee the weak
convergence of the whole sequence {x̂n} to x̂. Indeed, let us suppose, to the contrary, that there
exists a subsequence of {x̂n} that does not converge to x̂. Let us denote by {x̂ns } the subse-
quence of {x̂n} given by the union of all the subsequences of {x̂n} that do not converge to x̂. By
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Lemma 4.1, {x̂ns } is a bounded sequence, hence it contains {x̂nsi
} such that x̂nsi

⇀ x̄ 
= x̂. Since
Rnsi

(x̂nsi
) ⇀ R(x̄), we have that R(x̄) = sR(K)(0) = R(x̂), a contradiction against the unique-

ness of the solution of the problem (ASP).

Now, as in Section 3, we study the relevant special case where the admissible region of the
spline problem is an affine subspace of X. In this particular case, we do not need to make addi-
tional assumptions on the existence of the solutions of the perturbed problems, since the same
conditions that allow us to prove the stability properties also ensure the existence of solutions for
the perturbed problems (LSPn).

Theorem 5.3. Let X be a reflexive space, Y be an E-space and Z be a Banach space. Let R,
Rn ∈ L(X,Y ) such that ‖Rn − R‖L(X,Y ) → 0 and R be a closed range operator with a finite
dimensional kernel. Let L, Ln ∈ L(X,Z) such that ‖Ln − L‖L(X,Y ) → 0 and L be a surjective
operator with KerL complementable and KerR ∩ KerL = {0}. Let {zn} ⊂ Z such that zn → z̄.
Then there exists n0 ∈ N such that the problem

min
x∈L−1

n (zn)

∥∥Rn(x)
∥∥

Y
(LSPn)

has a solution x̂n for every n � n0. Moreover the sequence {x̂n} is weakly convergent to the
solution of problem (LSP).

Proof. There exists n0 ∈ N such that, for every n � n0, dim KerRn < ∞ and Rn is a closed
range operator (see [1, Corollary 2.6]). Hence, the problem (LSPn) has a solution x̂n (see [8,
21B]). From ‖Ln − L‖L(X,Y ) → 0 and zn → z̄, it follows that L−1

n (zn)
M−→ L−1(z̄) (see [14,

Corollary 6.3 and Remark 2.6]). Moreover KerR ∩ (L−1(z̄))∞ = KerR ∩ KerL = {0}. Hence
the assumptions of Theorem 5.1 hold. Since the assumption KerR ∩ KerL = {0} implies the
uniqueness of the solution of problem (LSP), the thesis follows from Remark 5.2. �

In the special case where we do not consider perturbations of the spline operator R, we obtain
stronger stability results. We omit the proofs of the following results since they are simple adapta-
tions of the proofs of Theorems 5.1 and 5.3 where Proposition 4.3 is used instead of Lemma 4.1.

Theorem 5.4. Let X be a reflexive Banach space and Y be an E-space. Let R ∈ L(X,Y ) be
a closed range operator with a finite dimensional kernel. Let {Kn} be a sequence of nonempty
closed convex subsets of X such that Kn

M−→ K and KerR ∩ (K)∞ = {0}. If the problem

min
x∈Kn

∥∥R(x)
∥∥

Y
(7)

has a solution x̂n ∈ Kn for every n, then the sequence {x̂n} admits a subsequence converging to
a solution of the problem (ASP).

Theorem 5.5. Let X be a reflexive Banach space, Y be an E-space and Z be a Banach space. Let
R ∈ L(X,Y ) be a closed range operator with a finite dimensional kernel. Let L, Ln ∈ L(X,Z)

such that ‖Ln − L‖L(X,Y ) → 0 and L be a surjective operator with KerL complementable and
KerR ∩ KerL = {0}. Let {zn} ⊂ Z such that zn → z̄. Then there exists n0 ∈ N such that the
problem

min
−1

∥∥R(x)
∥∥

Y
(8)
x∈Ln (zn)
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has a solution x̂n for every n � n0. Moreover the sequence {x̂n} converges to the solution of the
problem (LSP).

We underline that in this section many of the assumptions are satisfied in a number of common
concrete R-spline problem. Indeed, we consider, for instance, the problem where X and Y are
respectively the Sobolev space Wm,p((a, b)) and Lp((a, b),μ,R), where μ is the Lebesgue
measure and 1 < p < ∞ and the operator R is defined as follows:

R =
m∑

k=0

ak(t)
dk

dtk
, am(t) 
= 0, ak ∈ Ck

([a, b],R
)
, [a, b] ⊂ R.

In this case, X is a reflexive space and Y is an E-space. Moreover, it can be verified that R is
a surjective (hence closed range) operator with a finite dimensional kernel. Moreover, we recall
that the assumption KerR ∩ (K)∞ = {0} in Theorem 5.1, is quite natural. Indeed, in the relevant
case of problem (LSP), it becomes the classical condition KerR ∩ KerL = {0} that guarantees
the uniqueness of the solution of LSP (see [2]).

Now we apply our results to some particular situations that already deserved some attention
in the literature. We begin to consider the sequence of problems (ASPn) where Rn = R is a fixed
spline operator and {Kn} is a decreasing sequence of closed convex nested sets (i.e. Kn+1 ⊂ Kn)
such that

⋂∞
n=1 Kn = K is a nonempty set. It can be easily proved that here Kn

M−→ K , hence
we can use our approach in terms of set-convergences in order to obtain results similar to those
contained in [3,7,12].

A special case considered in [5,13], deals with the stability of the (ASP) problem with respect
to the perturbed problems (ASPn), where the constraint sets have a particular form. Here we
apply our results in order to obtain some stability properties for this case. Preliminary, we recall
some notations that will be used in the proof of the following theorem.

Let A be a nonempty subset of X, the indicator function of the set A is defined by

IA(x) =
{

0 if x ∈ A,

∞ elsewhere.

Let g :X → (−∞,∞] be an arbitrary function. The Fenchel conjugate of g is the function
g∗ :X∗ → [−∞,∞] defined as

g∗(x∗) = sup
x∈X

{〈
x∗, x

〉 − g(x)
}
.

Whenever V ⊂ X is a subspace we have that (IV )∗ = I(V )⊥ where

(V )⊥ = {
x∗ ∈ X∗:

〈
x∗, v

〉 = 0, ∀v ∈ V
}

(see, e.g., [9]).

Theorem 5.6. Let X be a reflexive Banach space and Y be an E-space. Let R ∈ L(X,Y ) be a
closed range operator with a finite dimensional kernel. Let K , Kn be defined by

K = x +
⋂
f ∈F

Kerf, Kn = x +
⋂

f ∈Fn

Kerf (9)

where x is a fixed element in X and F , Fn are closed subspaces of X∗ such that Fn
M−→ F .

If KerR ∩ (
⋂

f ∈F Kerf ) = {0}, then there exists n0 ∈ N such that the problem (ASPn) has a
solution x̂n for every n. Moreover the sequence {x̂n} converges to the solution of the problem
(ASP).
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Proof. Since Kn and K are affine sets, the problems (ASPn) and (ASP) have a solution (see [8,
21B]). Moreover, since KerR ∩ (

⋂
f ∈F Kerf ) = {0}, the limit problem has a unique solution x̂.

In order to prove the thesis, in force of Theorem 5.4, we only need to prove that Kn
M−→ K .

We begin to remark that⋂
f ∈F

Kerf = (F )⊥ = {
x ∈ X: 〈f,x〉 = 0, ∀f ∈ F

}
,

⋂
f ∈Fn

Kerf = (Fn)
⊥ = {

x ∈ X: 〈f,x〉 = 0, ∀f ∈ Fn

}
.

Since Fn
M−→ F , we have that epi IFn

M−→ epi IF , where epi IFn and epi IF denote respectively the
epigraph of the indicator functions of Fn and F (see [9]). By the continuity of the Fenchel con-
jugate with respect to Mosco epiconvergence (see e.g. [9]), we obtain epi(IFn)

∗ M−→ epi(IF )∗.
Since X is a reflexive space, it holds (IFn)

∗ = I(Fn)⊥ and (IF )∗ = I(F )⊥ . Hence, we obtain

I(Fn)⊥
M−→ I(F )⊥ or, equivalently, (Fn)

⊥ M−→ (F )⊥ and Kn
M−→ K . �

In the theory of interpolation, the relevance of this special class of abstract spline problems is
apparent when we consider the families F , Fn as families of evaluation functionals defined on a
space X of functions.

Theorem 5.6 allows us to compare our results with those contained in [5]. The spline problem
considered there is a particular version of the problem considered in Theorem 5.6, where X is a
Hilbert space and F = X∗ (or equivalently K = {x}). We study the problem in a more general
framework, under the additional assumption that the spline operator R has a finite dimensional
kernel.
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