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Abstract

We establish some properties of the superposition operator which are associated with monotonicity. Those properties are ex-
pressed in terms of the notion of degree of decrease or degree of increase. An application of the obtained results to the study of
solvability of a quadratic Volterra integral equation is also derived.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The main goal of this paper is to discuss the properties of the so-called superposition operator related to monotonic-
ity. More precisely, we introduce an index measuring the degree of improvement of monotonicity of functions
transformed by the superposition operator.

The results concerning monotonicity properties of the superposition operator will be applied in the investigations
of the solvability of a nonlinear quadratic integral equation of Volterra type. Namely, we are going to show that under
some assumptions the mentioned integral equation has monotonic and nonnegative (or positive) solutions in the space
of real functions continuous on some bounded and closed interval.

The superposition operator is one of the simplest nonlinear operator used in nonlinear functional analysis. On the
other hand it is very important in the theory of integral and differential equations (cf. Ref. [2]).

In order to define this operator assume that J is a nonempty subset of real line R. Consider the set X; of real
functions acting from the interval [a, b] into the set J. Further, let f : [a, b] x J — R be a given function.

Then, to every function x € X; we may assign the function Fx defined by the formula

(Fx)@®) = f(t,x(1)), 1€la,b]

The operator F defined in such a way is called the superposition operator generated by the function f = f(z, x).
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The theory concerning the superposition operator is presented in Ref. [2].

The main tools used in our considerations are the concept of a measure of noncompactness and the concept of
degree of monotonicity of a real function.

In order to present the first concept mentioned above suppose that E is a real Banach space with a norm || - ||. For
a given nonempty subset X of E denote by X, Conv X the closure and the closed convex hull of X, respectively.

Further, let Mg denote the family of all nonempty and bounded subsets of E and by 91 its subfamily consisting
of all relatively compact sets.

We accept the following definition from [4].

Definition. A mapping p : Mg — Ry = [0, +00) is said to be the measure of noncompactness in E, if it satisfies the
following conditions:

(1) the family ker u = {X € MEg: w(X) = 0} is nonempty and ker u C NEg;

(2) X CY = pnX) <p);

(3) u(X) = p(Conv X) = pu(X);

@) QX+ A-0Y) <ApnX) + (1 —1)u(Y) for & € [0, 1];

(5) if (X,) is a sequence of closed sets from 9 g such that X,,+1 C X,, forn=1,2,..., and if lim,,_, oo (X,) =0,
then the set Xoo = (), —; X» is nonempty.

The family ker i described in (1) is called the kernel of the measure of noncompactness (.
Further facts concerning measures of noncompactness and their properties may be found in [4]. For our purposes
we will only need the following fixed point theorem [4,9].

Theorem 1. Let Q be a nonempty bounded closed convex subset of the space E and let T : Q — Q be a continuous
mapping. Assume that there exists a constant k € [0, 1) such that u(T X) < ku(X) for any nonempty subset X of Q.
Then T has a fixed point in the set Q.

Remark 1. It can be shown that under the assumptions of the above theorem the set Fix T of fixed points of T
belonging to Q is a member of the family ker i [4]. This fact allows us to characterize solutions of investigated
equations.

In what follows let I = [a, b] be a fixed interval in R. Denote by C = C (/) the classical Banach space of all real
functions defined and continuous on / with the standard maximum norm ||x || = max{|x(¢)|: t € I}.
Now, let us fix a set X € M. For x € X let us define the following quantities (cf. [6]):

d(x)= sup{|x(s) —x(t)} — [x(s) —x(t)]: t,sel, t < s},

i(x)= sup”x(l) —x(s)| — [x(t) —x(s)]: t,sel, t < s}.
Analogously, put

d(X) =sup{d(x): x € X},

(X)) = sup{i(x): x € X}

Observe that d(x) = 0 if and only if x is nondecreasing on /. Similarly, d(X) = O if and only if all functions be-
longing to X are nondecreasing on I. Thus the index d(x) represents the degree of decrease of the function x on /.
Analogously, the quantity d(X) measures the degree of decrease of functions from the set X. In the same way we can
characterize the quantity i (x) and i (X).

In what follows fix ¢ > 0 and denote by w (x, &) the modulus of continuity of the function x, i.e.

w(x,e)= sup{|x(s) —x(t)|: t,sel, |t —s| < 8}.
Similarly, let us put:

(X, &) =sup{w(x,&): x € X},

wo(X) =81i_r>%a)(X,8).
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Finally, we define the function © on the family 91¢ by putting

p(X) = wo(X) +d(X). (1.1)

It can be shown [6] that the function u is a measure of noncompactness in the space C(I) with the kernel ker u
consisting of all nonempty and bounded sets X such that functions from X are equicontinuous and nondecreasing
on /.

For other properties of © we refer to [6].

Remark 2. In the same way as above we can define the measure of noncompactness associated with the quantity i (X).
We omit details.

2. Properties of the superposition operator related to monotonicity

In this section we will investigate the superposition operator F generated by a function f = f (¢, x) (cf. the previous
section). We will assume that f is a real function defined on the set I x J, where I = [a, b] and J is an arbitrary real
interval. We consider the superposition operator (Fx)(t) = f (¢, x(¢)) under the following assumptions:

(o) f is continuous on the set [ x J.

(B) The function t — f(¢, x) is nondecreasing on [ for any fixed x € J.

(y) For any fixed ¢ € I the function x — f (¢, x) is nondecreasing on J.

(8) The function f = f(¢, x) satisfies the Lipschitz condition with respect to the variable x, i.e. there exists a constant
k > 0 such that for any ¢ € I and for x1, xo € J the following inequality holds

| f(t.x2) — f(t, xD)| < klxz — x1].

In what follows denote (similarly as earlier) by X ; the subset of C (/) consisting of all functions x : I — J.
Then we have the following result.

Theorem 2. Assume that the hypotheses (a)—(8) are satisfied and x € X j. Then

d(Fx) < kd(x). @2.1)

Proof. Denote by I, the subset of / x I defined as follows
Le={(t,s)elxI:t<sandx(t)=x(s)}.

Obviously, for (¢, s) € I, we have:

|(Fx)(s) = (Fx)(0)| = [(Fx)(s) — (Fx)(1)]
=[f(s.x®) = f(r.x®)] = [f(5.x() = f(t.x(®))]
=[f(s.x®) = f(t.x@O)| = [f(s.x®) = f(r.xD))]
=0. 2.2)

Now, assume that t,s € I, t < s and (¢, s) ¢ I, i.e x(¢) # x(s). Then we get:

|(Fx)(s) = (Fx)(0)| = [(Fx)(s) — (Fx)(1)]
=[/(s.x() = £ (. xO)| = [/ (5. x(5)) = (1. x())]
<|f(s.x(®) = f(t. x®) |+ | f (2. x()) = f (£, x@))]
—[f(t.x() = f(t.x(D)]
=[f(s.x()) = f(t.x)]+ | (£, x(®) = £t x®)] = [ f(5.x(5)) — f(t,x(5))]
[f(t x(s)) (t x(t))]
=[f(t.x()) = £ (6. x@0)| = [£ (6. x) = f(1,x0)]

—[F (s x() = £ (1. x)]
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_|f@xG) = fEx@)| f(t,x(s$)) — f(t, x(1))

x(s) —x(t) |x(s) —x(t)| - 2) —x() [x(s) —x(t)]
_ | L@ X)) = f @ x@) ol | fax) — fax@)|
_‘ x(s) —x(1) o) —x0] x(s) —x(1) [x(s) = x(1)]
N f @ x(s) = f@,x(0)] B - -
pimrr v e DR Cl EORE I

klx(s) —x(@)]
<o ol {[xs) =x®] = [x(5) —x)]}
=k{|x(s) —x(®)| — [x(s) —x()]}. (2.3)
Let us mention that in the above calculations we used the fact that the expression
S, x($) = f@, x(1)
x(s) —x(1)
is nonnegative.

Finally, let us observe that linking (2.2) and (2.3) we get the inequality (2.1).
Thus the proof is complete. O

From the above theorem follows that in the case when the function f satisfies the Lipschitz condition with a
constant k < 1 (cf. the assumption (8)) the superposition operator F' generated by the function f improves the degree
of monotonicity of any subset X of X; with the coefficient k.

In the sequel we give a few convenient conditions being special cases of Theorem 1.

Corollary 1. Suppose the function f(t,x) = f: I x J — R satisfies the assumptions («), (8) of Theorem 2. More-
over, we assume that f has partial derivative f, which is nonnegative and bounded on the set I x J. Then f satisfies
the assumptions (y) and (8) with the Lipschitz constant k defined as follows

k:sup{fx(t,x): (t,x)el x J}.

Indeed, taking arbitrary x1, xo € J and ¢ € I and applying mean value theorem we infer that there exists 8 € (0, 1)
such that

[t x2) — f(t,x1) = fo(t, x1 +60(x2 — x1)) (x2 — x1).

Hence we deduce that the function x — f (¢, x) is nondecreasing on J for any fixed ¢ € I and satisfies the Lipschitz
condition as in (§).

Corollary 2. Assume that the function h : J — R is differentiable on the interval J and the derivative h' is nonnegative
and bounded on J. Then the function f(t,x) = h(x) satisfies the assumptions of Theorem 2 and the constant k
appearing in (8) is given by the equality k = sup{h’(x): x € J}.

Obviously this corollary is an easy consequence of Corollary 1.

Let us pay attention to the fact that in the paper [12] the authors assumed that 4 : Ry — R, is differentiable on
R and the derivative A’ is nonnegative and nondecreasing on R ..

Obviously such assumptions imply that the function £ satisfies the assumptions of Corollary 2 for J = [0, M],
where M > 0 is arbitrarily fixed. Thus the result contained in [12] is a special case of that formulated in Corollary 2.
Moreover, we show in the sequel that our result from Corollary 2 is more general than that from [12].

Now we illustrate our results by a few examples.

Example 1. Let 1 : Ry — R, h(x) = /x. Obviously #’(x) = 1/2./x for x > 0. Thus on every interval of the form
J = [a, +00) with @ > 0 the function # satisfies the assumptions of Corollary 2. Moreover, k = sup{1/2/x: x > a} =
1/24/c.

On the other hand the function 4 does not satisfy the assumptions formulated in [12]. This shows that the result
from Corollary 2 is more general than that contained in [12].
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Example 2. Consider the function f(¢,x) = f : I x [0, «] — R defined by the formula f (¢, x) = sintx, where o

is a fixed number from the interval (0, w/2) and I = [0, 1]. Obviously the function ¢t — f (¢, x) is nondecreasing

on [ for any fixed x € [0, «]. On the other hand f,(¢,x) =tcostx > 0 for (¢t,x) € I x [0, «], thus x — f(z,x) is

nondecreasing and f, is bounded on / x [0, «]. Moreover, we have that k = sup{ f (¢, x): (t,x) € [ x [0, ]} = 1.
These facts show that f(z, x) satisfies the assumptions of Corollary 1 with k = 1.

Example 3. Now, let us take into account the function f(¢,x) = f : I x Ry — R (I =[O0, 1]) defined in the following
way
0 fort=0and x e Ry,
ft,x)={tx* fort>0and0<x<1/41,
1 fort > 0and x > 14/7.

It is not difficult to check that f(z, x) satisfies the assumptions of Theorem 2 with the constant kK = 2. On the other
hand the partial derivative f(z,x) does not exist on the curve x = 1/4/%, so in this case we cannot apply Corollary 1.

3. Monotonic solutions of a quadratic integral equation

In this section we will consider the following nonlinear quadratic integral equation of Volterra type

t

x(t)=g(t)+f(t,x(t))/v(t,r,x(r))dt, (3.1)
0

where ¢t € I = [0, 1]. Integral equations of such a type play very important role in nonlinear analysis and find numerous
applications in engineering, mathematical physics, economics, biology and so on (cf. [1,7,8,10,11,13-15]).

Using the measure of noncompactness defined in Section 1 and the results established in Section 2 we show that
Eq. (3.1) has monotonic and nonnegative solutions. The result we are going to prove here generalizes several ones
obtained earlier in [1,3,5,10,12,14,15], for example.

Equation (3.1) will be studied under the following assumptions:

(i) g € C(1) and g is nondecreasing and nonnegative on the interval /.
(i) The function f : I x J — R satisfies the conditions («)—(y) formulated in Section 2, where J is an unbounded
interval such that J C R4 and go € J, where go = g(0) = min{g(¢): ¢ € I}. Moreover, f is nonnegative on
I xJ.
(iii) There exists a nondecreasing function k(r) = k : [go, +00) — R such that

|f @t x1) — f(t, x2)| <k(r)|xi — x2]

for any 7 € I and for all x1, x2 € [go, r].

@iv) v: I x I x R— R is a continuous function such that v : I x I x Ry — R, and for arbitrarily fixed 7 € I and
x € Ry the function + — v(¢, 7, x) is nondecreasing on I.

(v) There exists a nondecreasing function p : Ry — R such that

u(t, 7, x) < px)

fort,7 €l and x > 0.
(vi) There exists a positive solution rg of the inequality

ligll + (rk(r) + Fi)p(r) <,
where F| = sup{ f(z,0): t € I'}. Moreover, k(ro) p(ro) < 1.

Now, we can formulate our existence result.

Theorem 3. Under the assumptions (1)—(vi) Eq. (3.1) has at least one solution x = x(t) which belongs to the space
C (1) and is nondecreasing and nonnegative on the interval I.



1390 J. Banas, K. Sadarangani / J. Math. Anal. Appl. 340 (2008) 1385—1394

Proof. Let us take the subset S of the space C(I), S = {x € C(I): x(t) > go for t € I}. Consider the operator T
defined on the set S by the formula

t
(Tx)(®) =g(t)+f(t,x(t))/v(t,r,x(r)) dt
0

It is easily seen that our assumptions imply that the operator 7 transforms the set S into itself. Moreover, for an
arbitrary x € S and t € [ we get:

t

(Tx)(1) < |Ig|I+Uf(t,X(t))—f(t,O)]+f(t,0)]/p(X(f))dT
0
1

< ||g||+(k(||x||)x(r>+Fl)/p(uxu)df

< el =+ (lxlik(llxll) + F1) p(llxll).-
Hence
ITxll < llgll + (& (llxl) + F1) p(llxll).-

Thus, taking into account the assumption (vi) we infer that there exists ro > 0 with k(rg) p(r9) < 1 such that the
operator T transforms the set S,; = {x € S: ||x|| <rp} into itself.
Let us mention that S, is nonempty since ro > go. Moreover, S, is bounded, closed and convex subset of C (7).
Now, we show that T is continuous on the set S,,. To do this let us fix &£ > 0 and take arbitrarily x, y € S,, such
that || x — y|| < ¢. Then, for ¢ € I we derive the following estimates:

1 t

|(Tx)(@) — (Ty) ()| < f(t,x(t))/v(t,r,x(r))dr—f(t,y(t))fv(t,r,y(t))dr
0 0
t t

f(t,x(t))/v(t,r,x(r))dr—f(t,y(t))fv(t,t,x(r))dr

0

N

t y(t) /v t T, x(r) dt— t y(t) /v t T, y(r))
0 0
t

gk(m)eo/v(t,r,x(r))dr+f(z,y(r))/yv(t,r,x(r)) —v(t, 7, y(v))|dt
0 0
< p(roYk(ro)e + (rok(ro) + Fi)w (v, &),
where
a)fo(v, &)= sup“v(t, T,x) —v(t, T, y)|: t,tel, x,yelgo,rol, |[x —y| < 8}.

Obviously wfo (v, &) — 0 as ¢ — 0 which is a consequence of the uniform continuity of the function v on the set
I x I x[go,rol
From the above estimate we derive the following inequality

ITx — Tyl < pro)k(ro)e + (rok(ro) + F1)w; (v, €)

which yields the continuity of the operator T" on the set Sy, .
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Further, let us take a nonempty subset X of the set S,,. Fix arbitrarily a number ¢ > 0 and choose x € X and
t,s € I such that |t — s| < ¢. Without loss of generality we may assume that # < s. Then, in view of our assumptions,
we obtain:

s t

f(s,x(s))/v(s,r,x(r))dr—f(t,x(t))/v(t,r,x(r))dr

[(Tx)(s) = (Tx)(1)| < |g(s) — g()| +

0 0
<w(g, &)+ f(s,x(s))/v(s, r,x(r))dr—f(t,x(t))/v(s,t,x(r))dr
0 0
s t
+ f(t, x(®)) /U(S,T,x(‘t))dt—/U(t,‘c,x(l'))d‘r
0 0

<w(g. o) +[|f(s.x() = f(s. x| + [ f(s,x@®) — f(t.x(D))] /v 5,7, x(1))dt
0

t

+ (rok(ro) + F {

t t

/ s T, x(t) d‘L’—/U(S,‘L’,X(l’))d‘L’
0 0

/v(s,r,x(r))dr—/v(l,r,x(r))dr }

0 0

<w(g. &)+ [k(ro)|x(s) — x(O)] + w}, (f. &) p(ro)]

+

N

'
+(r()k(r0)+F1){/v(s,t,x(t))dr+/|v(s,r,x(r)) —v(t,t,x(t))|d1:}
0

t
< (g.8) + [k(ro)o(x, ) + o}, (f. £) | p(ro) + (rok(ro) + F1) [ep(ro) + o}, (v, &)],
where we denoted
oy (fo&) =sup{| f(s,x) = ft, )| 1,5 € I, x €lgo, rol, |t —s| <e},
wrlo(v, g) = sup”v(s, T,x) —v(t, r,x)|: t,s,tel, xelgo,rol, |s —t < 5}.

Notice that in view of the uniform continuity of the function f on the set I x [go, ro] and the function v on the set
I x I x [gg, ro] we deduce that a) (f g) — 0 and a),o (v, &) — 0 as ¢ — 0. This fact in conjunction with the above
obtained estimate allows us to derlve the following inequality

wo(T X) < k(ro) p(ro)wo(X). (3.2)

Now, let us fix arbitrarily ¢, s € I, t < s. For simplicity, denote by F the superposition operator generated by the
function f (cf. Section 1). Then, for an arbitrary x € X we obtain:

|(Tx)(s) = (Tx)(®)| = [(Tx)(s) — (Tx)(1)]

S t
= a(s)+(Fx)(s)fv(s,t,x(t))dt—a(t)—(Fx)(t)/v(t,r,x(r))dr
0 0

s t
- |:a(s)+(Fx)(s)/v(s,r,x(r))dr—a(t)—(Fx)(t)/v(t,r,x(r))dr:|
0 0
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<{las) —a@®)|—[als) —a®)]} +

s t
(Fx)(s)fv(s,r,x(r))dr — (Fx)(t)/v(t,r,x(r))dr
0 0

s t
— |:(Fx)(s)/v(s,r,x(r))dr— (Fx)(t)[v(t,r,x(r))dr:|
0 0

<

(Fx)(s)/v(s,r,x(t))dt—(Fx)(t)/v(s,r,x(r))dr
0 0

N t
+ (Fx)(t)/v(s,t,x(t))dt—(Fx)(t)/v(t,t,x(t))dt
0 0

- (Fx)(s)/v(s,t,x(r))dr—(Fx)(t)/v(s,r,x(r))dr:|
0 0

s 1
- (Fx)(t)/v(s,r,x(t))dt —(Fx)(t)/v(t,r,x(t))dt:|
0 0

s t

/v(s,r,x(t))dt—/v(t,t,x(t))dt
0

< |(Fx)(s) —(Fx)(r)y/u(s,r,x(r)) dt + (Fx)(1)
0 0

N t

—[(Fx)(s)—(Fx)(t)]/v(s,r,x(r))dr—(Fx)(t)|:/v(s,t,x(t))dt—/v(t,t,x(t))dr:|
0

0 0

S

<A|(Fx)(s) = (Fx)(0)| = [(Fx)(s) — (Fx)()]} / v(s, 7,x(1)) dt

0
t N t
+ (Fx)(1) /v(s,r,x(t))dr—i—/v(s,r,x(r))dr—/v(t,r,x(r))dr
0 t 0
Y t
—(Fx)(t) /v(s,t,x(r))dt—/v(t,r,x(r))drj|
-0 0

t

/[v(s, T, x(r)) — v(t, T, x(r))] dt

0

N

/v(s, r,x(r)) dt

t

gd(Fx)/p(ro)drHFx)(t){ +
0

|

N t
—(Fx)(t)[/v(s,t,x(r))dr—/v(t,r,x(r))dr:|.

0 0
Hence, applying Theorem 2 and keeping in mind the assumption (iv), we get

[(Tx)(s) = (Tx)(@)| = [(Tx)(s) = (Tx)(1)]

t N 1

<k(r0)p(ro)d(x)+(Fx)(t)|:/v(s,r,x(r))dr—i—/v(s,r,x(r))dr—/v(t,r,x(r))dri|

0 t 0
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S t

— (Fx)(t)|:/v(s, r,x(t)) dt —/v(t, t,x(r)) dr:|
0 0
=k(ro)p(ro) d(x).

This estimate implies
d(Tx) < k(ro)p(ro)d(x)

and consequently

d(TX) < k(ro)p(ro) d(X). (3.3)

Finally, joining the estimates (3.2) and (3.3) and taking into account the measure of noncompactness p defined by
(1.1), we obtain

p(T X) < k(ro) p(ro) u(X).

Now, keeping in mind the above inequality and the fact that k(ro) p(rg) < 1 (cf. the assumption (vi)), in view of
Theorem 1 we complete the proof. O

Remark 3. Taking into account the description of the kernel of the measure of noncompactness w (cf. Section 1)
and Remark 1, we deduce easily that all solutions of Eq. (3.1) belonging to S, are nondecreasing, nonnegative and
continuous on the interval /. Obviously those solutions are positive provided gg > 0.

Remark 4. It is easily seen that our result is valid if we replace in our considerations the interval I = [0, 1] by an
arbitrary interval I = [a, b]. In such a case Eq. (3.1) will have the form

t

x(t)=g(t)+f(t,x(t))fv(t,r,x(r))dr, tel =]la,b].

a

Obviously in this case we have to modify the assumption (vi). We omit the details.
In what follows we illustrate our results by a few examples.

Example 4. Consider the following quadratic integral equation

, (2 4+ 9)x(1)

112300 dr, (3.4)

x(t) =sin(t — 1 + 7/2) + /x (1)
0

forre I =10, 1].

Observe that this equation is a special case of Eq. (3.1), where g(¢) = sin(t — 1 +7/2), f(t,x) = /x, v(t, T, x) =
2+ 1tHx /(1 + x3). Tt is easily seen that there are satisfied the assumptions of Theorem 3.

Indeed, the function g(t) is positive, nondecreasing on / and gop = g(0) =sin(—1 4+ 7/2) =0.5356..., |gll=1.
The function f(r,x) = {/x is nondecreasing on R and for any r > go we have that k(r) = 1/2,/go = 0.68319...
(cf. the assumption (iii) and Example 1). Further notice that the function t — v(¢, , x) is nondecreasing on / for fixed
7 € I and x > 0. Moreover, we have

2
+x 5 <2%7/3=1.05826....
X

£, 7T,x) <
v( X) 1

Thus we conclude that the function p(x) appearing in the assumption (v) is constant, i.e. p(x) = 2%/3/3. Taking into
account that /1 = 0 we obtain that the inequality from the assumption (vi) has the form

1+7(1/2/20)2°3 /3 < r.

It is easy to check that the number.
ro=1/[1-(1/24/30)2°3/3] =3.610...
is the solution of the above inequality for which k(ro) p(ro) < 1.
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Now, from Theorem 3 we deduce that Eq. (3.4) has a positive, nondecreasing solution x = x(¢) being continuous
on I and such that x(¢) € [go, ro] fort € 1.

Example 5. Now, we examine the quadratic integral equation having the form

t

x(t) =122 + [t/ + D]In(1 +x(1)) /(rr +x%(1)) dr, 3.5)
0

fort e I =10, 1].

In this case we have g(t) = e X, f@&,x)=[t/¢t+ DIn(1 +x), v(t, 7,x) =ttt + x2. The function g is nonde-
creasing and nonnegative on  and go =0, ||g|| = 1/¢2. The function f is nonnegative and nondecreasing with respect
to both variables on /. Further, we have f (¢, x) = [¢/(t + 1)]/(1 + x). This yields that f, is nonincreasing on R for
any ¢ € I, so in the light of Corollary 1 we have that k(r) = 1/2 for any r > 0. Moreover, the function ¢t — v(¢, 7, x)
is nondecreasing on I and we have v(t, 7,x) < 1 + x2fort,7 €I and x > 0. Thus px)=1+ x2.

Finally, consider the inequality from the assumption (vi) which has the form

1
1/ 4+ —r(14+r3) <r.
/e” + 2r( +r ) r
It is easy to check that ro = 2/3 is the solution of this inequality for which k(ro) p(rg) = 13/18 < 1.

Thus, in the light of Theorem 3 we infer that Eq. (3.5) has a nondecreasing, continuous and nonnegative solution
x=ux(t)fortel.
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