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1. Introduction

Separating maps, also called disjointness preserving maps, between spaces of scalar-valued continuous functions defined
on compact or locally compact spaces have drawn the attention of researchers in last years (see for instance [10,15,17,21]).
Roughly speaking, a (bijective) linear operator T between two spaces of functions is said to be separating if (T f ) · (T g) = 0
whenever f · g = 0 (see Definition 2.1).

Recently, separating maps and related operators have been studied in the context of Lipschitz function spaces. For in-
stance, Jiménez-Vargas obtained the representation of separating maps defined between little Lipschitz algebras on compact
metric spaces (see [18]). Unfortunately proofs rely heavily on the properties of these algebras and on the compactness of
spaces, so that they cannot carry over to the general case. More general results concerning spaces of vector-valued little
Lipschitz functions on compact and locally compact metric spaces have been given later in [19] and [20]. On the other hand,
in the recent paper [12], Garrido and Jaramillo studied a related problem: find those metric spaces X for which the algebra
of bounded Lipschitz functions on X determines the Lipschitz structure of X . But even if separating maps are related with
algebra isomorphisms, their techniques cannot be used here either. As for the spaces of scalar-valued bounded Lipschitz
functions, biseparating maps (i.e., separating bijections whose inverse is also separating) have been studied in [26] in the
case when the underlying spaces are compact, where a first description of them is included (as pointed out to us by the
referee).

The aim of this paper is to study biseparating maps when they are defined between spaces of bounded Lipschitz func-
tions and obtain their general representation in a much more general context. In this way, we do not restrict ourselves to the
scalar setting and we deal with the vector-valued case as well. As usual, when spaces of functions taking values in arbitrary
normed spaces are involved, the condition for an operator of being separating is not enough to ensure a good representa-
tion, and we must require the inverse map to be separating too (see for instance [1–4,7,13,14,16]; see also [5, Theorem 5.4]
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and [9] for special cases where this may not be true). We also drop any requirement of compactness on the metric spaces
where functions are defined, and completeness is assumed instead.

Other papers where related operators have been recently studied in similar contexts are [8,11] and [22] (see also [23]
and [24]).

The paper is organized as follows. In Section 2 we give some definitions and notation that we use throughout the paper.
In Section 3 we state the main results. In Section 4 we give some properties of spaces of Lipschitz functions that we
use later. Section 5 is devoted to prove the main results concerning biseparating maps between spaces of vector-valued
Lipschitz functions. In particular, apart from obtaining their general form, we show that the underlying spaces are bi-
Lipschitz homeomorphic and, when E and F are complete, we obtain the automatic continuity of some related maps. Finally,
in Section 6 we prove that every bijective separating map between spaces of scalar-valued Lipschitz functions defined on
compact metric spaces is indeed biseparating.

2. Preliminaries and notation

Let (X,d1) and (Y ,d2) be metric spaces. Recall that a map f : X → Y is said to be Lipschitz if there exists a constant
k � 0 such that

d2
(

f (x), f (y)
)
� kd1(x, y)

for each x, y ∈ X . The least such k is called the Lipschitz number of f and will be denoted by L( f ). Equivalently, L( f ) can be
defined as

L( f ) := sup

{
d2( f (x), f (y))

d1(x, y)
: x, y ∈ X, x �= y

}
.

When f is bijective and both f and f −1 are Lipschitz, we will say that f is bi-Lipschitz.
If E is a K-normed space, where K stands for the field of real or complex numbers, then Lip(X, E) will denote the space

of all bounded E-valued Lipschitz functions defined on X . If E = K, then we put Lip(X) := Lip(X, E).
It is well known that Lip(X, E) is a normed space endowed with the norm

‖ f ‖L = max
{‖ f ‖∞, L( f )

}
for each f ∈ Lip(X, E) (where ‖ · ‖∞ denotes the usual supremum norm), which is complete when E is a Banach space.

From now on, unless otherwise stated, we will suppose that X and Y are bounded complete metric spaces (see Re-
mark 3.6). In general, we will use d to denote the metric in both spaces.

For x0 ∈ X and r > 0, B(x0, r) will denote the open ball {x ∈ X: d(x, x0) < r}. Finally, if A is a subset of a topological
space Z , clZ A stands for the closure of A in Z .

We will suppose that E and F are K-normed spaces. Given a function f defined on X and taking values on E , we define
the cozero set of f as coz( f ) := {x ∈ X: f (x) �= 0}. Also, for each e ∈ E , ê : X → E will be the constant function taking the
value e. On the other hand, if ( fn) is a sequence of functions, then

∑∞
n=1 fn denotes its (pointwise) sum.

Finally, we will denote by L′(E, F ) the set of linear and bijective maps from E to F , and by L(E, F ) the subset of all
continuous operators of L′(E, F ).

We now give the definition of separating and biseparating maps in the context of Lipschitz function spaces.

Definition 2.1. A linear map T : Lip(X, E) → Lip(Y , F ) is said to be separating if coz(T f ) ∩ coz(T g) = ∅ whenever f , g ∈
Lip(X, E) satisfy coz( f ) ∩ coz(g) = ∅. Moreover, T is said to be biseparating if it is bijective and both T and T −1 are
separating.

Equivalently, a map T : Lip(X, E) → Lip(Y , F ) is separating if it is linear and ‖T f (y)‖‖T g(y)‖ = 0 for all y ∈ Y , whenever
f , g ∈ Lip(X, E) satisfy ‖ f (x)‖‖g(x)‖ = 0 for all x ∈ X .

3. Main results

Our first result gives a general description of biseparating maps.

Theorem 3.1. Let T : Lip(X, E) → Lip(Y , F ) be a biseparating map. Then there exist a bi-Lipschitz homeomorphism h : Y → X and a
map J : Y → L′(E, F ) such that

T f (y) = ( J y)
(

f
(
h(y)

))
for all f ∈ Lip(X, E) and y ∈ Y .
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Due to the representation given above, we see that when T is continuous, then J y belongs to L(E, F ) for every y ∈ Y . In
particular we also have that, for y, y′ ∈ Y and e ∈ E , the map ‖T ê(y) − T ê(y′)‖ � ‖T ‖‖e‖d(y, y′). Consequently, the map
y ∈ Y �→ J y ∈ L(E, F ) is continuous when L(E, F ) is endowed with the usual norm.

Of course Theorem 3.1 does not give an answer to whether or not a biseparating map is necessarily continuous. In fact,
automatic continuity cannot be derived in general. Nevertheless, in some cases an associated continuous operator can be
defined. This is done in Theorem 3.4. We first give a result concerning continuity of maps J y.

Given a biseparating map T : Lip(X, E) → Lip(Y , F ), we denote

Yd := {y ∈ Y : J y is discontinuous}.

Proposition 3.2. Let T : Lip(X, E) → Lip(Y , F ) be a biseparating map. Then the set {‖ J y‖: y ∈ Y \ Yd} is bounded. Moreover, Yd is
finite and each point of Yd is isolated in Y .

An immediate consequence is the following.

Corollary 3.3. Let T : Lip(X, E) → Lip(Y , F ) be a biseparating map. If X is infinite, then E and F are isomorphic.

Another immediate consequence of Proposition 3.2 and Theorem 3.1 is that Y \ Yd is complete, and that the restriction
of h to this set is a homeomorphism onto X \ h(Yd). This allows us to introduce in a natural way a new biseparating map
defined in a related domain.

Theorem 3.4. Suppose that E and F are complete. Let T : Lip(X, E) → Lip(Y , F ) be a biseparating map, and let J and h be as in
Theorem 3.1. Then Td : Lip(X \ h(Yd), E) → Lip(Y \ Yd, F ), defined as

Td f (y) := ( J y)
(

f
(
h(y)

))
for all f ∈ Lip(X \ h(Yd), E) and y ∈ Y \ Yd, is biseparating and continuous.

In the case when Y is compact and we deal with spaces of scalar-valued functions, the assumption on T of being just
separating and bijective is enough to obtain both its automatic continuity and the fact that it is biseparating.

Theorem 3.5. Let T : Lip(X) → Lip(Y ) be a bijective and separating map. If Y is compact, then T is biseparating and continuous.

Remark 3.6. Recall that we are assuming that the metrics in X and Y are bounded. Nevertheless results can be translated
to the case of unbounded metric spaces. Let d1 be an unbounded metric in X such that (X,d1) is complete. Then d′

1 :=
min{2,d1} is a bounded complete metric in X and the topology induced by both metrics is the same. Following the same
ideas as in [25, Proposition 1.7.1], we can also see that the identity map of the space Lip(X, E) (with respect to d1) onto itself
(with respect to d′

1) is an isometric isomorphism. It is easy to see now that if d2 is a (bounded or unbounded) complete
metric in Y , then a map f : (Y ,d2) → (X,d′

1) is Lipschitz if and only if f : (Y ,d2) → (X,d1) is what is called Lipschitz in the
small, that is, there exist r,k > 0 such that d1( f (y), f (y′)) � kd2(y, y′) whenever d2(y, y′) < r.

4. Lipschitz function spaces

Notice that since every complete metric space X is completely regular, it admits a Stone–Čech compactification, which
will be denoted by β X . Recall that this implies that every continuous map f : X → K can be extended to a continuous map
f β X from β X into K ∪ {∞} (which takes all values in K if f is bounded). In particular, given a continuous map f : X → E ,
we will denote by ‖ f ‖β X the extension of ‖.‖ ◦ f : X → K ∪ {∞} to β X .

Now, we suppose that A(X) is a subring of the space of continuous functions C(X) which separates each point of X
from each point of β X . We introduce in β X the equivalence relation

x ∼ y ⇔ f β X (x) = f β X (y)

for all f ∈ A(X). In this way, we obtain the quotient space γ X := β X/ ∼, which is a new compactification of X . Besides,
each f ∈ A(X) is continuously extendable to a map f γ X from γ X into K ∪ {∞}. In this context, A(X) is said to be strongly
regular if given x0 ∈ γ X and a nonempty closed subset K of γ X that does not contain x0, there exists f ∈ A(X) such that
f γ X ≡ 1 on a neighborhood of x0 and f γ X (K ) ≡ 0.

Finally, assume that A(X, E) ⊂ C(X, E) is an A(X)-module. We will say that A(X, E) is compatible with A(X) if, for every
x ∈ X , there exists f ∈ A(X, E) with f (x) �= 0, and if, given any points x, y ∈ β X such that x ∼ y, we have ‖ f ‖β X (x) =
‖ f ‖β X (y) for every f ∈ A(X, E). In this case, it is easy to see that ‖.‖ ◦ f : X → K ∪ {∞} can be continuously extended to
‖ f ‖γ X from γ X into K ∪ {∞}.
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It is straightforward to check that, if f ∈ Lip(X) and g ∈ Lip(X, E), then f · g ∈ Lip(X, E), that is,

Lemma 4.1. Lip(X, E) is a Lip(X)-module.

Remark 4.2. We introduce two families of Lipschitz functions that will be used later. Given x0 ∈ X and r > 0, the function
ψx0,r : X → K defined as

ψx0,r(x) := max

{
0,1 − d(x, x0)

r

}
for all x ∈ X , belongs to Lip(X) and satisfies ψx0,r(x0) = 1, coz(ψx0,r) = B(x0, r), ‖ψx0,r‖∞ = 1, and L(ψx0,r) = 1/r. On the
other hand, another Lipschitz function we will use is

ϕx0,r(x) := max

{
0,1 − d(x, B(x0, r))

r

}
for all x ∈ X , which satisfies ϕx0,r(B(x0, r)) ≡ 1, coz(ϕx0,r) = B(x0,2r), ‖ϕx0,r‖∞ = 1, and L(ϕx0,r) = 1/r.

Clearly, given f ∈ Lip(X, E), ‖.‖ ◦ f ∈ Lip(X). Then, by the definition of the equivalence relation ∼ in β X given above and
the function ψx0,r ∈ Lip(X) for each x0 ∈ X (see Remark 4.2), we obtain the next lemma.

Lemma 4.3. Lip(X, E) is compatible with Lip(X).

Lemma 4.4. Lip(X) is strongly regular.

Proof. Let K and L be two disjoint closed subsets of γ X . Since γ X is compact, there exists f0 ∈ C(γ X), 0 � f0 � 1,
satisfying f0(K ) ≡ 0 and f0(L) ≡ 1. Obviously K0 := {x ∈ γ X: f0(x) � 1/3} and L0 := {x ∈ γ X: f0(x) � 2/3} are disjoint
compact neighborhoods of K and L, respectively. Consider now K1 := K0 ∩ X and L1 := L0 ∩ X . We claim that d(K1, L1) > 0.

Suppose this is not true, so for each n ∈ N there exist xn ∈ K1 and zn ∈ L1 such that d(xn, zn) < 1/n. Since K0 is compact,
{xn: n ∈ N} has a limit point x0 in K0. Consequently, there exists a net (xα)α∈Ω in {xn: n ∈ N} which converges to x0.
Clearly, by using the Axiom of Choice if necessary, we can define a map sending each α ∈ Ω to nα ∈ N with the property
that xα = xnα . Next, we consider the net (zα)α∈Ω in {zn: n ∈ N} defined, for each α ∈ Ω , as zα := znα . By the compactness
of L0, we know that there exists a subnet (zλ)λ∈Λ of (zα)α∈Ω converging to a point z0 in L0.

We are going to prove that x0 = z0, which is absurd because K0 ∩ L0 = ∅. Obviously if x0 or z0 belongs to X , then we
would have x0 = z0, so we assume that this is not the case. Let U and V be open neighborhoods of x0 and z0, respectively,
and let n0 ∈ N. We are going to see that there exists n � n0, n ∈ N, such that xn ∈ U and zn ∈ V . Without loss of generality
we assume that x1, . . . , xn0 /∈ U and z1, . . . , zn0 /∈ V . Since (xλ)λ∈Λ and (zλ)λ∈Λ converge to x0 and z0, respectively, there
exist λ

x0
1 ∈ Λ and λ

z0
1 ∈ Λ such that xλ ∈ U for all λ � λ

x0
1 and zλ ∈ V for all λ � λ

z0
1 . Taking λ ∈ Λ such that λ � λ

x0
1 , λ

z0
1 , it

is clear that xλ ∈ U and zλ ∈ V . Now, there exists nλ ∈ N such that xλ = xnλ and zλ = znλ , as we wanted to show.
Thus, if we take any g ∈ Lip(X) with associated constant k, and n as above, we have that∣∣gγ X (xn) − gγ X (zn)

∣∣ � kd(xn, zn).

Clearly this implies that gγ X (x0) = gγ X (z0). By the definition of γ X , we have x0 = z0, and we are done.
Therefore we conclude that d(K1, L1) > 0. This lets us consider the function

f (x) := max

{
0,1 − d(x, L1)

d(K1, L1)

}
for all x ∈ X , defined in a similar way as in Remark 4.2, which belongs to Lip(X) and satisfies 0 � f � 1, f (K1) ≡ 0, and
f (L1) ≡ 1. This proves the lemma. �

The next lemma is a Lipschitz version (with a similar proof) of the result given in [6, Lemma 3.4] in the context of
uniformly continuous functions.

Lemma 4.5. Let X be a complete metric space and let x ∈ γ X. Then, x is a Gδ-set in γ X if and only if x ∈ X.

We close this section with a result concerning sums of Lipschitz functions that will be used in next sections.

Lemma 4.6. Let ( fn) be a sequence of functions in Lip(X, E) with pairwise disjoint cozero sets and suppose that there exists a constant
M > 0 such that L( fn) � M for all n ∈ N. If f := ∑∞

n=1 fn belongs to C(X, E), then f is a Lipschitz function.

Proof. Let x, y ∈ X . Suppose first that f (x) = fn0 (x) and f (y) = fn0 (y) for some n0 ∈ N. Then ‖ f (x) − f (y)‖ = ‖ fn0 (x) −
fn0 (y)‖ � Md(x, y). Next assume that f (x) = fn(x) �= 0 and f (y) = fm(y) �= 0 with n �= m. Then ‖ f (x) − f (y)‖ = ‖ fn(x) −
fm(y)‖ � ‖ fn(x)‖+‖ fm(y)‖ = ‖ fn(x)− fn(y)‖+‖ fm(y)− fm(x)‖ � 2Md(x, y). Consequently L( f ) � 2M and f is a Lipschitz
function. �
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5. Biseparating maps. Proofs

In this section we give the proofs of Theorems 3.1 and 3.4 and that of Proposition 3.2, and some corollaries as well. We
start with the notions of support point and support map.

Definition 5.1. Let T : Lip(X, E) → Lip(Y , F ) be a biseparating map. A point x ∈ γ X is said to be a support point of y ∈ Y if,
for every neighborhood U of x in γ X , there exists f ∈ Lip(X, E) with coz( f ) ⊂ U such that T f (y) �= 0.

Remark 5.2. For each y ∈ Y , the support point x ∈ γ X of y ∈ Y exists and is unique (see [4, Lemma 4.3]). This fact lets us
define a map hT : Y → γ X sending each y ∈ Y to its support point hT (y) ∈ γ X . This map is usually called the support map
of T . If there is no chance of confusion, we will denote it just by h (instead of hT ).

Proposition 5.3. Let T : Lip(X, E) → Lip(Y , F ) be a biseparating map. Then h(Y ) ⊂ X and h : Y → X is a homeomorphism.

Proof. In view of [4, Lemma 4.7], we can define the extension h̃ : γ Y → γ X of h. Besides, taking into account Lemmas 4.1,
4.3, and 4.4, we deduce that h̃ is a homeomorphism by applying [4, Theorem 3.1]. On the other hand, we have characteri-
zated the points in X as being the only Gδ-points in γ X (see Lemma 4.5). Then, for each y ∈ Y , h(y) clearly belongs to X
and h : Y → X is a homeomorphism. �
Lemma 5.4. If T : Lip(X, E) → Lip(Y , F ) is a biseparating map and f ∈ Lip(X, E) satisfies f ≡ 0 on a neighborhood of h(y), then
T f ≡ 0 on a neighborhood of y.

Proof. See [4, Lemma 4.4]. �
Lemma 5.5. Let T : Lip(X, E) → Lip(Y , F ) be a biseparating map. Let f ∈ Lip(X, E) and y0 ∈ Y be such that f (h(y0)) = 0. Then
T f (y0) = 0.

Proof. Let (rn) be a sequence in R+ which converges to 0 and satisfies 2rn+1 < rn for every n ∈ N. We set Bn := B(h(y0), rn),
B2

n := B(h(y0),2rn), and ϕn := ϕh(y0),rn for each n ∈ N, where ϕh(y0),rn is given as in Remark 4.2.

Claim 1. Let n,m ∈ N, n �= m. Then(
B2

2n \ B2n+1
) ∩ (

B2
2m \ B2m+1

) = ∅ = (
B2

2n−1 \ B2n
) ∩ (

B2
2m−1 \ B2m

)
.

The proof of Claim 1 follows directly from the fact that, for all k ∈ N, 2rk+1 < rk , and consequently B2
k+1 ⊂ Bk .

Claim 2. L( f ϕn) � 3L( f ) for all n ∈ N.

It is clear that f ϕn ∈ Lip(X, E) for all n ∈ N. Now, by definition of ϕn , coz( f ϕn) ⊂ B2
n , and if x ∈ B2

n , then ‖ f (x)‖ =
‖ f (x) − f (h(y0))‖ � L( f )d(x,h(y0)) < 2rn L( f ). Consequently, if x, y ∈ B2

n ,∥∥( f ϕn)(x) − ( f ϕn)(y)
∥∥ �

∥∥ f (x)
∥∥∣∣ϕn(x) − ϕn(y)

∣∣ + ∣∣ϕn(y)
∣∣∥∥ f (x) − f (y)

∥∥
� 2rn L( f )(1/rn)d(x, y) + L( f )d(x, y)

= 3L( f )d(x, y).

Besides, if x ∈ B2
n and y /∈ B2

n ,∥∥( f ϕn)(x) − ( f ϕn)(y)
∥∥ � 2rn L( f )(1/rn)d(x, y) = 2L( f )d(x, y).

Thus Claim 2 is proved.
Next we consider the function g := f ϕ1, and define g1 := ∑∞

n=1 f (ϕ2n − ϕ2n+1) and g2 := ∑∞
n=1 f (ϕ2n−1 − ϕ2n). It is

obvious that g = g1 + g2, and since f (h(y0)) = 0, we see that g1(h(y0)) = 0 and g2(h(y0)) = 0. This implies that both g1
and g2 are continuous. Taking into account of Claim 2, L( f (ϕn − ϕn+1)) � L( f ϕn) + L( f ϕn+1) � 6L( f ) for all n ∈ N. Besides,
since coz(ϕ2n − ϕ2n+1) ⊂ B2

2n \ B2n+1, we deduce from Claim 1 that

coz(ϕ2n − ϕ2n+1) ∩ coz(ϕ2m − ϕ2m+1) = ∅
whenever n �= m. Applying Lemma 4.6, we conclude that g1 (and similarly g2) belongs to Lip(X, E). Besides, g ≡ f on B1,
and by Lemma 5.4, T g(y0) = T f (y0). Therefore, to see that T f (y0) = 0, it is enough to prove that T g1(y0) = 0 and
T g2(y0) = 0.
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Claim 3. Given n0 ∈ N,

clX
(
coz(g1)

) ⊂ clX
(

B2
2n0

) ∪
n0−1⋃
n=1

clX
(

B2
2n \ B2n+1

)
.

To see this, notice that

coz

( ∞∑
n=n0

ϕ2n − ϕ2n+1

)
⊂

∞⋃
n=n0

coz(ϕ2n − ϕ2n+1) ⊂ B2
2n0

,

and that coz(ϕ2n − ϕ2n+1) ⊂ B2
2n \ B2n+1 for n < n0.

If we consider, for each n ∈ N, a point yn ∈ h−1(B2n−1) \ clY h−1(B2
2n), then the sequence (yn) converges to y0 because⋂∞

n=1 Bn = {h(y0)} and h is a homeomorphism.

Claim 4. h(yn) /∈ clX (coz(g1)) for all n ∈ N.

Let us prove the claim. Fix n0 ∈ N. It is clear by construction that h(yn0) /∈ clX (B2
2n0

) and that, if n < n0, then h(yn0) ∈
B2n0−1 ⊆ B2n+1, that is, h(yn0 ) /∈ clX (B2

2n \ B2n+1). Therefore Claim 4 follows from Claim 3.
Finally, since h(yn) /∈ clX (coz(g1)) for all n ∈ N, then g1 ≡ 0 on a neighborhood of h(yn). Applying Lemma 5.4,

T g1(yn) = 0 for all n ∈ N, and by continuity, we conclude that T g1(y0) = 0. In the same way it can be proved that
T g2(y0) = 0. �
Proposition 5.6. Let T : Lip(X, E) → Lip(Y , F ) be a biseparating map. For each y ∈ Y , there exists a linear and bijective map J y : E →
F such that

T f (y) = ( J y)
(

f
(
h(y)

))
for all f ∈ Lip(X, E) and y ∈ Y .

Proof. For y ∈ Y and f ∈ Lip(X, E) fixed, consider the function g := f − ̂f (h(y)) ∈ Lip(X, E). Clearly g(h(y)) = 0, and by
Lemma 5.5, T g(y) = 0. Consequently T f (y) = T ̂f (h(y))(y) for all f ∈ Lip(X, E) and y ∈ Y . Next, we define J y : E → F as
( J y)(e) := T ê(y) for all e ∈ E , which is linear and bijective (see [3, Theorem 3.5]). We easily see that T has the desired
representation. �
Remark 5.7. Notice that, if T : Lip(X, E) → Lip(Y , F ) is a biseparating map, T −1 : Lip(Y , F ) → Lip(X, E) is also biseparating,
so there exist a homeomorphism hT −1 : X → Y and a map K x : F → E for all x ∈ X such that

T −1 g(x) = (K x)
(

g
(
hT −1(x)

))
for all g ∈ Lip(Y , F ) and x ∈ X . Besides, it is not difficult to check that hT −1 ≡ h−1

T (see Claim 1 in the proof of Theorem 3.1
in [4]).

Lemma 5.8. Let T : Lip(X, E) → Lip(Y , F ) be a biseparating map. Then inf{‖( J y)(e)‖: y ∈ Y } > 0 for each non-zero e ∈ E.

Proof. Suppose this is not true. Then there exist (yn) in Y and e ∈ E with ‖e‖ = 1 such that ‖( J yn)(e)‖ < 1/n3 for each
n ∈ N.

If we assume first that there exists a limit point y0 ∈ Y of {yn: n ∈ N}, then we can consider a subsequence (ynk ) of
(yn) converging to y0, so that ‖( J y0)(e)‖ = 0, which is absurd since J y0 is injective.

Therefore, there exists r > 0 such that d(yn, ym) > r whenever n �= m. Also, on the one hand, [T −1(T ê )](h(yn)) =
ê(h(yn)) = e for all n ∈ N, and on the other hand, by Remark 5.7, [T −1(T ê )](h(yn)) = (Kh(yn))(T ê(yn)). Consequently
‖(Kh(yn))(T ê(yn))‖ = ‖e‖ = 1 for each n ∈ N. If we take fn ∈ F defined as fn := T ê(yn)/‖T ê(yn)‖ for each n ∈ N, it is clear
that ‖fn‖ = 1 and∥∥(

Kh(yn)
)
(fn)

∥∥ = (
1/

∥∥T ê(yn)
∥∥)∥∥(

Kh(yn)
)(

T ê(yn)
)∥∥ > n3.

Next, we define, in a similar way as in Remark 4.2,

ψyn,r/3(y) := max

{
0,1 − 3d(y, yn)

r

}
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for all y ∈ Y and n ∈ N (denoted for short ψn) which belongs to Lip(Y ), and finally, we consider the function

g :=
∞∑

n=1

ψnfn

n2
.

It is immediate to see that ‖ψnfn/n2‖∞ � 1/n2 and L(ψnfn/n2) = (‖fn‖/n2)L(ψn) = 3/(rn2) for all n ∈ N, which lets us
conclude by Lemma 4.6 that g belongs to Lip(Y , F ).

It is apparent that g(yn) = fn/n2, and applying Lemma 5.5 for the biseparating map T −1, we deduce that T −1 g(h(yn)) =
(1/n2)T −1 f̂n(h(yn)). Consequently, ‖T −1 g(h(yn))‖ = (1/n2)‖(Kh(yn))(fn)‖ > n for all n ∈ N, which contradicts the fact that
T −1 g is bounded. �
Proof of Proposition 3.2. Suppose on the contrary that there exist sequences (yn) in Y and (en) in E with ‖en‖ = 1 and
‖T ên(yn)‖ > n2 for every n ∈ N. Take f ∈ F with ‖f‖ = 1. By Lemma 5.8 there exists M > 0 such that ‖T −1̂f(h(yn))‖ > M for
every n. Consider a sequence (rn) in (0,1) such that B(yn, rn) ∩ B(ym, rm) = ∅ whenever n �= m (this can be done by taking
a subsequence of (yn) if necessary). Without loss of generality we may also assume that (rn) is decreasing and converging
to 0.

We define, for each n ∈ N,

ξn(y) := max
{

0, rn − d(y, yn)
}

for all y ∈ Y , which belongs to Lip(Y ) and satisfies ξn(yn) = rn , coz(ξn) = B(yn, rn), ‖ξn‖∞ = rn , and L(ξn) = 1. Finally, we
consider the function

g :=
∞∑

n=1

ξnf.

The fact that g belongs to Lip(Y , F ) follows from Lemma 4.6. Now let f := T −1 g . It is clear from the description of T −1

given in Remark 5.7 that f = ∑∞
n=1 T −1(ξnf). Consequently, if for each n ∈ N, we define fn(x) := ‖T −1(ξnf)(x)‖ (x ∈ X ),

then f0 := ‖ f ‖ = ∑∞
n=1 fn belongs to Lip(X) and f0(h(yn)) � Mrn for every n ∈ N. Therefore f ′

0 := ∑∞
n=1 fnen belongs to

Lip(X, E). Finally ‖T f ′
0(yn)‖ � Mrnn2, and it is easily seen that L(T fnen) � Mn2, for every n ∈ N. We conclude that T f ′

0 does
not belong to Lip(Y , F ), which is absurd.

Now, the fact that each y ∈ Yd is isolated follows easily. �
Remark 5.9. We will use later the fact that, since Yd is a finite set of isolated points and h is a homeomorphism, then
d(X \ h(Yd),h(Yd)) > 0.

The restriction to X \ h(Yd) (respectively, Y \ Yd) of a function f ∈ Lip(X, E) (respectively, f ∈ Lip(Y , F )), is obviously
a bounded Lipschitz function, which will be denoted by fd . The converse is also true, that is, we can obtain a Lipschitz
function as an extension of an element of Lip(X \ h(Yd), E), as it is done in the next lemma.

Lemma 5.10. Let f ∈ Lip(X \ h(Yd), E). Then the function

f d(x) :=
{

f (x) if x ∈ X \ h(Yd),

0 if x ∈ h(Yd)

belongs to Lip(X, E).

Proof. Since h(Yd) is a finite set of isolated points, f d is clearly a continuous function. Besides, if we consider x1 ∈ X \h(Yd)

and x2 ∈ h(Yd),

‖ f d(x1) − f d(x2)‖
d(x1, x2)

� ‖ f (x1)‖
d(X \ h(Yd),h(Yd))

� ‖ f ‖∞
d(X \ h(Yd),h(Yd))

.

Therefore

L
(

f d) � max

{
L( f ),

‖ f ‖∞
d(X \ h(Yd),h(Yd))

}
< ∞,

which implies that f d ∈ Lip(X, E). �
Proof of Theorem 3.4. By definition of Td and Lemma 5.10 (see also the comment before it), we clearly see that

Td( f ) = (
T f d)
d
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for all f ∈ Lip(X \ h(Yd), E), so Td is well defined and it is biseparating. To prove that Td is continuous, we will see that
given a sequence ( fn) in Lip(X \ h(Yd), E) converging to 0 and such that (Td fn) converges to g ∈ Lip(Y \ Yd, F ), we have
g ≡ 0.

If we consider, for each n ∈ N, the extension f d
n of fn given in Lemma 5.10, we can show that∥∥ f d

n

∥∥
L � max

{
‖ fn‖∞,max

{
L( fn),

‖ fn‖∞
d(X \ h(Yd),h(Yd))

}}
� ‖ fn‖L max

{
1,1/d

(
X \ h(Yd),h(Yd)

)}
,

which allows us to deduce that ( f d
n ) converges to 0. By continuity, if we fix y ∈ Y \ Yd , the sequence (( J y)( f d

n (h(y))))

converges to 0. Besides, since T f d
n (y) = Td fn(y), we conclude that (Td fn(y)) converges to 0.

On the other hand, ‖Td fn(y) − g(y)‖ � ‖Td fn − g‖L for each n ∈ N, and as (Td fn) converges to g , we deduce that
(Td fn(y)) converges to g(y). Combined with the above, g(y) = 0 for all y ∈ Y \ Yd . �

The proof of the two following results is now immediate.

Corollary 5.11. Suppose that E and F are complete and let T : Lip(X, E) → Lip(Y , F ) be a biseparating map. If Y has no isolated
points, then T is continuous.

Corollary 5.12. Let T : Lip(X, E) → Lip(Y , F ) be a biseparating map. If E has finite dimension, then F has the same dimension as E
and T is continuous.

Proposition 5.13. Let T : Lip(X, E) → Lip(Y , F ) be a biseparating map. Then h : Y → X is a bi-Lipschitz map.

Proof. Associated to T , we define a linear map S : Lip(X) → Lip(Y ). For f ∈ Lip(X), define

S f (y) := f
(
h(y)

)
for every y ∈ Y . It is obvious that S f is a continuous bounded function on Y . Next we are going to see that it is also
Lipschitz. It is clear that it is enough to prove it in the case when f � 0.

Fix any e �= 0 in E . By Lemma 5.8, we know that there exists M > 0 such that ‖T ê(y)‖ � M for every y ∈ Y , so the map
y �→ 1/‖T ê(y)‖ belongs to Lip(Y ). On the other hand, taking into account that f � 0, we have that for y, y′ ∈ Y ,∣∣S f (y)

∥∥T ê(y)
∥∥ − S f (y′)

∥∥T ê(y′)
∥∥∣∣ = ∣∣∥∥( J y)

(
f
(
h(y)

)
e
)∥∥ − ∥∥( J y′)

(
f
(
h(y′)

)
e
)∥∥∣∣

�
∥∥( J y)

(
f
(
h(y)

)
e
) − ( J y′)

(
f
(
h(y′)

)
e
)∥∥

= ∥∥T ( f e)(y) − T ( f e)(y′)
∥∥

� L
(
T ( f e)

)
d(y, y′).

We deduce that S f is Lipschitz. A similar process can be done with the map T −1, and we conclude that S : Lip(X) → Lip(Y )

is bijective and biseparating.
Next we prove that h is Lipschitz. Let K0 := max{1,diam(X)}. We take y, y′ ∈ Y and define f1(x) := d(h(y), x) for

all x ∈ X . Clearly f1 belongs to Lip(X). Notice also that S is a biseparating map between scalar-valued spaces of Lipschitz
functions, so by Corollary 5.12 it is continuous. Thus it is not difficult to see that

‖S f1(y) − S f1(y′)‖
d(y, y′)

� ‖S f1‖L � ‖S‖‖ f1‖L � K0‖S‖.
On the other hand, S f1(y) = 0 and S f1(y′) = d(h(y),h(y′)). Then, replacing in the above inequality,

d
(
h(y),h(y′)

)
� K0‖S‖d(y, y′),

and we are done.
Moreover, h−1 is also Lipschitz because h−1 = hT −1 (see Remark 5.7). �

Proof of Theorem 3.1. It follows immediately from Propositions 5.3, 5.6 and 5.13. �
Taking into account Theorem 3.1, Lemma 5.8, and Corollary 5.12, we can give the general form of biseparating maps in

the scalar-valued case (see also Theorem 3.5 and Corollary 6.1). Of course it also applies to algebra isomorphisms.

Corollary 5.14. Let T : Lip(X) → Lip(Y ) be a biseparating map. Then T is continuous and there exist a bi-Lipschitz homeomorphism
h : Y → X and a nonvanishing function τ ∈ Lip(Y ) such that

T f (y) = τ (y) f
(
h(y)

)
for every f ∈ Lip(X) and y ∈ Y .
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Corollary 5.15. Let I : Lip(X) → Lip(Y ) be an algebra isomorphism. Then I is continuous and there exists a bi-Lipschitz homeomor-
phism h : Y → X such that

I f (y) = f
(
h(y)

)
for every f ∈ Lip(X) and y ∈ Y .

6. Separating maps. Proof of Theorem 3.5

In this section we give the proof of Theorem 3.5 and the representation of bijective separating maps in the scalar setting
when Y is compact.

Proof of Theorem 3.5. Let f , g ∈ Lip(X) be such that coz( f ) ∩ coz(g) �= ∅, that is, there exists x0 ∈ X satisfying f (x0) �= 0
and g(x0) �= 0. Since T is onto, T k ≡ 1 for some k ∈ Lip(X), and we can take α,β ∈ K such that (α f + k)(x0) = 0 and
(βg + k)(x0) = 0. We denote l := α f + k.

Let (rn), Bn , B2
n , and ϕn be as in the proof of Lemma 5.5 (where h(y0) is replaced by x0); indeed, we closely follow that

proof. Now, we take yn ∈ coz(T (ϕn −ϕn+1)) for each n ∈ N. By the compactness of Y , {yn: n ∈ N} has a limit point y0 in Y .
Then, we can consider a subsequence (yni ) of (yn) converging to y0 whose indexes satisfy |ni − n j | � 3 whenever i �= j.

We claim that T l(y0) = 0. To prove it, we define

l1 :=
∞∑

k=1

l(ϕn2k−1 − ϕn2k+2)

and l2 := l − l1, and we will see that T l1(y0) = 0 and T l2(y0) = 0 (in the rest of the proof we will set ξk := ϕn2k−1 − ϕn2k+2
for every k ∈ N).

First, we will check that l1 and l2 are both Lipschitz functions. As in Claim 2 in the proof of Lemma 5.5, we know that
L(lϕn) � 3L(l) for all n ∈ N. Consequently L(lξk) � L(lϕn2k−1) + L(lϕn2k+2) � 6L(l) for all k ∈ N. Since coz(ξk) ∩ coz(ξ j) = ∅ if
k �= j, by Lemma 4.6 we conclude that l1 ∈ Lip(X), and then l2 also belongs to Lip(X).

Now, we will see that T l1(yn2k−1) = 0 for all k ∈ N. Fix k0 ∈ N and consider yn2k0−1 . It is not difficult to see that

coz(ϕn2k0−1 − ϕn2k0−1+1) ⊂ B2
n2k0−1

\ Bn2k0−1+1 and that, for every k ∈ N, coz(ξk) ⊂ B2
n2k−1 \ Bn2k+2, so

coz(ϕn2k0−1 − ϕn2k0−1+1) ∩ coz(ξk) = ∅,

which allows us to deduce that

coz(ϕn2k0−1 − ϕn2k0−1+1) ∩ coz

( ∞∑
k=1

lξk

)
= ∅.

Next, since T is a separating map,

coz
(
T (ϕn2k0−1 − ϕn2k0−1+1)

) ∩ coz

(
T

( ∞∑
k=1

lξk

))
= ∅,

and we conclude that T l1(yn2k0−1 ) = 0 because yn2k0−1 ∈ coz(T (ϕn2k0−1 − ϕn2k0−1+1)). By continuity, it is clear that
T l1(y0) = 0.

On the other hand, if x ∈ coz(ϕn2k −ϕn2k+1) = B2
n2k

\ Bn2k+1 ⊂ Bn2k−1 \ B2
n2k+2, then ξk(x) = 1. This fact allows us to deduce

that coz(ϕn2k − ϕn2k+1) ∩ coz(l2) = ∅, and consequently coz(T (ϕn2k − ϕn2k+1)) ∩ coz(T l2) = ∅. For this reason T l2(yn2k ) = 0
for all k ∈ N, and as above we conclude that T l2(y0) = 0.

Therefore 0 = T l(y0) = T (α f +k)(y0) = αT f (y0)+ 1, which implies that T f (y0) �= 0. The same reasoning can be applied
to the function βg + k and we obtain that T g(y0) �= 0. Then, we deduce that coz(T f ) ∩ coz(T g) �= ∅, and T −1 is separating.

The fact that T is continuous follows from Corollary 5.12. �
Corollary 6.1. Let T : Lip(X) → Lip(Y ) be a bijective and separating map. If Y is compact, then there exist a bi-Lipschitz homeomor-
phism h : Y → X and a nonvanishing function τ ∈ Lip(Y ) such that

T f (y) = τ (y) f
(
h(y)

)
for every f ∈ Lip(X) and y ∈ Y .

Proof. Immediate by Theorem 3.5 and Corollary 5.14. �
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