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1. Introduction

In this paper, we will find trace formulae for the following matrix Schrédinger operator L(P, Q; h, H)

—Y'(x) + [2AP(x) + Q)Y (%) = A’Y(x), x € (0,7) (1.1)
with Robin boundary conditions

Y'(0) — hY(0) =0 (1.2)
and

Y'(x) + HY () = 0, (1.3)
where A is a spectral parameter, Y (X) = [yx(x)];_17 is a column vector, P(x) = diag[p1(x), ..., pa(x)] and Q (x) are d x d real

symmetric matrix-valued functions, h and H are d x d real symmetric constant matrices, P € W22 [0,7]and Q € WZ1 [0, ],
where Wz"[O, 7] (k = 1, 2) denotes a set whose element is a k-th order continuously differentiable function in L?[0, 7 ].
The study of regularized traces of ordinary differential operators has a long history and there are a large number of
papers and books studying this issue. The trace formulae for the scalar differential operators have been found by Gelfand
and Levitan [ 1], Dikii [2], Halberg and Kramer [3] and many other works. The list of the works on this subject is given in [4-6].
A method for calculating trace formulae for general problems involving ordinary differential equations on a finite interval
was proposed in [7]. The trace formulae can be used for approximate calculation of the first eigenvalue of an operator [6], and
in order to establish necessary and sufficient conditions for a set of complex numbers to be the spectrum of an operator [8].
Afterwards these investigations were continued in many directions, such as Dirac operators, differential operators with
abstract operator-valued coefficients, and the case of matrix-valued Sturm-Liouville operators (see, [9-29,5,6,30-33], etc.).
Despite the enormous literature on eigenvalue problems for scalar Sturm-Liouville problems, differential operators with
operator coefficients and matrix coefficients raise interesting new problems. For differential operators with an operator
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coefficient a similar problem was studied, for example in [10-17,23,27]. For the matrix Sturm-Liouville equation (when
P = 0in(1.1)) properties of spectral characteristics were provided in [34-37]. Trace formulae for Sturm-Liouville problems
with matrix coefficients were previously considered in [21,28]. Note that there have only a few works on the trace of
differential operators with matrix coefficient. In [19,20] the trace of the Sturm-Liouville operator with matrix coefficient
has been investigated with the aid of the method of residue computations.

It is pointed out that for d = 1 the trace formula for a scalar quadratic operator pencil (1.1) was first studied by Borisov
and Freitas in [18]; in the latter papers [32,33] the same was done for other boundary conditions, such as separated boundary
conditions, the eigenparameter boundary conditions, and quasiperiodic boundary conditions. However, the trace formula for
the matrix Schrédinger operator L(P, Q ; h, H) has never been considered before. In this paper, we will discuss the eigenvalue
problem for the operator L(P, Q; h, H) and find new trace formulae.

2. Results

New trace formulae for the matrix Schrédinger operator L(P, Q; h, H) are as follows. For simplicity A; denotes entry of
matrix A at the i-th row and the j-th column and tr A denotes the trace of a matrix A, Iy is a d x d identity matrix and Oy is a
d x d zero matrix.

Theorem 2.1. For the operator L(P, Q; h, H), let k,(f)(i =1,d,n = 40, £1, 42, ...) be eigenvalues of the operator L(P, Q;
h, H), we have the trace formulae:

00 d T b4
3 [Z(Aw FAny) — Etrf P(x) dx:| _ tlP© +PE1 ltrf P(x) dx 2.1)
T 0 2 T 0

n=0 [ j=1

and

=) d kg
> { D24 A2y = G, = 02,071 = [h s [ @0+ Q(X))dX] }
1 0

n=0 | j=

tr[Q(0) + Q ()]

5 + tr[P%(0) + P%(7r)] — tr[h? + H?], (2.2)

2 1 [
=——tr [h+H+ f/ (P*(x) +Q(x))d><] +
s 2 0
where for j =1, d,

0o _ 0o _ o _ _ i )
1o =0, Apj=n+— (m=+40,%1,4£2,..), o= pj(x) dx.
b b T 0

This article is organized as follows. Section 3 is devoted to the representation of the solution to Eq. (1.1). Section 4 contains
the analysis of the characteristic determinant. Finally, in Section 5, we present the proof of Theorem 2.1.

3. Representation of the solution to Eq. (1.1)

In this section we will give a representation of the solution to the differential equation (1.1).

Lemma 3.1. For each A € C, the solution of the initial value problem

—Y"(x) + [2AP(x) + Q)Y (x) = A’Y (%) (3.1)
with
Y(0,A) —I;=0,=Y'(0,1)—h (3.2)
is given, for x € [0, ], by
Y(x, X)) = cos(Ax — (X)) + / A(x, t) cos(At) dt + / B(x, t) sin(At) dt, (3.3)
0 0
where the kernels A(x, t), B(x, t) are the solutions of the problem
3%A(x, t) 9B(x, t) _ 3%A(x, t)
a2 2P (x) — QAKX t) = ERrTTRRE
9%B(x, t) 0A(x, t) 9%B(x, t)
- — = 34
e TPO— QX)B(x, 1) TR (34)
0A(x, t)
A(05 O) - hv B(X5 O) = Odv = Ody

at |
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with a(x) = f(f P(t)dt. Moreover, there holds

2[cos a(x)A(x, x) + sina(x)B(x, x)] = 2h + /X T, (t) dt (3.5)
0

and

2[sina(x)A(x, x) — cosa(x)B(x, x)] = P(x) — P(0) + /X T, (t) dt (3.6)
0

where
T1(x) = P2(x) + cos o (x)Q (x) cos a(x) + sin (x)Q (x) sin a(x)
and
T>(x) = sina(x)Q (x) cos & (x) — cos & (x)Q (x) sina(x).
Proof. The representation (3.3) can be established using the Paley-Wiener theorem (see [38]) and the kernels A(x, t), B(x, t)

have continuous partial derivatives up to order two with respect to x and t and with «(x) = fg P(t)dt.
From (3.3) we get

Y'(x,A) = —(A — P(x)) sin(Ax — a(x)) + A(x, x) cos(Ax) + B(x, x) sin(Ax) + /x Ax(x, t) cos(At) dt
0

X
+ / By(x, t) sin(At) dt
0

and

Y”(x,A) = P'(x) sin(Ax — a(x)) — (A — P(x))? cos(Ax — a(x)) + A (x, x) cos(Ax) + B'(x, x) sin(Ax)
— MA(x, X) sin(Ax) + AB(X, x) cos(Ax) + Ax(X, t)|t=x COS(AX) + By (X, t)|;=x SIN(AX)

+ /X Ap(x, t) cos(it) dt + / B2 (x, t) sin(At) dt. (3.7)
0 0

On the other hand, using integration by parts twice, we obtain

AY(x, M) = Acos(Ax — a(x)) + A(x, x) sin(Ax) — B(x, x) cos(Ax) + B(x, 0)

- / A (x, t) sin(At) dt + / B:(x, t) cos(At) dt
0 0
= Acos(Ax — a(x)) + A(x, x) sin(Ax) — B(x, x) cos(Ax) + B(x, 0) + %[At(x, t)|e=x COS(AX) — A¢(x, 0)]

1 [ 1 1 [
by / Ap(x, t) cos(At) dt + XB[(X, £)]r=x SIN(AX) — n / B2 (x, t) sin(At) dt. (3.8)
0 0
Combining (3.7) and (3.8) and using equations
{WQy+u?—nm@—Quny=a

Y'(0,A) = h,
we obtain
A(0,0)=h (3.9)
and

AB(x, 0) — 2P(x)B(x, 0) — A¢(x, 0) + P'(x) sin(Ax — a(x)) — (P?(x) + Q (X)) cos(Ax — a (X))
—+ 2A'(x, x) cos(Ax) + 2B (x, x) sin(Ax) — 2P(x)A(x, x) sin(Ax) + 2P(x)B(x, x) cos(Ax)

+ /X[sz (x,t) — 2P(X)B;(x, t) — Q(X)A(x, t) — A (x, t)] cos(At) dt
0

+ /X[sz (%, t) + 2P(x)A; (x, t) — Q(x)B(x, t) — Bp2(x, t)] sin(At) dt = 0. (3.10)
0

By the Riemann-Lebesgue lemma (3.10) holds for all real A if and only if
B(x, 0) = A/(x, 0) = 0q4 (3.11)
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and
3%A(x, t) 0B(x, t) B 3%A(x, t)
e 2P(x) o QAKX t) = o2
9%B(x, t) 0A(x, t) _ 9%B(x, t)
o2 +2P(x) o Q(x)B(x,t) = YO
with

—P'(x) sinae(x) — (P2(x) + Q (x)) cos a(x) + 2A'(x, x) + 2P(x)B(x, x) = 0,
P'(x) cos r(x) — (P?(x) + Q (x)) sina(x) + 2B (x, X) — 2P (x)A(x, x) = 0.

From (3.13) we have

—cos a(X)P'(x) sina(x) — cos o (X) P?(x) + Q (X)) cos x(x)
+2cosa(x)A'(x, x) + 2 cos a(x)P(x)B(x, x) =0,
sina ()P’ (x) cos o (x) — sin a(x) (P?(x) + Q (x)) sin ¢ (x)
+2sina(x)B'(x, x) — 2sina(x)P(x)A(x, x) = 0,

which implies that by adding
d
Zd—[cos a(X)A(x, x) + sina(x)B(x, x)] = T1(x),
X

where

Ty (x) = cosa(x)(P2(x) + Q(x)) cos a(x) + sina(x) (P*(x) + Q (x)) sin a(x)
= P2(x) + cos a(x)Q (x) cos a(x) + sin e (x)Q () sin a(x).

Integrating (3.14) and taking into account that «(0) = 04 = B(0, 0) yields

2[cos a(X)A(x, x) + sina(x)B(x, x)] = 2h + /x T:(t) dt.
0

Similarly, we have

—sina(x)P'(x) sin a(x) — sin o (x) (P (x) + Q (x)) cos o (x)
+2sina(X)A’(x, x) + 2sina(X)P(x)B(x, x) = 0,

cos a(x)P'(x) cos a(x) — cos a(x) (P?(x) + Q (X)) sin & (x)
+2cosa(x)B (x,x) — 2 cosa(x)P(x)A(x, x) =0,

which implies that by adding
d
Zd—[sin a(X)A(x, x) — cosa(x)B(x, x)] = P'(x) + TL(x),
X

where

T, (x) = sina(x)(P*(x) + Q(x)) cos a(x) — cos & (x) (P (x) + Q (x)) sin «(x)
= sina(x)Q (x) cos a(x) — cos «(x)Q (x) sin x (x).

Integrating the above equation yields
X
2[sina(x)A(x, x) — cos a(x)B(x, x)] = P(x) — P(0) + / T, (t) dt.
0

Egs. (3.9),(3.11), (3.12),(3.15) and (3.16) complete the proof of Lemma 3.1. O

4. Analysis of the characteristic determinant

Denote

s
o= [ pwa j=Td  a0n = digla. ...l
0

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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Simple calculations show that the characteristic equation of (1.1)-(1.2) can be reduced to the form w(1) = 0, where

w(A) = —[A — P(m)]sin(Ar — a(mw)) + cos(Am)A(mw, ) + sin(Ax)B(w, w) + /H A;(rr, t) cos(At) dt
0

b

+ /n By (m, t) sin(At) dt + H cos(Am — () + H/
0 0
= —Asin(Ar — a(w)) + P(r) sin(Axr — a(w)) 4+ cos(Am)A(w, ) + sin(Aw)B(w, )

A(r, t) cos(At) dt + H/ B(r, t) sin(At) dt
0

T

+H cos(hr —a(n))+o<%>, = |ImAl. (4.1)
Using Eq. (3.6)
2[sina(m)A(r, 1) — cosa(r)B(r, 7)] = P(x) — P(0) + fﬂ Ty(x) dx
and Eq. (35) 0
2[cos a(m)AGT, ) + sina ()BT, 7)] = 2h + /Oﬂ Ty(x) dx,

by calculations we obtain

. P(r) — P(0) sina(w) [7 1 (7
A(m, ) = sina () + / T>(x) dx + cos () {h—{— 5/ T1(x) dx}
0 0

2 2

and

B(r.7) = —cosa(n)P(n)Z_P(O) - COS;‘(”) /H T,(x) dx + sina () {h+ %/n T (%) dx} .
0 0

Therefore we have

cos(Am)A(mw, ) + sin(Amx)B(w, r) = sin(Ax — (7))

P(r) — P(0) _ sin(Ar — a()) /” T, (x) dx
2 2 o

-l T
+ cos(Amr — a(m)) {h + 5/ T (%) dx} .
0
Substituting it into Eq. (4.1) yields that

w(A) = —Asin(Ar — a(w)) + w sin(Ar — a(w)) — M fﬂ T (x) dx
0

+ cos(r — a(r)) {h+H n 1/” mx)dx} +0 (L)
2 Jo A

Denote

P,, 0 P errr
wi = —Asin(Ar — o) + M sin(Ar — &) + ¢ cos(Ar — &) + O <T> ,

1 m
Ci:hii+Hii+5/ (Pi + Qu) dx
0

and fori # j, wj = 0(e™).
Then direct calculation implies that

w11 0(e™)
w22
detw(A) =
o(etﬂ)
Wqd
d
1_[ i + O(}\’d—zedlﬂ)
i=1
d
=11 [—x sin(Ar — o) +

i=1

T

Pi©@ Pl Ginhr — ) + 6 cos(hr — ) + 0 (%)] +0(Ad2eT)
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d . P;(0) + Pi(w) ¢ 1 d—2 der
= g(—x sin(Ar — o)) [1 - ot —a) +0 <ﬁ>} + 014724

d
Cwe@ +pery T

0 )\‘d—zed‘fﬂ .
o . +0( )

d
= (=] [sin(ir — ) x | 1

i=1

5. Proof of Theorem 2.1

We only give the proof of Eq. (2.1) in Theorem 2.1. Analogously we can also prove that Eq. (2.2) in Theorem 2.1 holds.

Denote by C,; the circles of radius ¢,0 < & < % centred at the origin AgJ, n = =+0,41,4+2,..., where for
j= 1,d, )\Eo’j =0and Ag’j =n+ %] (n =40, &1, &2, .. .). Denote by I'y, the counterclockwise square contour with four
vertices

A:N0+]/]+N0i, B:—N0+)/2+N0i,
C:—No+}/2—Noi, D:N()—I—]/]—Noi,
where y # 2, ..., % (k=1,2) and y; = max{%}, ..., %4} + (—1)k1g, taking enough small g, > 0, and Ny is a natural

number.
Denote

d
wo(2) = (=) [ [ sin(r — ),
j=1
then its zeros are A°  ; = 0 with multiplicities d and A} ; = n + 4 (simple) (n = +0, £1, £2,...),j = 1, d.
Obviously, if . € Cyjor A € Iy, then |wo(X)| > M|A|%e9™™ (M > 0) by using a similar method in [39,40]. Thus, on
A € Gyjor A € Iy, we have

d
> cjcot(Amr — o)

detw() _ (PO +P(r) S o 5)
wo(M) 2, Y 22 :
Expanding In % by the Maclaurin formula, we find that
d
> ¢icot(Aw — )
detw(h)  tw(P(0) +P(1) /=i ! yal 52)
wo() 2X A 22 ’
Using an identity
1 detw(A
hag =20 ==L 2@y,
' J 2mi Cnj (l)()()\,)
we get
= (n+ ) = 1§ [Wetel) e,
™ T 27i [ c,, detw(h)  wo(R)

i J,, @)

1 det w(R)
In— 22

d
Z ¢j cot(Amr — )
_ 1 _tr(P(0) + P(r)) =1 4o (l) i
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|
=
=
+
o
RS
SN‘_

that is,
Olj 1
)\n’j=n+*+7+o ; . (53)
It is well known that the eigenvalues of (1.1)-(1.2) form a sequence A,; = n + % 4 0(1), n = £0, £1, £2, .... This

asymptotic relation for the eigenvalues implies that, for all sufficiently large Ny, the Tumbers Anj with [n| < Ny are mside
I'y,» and the numbers A, ; with [n] > Ny are outside I'y,. It follows that

d d
S IVRURED SHIISTINS o0 I PUSTT
j=1 j=1

n=1 j=1

d d 1 T No d 20(1
= Ao+ Aigi — —ftr P(x)dx + AitAini——
RSIED W v [ pw zz(,.] y n)

n=1 j=1

d
> ¢jcot(Amr — o)

1 tr(P(0 P j= 1
__ ! _tr(P(0) +P(m))  j=1 +O<—> i
2ni J o, 2 A 22
1 tr(P(0) + P 1y 1 < cot(x 1
- (P(0) + P(m)) 72 7{ (A — )d)L—I—O (5.4)
2mi 2 g 2 — Iy, A N()
Denote
1 t(A
Ring & — COtAT 2 5.
2mi FNO A

Ifo; = 0 (mod ), then R; y, = 0. If o; = 0 (mod ), then using the residue calculation we have the following identity:

tO0r — @ t(r t( ,
Rj’NozRes[ico( i a’),0}+Res[7co( T %) a’}rZR [CO( = ),n—i-%]
A T

—No
cot(Am — ;) o
+ Y Res [i+ 4}
n=-—1 7
20[]
= —cota; +
i+ i w2 HZ n2 — z/nz
Using a well-known formula
! LT cotam) (@ £0)
—— = — — —cot(am) (v ,
~nt—a? 202 20
we obtain
20 & 1
Ring = — -
0 g2 n=NZo+l n? —af /72

Substituting the expression of R; y, into (5.4) yields

& t[P(0)+P(m)] 1 _ (7 ! 1
Z[Z(AnJJr)\n,) tr/o P()cl:| %—;trfo P(x)dx+2chj_N0+o<N—o>. (5.5)

n=0 [_j=1 j=1
Notice that forj = 1, d,

lim Ry, = 0.
No— o0
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Passing to the limit as N — oo in (5.5), we have

o) d T T
DD g+ Ao — ztr/ Px)dx| = rlP© + Pl ltr/ P(x) dx.
T 0 T 0

n=0 j:l 2

This completes the proof of Theorem 2.1.
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