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1. Introduction
1.1. Robustness of nonuniform exponential trichotomies

The purpose of this note is to show that a nonuniform exponential trichotomy defined by a nonautonomous linear
equation

X =A(t)x (1)

in a Banach space, persists under sufficiently small linear perturbations in the equation

X =[A®) +BO]x. (2)

This is the so-called robustness problem.
In the special case of uniform exponential trichotomies, we recover the following result, where B(X) denotes the space
of bounded linear operators in the Banach space X.

Theorem 1. Let A, B:R — B(X) be continuous functions such that Eq. (1) admits a uniform exponential trichotomy in R. If
supser || B(t)| is sufficiently small, then Eq. (2) admits a uniform exponential trichotomy in R.

Theorem 1 should be considered classical although we are not able to indicate an appropriate reference. We note that the
notion of (uniform) exponential trichotomy plays a central role in the study of center manifolds, which are powerful tools
in the analysis of the asymptotic behavior of dynamical systems. Namely, when a linear dynamics possesses no unstable
directions the stability of the system is completely determined by the behavior on any center manifold. The study of center
manifolds can be traced back to the works of Pliss [21] and Kelley [14]. A very detailed exposition in the case of autonomous
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equations is given in [24], adapting results in [26]. See also [17,25] for the case of infinite-dimensional systems. We refer
the reader to [7,8,10,11,22,24] for more details and further references.

Our main objective is to consider the much more general notion of nonuniform exponential trichotomy and obtain an
appropriate version of Theorem 1 (see Theorem 5), building on our work in [5] for nonuniform exponential dichotomies.
We refer the reader to [1,6] for related discussions on the ubiquity of the nonuniform exponential behavior, particularly in
the context of ergodic theory. Due to the central role played by the notion of exponential trichotomy, most importantly in
the theory of center manifolds which are crucial in the study of the asymptotic behavior of trajectories, it is important to
understand how exponential trichotomies vary under perturbations.

We note that the study of robustness has a long history. In particular, the problem was discussed by Massera and Schaf-
fer [15] (building on earlier work of Perron [20]; see also [16]), Coppel [12], and in the case of Banach spaces by Dalec’kil
and Krein [13], with different approaches and successive generalizations. The continuous dependence of the projections on
the perturbation was obtained by Palmer [19]. For more recent works we refer to [9,18,22,23] and the references therein.
We emphasize that all these works consider only the case of uniform exponential behavior.

1.2. Applications of the robustness

Now we discuss several applications of our results. These include the persistence of center manifolds under sufficiently
small linear and nonlinear perturbations, the partial linearization of a nonlinear dynamics, and the approximation of invari-
ant sets obtaining from varying parameters:

Persistence of center manifolds. Center manifold theorems are powerful tools in the analysis of the asymptotic behavior of
a dynamical system. Namely, when a linear equation has some elliptic directions and no unstable directions, all solutions
converge exponentially to the center manifold, and thus the stability of the zero solution under sufficiently small perturba-
tions is completely determined by the behavior on any center manifold. Accordingly, one often considers a reduction of the
dynamics to a center manifold, and one determines the quantitative behavior on it. This has also the advantage of reducing
the dimension of the system. We refer the reader to [7] for details and references, and to [4,6] for corresponding results in
the case of nonuniform exponential trichotomies.

In particular, our results imply that even in the nonuniform setting the center manifolds persist not only under suffi-
ciently small nonlinear perturbations but also under sufficiently small linear perturbations. This is of importance particularly
in numerical applications when the information about the linear part of the dynamics is perhaps not sufficiently precise,
although our results guarantee that any nonuniform exponential trichotomy persists under sufficiently small perturbations.

Partial linearization. A fundamental problem in the study of the local behavior of a dynamical system is whether the
linearization of the system along a given solution approximates well the solution itself in some open neighborhood. This
means that we look for an appropriate local change of variables, called a conjugacy, that can transform the system into a
linear one. The problem goes back to the pioneering work of Poincaré.

When a given dynamics admits an exponential dichotomy, the Grobman-Hartman theorem shows that locally the original
dynamics is topologically conjugated to its linearization. There is also a version of the Grobman-Hartman theorem in the
case of nonuniform exponential dichotomies (see [2,6] for details). When the linearization has some elliptic directions, that
is, when it admits an exponential trichotomy one can still obtain a conjugacy that linearizes the stable and unstable parts
of the dynamics. While in the case of exponential dichotomies it is well know that one can obtain conjugacies both under
linear and nonlinear perturbations (see [3] for the case of nonuniform exponential dichotomies), our results show that a
similar statement holds for exponential trichotomies. Namely, the conjugacy obtained in the partial linearization of the
stable and unstable directions persists under sufficiently small linear and nonlinear perturbations.

Approximation of invariant sets. When we work with equations depending on parameters it is crucial to understand whether
the invariant sets of the dynamics vary in a sufficiently regular manner with the parameters. For example, in the study of
the stability of a given solution using invariant center manifolds and normal forms one needs to approximate the center
manifolds to sufficiently high order. First of all this requires knowing that the center manifolds are sufficiently regular. We
can make not only nonlinear perturbations but also linear ones, for example given by changes of parameters in the linear
part. In the last case, it is important to know that the linear structure persists. This is precisely given by our robustness
result which shows that the initial nonuniform exponential trichotomy persists under sufficiently small linear perturbations.

2. Basic notions

Let B(X) be the space of bounded linear operators in the Banach space X. We consider the linear equation (1), where
A:1 — B(X) is a continuous function in an interval I. We note that each solution of (1) is defined on the whole I. We
denote by T(t,s) the associated evolution operator, that is, the linear operator such that T(t, s)x(s) = x(t) for every t,s € I,
where x(t) is any solution of (1). Clearly, T (t,t) =1d, and

T, t)T(r,s)=T(t,s), t,t,sel.
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We say that Eq. (1) admits a nonuniform exponential trichotomy in I if there exist projections P(t), Q (t), R(t): X — X for
each t € I such that

T(t,s)P(s)y=P@)T(t,s), T(t,s)Q(s)=Q®T(t,s), T(t,s)R(s) =R(®)T(t,s),
and

PO+QM+RO=Id
for every t, s € I, and there exist constants

0<a<b, 0<c<d, >0 and D>1 3)
such that for every t,s € I with t > s we have

[T, 5)P(s)| < Dedt=9+elsl)

[T, $)R(s)|| < De™=9Fels!, (4)
and

[T 5)7'Q )| < De b=+l

[T, ) "R(@®)| < Dect=+el, (5)
We notice that setting t =s in (4) and (5) we obtain

|P®] < el lQ®]| < De™ and

[R(®)| < DeM (6)

for every t € I. We say that Eq. (1) admits a uniform exponential trichotomy if it admits a nonuniform exponential trichotomy
with ¢ =0.

3. Robustness in semi-infinite intervals
3.1. Nonuniform exponential trichotomies in I = [0, +00)

The following is our robustness result for nonuniform exponential trichotomies in intervals of the form [p, +00) with
o <0.

Theorem 2. Let A, B : I — B(X) be continuous functions in an interval I = [, +00) with o < 0 such that Eq. (1) admits a nonuniform
exponential trichotomy in I satisfying

e <min{(d —¢)/2, (b —a)/2}, (7

and assume that ||B(t)|| < e~2¢!tl for every t € I. If § is sufficiently small, then there exist projections P(), O(t) and R(t) fortel
such that:

1. Eq. (2) admits a nonuniform exponential trichotomy in [0, +00) with respect to these projections;
2. for the new trichotomy, the corresponding estimates to the ones in (4) and (6) are valid for all t > s witht,s € I.

Proof. We start by recalling a result in [5] concerning the robustness of nonuniform exponential dichotomies. We also recall
that Eq. (1) admits a nonuniform exponential dichotomy in I if there exist projections P(t): X — X for t € I such that

T(t,s)P(s) = P(OT(t,s)

for every t, s € I, and there exist constants &, C > 0 and ¢ > 0 such that
[T 9P| < Ce~U=9)telsl >

and
ITE Q)| < Cem@C0Hebl s>,

where Q (t) =1d —P(t). Set
d=0,/1-25C/a and D=

and denote by T(t, 7) the evolution operator for Eq. (2).

C
1-8C/@+a)
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Lemma 1. (See [5].) Let A, B: 1 — B(X) be continuous functions in an interval I = [p, +00) with o < 0 such that Eq. (1) admits a
nonuniform exponential dichotomy in I with & < a, and assume that ||B(t)|| < Se~2¢ltl for every t € I. If § is sufficiently small, then
there exist projections P(t) and Q (t) =1d —P(t) for t € I such that for every t,s € I:

1. (see (30), (41), (42) and (58) in [5])
POy =T, 00POT©O.0), Q©=T(0QOT(©.0),
and
PO)P(0)=P(0),  PO)P(0)=P(0).
QMQO®=Q©0). Q®Q© =Q();
2. (see (21) and (22) in [5])
[Tt )l 1mP(s)|| < De ™98 ¢ >,
and
[T, )1 Im Q(s)]| < De~@C0FH s> ¢ >0;
3. (see (48) in [5])

|P@©)| <4De!! and ||Q ()| < 4De. (8)

Let x(t) = T(t, s)x(s) be a solution of Eq. (1). We consider the change of variables y(t) = x(t)e!, where k = (c +d)/2.
Then y(t) satisfies the linear equation

y=(AM®)+«)y. 9)
and denoting by T, (t,s) its evolution operator we have
Te(t,s) =T(t,s)e< .

Since Eq. (1) admits a nonuniform exponential trichotomy in I, we conclude that Eq. (9) admits a nonuniform exponential
dichotomy in I with o = (d — ¢)/2, and projections

P1(®)=P() and Qi1(t)= Q)+ R(t)
for each t € I. It follows from Lemma 1 that the equation
y' =[AWM) +«+B(®)]y (10)

admits a nonuniformAexponegtial dichotomy, say with projections P1(t) and Q;(t). In particular, the linear subspaces
E1(t) = P1(t)(X) and F1(t) = Q1()(X) satisfy

NGEINGEDS (11)
Now we consider a second change of variables z(t) = x(t)e’(’t, where ¥’ = —(a + b)/2. Then z(t) satisfies the linear

equation
7 = (At)+«')z, (12)

and denoting by T,-(t, s) its evolution operator we have

Ter(t,s) = T(t,s)e .

Since (1) admits a nonuniform exponential trichotomy in I, we conclude that Eq. (12) admits a nonuniform exponential
dichotomy in I with « replaced by o’ = (b — a)/2, and projections

Pa(t)=P(t)+R(t) and Q2(t)=Q()
for each t € I. It follows from Lemma 1 that the equation
7 =[A(t)+«"+B®)]z (13)

admits a nonuniform exponential dichotomy, say with projections Po(t) and Qa(t). In particular, the linear subspaces
Ey(t) = P2(t)(X) and E5(t) = 04(t)(X) satisfying



L. Barreira, C. Valls / J. Math. Anal. Appl. 351 (2009) 373-381 377

Ex) @ Fa(t) = X. (14)

We also consider the evolution operators of Egs. (10) and (13), namely

Tet,s)=eC9T(t,s) and Te(t,s) =e<TITw,s). (15)
Lemma 2. For every s € | we have

E1(s) C Ex(s) and F(s) C Fy(s).
Proof. Set

1 o
p(x) =limsup — log | T, (t, )X
t——+o00 t

If there exists x € E1(s) \ E»(s), then we write x =y + z with y € Ex(s) and z € F5(s). Since x € E1(s), by Lemma 1 we have

[T, $)x]| < De M@ E=Felslx)

and hence u(x) < —I'(«), where

I'(x) =x/1—25D/x. (16)

Moreover, we have z # 0 (otherwise x =y € E(s) which is impossible), and hence
. 1
p(x) =max{u(y), @)} =@ = l:miur) — log [Te(t. s)z].
—+00
Since z € Fo(s), for t > s we have

” TA‘K (t, S)ZH = e(K—K/)(t—s)

A 1 ! ’ _ _

T (t.9)z] > < [lz]le®  HTE@NE=) el
D

and hence

ux) =k —«' + ') —e,

but this contradicts to the inequality ft(x) < —I"(cr) provided that ¢ <b +d (which follows from (7)) and § is sufficiently
small. Therefore, E1(s) C E2(s). We show in a similar manner that F;(s) C F(s) foreach se R. O

Lemma 3. For every s € | we have
(E200NF1(9)) @ E1(5) @ Fa(s) = X. (17)
Proof. It follows from (11) that
(B2 N E1(s) @ (E2(5) N F1(9)) = Ea(s).
But in view of Lemma 2 we have E"z(s) N }3‘1(5) =£ (s), and hence
E1(s) @ (E2(5) N F1(5)) = E2(s).
The desired statement follows now immediately from (14). O
Lemma 4. For each t € I we have
P1Q2() = Q2(OP1() =0.
Proof. By Lemma 2, for each x € X we have

Qa(tx € Fa(t) C F1(0),

and hence,

P1®)Q2(t)x € P1(©)F1(t) = P1(t)Im Q1 (t) = {0}.

Similarly, again by Lemma 2, for each x € X we have
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Pixe E1(t) c E2 (0
and hence,

Q2OP1(Ox € Q2O Ex(t) = Q2(HIm P (1) = {0).

This completes the proof of the lemma. O

We proceed with the proof of Theorem 2. We set

PO=P1®), Q®=0Q200 and R@®=1d-P1(t) - Q2(0).
In view of the first property in Lemma 1, we have

Tt )P(s) = POTc(t,s) and Te(t,5)Q () =QOTe(t.s).
which by (15) yields that

T, s)Ps)=P®)T(t,s) and T(t,5)0)=0Q T, s).
This readily implies that

T, 9)Rs)=ROT(s,0).
Furthermore, the operators P(¢t) and O (t) are projections, and by Lemma 4 we also have

R®? = (1d=P1(0) — Q2(0)) =1d=2P1(1) — 202(6) + P10 + Q20 + P1(1) Q20 + Q20 P1(0)

=1d—P1(t) — Qa(t) = R(v).
Now we consider the subspaces

Eo=P0)X), FO=Q®X) and G =R®X). (18)
We note that

Eo=E11, Fo=FO and GO =E@®NnF@©. (19)

The first two identities are immediate from (18). Moreover, since P(t) and O (t) are projections_respectively onto E1 )
and F5(t), it follows from Lemma 3 (see (17)) that the image of (the projection) Id — Pt)— Q) =R@) is E2(t) N E1(t). This
yields the third identity in (18).

It follows from (8) that

IR®] = [[1d=P1(®) — Q2(0) | < 1+8Def! < (1 +8D)efltl. (20)
By Lemma 1, since f)(t) =P, (t), for every t > s we have

|7 91ES)]| = [Fete. 9 1E1 o)
= Kje K= o=T @ (=5)+2els|

for some constant K; > 0. Similarly, since Q(t) = Qz(t), for every t > s > 0 we have

1T, IE® | = | Tet, 9™ e F0)|
< Kze'(/(tfs)e*F(a/)(f*S)JrZs\t\’

for some constant K, > 0. Furthermore, by (19), for every t > s we have

(EHILG] AR | =[TE(E2) N Fr®)| - [Rs)|
T, 9)E25)] - |[R(s)| =e R (21)

Analogously, again by (19

NN

), for every t >s >0,

[T Ro)| < Neol-[rof <[Te.o E O] [RoO]
— pK(t=9) ” Te(t,s)7! |I:‘1(t)H :

By Lemma 1 and (20), it follows from (21) that for every t > s,
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[T $)R(s)| < (1 +8D)Kpe ™t M@ E=9)+2¢lsl
and it follows from (22) that for every t > s >0,
[T, 97 R(s)| < (1+8D)Kqek =9 I@t=sF2els],

This shows that Eq. (2) admits a nonuniform exponential trichotomy in [0, +00). The second property follows also immedi-
ately from the above lemmas. This completes the proof of the theorem. O

It follows from the proof of Theorem 2 that Eq. (2) admits a nonuniform exponential trichotomy with the constants
in (3) replaced respectively by

N b b— A b b—
s )

2 2 2 2
d d— N d d—
E=C+ - I ¢ s d:C+ + I ¢ s
2 2 2 2
D D
3e and max{ = , = }
1—-6D/[d—c) 1-8D/(b—a)

with I' as in (16).
3.2. Robustness of strong exponential trichotomies

We can also consider a stronger version of exponential trichotomy and establish a corresponding robustness result.
Namely, we say that Eq. (1) admits a strong nonuniform exponential trichotomy in I if it admits a nonuniform exponential
trichotomy in I and there exist constants 8 >d and y > b such that for every t,s € [ with t > s we have

[T, )" P()| < DP9t
and
[T, $)Q(s)| < De? =9+l

The following is a robustness result for strong trichotomies in the interval R¥ = [0, 4+-00).

Theorem 3. Let A, B :Rg — B(X) be continuous functions such that Eq. (1) admits a nonuniform exponential trichotomy in Rg
satisfying (7), and assume that ||B(t)|| < e 21!l for every t € R(J{. If 8 is sufficiently small, then Eq. (2) admits a strong nonuniform
exponential trichotomy in ROJ’.

Proof. We recall that Eq. (1) is said to admit a strong nonuniform exponential dichotomy if it admits a nonuniform exponential
dichotomy and there exists 8 > « such that for every t > s we have

” T(t, s)*l P(t) ” < Ceﬁ(t*5)+g|t|’

and

” T(t,s)Q(s) H < CeP=o)+els|,

Lemma 5. (See [5].) Let A, B :]Rar — B(X) be continuous functions such that Eq. (1) admits a nonuniform exponential dichotomy
inR§ with & < a, and assume that || B(t)|| < se=2¢I! for every t € R} If § is sufficiently small, then Eq. (2) admits a strong nonuniform
exponential dichotomy in Rg.

Proceeding as in the proof of Theorem 2 we consider the projections IA’(t) = P, (t) and Q(t) = Qz(t). It then follows from
Lemma 5 that for every t > s we have

T(t,$) 1 Pt) | = e | T (t, 5) 1 P(t)| < 8D2Dek =9 ePlt-
17,5 By = 5| T (t.5) B0 2 ek (t=5) Blt—5)+3elt]
and
T(t,$)0 ()| = e | T (t,5)0 (5)|| < De ™ E=9) b= )
[TE.$)Q )| =e™ Tt 5)Q(s)| < De™ 7)ef =9 H3¢H!

This completes the proof of the theorem. O
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3.3. Nonuniform exponential trichotomies in [ = (—o0, 0]

Now we consider intervals of the form (—oo, o] with o > 0. Our robustness result is entirely analogous to Theorem 2,
and can be readily obtained simply by reversing the time.

Theorem 4. Let A, B: I — B(X) be continuous functions in a interval [ = (—oo, o] with o0 > 0 such that Eq. (1) admits a nonuniform
exponential trichotomy in [ satisfying (7), and assume that || B(t)| < Se—2¢ltl for every t € I. If § is sufficiently small, then there exist
projections P~ (t), Q ~(t) and R~ (t) for t € I such that:

1. Eq. (2) admits a nonuniform exponential trichotomy in (—oo, 0] with respect to these projections;
2. for the new trichotomy, the corresponding estimates to the ones in (4) and (6) are valid for all t > s witht,s € I.

Proof. The following is a version of Lemma 1 for intervals of the form (—oo, ¢], and is obtained by reversing the time.

Lemma 6. Let A, B:1 — B(X) be continuous functions in an interval (—oo, 0] with o > 0 such that Eq. (1) admits a nonuniform
exponential dichotomy in I with ¢ < a, and assume that ||B(t)| < se=2¢ltl for every t e I. If § is sufficiently small, then there exist
projections P(t) and Q (t) =1d —P(t) for t € I such that for every t,s € I:

1.
PO =T, 00POT©O,0), Q=T 0QOT(©,0),
and
P(O)P(0)=P(0),  P(0)P(0)=P(0),
Q®QO=0Q(0), Q0Q©) =0Q();
2.
|7, $)[Im P(s)|| < De~@C=+elsl 0>t >,
[T, )1 1m Q)| < De~@C-0FH s>
3.

|Pt)] <4Def and |Q(b)| <4De".
The desired statement follows readily from Lemmas 3 and 6. O

We can obtain in a similar manner a version of Theorem 3 for intervals of the form (—o0, o].
4. Exponential trichotomies in R

Theorem 5. Let A, B: R — B(X) be continuous functions such that Eq. (1) admits a nonuniform exponential trichotomy in R satis-
fying (7), and assume that ||B(t)|| < 8e~2¢!tl for every t € R. If § is sufficiently small, then Eq. (2) admits a nonuniform exponential
trichotomy in R.

Proof. We need the following result.

Lemma 7. (See [5].) Let A, B : R — B(X) be continuous functions such that Eq. (1) admits a nonuniform exponential dichotomy in R
with ¢ < a, and assume that ||B(t)|| < se=2¢It! for every t € R. If § is sufficiently small, then Eq. (2) admits a nonuniform exponential
dichotomy in R, with the constants a, D and & replaced respectively by G, 4DD and 2e. Moreover, for every t,s € R the associated
projections P(t) and Q (t) = Id — P(t) satisfy:

P&)="T,05P©0)s 10,1
and
Q) =T(t,0)5Q0)S'T(0,0)
with S = P(0) + @ (0) invertible, where P(0) is the projection given by Lemma 1 and Q (0) is the projection given by Lemma 6;
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2.
SP(0)=P(0),  SQ0)=0Q(0),
P®OPt)=P(t), PP =P,
QMe®m=Q®, QMABL=QW®);
3.
| T(t.9)1ImP(s)| < De 89 >,
and
[Tt 9)ImQ(s)| < De @0+l s> ¢
4.

[P®| <4Def and ||Q )| <4De.

By Lemma 7, Eq. (10) admits a nonuniform exponential dichotomy, say with projections P; and Q1, and Eq. (13) admits
a nonuniform exponential dichotomy, say with projections P, and Q. We consider the subspaces

E1()=P1()(X) and F1(t) = Q1(t)(X),

and

Ex(t) =P2()(X) and F2(t) = Q2(t)(X).

Since the map S in Lemma 7 is invertible, it follows from Lemmas 2 and 3 that

E1(t) C Ex(0), F2(t) C F1(0),

and

(E2) N F1(0) @ E1(t) ® F2(t) = X

for every t € R. This allows us to proceed exactly as in the proof of Theorem 2 to show that Eq. (2) admits a nonuniform
exponential trichotomy in R with projections P1(t), Q2(t) and Id —P1(t) — Q2(t). O
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