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Abstract

In this paper, we consider the problem of null controllability for an elastic operator under square root
damping. Such partial differential equation models can be described by analytic semigroups on the basic
space of finite energy. Thus by inherent smoothing coming from the parabolic-like behavior of the dynam-
ics, the problem of null controllability is appropriate for consideration. In particular, we will show that
the solution variables can be steered to the zero state by means of iterations of locally supported steering
controls acting on appropriate finite dimensional systems. The hinged boundary conditions considered here
admit of a diagonalization of the spatial operator. The control strategy implemented in [A. Benabdallah,
M. Naso, Null controllability of a thermoelastic plate, Abstr. Appl. Anal. 7 (2002) 585–599] is used to
construct a suboptimal control for the problem, but here we expand upon their results by providing a bound
for the energy function Emin(T ), T > 0. Our results are valid for localized mechanical and thermal control.
The strategy relies heavily on the availability of a Carleman’s estimate for finite linear combinations of
eigenfunctions of the Dirichlet Laplacian.
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1. Introduction and statement of main results

Our intent in this paper is twofold: (i) We wish to establish the null controllability property for
the 2-D system of linear thermoelasticity, by means of locally distributed source control in either
the “mechanical” or “thermal” component. We are considering the problem with the canonical
hinged boundary conditions in place. It will ultimately be shown that the thermoelastic state
variables can be driven to the zero state in arbitrary small time, T > 0. This circumstance is
in line with the underlying infinite speed of propagation of signals (i.e., it is now known that
the thermoelastic dynamics, under all possible boundary conditions, can be associated with the
generator of an analytic semigroup [10]). (ii) Having established that the thermoelastic variables
can be driven to the zero state in arbitrary short time, we can proceed to measure the rate of
singularity of the associated minimal energy function Emin(T ) (as defined in (3) below), as T ↘ 0.
As it is defined, Emin(T ) characterizes the “violence” of the fast null thermoelastic controllers.
(Here we have adopted the now classic phrase from the fundamental work in [14].)

We now describe the PDE model under consideration: Let Ω ⊂ R2 be a bounded domain with
C∞ boundary ∂Ω . Given terminal time T > 0 and constant ρ > 0, we will consider each of the
following controlled PDEs:

Controlled

“Mechanical”

Component

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ytt + �2y + ρ�θ = χω(x)u in Q ≡ (0, T ) × Ω,

θt − �θ − ρ�yt = 0 in Q,

y|∂Ω = �y|∂Ω = θ |∂Ω = 0 on Σ ≡ (0, T ) × ∂Ω,

[y, yt , θ ](0) = [y0, y1, θ0] ∈ H,

(1)

Controlled

“Thermal”

Component

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ytt + �2y + ρ�θ = 0 in Q,

θt − �θ − ρ�yt = χω(x)u in Q,

y|∂Ω = �y|∂Ω = θ |∂Ω = 0 on Σ,

[y, yt , θ ](0) = [y0, y1, θ0] ∈ H.

(2)

Here, the controllability region ω ⊆ Ω is an open subdomain of Ω . Thus, the PDE (1) reflects
the imposition of mechanical control; the PDE (2) that of thermal control. If ω = Ω and if for
every [y0, y1, θ0] ∈ H there exists u ∈ L2((0, T );L2(Ω)) so that the solution at terminal time
[y(T ), yt (T ), θ(T )] is the zero state, then the system is said to be null controllable. If ω � Ω is
nonempty and for every [y0, y1, θ0] ∈ H , there exists u ∈ L2((0, T );L2(ω)) so that the solution
[y(T ), yt (T ), θ(T )] is the zero state, then the system is said to be null controllable by locally
distributed controls.

Once the existence of locally distributed controls in U = L2((0, T ) × ω) has been estab-
lished for given ω ⊆ Ω , we will consider the minimal norm controller. That is, given y0 =
[y0, y1, θ0] ∈ H and T > 0, u∗(T , y0) is a minimal norm controller if∥∥u∗(T ,y0)∥∥

U = min
{‖u‖U : eAT y0 +LT u = 0

}
.

Here the control → terminal state map LT :U → H , corresponding to mechanical control is
given by

LT u ≡
T∫

eA(T −s)

⎡
⎣ 0

χωu

⎤
⎦ ds,
0 0
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and the control → terminal state map LT :U → H , corresponding to thermal control is given by

LT u ≡
T∫

0

eA(T −s)

⎡
⎣ 0

0

χωu

⎤
⎦ ds.

With u∗(T , ·) as defined, we define the minimal energy function Emin(T ) by

Emin(T ) = sup
‖y0‖H =1

∥∥u∗(T ,y0)∥∥
H

. (3)

Given this function, we wish to precisely quantify its behavior as T ↘ 0.
The issue of null controllability (ω = Ω), for the present hinged case, was originally es-

tablished by Lasiecka and Triggiani in [9]. In [19] Triggiani continues the analysis of this
problem, and provides optimal estimates for the singularity of the minimal energy function
Emin(T ) = O(T −5/2) for the fully distributed case. By altogether different methods, Avalos
and Lasiecka provide the optimal asymptotics Emin(T ) = O(T −5/2) for fully distributed internal
control of thermoelastic and structurally damped systems in [1] (for the free case), [3] (for the
canonical hinged case), and [4] (for the clamped case). (These papers consider mechanical or
thermal controls.) If both fully distributed thermal and mechanical controls are in place, Ava-
los and Lasiecka show that the thermoelastic minimal energy blowup rate can be improved to
Emin(T ) = O(T −3/2).

The task here will be to compute Emin(T ) when localized distributed control is in play. In
contrast to the asymptotics computed in [1,4,19] and [3] for fully distributed control, wherein
one has the minimal energy obeying a rational rate of blowup, we expect here that the rate
of singularity should be of exponential type. That is, we “expect” Emin(T ) = exp(O([1/T ])).
Indeed, such a rate would be in line with those seen for other PDE systems under localized or
boundary control; see e.g. [8,13–16] and [17].

The issue of null controllability for the thermoelastic system with locally supported thermal
control was shown by Benabdallah and Naso in [5]. In contrast with their paper, the proof pre-
sented in this paper will establish null controllability via locally supported mechanical controls.
And further, we will provide a (suboptimal) bound for the associated minimal energy function.
In this context the proof of this result follows exactly the same strategy and technical details
presented in Cokeley and Avalos [2]. The proof of this result depends on two key ingredients:
(i) a critical observability estimate from Avalos and Lasiecka in [1,3] and [4]; (ii) a control iter-
ative scheme of Benabdallah and Naso in [5], this scheme being a very nontrivial adaptation of
the methodology developed by Lebeau and Robbiano in [11].

After the submission of this paper, we became aware of the work of Miller in [12]. His paper
employs the same aforesaid ingredients as that in the present paper; namely, the Avalos and
Lasiecka estimate in [1,3] and [4]; and the control methodology of Benabdallah and Naso in [5].

This paper and [5] only consider the canonical hinged boundary conditions. The method of
proof here does not lend itself to the case of clamped or free boundary conditions, as they are
considered in [1] and [4], in the context of fully distributed control. The optimal asymptotics for
the clamped and free models with interior control of full support (Ω = ω) are given in [4] and [1].
The complexity of proof in these cases (with respect to hinged boundary conditions) suggests
that treatment of localized controls may require very different and more complex mathematical
technology (e.g. Carleman’s estimates for systems—rather than scalar equations). This problem
is currently under investigation by the author.

The main result of this paper follows.
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Theorem 1. The systems (1) and (2) are null controllable through a locally distributed me-
chanical source and through a locally distributed thermal source respectively, within the class
of controls U = L2((0, T ) × ω). Moreover, for any fixed ε > 0, Emin(T ) = exp(O([1/T ]1+ε)).
In particular, there is a positive constant Cε , which depends on ε but not on T , such that
Emin(T ) � Cε exp( C

T 1+ε ).

The proof of Theorem 1 will use estimates from the following lemma.

Lemma 2. The systems (1) and (2) are null controllable through a fully distributed mechanical
source and through a fully distributed thermal source respectively, within a class of controls
in L2((0, T ) × Ω). Moreover, there exists C > 0 such that for each T > 0 and each y0 ∈ H ,
there is a control u steering the solution state from y0 to the zero state in H with u satisfying
‖u‖L2(0,T )×Ω � CT −5/2‖y0‖H .

As mentioned earlier, a proof of this lemma can be found in [9].

Remark 3. Note that in view of the known asymptotics for other localized controllability
problems, our result and the result of Miller in [12] are seemingly “unsharp by ε.” This is
a consequence of (suboptimal) control strategy, which is in part, a suitable adaptation of the
methodology implemented in [5]. Concerning boundary controllability of this problem, the opti-
mal result (ε = 0) is shown by Lasiecka and Seidman in [8] for special geometries. Note that the
“localized interior controllability” result shown here will not yield the boundary controllability
in [8], unless one is willing to allow for more controls on the boundary.

To prove Theorem 1, we will follow the outline below.

1. We begin by expressing the original PDE as a first order ODE system (4) on (0, T ). We
then find the homogeneous adjoint system (5) (adjoint with respect to (4)) and express the
solution [φ,φt ,ψ] in terms of the thermoelastic operator A, where A :D(A) ⊂ H → H

again satisfies hinged boundary conditions. By a similarity transformation, we diagonalize
A to find its eigenfunctions {Φj }. These eigenfunctions naturally depend on the eigenpairs
of the Dirichlet Laplacian operator. With the eigenfunctions in hand, we can then express the
solution of (5) as a series of the form

∑
ajΦj .

2. We then consider the null controllability of the system (1) or (2) for initial data given in a
finite dimensional space H� = {Φ1,Φ2, . . . ,Φ�} and proceed to obtain the necessary observ-
ability inequality in terminal time T�, where

∑
T� = T . The observability inequality is first

given for the fully distributed control problem (6) as was done in [19] and [1]. After noting
the invariance of A on H�, the necessary observability inequality for locally supported null
control is obtained by majorizing (6). In these steps we are using the main idea of the pa-
per [5]. In [5] the improvement of fully distributed control (ω = Ω) to locally distributed
control (ω ⊂ Ω) is made by invocation of a Carleman estimate given in [7]. This estimate
is applicable to finite linear combinations of eigenfunctions of the Dirichlet Laplacian. We
then construct a locally supported control u from controls {u�} acting on finite dimensional
systems as prescribed in (21) that will steer initial data [y0, y1, θ0] to zero in time T > 0.

3. Subsequently, we proceed to measure the singularity of the null controller u devised in
Step 2. This is done by appealing to the rate of blowup of each controller u�. That is,
‖u‖U = ∑‖u�‖U � ‖y0‖∑C(T�). During the course of this estimation, we will see that
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the exponential rate of singularity for Emin(T ), given in Theorem 1, is due to the first �∗
terms of the series, where �∗ = �∗(T ) is as given in (32). The contribution of the “tail end”
of the series

∑∞
�∗+1 C(T�) will be found to be essentially benign.

2. Abstract formulation for the dynamics

For the sake of clarity, the work to follow will focus on the thermoelastic system with a
locally distributed mechanical source. Let S :D(S) ⊂ L2(Ω) → L2(Ω) be given by Sy = −�y

for y ∈ D(S) = H 2(Ω) ∩ H 1
0 (Ω). Then PDE (1) can be written as the first order ODE system

on (0, T ),⎧⎪⎪⎨
⎪⎪⎩

⎡
⎣ y

yt

θ

⎤
⎦

t

=
⎡
⎣ 0 I 0

−S2 0 ρS

0 −ρS −S

⎤
⎦
⎡
⎣ y

yt

θ

⎤
⎦+

⎡
⎣ 0

χωu

0

⎤
⎦ ,

[y, yt , θ ](0) = [y0, y1, θ0] on Ω.

(4)

We set

A =
⎡
⎣ 0 I 0

−S2 0 ρS

0 −ρS −S

⎤
⎦ and Bωu =

⎡
⎣ 0

χωu

0

⎤
⎦

to determine the corresponding adjoint system. With the inner product on H given by〈⎡⎣x1

x2

x3

⎤
⎦ ,

⎡
⎣y1

y2

y3

⎤
⎦〉

H

= (Sx1, Sy1)L2(Ω) + (x2, y2)L2(Ω) + (x3, y3)L2(Ω)

for [x1, x2, x3], [y1, y2, y3] ∈ H,

we find

A∗ =
⎡
⎣ 0 −I 0

S2 0 −ρS

0 ρS −S

⎤
⎦ .

The backward adjoint system is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎣ φ

φt

ψ

⎤
⎦

t

= −A∗
⎡
⎣ φ

φt

ψ

⎤
⎦=

⎡
⎣ φt

−S2φ + ρSψ

−ρSφt + Sψ

⎤
⎦ in Q,

[φ,φt ,ψ](T ) = [φ0, φ1,ψ0] in Ω3

and has solution⎡
⎣ φ(t)

φt (t)

ψ(t)

⎤
⎦= eA

∗(T −t)

⎡
⎣ φ0

φ1

ψ0

⎤
⎦ .

After the change of variables t := T − t , the forward adjoint system is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎣ φ

φt

ψ

⎤
⎦

t

= A

⎡
⎣ φ

φt

ψ

⎤
⎦ :=

⎡
⎣ 0 I 0

−S2 0 ρS

0 −ρS −S

⎤
⎦
⎡
⎣ φ

φt

ψ

⎤
⎦ in Q,

3

(5)
[φ,φt ,ψ](0) = [φ0,−φ1, θ0] in Ω .
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With Bω =
[

0
χω

0

]
as before, B∗

ω = [ 0 χω 0 ]. Then the solution to the system (5) can be

written as⎡
⎣ φ(t)

φt (t)

ψ(t)

⎤
⎦= eAt

⎡
⎣ φ0

−φ1

ψ0

⎤
⎦ , thus B∗

ωeAt

⎡
⎣ φ0

−φ1

ψ0

⎤
⎦= χωφt (t).

Null controllability of the fully distributed system (ω = Ω) follows if there exists a constant
CT > 0 such that

∥∥∥∥∥∥
⎡
⎣ φ(T )

φt (T )

θ(T )

⎤
⎦
∥∥∥∥∥∥

2

H

� CT

T∫
0

(∥∥φt (t)
∥∥2

L2(Ω)

)
dt (6)

for any solution [φ,φt ,ψ] of the system (5). In fact, this inequality follows by [19] with

CT = O
(
T −5) as T ↘ 0. (7)

To obtain null controllability with locally distributed controls, we first look at the truncation
of A on the span of finitely many eigenfunctions.

In the following work, we will also make use of the eigenpairs of A. Let {μn, en}∞n=1 be the
eigenpairs of S with 0 < μn � μn+1 for all n ∈ N. That is,

Sen = μnen for all n ∈ N. (8)

Let M =
[

0 I 0
−I 0 ρI

0 −ρI −I

]
so that

⎡
⎣S 0 0

0 I 0

0 0 I

⎤
⎦A

⎡
⎣S−1 0 0

0 I 0

0 0 I

⎤
⎦=

⎡
⎣ 0 S 0

−S 0 ρS

0 −ρS −S

⎤
⎦=

⎡
⎣S 0 0

0 S 0

0 0 S

⎤
⎦M.

Also let λ1, λ2, and λ3 be the roots of p(x) = x3 +x2 + (ρ2 + 1)x + 1, the characteristic polyno-
mial for M . p is a stable polynomial by Routh’s theorem (see [20]). For estimates later, we will
use that λ1 is chosen so that

0 > Re(λ1) � max
{
Re(λ2),Re(λ3)

}
. (9)

Having in mind the diagonalization of A used in [9], let Π be the linear mapping on L2(Ω) ×
L2(Ω) × L2(Ω) given by Π =

[
I I I

λ1I λ2I λ3I

Λ1I Λ2I Λ3I

]
, where Λj = − ρλj

1+λj
. A can be diagonalized by

Π−1

⎡
⎣S 0 0

0 I 0

0 0 I

⎤
⎦A

⎡
⎣S−1 0 0

0 I 0

0 0 I

⎤
⎦Π =

⎡
⎣λ1S 0 0

0 λ2S 0

0 0 λ3S

⎤
⎦ .

The eigenpairs of the operator on the right-hand side of the above equation are easily found.

In fact

[
λ1S 0 0

0 λ2S 0

]
has eigenpairs
0 0 λ3S
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⎧⎨
⎩
⎛
⎝λ1μn,

⎡
⎣λ1μnen

0

0

⎤
⎦= λ1μnb1en

⎞
⎠ ,

⎛
⎝λ2μn,

⎡
⎣ 0

λ2μnen

0

⎤
⎦= λ2μnb2en

⎞
⎠ ,

⎛
⎝λ3μn,

⎡
⎣ 0

0

λ3μnen

⎤
⎦= λ3μnb3en

⎞
⎠
⎫⎬
⎭

n∈N

.

With this setup, we find that A has eigenpairs⎧⎨
⎩
⎛
⎝λjμn,

⎡
⎣S−1 0 0

0 I 0

0 0 I

⎤
⎦Πbjen

⎞
⎠
⎫⎬
⎭

n∈N, j=1,2,3

.

This can be written more concisely as⎧⎨
⎩λjμn,Φn,j :=

⎡
⎣1/μn

λj

Λj

⎤
⎦ en

⎫⎬
⎭

n∈N, j=1,2,3

.

Define

Hm = span{Φn,j : 1 � n � m, j = 1,2,3} (10)

and Pm to be the orthogonal projection from H onto Hm.

3. A technical lemma

Let the open, proper subset ω ⊂ Ω be fixed for the remainder of the paper. Throughout this
section, we will consider the system (1) with initial data in Hm. That is,⎧⎪⎨

⎪⎩
ytt + S2y − ρSθ = χω(x)u in Q,

θt + Sθ + ρSyt = 0 in Q,

[y, yt , θ ](0) = y0 in Hm.

(11)

The lemma below will be implemented using different vales of m and T . The goal here is to show
that the state [y, yt , θ ] can be steered from Hm to H⊥

m in time T > 0 by a localized control u.
Further, we investigate the continuous dependence of ‖u‖L2((0,T )×ω) by the initial data, in terms
of T > 0 and m ∈ N. An argument for (2) follows by the same method.

Lemma 4. There exists C > 0 such that for each m ∈ N, each T > 0, and each y0 ∈ Hm, there
exists a control u supported in [0, T ] × ω with ‖u‖L2((0,T )×ω) � CT −5/2eC

√
μm‖y0‖H so that

the solution to (11) satisfies [y(T ), yt (T ), θ(T )] ∈ H⊥
m .

Proof. The controllability mentioned in Lemma 4 will be verified if we can show the contain-
ment

Range
(
PmeAT

)⊆ Range

(
Pm

T∫
eA(T −s) [ 0 χω 0 ] ds

)
. (12)
0
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(Note that in applying this containment to the truncated problem (1) with initial data in Hm, we
are implicitly using the invariance of Hm under eAT .) We will show (12) by showing that for
appropriate initial data in Hm, solutions to (5) satisfy the observability inequality below. I.e. for
all solutions [φ,φt ,ψ] to (5), there exists CT,m > 0 so that

∥∥∥∥∥∥
⎡
⎣ φ(T )

φt (T )

ψ(T )

⎤
⎦
∥∥∥∥∥∥

2

H

� CT,m

T∫
0

(∥∥φt (t)
∥∥2

L2(ω)

)
dt. (13)

A proof of Lemma 2 is given in [9]. Null controllability for the fully distributed system was
shown there by establishing the following inequality:∥∥∥∥∥∥

⎡
⎣ φ(T )

φt (T )

ψ(T )

⎤
⎦
∥∥∥∥∥∥

2

H

� CT −5

T∫
0

(∥∥φt (t)
∥∥2

L2(Ω)

)
dt. (14)

It is important to note that C above is independent of m and T .

Since Hm is invariant under A,

[
φ

φt

ψ

]
(t) ∈ Hm for t ∈ (0, T ). By Parseval’s relation we have

now,

∥∥φt (t)
∥∥2

L2(Ω)
=

m∑
n=1

∣∣an(t)
∣∣2 where φt (t) =

m∑
n=1

an(t)en. (15)

Using a critical inequality from [5], we have an estimate for sums of eigenfunctions of S using a
Carleman inequality. Namely,

∥∥φt (t)
∥∥2

L2(Ω)
=

m∑
n=1

∣∣an(t)
∣∣2 � CeC

√
μm

∫
ω

∣∣∣∣∣
m∑

n=1

an(t)en(x)

∣∣∣∣∣
2

dx

= CeC
√

μm
∥∥φt (t)

∥∥2
L2(ω)

. (16)

If mechanical controls are desired, we can combine relations (14) and (16) to have that∥∥∥∥∥∥
⎡
⎣ φ(T )

φt (T )

ψ(T )

⎤
⎦
∥∥∥∥∥∥

2

H

� CT −5eC
√

μm

T∫
0

∥∥φt (t)
∥∥2

L2(ω)
dt. (17)

It is important to note that C above is independent of T and m. This inequality and classical
convex optimization (see e.g. [6]) gives the existence of a control u = u(T , y0), steering the
solution to (11) from y0 ∈ Hm to y(T ) ∈ H⊥

m , satisfying∥∥u(T ,y0)∥∥2
L2((0,T )×ω)

� CT −5eC
√

μm
∥∥y0

∥∥2
H

. � (18)

4. Proof proper of Theorem 1

We have just proved that data in Hm can be steered to H⊥
m for any m ∈ N. We will use

Lemma 4 to establish a strategy, as in [5], to steer arbitrary initial data in H to zero. When it is
convenient, we will take m = m� = 2�, m�+1 = 2�+1, and m�−1 = 2�−1. Let α ∈ (0,1/2) and
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T� = K2−�α where K = T (2α − 1)

2
. (19)

K is chosen so that 2
∑∞

�=1 T� = T . Also let a0 = 0 and a� = a�−1 + 2T� for l ∈ N.
Define the control → state map Lt0,t (z, f ) by having for all {z, f } ∈ H × L2(t0, t;L2(ω)),

Lt0,t (z, f ) = eA(t−t0)z +
t∫

t0

eA(t−s)Bωf (s) ds.

Recall that Bω =
[

0
χω

0

]
. Moreover, for any index � and corresponding m = 2�, let um(T�,Pm(z))

denote the control, as given in Lemma 4, which steers initial data Pm(z) ∈ Hm to H⊥
m at time T�.

With quantities Lt0,t (·,·) and u2·(·,·) in hand, we now define the iteration scheme upon which
we will build our null steering control: Set y0 = [y0, y1, θ0] ∈ H to be the given initial data in (1).
For � = 1,2, . . . ,

z� = eAT�y�−1, and then y� = La�−1+T�,a�

(
z�, um

(· − a�−1 − T�;T�,Pm

(
z�
)))

. (20)

This constructs a control u given by

u(t) =
{

0, a�−1 � t < a�−1 + T�, � ∈ N,

um(t − (a�−1 + T�);T�,Pm(z�)), a�−1 + T� � t < a�−1 + 2T� = a�, � ∈ N.

(21)

The following diagram should help illustrate the strategy:

y0
State

a0 = 0
Time

z1

a0 + T1

a1

y1 ∈ H⊥
2

z2

a1 + T2

y2 ∈ H⊥
2

a2

a2 + T3

a3

z3
y3 ∈ H⊥

8

· · ·

· · · T

To show that the state [y, yt , θ ] goes to zero in H , note that for each �, we first estimate ‖y�‖H

in terms of ‖z�‖H . Using that A generates a semigroup of contractions and inequality (18), we
have that

∥∥y�
∥∥

H
�
∥∥eAT�z�

∥∥
H

+
∥∥∥∥∥

a�∫
a�−1+T�

eA(a�−s)Bωum

(
s − (a�−1 + T�);T�,Pm

(
z�
))

ds

∥∥∥∥∥
H

�
∥∥eAT�z�

∥∥
H

+
T�∫

0

∥∥eA(T�−s)Bωum

(
s;T�,Pm

(
z�
))∥∥

H
ds

�
∥∥z�

∥∥
H

+
T�∫ ∥∥Bωum

(
s;T�,Pm

(
z�
))∥∥

H
ds
0
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�
∥∥z�

∥∥
H

+
T�∫

0

1 · ∥∥um

(
s;T�,Pm

(
z�
))∥∥

L2(ω)
ds

�
∥∥z�

∥∥
H

+ ‖1‖L2((0,T )×ω)

∥∥um

(·;T�,Pm

(
z�
))∥∥

L2((0,T�)×ω)
ds

�
∥∥z�

∥∥
H

+ C
∥∥um

(·;T�,Pm

(
z�
))∥∥

L2((0,T�)×ω)
ds (for T < 1, say)

�
∥∥z�

∥∥
H

+ CT
−5/2
� eC

√
μm
∥∥Pmz�

∥∥
H

(22)

where recall from Lemma 4, ‖u(T , y0)‖L2((0,T )×ω) � CT −5/2eC
√

μm‖y0‖H for y0 ∈ Hm.
We now provide the crucial estimate for ‖z�‖H in terms of ‖y�−1‖H . Recall that z� =

eAT�y�−1. Rather than using the contraction property of A, we take advantage of the fact that
y�−1 ∈ H⊥

m�−1
. Before diagonalizing again, consider the following argument:

Note that for ỹ ∈ H⊥
m ,

Π−1

⎡
⎣S 0 0

0 I 0

0 0 I

⎤
⎦ ỹ ∈ Span

⎧⎨
⎩
⎡
⎣ en

0

0

⎤
⎦ ,

⎡
⎣ 0

en

0

⎤
⎦ ,

⎡
⎣ 0

0

en

⎤
⎦
⎫⎬
⎭⊆ [

L2(Ω)
]3

.

Write

Π−1

⎡
⎣S 0 0

0 I 0

0 0 I

⎤
⎦ ỹ =

∞∑
n=m+1

⎡
⎢⎣

ξ
(1)
n en

ξ
(2)
n en

ξ
(3)
n en

⎤
⎥⎦

⇒
∥∥∥∥∥∥
⎡
⎣ eλ1ST� 0 0

0 eλ2ST� 0

0 0 eλ3ST�

⎤
⎦Π−1

⎡
⎣S 0 0

0 I 0

0 0 I

⎤
⎦ ỹ

∥∥∥∥∥∥
2

[L2(Ω)]3

=

∥∥∥∥∥∥∥
∞∑

n=m+1

⎡
⎢⎣

eλ1μnT�ξ
(1)
n en

eλ2μnT�ξ
(2)
n en

eλ3μnT�ξ
(3)
n en

⎤
⎥⎦
∥∥∥∥∥∥∥

2

[L2(Ω)]3

using the Spectral Theorem for self-adjoint operators. Continuing this estimate, we further have

∥∥∥∥∥∥
⎡
⎣ eλ1ST� 0 0

0 eλ2ST� 0

0 0 eλ3ST�

⎤
⎦Π−1

⎡
⎣S 0 0

0 I 0

0 0 I

⎤
⎦ ỹ

∥∥∥∥∥∥
2

[L2(Ω)]3

=
∥∥∥∥∥

∞∑
n=m+1

eλ1μnT�ξ (1)
n en

∥∥∥∥∥
2

L2(Ω)

+
∥∥∥∥∥

∞∑
n=2l+1

eλ2μnT�ξ (2)
n en

∥∥∥∥∥
2

L2(Ω)

+
∥∥∥∥∥

∞∑
n=m+1

eλ3μnT�ξ (3)
n en

∥∥∥∥∥
2

L2(Ω)

=
∞∑ (∥∥eλ1μnT�ξ (1)

n en

∥∥2
L2(Ω)

+ ∥∥eλ2μnT�ξ (2)
n en

∥∥2
L2(Ω)

+ ∥∥eλ3μnT�ξ (3)
n en

∥∥2
L2(Ω)

)

n=m+1
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� e2 Re(λ1)μm+1T�

∞∑
n=m+1

(∥∥ξ (1)
n en

∥∥2
L2(Ω)

+ ∥∥ξ (2)
n en

∥∥2
L2(Ω)

+ ∥∥ξ (3)
n en

∥∥2
L2(Ω)

)
after using size and order of λj given in (9). Continuing further with this estimate, we have

∥∥∥∥∥∥
⎡
⎣ eλ1ST� 0 0

0 eλ2ST� 0

0 0 eλ3ST�

⎤
⎦Π−1

⎡
⎣S 0 0

0 I 0

0 0 I

⎤
⎦ ỹ

∥∥∥∥∥∥
2

[L2(Ω)]3

= e2 Re(λ1)μm+1T�

(∥∥∥∥∥
∞∑

n=m+1

ξ (1)
n en

∥∥∥∥∥
2

L2(Ω)

+
∥∥∥∥∥

∞∑
n=m+1

ξ (2)
n en

∥∥∥∥∥
2

L2(Ω)

+
∥∥∥∥∥

∞∑
n=m+1

ξ (3)
n en

∥∥∥∥∥
2

L2(Ω)

)

= e2 Re(λ1)μm+1T�

∥∥∥∥∥∥∥
∞∑

n=m+1

⎡
⎢⎣

ξ
(1)
n en

ξ
(2)
n en

ξ
(3)
n en

⎤
⎥⎦
∥∥∥∥∥∥∥

2

[L2(Ω)]3

� e2 Re(λ1)μm+1T�

∥∥∥∥∥∥∥
∞∑

n=m+1

⎡
⎢⎣

ξ
(1)
n en

ξ
(2)
n en

ξ
(3)
n en

⎤
⎥⎦
∥∥∥∥∥∥∥

2

[L2(Ω)]3

. (23)

Since y�−1 ∈ H⊥
ml−1

, we can use the inequality above (23) to estimate ‖z�‖H ,

∥∥z�
∥∥

H
=
∥∥∥∥∥∥
⎡
⎣S−1 0 0

0 I 0

0 0 I

⎤
⎦Π

⎡
⎣ eλ1ST�−1 0 0

0 eλ2ST�−1 0

0 0 eλ3ST�−1

⎤
⎦Π−1

⎡
⎣S 0 0

0 I 0

0 0 I

⎤
⎦yl−1

∥∥∥∥∥∥
H

=
∥∥∥∥∥∥Π

⎡
⎣ eλ1ST�−1 0 0

0 eλ2ST�−1 0

0 0 eλ3ST�−1

⎤
⎦Π−1

⎡
⎣S 0 0

0 I 0

0 0 I

⎤
⎦yl−1

∥∥∥∥∥∥
[L2(Ω)]3

� ‖Π‖eRe(λ1)μ(m�−1+1)T�−1
∥∥Π−1

∥∥
∥∥∥∥∥∥
⎡
⎣S 0 0

0 I 0

0 0 I

⎤
⎦y�−1

∥∥∥∥∥∥
[L2(Ω)]3

= Ce
Re(λ1)μ(m�−1+1)T�−1

∥∥y�−1
∥∥

H
. (24)

Combining inequalities (22) and (24), we have∥∥y�
∥∥

H
� e

Re(λ1)μ(m�−1+1)T�−1
(
1 + CT

−5/2
� eC

√
μm
)∥∥y�−1

∥∥
H

. (25)

Weyl’s formula states for this 2-dimensional setting that we can estimate large eigenvalues of S

by μ� ∼ C(Ω)l as � → ∞, see [18, p. 395]. This implies that for positive constants C′ and C,
we have the estimates

Re(λ1)μm�−1+1 � −C′(2�
)

and
√

μm � C2�/2. (26)
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Applying estimates (22)–(25), we have that∥∥y�
∥∥

H
�
(
e−C′(2�)

)T�
(
1 + CT

−5/2
� eC

√
μm
)∥∥y�−1

∥∥
H

� e−C′2�T 2−α�

C
(
T 2−α�

)−5/2
eC

√
2�∥∥y�−1

∥∥
H

after using (19)

= CT −5/225α�/2 exp
(−C′T 2(1−α)� + C2�/2)∥∥y�−1

∥∥
H

.

Iterating this estimate, we obtain now that

∥∥y�
∥∥

H
� C�T −5�/225α/2

∑�
j=0 j exp

(
−C′T

�∑
j=0

2(1−α)j + C

�∑
j=0

2j/2

)∥∥y0
∥∥

H

= C�T −5�/225α�(�+1)/4 exp

(
−C′T 2(1−α)(�+1) − 1

21−α − 1
+ C

2(�+1)/2 − 1√
2 − 1

)∥∥y0
∥∥

H

� exp

(
−C′T 2(1−α)� + C2�/2 + � lnC − 5� lnT

2
+ 5α�(� + 1) ln 2

4

)∥∥y0
∥∥

H
. (27)

For each fixed T , 0 < α < 1/2 ensures that the dominant term in the exponent is −C′T 2(1−α)�

as � → ∞. Taking the limit as � → ∞, we now have that

lim
�→∞

∥∥y�
∥∥

H
= 0. (28)

Since [y, yt , θ ] ∈ C([0, T ],H), (28) proves the null controllability statement in Theorem 1.
To estimate u, we have

‖u‖L2((0,T )×ω) =
∞∑

�=1

∥∥um

(· − (a�−1 + T�);T�, z
�
)∥∥

L2((a�−1+T�,a�)×ω)

=
∞∑

�=1

∥∥um

(
T�, z

�
)∥∥

L2((0,T�)×ω)

�
∞∑

�=1

CT
−5/2
� e

√
μm
∥∥y�

∥∥
H

� Cα

∞∑
�=1

T −5/225α�/2eC2�/2∥∥y�
∥∥

H

after using (7) and (26). Using (27), we continue on

‖u‖L2((0,T )×ω) � Cα

∞∑
�=1

T −5/225α�/2eC2�/2
exp

(
−C′T 2(1−α)� + C2�/2 + � lnC

− 5� lnT

2
+ 5α�(� + 1) ln 2

4

)∥∥y0
∥∥

H

= CαT −5/2
∞∑

�=1

exp

(
−C′T 2(1−α)� + C2�/2 + � lnC − 5� lnT

2

+ 5α�(� + 1) ln 2 + 5α� ln 2
)∥∥y0

∥∥
H
4 2
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� CαT −5/2
∞∑

�=1

exp

(
−C′T 2(1−α)� + C2�/2 − 5� lnT

2

)∥∥y0
∥∥

H
. (29)

The last inequality above follows since, as � → ∞, C2�/2 dominates terms in the exponential
that are positive and independent of T .

To obtain a bound for ‖u‖ as T ↘ 0, we further estimate (29),

‖u‖L2((0,T )×ω)

� CαT −5/2
∞∑

�=1

exp

(
−C′T 2(1−α)� + C2�/2 − 5� lnT

2

)∥∥y0
∥∥

H

= CαT −5/2
∞∑

�=1

exp

(
−C′T 2(1−α)�

(
1 − C2(α−1/2)�

C′T
+ 5�2(α−1)� lnT

2C′T

))∥∥y0
∥∥

H
. (30)

To bound this series, we first break the sum into two parts where the tail is composed of terms
where

1 − C2(α−1/2)�

C′T
+ 5�2(α−1)� lnT

2C′T
� 1

2
. (31)

That is, when � is large enough so that

C′T
2

� C2(α−1/2)� − 5�2(α−1)� lnT

2
.

To do this we first consider the function g(x) = 5x2−x/2

2 for x > 0. g is bounded above by δ :=
5

e ln 2 . Thus, for T > 0 small,

−δ lnT � −5�2−�/2 lnT

2

⇔ (C − δ lnT )2(α−1/2)� � C2(α−1/2)� − 5�2(α−1)� lnT

2
.

Then for

� > �∗ = ln(2C − 2δ lnT ) − ln(C′T )

(1/2 − α) ln 2
, (32)

we have that

C′T
2

� (C − δ lnT )2(α−1/2)� � C2(α−1/2)� − 5�2(α−1)� lnT

2
. (33)

Thus we have (31) for � as in (32). In arriving at estimate (33), we are using the fact that
(C − δ lnT )2(α−1/2)� is a decreasing function in �. We will now consider the tail

∑
�>�∗ of the

sum (30). We have ln s < s when s > 1, so

(1 − α)� ln 2 < 2(1−α)� taking s = 2(1−α)�. (34)

An application of the mean value theorem to the function gβ(T ) = e−βT gives that for β > 0
and 0 < T < 1,

1
<

expβ
. (35)
1 − exp(−βT ) βT
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We now apply the estimates (31), (34) and (35) to the tail of the series in (30),

∞∑
�=�∗+1

exp

(
−C′T 2(1−α)� + C2�/2 − 5� lnT

4

)

�
∞∑

�=�∗+1

exp

(
−C′T

2
2(1−α)�

)

�
∞∑

�=�∗+1

exp

(
−C′T (1 − α)� ln 2

2

)
by (34)

= exp(−C′T (1−α) ln 2(�∗+1)
2 )

1 − exp(−C′T (1−α) ln 2
2 )

<
1

1 − exp(−C′T (1−α) ln 2
2 )

<
2 exp(

C′(1−α) ln 2
2 )

C′T (1 − α) ln 2
by (35)

� CT −1. (36)

We break the remaining finite sum into two pieces using the inequality ab � a2+b2

2 ,

�∗∑
�=1

exp

(
−C′T 2(1−α)� + C2�/2 − 5� lnT

2

)

� 1

2

(
�∗∑

�=1

exp
(−2C′T 2(1−α)� + 2C2�/2)+

�∗∑
�=1

exp(−5� lnT )

)
. (37)

To deal with the first term, consider the following function on R,

GT (x) = −2C′T 2(1−α)x + 2C2x/2.

As α is fixed in (0,1/2), GT enjoys the properties that (i) limx→−∞ GT (x) = 0,
(ii) limx→∞ GT (x) = −∞, and (iii) dGT

dx
has exactly one zero. Therefore GT has a global

maximum at

x∗ = 1

(1/2 − α) ln 2
ln

(
C

2C′T (1 − α)

)
.

Further,

GT

(
x∗)= −2C′T exp

(
1 − α

1/2 − α
ln

(
C

2C′T (1 − α)

))
+ 2C exp

( ln( C
2C′T (1−α)

)

1 − 2α

)

� 2C

(
C

2C′T (1 − α)

)(1−2α)−1

� CT (−1+2α)−1
,

giving the following estimate:
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�∗∑
�=1

exp
(−2C′T 2(1−α)� + 2C2�/2)� �∗ exp

(
GT

(
x∗))

� �∗ exp
(
CT (−1+2α)−1)

. (38)

The other finite sum can be dealt with in a similar way. For this estimate we need that

�∗ = ln(2C − 2δ lnT ) − ln(C′T )

(1/2 − α) ln 2
� 2C − 2δ lnT − ln(C′T )

(1/2 − α) ln 2
� −C lnT . (39)

Also since s2 < exp( s
1−2α

) for s � 1, we have (lnT )2 < T (−1+2α)−1
where 0 < T � 1, by taking

s = −lnT . Therewith, we have

�∗∑
�=1

exp(−5� lnT ) � �∗ exp
(−5�∗ lnT

)
� �∗ exp

(
C(lnT )2)

� �∗ exp
(
CT (−1+2α)−1)

. (40)

Combining (30), (36)–(38), and (40), we have that

‖u‖L2(0,T )×ω � CαT −5/2

(
�∗∑

�=1

exp

[
−C′T 2(1−α)� + C2�/2 − 5� lnT

2

]

+
∞∑

�=�∗+1

exp

[
−C′T 2(1−α)� + C2�/2 − 5� lnT

2

])∥∥y0
∥∥

H

� CαT −5/2[−C lnT exp
(
CT (−1+2α)−1)+ CT −1]∥∥y0

∥∥
H

.

Noting that the dominant term on the right-hand side is exp(CT (−1+2α)−1
), we have that

‖u‖L2((0,T )×ω) � Cα exp
(
CT (−1+2α)−1)∥∥y0

∥∥
H

.

Taking α = ε
2(1+ε)

and taking the supremum over y0 ∈ H with ‖y0‖H = 1, gives that

E(T ) = Cε exp
(
C/T 1+ε

)
as T ↘ 0

where the definition of the minimal energy is as given in (3). The same argument works to show
that Theorem 1 is valid for the thermoelastic system under the influence of a locally distributed
thermal source. This completes the proof of Theorem 1.
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