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1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromorphic functions in the complex plane. We adopt
the standard notations in the Nevanlinna theory of meromorphic functions as explained in [7,10] and [14]. It will be conve-
nient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence.
For a nonconstant meromorphic function h, we denote by T (r,h) the Nevanlinna characteristic of h and by S(r,h) any
quantity satisfying S(r,h) = o(T (r,h)) (r → ∞, r /∈ E).

Let f and g be two nonconstant meromorphic functions and let a be a complex number. We say that f and g share a
CM, provided that f − a and g − a have the same zeros with the same multiplicities. Similarly, we say that f and g share
the value a IM, provided that f − a and g − a have the same zeros ignoring multiplicities. In addition, we say that f and g
share ∞ CM, if 1/ f and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/ f and 1/g share 0 IM (see [15]).
Let b �≡ ∞ be a nonconstant meromorphic function such that T (r,b) = S(r, f ) and T (r,b) = S(r, g). If f − b and g − b
share 0 CM, we say that f and g share b CM, and we say that f and g share b IM, if f − b and g − b share 0 IM. In this
paper, we also need the following definition.

Definition 1.1. For a nonconstant entire function f , the order σ( f ), lower order μ( f ), hyper-order σ2( f ) and lower hyper-
order μ2( f ) are defined by

σ( f ) = lim sup
r→∞

log T (r, f )

log r
= lim sup

r→∞
log log M(r, f )

log r
,

μ( f ) = lim inf
r→∞

log T (r, f )

log r
= lim inf

r→∞
log log M(r, f )

log r
,
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σ2( f ) = lim sup
r→∞

log log T (r, f )

log r
= lim sup

r→∞
log log log M(r, f )

log r

and

μ2( f ) = lim inf
r→∞

log log T (r, f )

log r
= lim inf

r→∞
log log log M(r, f )

log r

respectively, where and in what follows, M(r, f ) = max|z|=r | f (z)|.

In 1977, L.A. Rubel and C.C. Yang [12] proved that if an entire function f shares two distinct complex numbers CM with
its derivative f ′, then f = f ′. How is the relation between f and f ′, if an entire function f shares one complex number a
CM with its derivative f ′? In 1996, R. Brück [1] made a conjecture that if f is a nonconstant entire function satisfying
σ2( f ) < ∞, where σ2( f ) is not a positive integer, and if f and f ′ share one complex number a CM, then f − a = c( f ′ − a)

for some constant c �= 0. For the case that a = 0, the above conjecture had been proved by R. Brück [1]. In the same
paper, R. Brück proved the above conjecture is true, provided that a �= 0 and N(r,1/ f ′) = S(r, f ). In 1998, G.G. Gundersen
and L.Z. Yang proved that the conjecture is true for a �= 0, provided that f satisfies the additional assumption σ( f ) < ∞
(see [6]). In 1999, L.Z. Yang proved that if a nonconstant entire function f and one of its derivatives f (k) (k � 1) share one
complex number a (�= 0) CM, where f satisfies σ( f ) < ∞ and k (� 1) is a positive integer, then f − a = c( f (k) − a) for
some complex number c �= 0 (see [16]). In 2004, J.P. Wang proved the following theorem.

Theorem A. (See [13, Theorem 1].) Let f be a nonconstant entire function of finite order, let P be a polynomial with degree p � 1, and
let k be a positive integer. If f − P and f (k) − P share 0 CM, then f (k) − P = c( f − P ) for some complex number c �= 0.

Regarding Theorem A, it is natural to ask the following question.

Question 1.1. What can be said if a nonconstant entire function f and one of its derivatives f (k) (k � 1) share a small entire
function a related to f ?

For dealing with Question 1.1, we will prove the following result which improves Theorem A in this paper.

Theorem 1.1. If f is a nonconstant solution of the differential equation

f (k) − a1 = ( f − a2) · eQ , (1.1)

where a1 and a2 are two entire functions such that σ(a j) < 1 ( j = 1,2), k (� 1) is a positive integer, and Q is a polynomial, then
μ2( f ) = σ2( f ) = deg(Q ), where and in what follows, deg(Q ) denotes the degree of Q .

From Theorem 1.1 we get the following corollary that improves Theorem 1 in [6].

Corollary 1.1. If f is a nonconstant solution of the differential equation (1.1), where a1 and a2 are two entire functions such that
σ(a j) < 1 ( j = 1,2), k (� 1) is a positive integer, and Q is a nonconstant polynomial, then μ2( f ) = σ2( f ) = deg(Q ) � 1, and f is
an entire function of infinite order.

From Theorem 1.1 we also get the following two corollaries which improve Theorem A and deal with Question 1.1.

Corollary 1.2. Let f be a nonconstant solution of the differential equation

f (k) − a = ( f − a) · eQ , (1.2)

where k (� 1) is a positive integer, a (�≡ 0,∞) is an entire function such that σ(a) < 1, and Q is a polynomial. If μ2( f ) < ∞ and
μ2( f ) is not a positive integer, then f − a = c( f (k) − a) for some complex number c �= 0.

Corollary 1.3. Let f be a nonconstant solution of the differential equation (1.2), where k (� 1) is a positive integer, a (�≡ 0,∞) is an
entire function such that σ(a) < 1, and Q is a polynomial. If μ( f ) < ∞, then f − a = c( f (k) − a) for some complex number c �= 0.

Proof. First, from (1.2) and Lemma 2.1 in Section 2 of this paper, we get

T
(
r, eQ )

� T (r, f ) + 2T (r,a) + O
(
log T (r, f ) + log r

)
(r /∈ E). (1.3)

From (1.3), Lemma 2.2 and the condition μ( f ) < ∞, we get

σ
(
eQ ) = μ

(
eQ )

� μ( f ) < ∞. (1.4)
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From (1.4) we see that Q is a polynomial. From (1.2), (1.4) and Theorem 1.1 we get

μ2( f ) = σ2( f ) = deg(Q ) = 0. (1.5)

From (1.5) we see that Q , and so eQ is a constant. From this and (1.2) we get the conclusion of Corollary 1.3. �
Example 1.1. Let f (z) be a solution of the differential equation

f ′(z) − z = (
f (z) − z

) · ez.

Then σ(z) = 0, and from Lemma 2.11 in Section 2 of this paper we see that f is a nonconstant entire function. Moreover,
it immediately follows from Theorem 1.1 that μ2( f ) = σ2( f ) = σ(ez) = 1. This example shows that the conclusions of
Theorem 1.1 and Corollary 1.1 occur. This example also shows that the condition “μ2( f ) < ∞ and μ2( f ) is not a positive
integer” in Corollary 1.2 is the best possible.

From Corollary 1.2 we get the following corollary.

Corollary 1.4. Let f be a nonconstant solution of the differential equation (1.2), where k (� 1) is a positive integer, a (�≡ 0,∞) is an
entire function such that σ(a) < 1, and Q is a polynomial. If μ2( f ) < ∞ and μ2( f ) is not a positive integer, and if f and f (k) share b
IM, where b (�≡ a,∞) is a small function related to f , then f = f (k).

Proof. First, from Corollary 1.2 we get

f − a = c
(

f (k) − a
)
, (1.6)

where c (�= 0) is a complex number. If c = 1, from (1.6) we get the conclusion of Corollary 1.4. Next we suppose that c �= 1.

Then it follows from (1.6) that f �≡ f (k). If N(r,1/( f − b)) �= S(r, f ), from a �≡ b we see that there exists one point z0 such
that f (z0) = f (k)(z0) = b(z0) �= a(z0). From this and (1.6) we get the conclusion of Corollary 1.4. Next we suppose that

N

(
r,

1

f − b

)
= S(r, f ). (1.7)

From (1.7) and Nevanlinna’s three small functions theorem (see [15, Theorem 1.36]) we get

T (r, f ) = T
(
r, f (k)

) + O (1) = N1)

(
r,

1

f − a

)
+ S(r, f ), (1.8)

where and in what follows, N1)(r,1/( f − a)) denotes the counting function of simple zeros of f − a. Let

F = f − b

a − b
, G = f (k) − b

a − b
. (1.9)

Then from (1.7)–(1.9) we get

N(r, F ) + N

(
r,

1

F

)
= S(r, f ), N(r, G) + N

(
r,

1

G

)
= S(r, f ) (1.10)

and

lim sup
r→∞
r /∈E

N0(r,1)

T (r, F ) + T (r, G)
= 1

2
, (1.11)

where and in what follows, N0(r,1) denotes the reduced counting function of the common 1-points of F and G. Thus
from (1.10), (1.11) and Lemma 2.9 in Section 2 of this paper we have F = G or F G = 1. If F = G, from (1.9) we get f = f (k),

which is impossible. If F G = 1, from (1.9) we get

( f − b)
(

f (k) − b
) = (a − b)2. (1.12)

From (1.6), (1.12) and c �= 1 we have

f 2 + (ca − cb − a − b) f + (
ab − a2c + abc

) = 0. (1.13)

From (1.13) we get T (r, f ) = S(r, f ), which is impossible.
Corollary 1.4 is thus completely proved. �
In 1995, H.X. Yi and C.C. Yang posed the following question.
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Question 1.2. (See [15, p. 398].) Let f be a nonconstant meromorphic function, and let a be a finite nonzero complex
constant. If f , f (n) and f (m) share the value a CM, where n and m (n < m) are distinct positive integers not all even or odd,
then can we get the result f = f (n)?

Regarding Question 1.2, G.G. Gundersen and L.Z. Yang proved the following result in 1998.

Theorem B. (See [6, Theorem 2].) Let f be a nonconstant entire function of finite order, let a (�= 0) be a complex number, and let n be
a positive integer. If the value a is shared by f , f (n) and f (n+1) IM, and shared by f (n) and f (n+1) CM, then f = f ′.

In this paper, we will prove the following two theorems that improve Theorem B.

Theorem 1.2. Let f be a nonconstant solution of the differential equation

f (n+1)(z) − P (z) = (
f (n)(z) − P (z)

) · eQ (z), (1.14)

where n (� 1) is a positive integer, P (�≡ 0) is a nonconstant polynomial, and Q is a polynomial. If f − P and f (n) − P share 0 IM,
and if μ2( f ) < ∞ and μ2( f ) is not a positive integer, then eQ is a constant, and f is given as one of the following three expressions:

(i) f = P + f (l+n)

(l+n)! · (z − z1)
j1 (z − z2)

j2 · · · (z − zk)
jk , where l = deg(P ) = deg( f (n)) is the degree of f (n) and P , k (� 1) is a positive

integer, z1, z2, . . . , zk−1, zk are k distinct elements in the set {z: − 1
c · P + (c − 1)

∑l
j=1

P ( j)

c j+1 = 0} = {z1, z2, . . . , zk−1, zk}, in
which c �= 0,1 is a complex number, j1, j2, . . . , jk−1, jk are positive integers such that j1 + j2 + · · · + jk = l + n.

(ii) f = P + γk(z − z1)
j1 (z − z2)

j2 · · · (z − zk)
jk , where γk (�= 0) is a certain complex number, z1, z2, . . . , zk−1 and zk are k distinct

elements in the set {z: P (z) = 0} = {z1, z2, . . . , zk−1, zk}, k (� 1) is a positive integer, and 1 � max{deg(P ), j1 + j2 +· · ·+ jk} �
n − 1.

(iii) f = γ ez, where γ is a certain nonzero complex number.

Theorem 1.3. Let f be a nonconstant entire function such that μ( f ) < ∞, and let a (�≡ 0,∞) be an entire function such that
σ(a) < μ( f ), and let n (� 1) be a positive integer. If a is shared by f , f (n) and f (n+1) IM, and shared by f (n) and f (n+1) CM, then
f = γ ez, where γ is a certain nonzero complex number.

Example 1.2. (See [4].) Let f (z) = eez + ez, and a(z) = ez. Then

f ′(z) − a(z) = (
f (z) − a(z)

) · ez.

Moreover, we verify that σ(a) < μ( f ) and μ( f ) = ∞. This example shows that the condition “μ( f ) < ∞” in Theorem 1.3
is the best possible.

From Theorem 1.2 we get the following corollary.

Corollary 1.5. Let f be a nonconstant solution of (1.14), where P (�≡ 0) is a nonconstant polynomial and n = 1. If f − P and f ′ − P
share 0 IM, and if μ2( f ) < ∞ and μ2( f ) is not a positive integer, then eQ is a constant and f = f ′ or f is expressed as f =
P + f (l+1)

(l+1)! · (z − z1)
j1 (z − z2)

j2 · · · (z − zk)
jk , where l = deg(P ) = deg( f ′) is the degree of f ′ and P , k (� 1) is a positive integer,

z1, z2, . . . , zk−1, zk are k distinct elements in the set {z: − 1
c · P + (c − 1)

∑l
j=1

P ( j)

c j+1 = 0} = {z1, z2, . . . , zk−1, zk}, in which c �= 0,1
is a complex number, j1, j2, . . . , jk−1, jk are positive integers such that j1 + j2 + · · · + jk = l + 1.

From Theorem 1.3 we get the following corollary.

Corollary 1.6. Let f be a nonconstant entire function such that μ( f ) < ∞, and let a (�≡ 0,∞) be an entire function such that
σ(a) < μ( f ). If a is shared by f , f ′ and f ′′ IM, and shared by f ′ and f ′′ CM, then f = f ′.

2. Some lemmas

Let f (z) = ∑∞
n=0 anzn be an entire function. Next we define by μ(r) = max{|an|rn: n = 0,1,2, . . .} the maximum term

of f , and define by ν(r, f ) = max{m: μ(r) = |am|rm} the central index of f (see [10, p. 50]).

Lemma 2.1. (See [10, Corollary 2.3.4] or [15, Lemma 1.4].) Let f be a transcendental meromorphic function and k � 1 be an integer.
Then m(r, f (k)/ f ) = O (log(rT (r, f )), outside of a possible exceptional set E of finite linear measure, and if f is of finite order of
growth, then m(r, f (k)/ f ) = O (log r).
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Lemma 2.2. (See [10, Lemma 1.1.1].) Let g : (0,+∞) → R, h : (0,+∞) → R be monotone increasing functions such that g(r) � h(r)
outside of an exceptional set E of finite linear measure. Then, for any α > 1, there exists r0 > 0 such that g(r) � h(αr) for all r > r0.

Lemma 2.3. (See [9, pp. 36–37] or [10, Theorem 3.1].) If f is an entire function of order σ( f ), then

σ( f ) = lim sup
r→∞

logν(r, f )

log r
.

Lemma 2.4. (See [2, Lemma 2] or [3, Lemma 4].) If f is a transcendental entire function of hyper-order σ2( f ), then σ2( f ) =
lim supr→∞(log logν(r, f ))/ log r.

Lemma 2.5. Let f be an entire function of infinite order, with the lower hyper-order μ2( f ). Then

μ2( f ) = lim inf
r→∞

log logν(r, f )

log r
.

Proof. Set f (z) = ∑∞
n=0 anzn. Without loss of generality, we assume |a0| �= 0. By Theorem 1.9 in [8], we see that the maxi-

mum term μ(r) of f satisfies

logμ(2r) = log |a0| +
2r∫

0

ν(t, f )

t
dt � log |a0| + ν(r, f ) log 2. (2.1)

By Cauchy’s inequality, we have

μ(2r) � M(2r, f ). (2.2)

It follows from (2.1) and (2.2) that

ν(r, f ) log 2 � log M(2r, f ) + C, (2.3)

where C (> 0) is a suitable constant. By definition of μ2( f ), we have

μ2( f ) = lim inf
r→∞

log log log M(r, f )

log r
= lim inf

r→∞
log log T (r, f )

log r
. (2.4)

From (2.3) and (2.4) we get

lim inf
r→∞

log logν(r, f )

log r
� lim inf

r→∞
log log log M(r, f )

log r
= μ2( f ). (2.5)

On the other hand, by Theorem 1.10 in [8] we have

M(r, f ) < μ(r)
{
ν(2r, f ) + 2

} = |aν(r, f )|rν(r, f ) · {ν(2r, f ) + 2
}
. (2.6)

Since {|an|} is bounded, from (2.6) we get

log log M(r, f ) � logν(r, f ) + log logν(2r, f ) + log log r + C1

� logν(2r, f ) ·
(

1 + log logν(2r, f )

logν(r, f )

)
+ log log r + C2, (2.7)

where C j (> 0) ( j = 1,2) are suitable constants. By (2.4) and (2.7) we get

μ2( f ) = lim inf
r→∞

log log log M(r, f )

log r
� lim inf

r→∞
log logν(2r, f )

log 2r
= lim inf

r→∞
log logν(r, f )

log r
. (2.8)

By (2.5) and (2.8), Lemma 2.5 follows. �
Lemma 2.6. (See [10, Lemma 1.1.2].) Let g,h : (0,+∞) → R be monotonically increasing functions such that g(r) � h(r) outside of
an exceptional set F of finite logarithmic measure. Then, for any α > 1, there exists r0 > 0 such that g(r) � h(rα) for all r > r0.

Lemma 2.7. (See [5] or [15, corollary of Theorem 1.20].) Suppose that f is meromorphic in the complex plane. Then T (r, f ) �
O (T (2r, f ′) + log r), as r → ∞.

Lemma 2.8. (See [4, Lemma 8].) Let f be a nonconstant entire function, let a (�≡ 0,∞) be a small function related to f , and let k
(� 1) be a positive integer. If f (k) − a = ( f − a) · eα and f (k+1) − a = ( f − a) · eβ, where α and β are two entire functions such that
T (r, eα) + T (r, eβ) = S(r, f ), then f = f ′.
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Lemma 2.9. (See [15, Theorem 3.30].) Let f and g be two nonconstant meromorphic functions such that N(r, f )+ N(r,1/ f ) = S(r, f )
and N(r, g)+ N(r,1/g) = S(r, g). If lim supr −→

r /∈E
∞ N0(r,1)/(T (r, f )+ T (r, g)) > 1/3, where N0(r,1) denotes the reduced counting

function of the common 1-points of f and g, then f = g or f g = 1.

Lemma 2.10. (See [11, proof of Corollary 2].) Let f and a be two nonconstant polynomials. If there exists a complex number c �= 0,1

such that f ′ − a = c( f − a), then f is expressed as f = (c − 1)
∑p

j=0
a( j)

c j+1 , where p = deg( f ) = deg(a) is the degree of f and a.

Lemma 2.11. (See [10, Proposition 8.1].) Suppose that all the coefficients a0 (�≡ 0), a1,a2, . . . ,an−1 and g (�≡ 0) of the non-
homogeneous linear differential equation

f (n)(z) + an−1(z) f (n−1)(z) + · · · + a1(z) f ′(z) + a0(z) f (z) = g(z) (2.9)

are entire functions. Then all solutions of (2.9) are entire functions.

3. Proof of theorems

Proof of Theorem 1.1. Suppose that f (z) is a nonconstant polynomial. Then from (1.1) and σ(a j) < 1 ( j = 1,2), we see
that for sufficiently large positive number r0 we have T (r, eQ ) � T (r,a1) + T (r,a2) + O (log r) (r � r0), from which we get
σ(eQ ) = μ(eQ ) � max{σ(a1),σ (a2)} < 1. Combining the condition that Q (z) is a polynomial we get deg(Q ) = σ(eQ ) =
μ(eQ ) < 1, which implies that Q is a constant. Thus μ2( f ) = σ2( f ) = deg(Q ) = 0, this reveals the conclusion of Theo-
rem 1.1. Next we suppose that f is a transcendental entire function. We discuss the following two cases.

Case 1. Suppose that eQ is a constant. Let eQ = c, where and in what follows, c (�= 0) is a complex number. Then (1.1) can
be rewritten by

f (k) − a1 = c( f − a2). (3.1)

If σ( f ) < ∞, then μ2( f ) = σ2( f ) = deg(Q ) = 0, this reveals the conclusion of Theorem 1.1. Next we suppose that

σ( f ) = ∞. (3.2)

From the condition that f is a nonconstant entire function we have

M(r, f ) → ∞, (3.3)

as r → ∞. Let

M(r, f ) = ∣∣ f (zr)
∣∣, (3.4)

where zr = reiθ(r), θ(r) ∈ [0,2π) is some nonnegative real number. From (3.4) and the Wiman–Valiron theory (see
[10, Theorem 3.2]) we see that there exists a subset F ⊂ (1,∞) with finite logarithmic measure, i.e.,

∫
F

dt
t < ∞, such that

for some point zr = reiθ(r) (θ(r) ∈ [0,2π)) satisfying |zr | = r /∈ F and M(r, f ) = | f (zr)|, we have

f (k)(zr)

f (zr)
=

(
ν(r, f )

zr

)k(
1 + o(1)

)
, (3.5)

as r → ∞, r /∈ F . From (3.2), the condition σ(a j) < 1 ( j = 1,2) and Definition 1.1 we see that there exists an infinite
sequence of points zrn such that

lim
rn→∞

log log M(rn, f )

log rn
= lim sup

r→∞
log log M(r, f )

log r
= ∞ (3.6)

and

lim
rn→∞

|a j(zrn )|
| f (zrn )|

= lim
rn→∞

|a j(zrn )|
M(rn, f )

= 0 ( j = 1,2). (3.7)

Since (3.1) can be rewritten by

c =
f (k)

f − a1
f

1 − a2
f

, (3.8)

from (3.3)–(3.5), (3.7) and (3.8) we have
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c =
(

ν(rn, f )

zrn

)k(
1 + o(1)

)
, (3.9)

as rn → ∞. Proceeding as in the proof of Lemma 2.5 and applying (3.6), we get

lim
rn→∞

log log M(rn, f )

log rn
= lim

rn→∞
logν(rn, f )

log rn
= ∞,

which contradicts (3.9).

Case 2. Suppose that eQ is a nonconstant entire function. Then

σ
(
eQ ) = deg(Q ) � 1. (3.10)

From (1.1), Lemma 2.1 and the assumptions of Theorem 1.1 we get

T
(
r, eQ ) + O

(
rmax{σ(a1),σ (a2)}+ε

)
� 2T (r, f ) + O

(
log T (r, f ) + log r

)
(r /∈ E), (3.11)

where ε is an arbitrary positive number. From (3.10), (3.11), Lemma 2.2 and the condition max{σ(a1),σ (a2)} < 1, we get

1 � deg(Q ) = σ
(
eQ ) = μ

(
eQ )

� μ( f ). (3.12)

From (3.3), (3.4), (3.12), Definition 1.1 and the condition σ(a j) < 1 ( j = 1,2) we get

lim
r→∞

|a j(zr)|
| f (zr)| = lim

r→∞
|a j(zr)|
M(r, f )

= 0 ( j = 1,2). (3.13)

On the other hand, from (1.1) we get

∣∣Q (z)
∣∣ = ∣∣log eQ (z)

∣∣ =
∣∣∣∣log

f (k)(z)
f (z) − a1(z)

f (z)

1 − a2(z)
f (z) |

∣∣∣∣. (3.14)

Substituting (3.3)–(3.5) and (3.13) into (3.14) we get

eQ (zr) =
(

ν(r, f )

zr

)k(
1 + o(1)

)
, (3.15)

as |zr | = r → ∞, r /∈ F . From (3.15) we get

∣∣Q (zr)
∣∣ = k

∣∣logν(r, f ) − log r − iθ(r)
∣∣(1 + o(1)

)
, (3.16)

as |zr | = r → ∞, r /∈ F . We discuss the following two subcases.

Subcase 2.1. Suppose that

σ( f ) < ∞. (3.17)

From (3.17) and Lemma 2.3 we see that there exists a sufficiently large positive number r0, such that

logν(r, f ) = O (log r) (r � r0). (3.18)

Noting that θ(r) ∈ [0,2π), from (3.16) and (3.18) we get

∣∣Q (zr)
∣∣ = O

(
log |zr |

) (|zr | � r0, r /∈ F
)
. (3.19)

From (3.19) and the condition that Q is a polynomial we see that Q is a constant, thus deg(Q ) = 0. From this and (3.17)
we get μ2( f ) = σ2( f ) = deg(Q ) = 0, this reveals the conclusion of Theorem 1.1.

Subcase 2.2. Suppose that

σ( f ) = ∞. (3.20)

From (3.20) and Lemma 2.3 we see that

σ( f ) = lim sup
r→∞

logν(r, f )

log r
= ∞. (3.21)

Let
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Q = qnzn + qn−1zn−1 + · · · + q1z + q0, (3.22)

where qn (�= 0), qn−1, . . . ,q1 and q0 are complex numbers. From (3.22) we get lim|z|→∞ |Q |/|qnzn| = 1. From this we see
that there exists some sufficiently large positive number r0, such that |Q |/|qnzn| > 1/e (|z| > r0). Combining (1.1) we get

n log r + log |qn| − 1 = log
∣∣log eQ (z)

∣∣ �
∣∣log log eQ (z)

∣∣ =
∣∣∣∣log log

f (k) − a1

f − a2

∣∣∣∣ (|z| > r0
)
. (3.23)

Since

f (k) − a1

f − a2
=

f (k)

f − a1
f

1 − a2
f

, (3.24)

by substituting (3.3)–(3.5) and (3.13) into (3.24) we get

f (k)(zr) − a1(zr)

f (zr) − a2(zr)
=

(
ν(r, f )

zr

)k(
1 + o(1)

)
, (3.25)

as |zr | → ∞, r /∈ F . From (3.23) and (3.25) we have

n log |zr | + log |qn| − 1 �
∣∣∣∣log log

(
ν(r, f )

zr

)k(
1 + o(1)

)∣∣∣∣, (3.26)

as |zr | = r → ∞, r /∈ F . Since

log

((
ν(r, f )

zr

)k(
1 + o(1)

)) = k

(
1 − log r

logν(r, f )
− iθ(r)

logν(r, f )

)
logν(r, f ) + o(1), (3.27)

as r → ∞, r /∈ F , from (3.21), (3.26), (3.27), Lemma 2.4 and the conditions θ(r) ∈ [0,2π) and |zr | = r, we get

n � lim sup
r→∞

|log log((
ν(r, f )

zr
)k(1 + o(1)))|

log r
� lim sup

r→∞
log logν(r, f )

log r

+ lim sup
r→∞

|log(1 − log r
logν(r, f ) − iθ(r)

logν(r, f ) )|
log r

+ lim
r→∞

log 2k

log r
+ lim sup

r→∞
2k1π

log r

= lim sup
r→∞

log logν(r, f )

log r
= σ2( f ), (3.28)

where k1 is some nonnegative integer. Namely

n � σ2( f ). (3.29)

From (3.22) we have

σ
(
eQ ) = deg(Q ) = n. (3.30)

From (3.29) and (3.30) we get

n = σ
(
eQ )

� σ2( f ). (3.31)

On the other hand, from (3.15) we have

lim sup
r→∞

log log(
(ν(r, f ))k

|zr |k · |1 + o(1)|)
log r

� lim sup
r→∞

log log M(r, eQ )

log r
. (3.32)

Since

lim sup
r→∞

log logν(r, f )

log r
= lim sup

r→∞
log log (ν(r, f ))k

2rk

log r
(3.33)

and

lim sup
r→∞

log log (ν(r, f ))k

2rk

log r
� lim sup

r→∞

log log(
ν(r, f ))k

|zr |k · |1 + o(1)|)
log r

, (3.34)

from (3.32)–(3.34), Lemma 2.4 and Definition 1.1 we get
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σ2( f ) � σ
(
eQ )

. (3.35)

From (3.30), (3.31) and (3.35) we get

σ2( f ) = deg(Q ) = n. (3.36)

On the other hand, from (3.23), (3.15) and the conditions zr = reiθ(r) , θ(r) ∈ [0,2π) and |zr | = r, we get

n log |zr | + log |qn| − 1 � log
∣∣Q (zr)

∣∣ �
∣∣log log eQ (zr)

∣∣ (|zr | > r0, |zr | /∈ F
)

(3.37)

and

log eQ (zr) = k
(
logν(r, f ) − log r − iθ(r) + o(1)

) = k
(
logν(r, f ) − log r

)(
1 + o(1)

)
, (3.38)

as r → ∞, r /∈ F . From (3.37), (3.38), Lemmas 2.5 and 2.6 we get

n � lim inf
r→∞

log logν(r, f )

log r
= μ2( f ). (3.39)

Noting that μ2( f ) � σ2( f ) and deg(Q ) = n, from (3.36) and (3.39) we get the conclusion of Theorem 1.1.

Theorem 1.1 is thus completely proved. �
Proof of Theorem 1.2. First, we will prove

μ2( f ) = μ2
(

f (n)
)
. (3.40)

If f (z) is a nonconstant polynomial, then μ2( f ) = μ2( f (n)) = 0, and so (3.40) holds. Next we suppose that f , and so f (k)

is a transcendental entire function, where k is an arbitrary positive integer. Next we will verify that (3.40) holds. In fact,
from Lemma 2.7 we have

T (r, f ) � O
(
T (2r, f ′) + log r

)
, (3.41)

as r → ∞. Noting that f and f ′ are transcendental entire functions, from (3.41) and the definition of the lower hyper-order
of a nonconstant entire function we get

μ2( f ) � μ2( f ′). (3.42)

On the other hand, since

T (r, f ′) � 2T (r, f ) + O
(
log rT (r, f )

)
(r /∈ E), (3.43)

from (3.43) and Lemma 2.2 we get

μ2( f ′) � μ2( f ). (3.44)

From (3.42) and (3.44) we get

μ2( f ) = μ2( f ′). (3.45)

Similarly

μ2
(

f ( j)) = μ2
(

f ( j+1)
)

(1 � j � n − 1). (3.46)

From (3.45) and (3.46) we get (3.40). From (3.40) and the condition μ2( f ) < ∞ we have μ2( f (n)) < ∞, where μ2( f (n)) is
not a positive integer. Combining (1.14) and Theorem 1.1 we have

f (n+1)(z) − P (z) = c
(

f (n)(z) − P (z)
)
, (3.47)

where and in what follows, c (�= 0) is a complex number. We discuss the following three cases.

Case 1. Suppose that f is a nonconstant polynomial and c �= 1. Then from (3.47) and Lemma 2.10 we get

f (n) = (c − 1)

l∑
j=0

P ( j)

c j+1
, (3.48)

where l = deg( f (n)) = deg(P ) is the degree of f (n) and P . From (3.48) we see that f is a polynomial with its degree
deg( f ) = l + n. Combining (3.48) and the condition that f − P and f (n) − P share 0 IM we get (i) of Theorem 1.2.
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Case 2. Suppose that f is a nonconstant polynomial and c = 1. Then from (3.47) we have

f (n) = f (n+1) = 0. (3.49)

From (3.49) we see that f is a nonconstant polynomial with degree deg( f ) � n − 1. Combining (3.49) and the condition
that f − P and f (n) − P share 0 IM we get the conclusion (ii) of Theorem 1.2.

Case 3. Suppose that f , and so f (n) is a transcendental entire function. First, from the condition that P is a nonconstant
polynomial we have

P ′ − P �≡ 0. (3.50)

Since (3.47) can be rewritten by

f (n+1)(z) − P ′

f (n) − P
+ P ′ − P

f (n) − P
= c, (3.51)

from (3.50) and Lemma 2.1 we get

m

(
r,

1

f (n) − P

)
= O

(
log T (r, f ) + log r

)
(r /∈ E),

and so

N

(
r,

1

f (n) − P

)
= T

(
r, f (n)

) + O
(
log T (r, f ) + log r

)
(r /∈ E). (3.52)

From (3.47) and (3.50) we get

N(2

(
r,

1

f (n) − P

)
� 2N

(
r,

1

( f (n+1) − P ′) − ( f (n+1) − P )

)

= 2N

(
r,

1

P ′ − P

)
= O (log r), (3.53)

where N(2(r,1/( f (n) − P )) denotes the counting function of those zeros of f (n) − P with multiplicity � 2 (see [15]). From
(3.52) and (3.53) we get

N1)

(
r,

1

f (n) − P

)
= N

(
r,

1

f (n) − P

)
+ O

(
log T (r, f ) + log r

)

= T
(
r, f (n)

) + O
(
log T (r, f ) + log r

)
(r /∈ E). (3.54)

Again from (3.47) we get

f (n+1− j)(z) − P (− j)(z) = c
(

f (n− j)(z) − P (− j)(z) + P j−1(z)
)
, (3.55)

where j is a positive integer satisfying 1 � j � n, P (− j) denotes a polynomial such that (P (− j))( j) = P , P j−1 = 0 or P j−1 is
a polynomial such that its degree deg(P j−1) � j − 1. From (3.55) we get

T (r, f ) = T
(
r, f (n)

) + O (log r) = T
(
r, f (n+1)

) + O (log r). (3.56)

From the condition that f − P , f (n) − P and f (n+1) − P share 0 IM we get

N1)

(
r,

1

f (n) − P

)
� N

(
r,

1

f (n+1) − P

)
� N

(
r,

1

f (n+1) − P

)
� T

(
r, f (n+1)

) + O (log r) (3.57)

and

N1)

(
r,

1

f (n) − P

)
� N

(
r,

1

f − P

)
� N

(
r,

1

f − P

)
� T (r, f ) + O (log r). (3.58)

From (3.54) and (3.56)–(3.58) we get

N(2

(
r,

1

f − P

)
+ N(2

(
r,

1

f (n) − P

)
+ N(2

(
r,

1

f (n+1) − P

)
= O

(
log T (r, f ) + log r

)
(r /∈ E) (3.59)

and

m

(
r,

1
)

= O
(
log T (r, f ) + log r

)
(r /∈ E). (3.60)
f − P
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By (3.47) we let

f (n) − P

f − P
= f (n) − P (n)

f − P
+ P (n) − P

f − P
= h (3.61)

and

f (n+1) − P

f − P
= f (n+1) − P (n+1)

f − P
+ P (n+1) − P

f − P
= ch. (3.62)

From (3.59)–(3.62) and the condition that f − P , f (n) − P and f (n+1) − P share 0 IM we get

T (r,h) = O
(
log T (r, f ) + log r

)
(r /∈ E). (3.63)

Again from (3.47) and Lemma 2.11 we see that f (n+l+1), and so f is a transcendental entire function such that σ( f ) < ∞,

where l = deg(P ) is the degree of P . From this and (3.63) we get T (r,h) = O (log r), which implies that h is a rational
function. From (3.55) we get

f ′ − P (−n) = c
(

f − P (−n) + Pn−1
)
. (3.64)

From (3.61) and (3.62) we get

(ch − h′) f = hf ′ + (ch − 1)P − (Ph)′. (3.65)

By (3.64) and (3.65) and eliminating f ′ we get

(ch − h′) f = chf + h
(
c Pn−1 − c P (−n) + P (−n)

) + (ch − 1)P − (Ph)′. (3.66)

From (3.66), the supposition that f is a transcendental entire function and the fact T (r,h) + T (r, P ) = O (log r) we get
ch − h′ = ch, and so h′ = 0, which implies that h is a constant. From this and (3.61) we see that h is a nonzero complex
number. Again from (3.61), (3.62) and Lemma 2.8 we get (iii) of Theorem 1.2.

Theorem 1.2 is thus completely proved. �
Proof of Theorem 1.3. First, from the assumptions of Theorem 1.3 we have

f (n+1) − a = (
f (n) − a

) · eQ , (3.67)

where Q is an entire function. From (3.67), Lemma 2.1 and the condition σ(a) < μ( f ) we see that for a sufficiently large
positive number r0 and a sufficiently small positive number ε, we have

T
(
r, eQ )

� 2T (r, f ) + 2rμ( f )−ε + O
(
log T (r, f ) + log r

)
(r /∈ E, r � r0). (3.68)

From (3.68), Lemma 2.2 and the condition μ( f ) < ∞, we get

σ
(
eQ ) = μ

(
eQ )

� μ( f ) < ∞, (3.69)

which implies that Q is a polynomial. Combining (3.67), (3.69) and proceeding as in the proof of Theorem 1.1, we have
μ2( f ) = σ2( f ) = deg(Q ) = 0. Thus eQ is a nonzero complex number c, so (3.67) can be rewritten by

f (n+1) − a = c
(

f (n) − a
)
. (3.70)

From (3.70), Lemma 2.11 and the condition σ(a) < μ( f ) we see that f is a transcendental entire function. Next from (3.70)
and by proceeding as in Case 3 in the proof of Theorem 1.2 we get the conclusion of Theorem 1.3. �
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