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a b s t r a c t

This paper is concerned with the global existence of classical solutions to an initial–
boundary value problem of the one-dimensional (1D) equations of compressible radiative
magnetohydrodynamics (MHD). The key point here is that there is no growth restriction
imposed on the heat conductivity, in particular, the heat-conducting coefficient is allowed
to be a positive constant. This in particular implies that the radiation is indeed a
mathematically ‘‘regularizing’’ effect on the fluid dynamics, since the global existence of the
classical solution to the one-dimensional full perfect MHD equations without radiation is
still unknownwhen all the viscosity,magnetic diffusivity andheat conductivity coefficients
are constant.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The motion of a conducting fluid (plasma) in an electromagnetic field is governed by the compressible MHD equations
in Eulerian coordinates (see, for example, [1,2]):

ρt + (ρu)x = 0,

(ρu)t +


ρu2

+ p +
1
2
|b|2


x
= (λux)x,

(ρw)t + (ρuw − b)x = (µwx)x,
bt + (ub − w)x = (νbx)x,

Et +


u


E + p +
1
2
|b|2


− w · b


x
= (κθx + λuux + µw · wx + νb · bx)x,

(1.1)

where the unknown functions ρ, u,w = (w1, w2), b = (b1, b2) and θ are the density, longitudinal velocity, transverse
velocity, transverse magnetic field, and absolute temperature, respectively. The pressure p and the internal energy e are
related with the density and the temperature of the flow through the equations of state:

p , p(ρ, θ), e , e(ρ, θ), (1.2)

and the total energy E is given by

E , ρ


e +

1
2
(u2

+ |w|
2)


+

1
2
|b|2, (1.3)
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where ρ(u2
+ |w|

2)/2 and |b|2/2 are the kinetic energy and the magnetic energy, respectively. The physical positive
constants λ, µ are the viscosity coefficients of the flow, ν is the resistivity coefficient acting as the magnetic diffusion
coefficient of the magnetic field, and κ is the heat-conducting coefficient.

The MHD equations are derived from fluid mechanics with appropriate modifications to account for the electrical forces.
In particular, if b = 0, then (1.1) turns into the compressible planar Navier–Stokes equations describing themotion of a shear
flow (cf. [3]). If in additionw = 0, then it becomes the standard one-dimensional Navier–Stokes equations for compressible
heat-conducting viscous gases:

ρt + (ρu)x = 0,
(ρu)t + (ρu2

+ p)x = (λux)x,

Ẽt + (u(Ẽ + p))x = (κθx + λuux)x

(1.4)

with Ẽ , ρ(e + u2/2) being the total energy.
The one-dimensional Navier–Stokes equations (1.4) have been extensively studied by many people; see, for example,

[4–9], and the references therein. Comparing (1.4)with (1.1), the additional presence of themagnetic field and its interaction
with the hydrodynamicmotion inMHD flowswill cause some serious difficulties, and hence, the extension of known results
for the Navier–Stokes equations to the MHD equations does not always appear to be a simple matter. For example, consider
an initial–boundary value problem of (1.4) with the following initial and boundary conditions:

(ρ, u, θ)|t=0 = (ρ0, u0, θ0)(x), (u, θx)|∂Ω = 0, (1.5)

where Ω ⊂ R is a bounded spatial domain with smooth boundary ∂Ω . Assume that the initial data ρ0, u0, θ0 are
appropriately smooth and satisfy

0 < inf ρ0(x) ≤ sup ρ0(x) < ∞, 0 < inf θ0(x) ≤ sup θ0(x) < ∞. (1.6)

Then, for a perfect polytropic gas obeying the equations of state (cf. [17]):

p , Rρθ, e , cV θ, (1.7)

where R > 0 is the gas constant, cV = R/(γ − 1) is the heat capacity of the gas at constant volume, and γ > 1 is the
adiabatic exponent, it has been known for a long time (see [7]) that there exists a unique global solution of (1.4)–(1.7) with
fixed positive constants λ, κ . However, as it was pointed out in [2,10] that such a global existence result of the classical
solution to the 1D MHD equations (1.1), (1.3), (1.7) with large initial data is still unknown when all the viscosity, diffusivity
and heat conductivity coefficients are constant.

In this paper we study the MHD equations subject to thermally radiative effects at high temperature, which are of
particular interest in astrophysical models since stars may be viewed as gaseous objects (cf. [11,12]) whose dynamics are
often shaped and controlled by intense magnetic fields and high temperature radiation effects (cf. [13–15]). In view of the
classical theory in (see [16]), the total pressure p and the internal energy e in radiation hydrodynamics are decomposed into
two parts: a thermal part (for perfect gas) and a radiative part,

p(ρ, θ) = pG(ρ, θ) + pR(ρ, θ), e(ρ, θ) = eG(ρ, θ) + eR(ρ, θ).

In agreement with the Boyle law for gas dynamics and the Stefan–Boltzmann law for radiation hydrodynamics, it holds for
radiative gases in quasi Local Thermodynamical Equilibrium (LTE) that (see [17,16])

pG(ρ, θ) = Rρθ, eG(ρ, θ) = cV θ,

pR(ρ, θ) =
a
3
θ4, eR(ρ, θ) =

a
ρ

θ4,

where a > 0 is the Stefan–Boltzmann constant. Thus,

p(ρ, θ) = Rρθ +
a
3
θ4, e(ρ, θ) = cV θ +

a
ρ

θ4. (1.8)

This, together with (1.1) and (1.3), forms a complete system for ρ, u,w, b and θ .
Without loss of generality, let Ω , (0, 1). In this paper, we study an initial–boundary value problem of (1.1), (1.3) and

(1.8) with the following initial and boundary conditions:
(ρ, u,w, b, θ)|t=0 = (ρ0, u0,w0, b0, θ0)(x),
(u,w, b, θx)|x=0 = (u,w, b, θx)|x=1 = 0. (1.9)

The boundary conditions in (1.9) 2 particularly imply that the boundary is non-slip, impermeable, and thermally insulated.
Before stating our main results, we first recall some recent studies on 1D compressible MHD equations. For the 1D

perfect MHD flows satisfying the equations of state (1.7), the global existence of smooth solutions with small initial data
was obtained in [18,19], while the global existence and uniqueness of strong solutions with large initial data was studied
in [20,21] provided the heat conductivity is in a particular form:

κ(ρ, θ) = kθ or κ(ρ, θ) = k/ρ, (1.10)
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where k > 0 is a positive constant. The existence and stability of weak solutions with Lebesgue initial data to the 1D perfect
fullMHD equationswas proved in [22], and the vanishing shear viscosity limit (i.e.µ → 0) ofweak solutionswas considered
in [23]. It is worth mentioning that the condition (1.10) is very crucial for the analysis in the works [20–23].

For real gases, let v , 1/ρ be the specific volume in Lagrangian coordinates. Assume that the pressure p(v, θ), internal
energy e(v, θ) and heat conductivity κ(v, θ) satisfy the following growth conditions with r ∈ [0, 1] and q ≥ 2(1 + r):

0 ≤ vp(v, θ) ≤ p0(1 + θ1+r), eθ (v, θ) ≥ e0(1 + θ r), and κ(v, θ) ≥ κ0(1 + θ q) (1.11)

for some positive constants p0, e0 and κ0, Chen–Wang [1] and Wang [2] proved the global existence of strong/classical
solutions to the MHD equations (1.1), (1.3) and (1.11) with appropriately smooth initial data. The continuous dependence
of large solutions was also studied in [1,24]. Note that, the growth conditions (1.11) include the case of perfect flows (1.7)
(i.e. r = 0), but exclude the radiation case (1.8).

For the 1D compressible MHD flows subject to radiation effects at high temperature with the equations of state (1.8),
the global existence of a unique classical solution with large initial data was studied in [25,26] under the following growth
condition on the heat conductivity:

κ1(1 + θ q) ≤ κ(ρ, θ), κρ(ρ, θ) ≤ κ2(1 + θ q), (1.12)

where q > 5/2 and q > (2 +
√
211)/9 were assumed respectively in [25,26]. We also refer the reader to [27–32], . . . for

the studies of other 1D models for radiative gases, among all of which the growth condition (1.12) with different exponent
q > 0 was required; see, for instance, q ≥ 4 in [27,28,31], q ≥ 2 in [30,32], and q ≥ 1 in [29].

For radiative gas-dynamics, it was pointed out in [27,28] that the growth condition (1.12) with suitably large q > 0 plays
a key role in the proof of the global a priori estimates. Indeed, compared with the perfect flows satisfying the equations
of state (1.7), the nonlinear radiative terms (i.e. θ4) in (1.8) will cause some new difficulties in the study of radiative gas-
dynamics, and hence, the growth condition (1.12) with suitably large q > 0 is technically needed in the previous works
to obtain some better estimates of the temperature (see, e.g. [25–32]). Motivated by the results achieved, it is therefore
mathematically interesting to improve or remove such growth restriction on the heat conductivity, although (1.12) with
q ≥ 3 is physically valid for radiative gases in LTE (see [16]).

So, placing emphasis on the case of constant heat conductivity, we aim to prove the global existence of classical solutions
for the 1D compressible radiativeMHD system (1.1), (1.3), (1.8), (1.9)without any growth condition on the heat conductivity.
More precisely, our main result in this paper reads as follows.

Theorem 1.1. Assume that all the viscosity, magnetic diffusivity and heat-conductivity coefficients of the flows (i.e. λ, µ, ν and
κ) are positive constants. Assume also that the initial data (ρ0, u0,w0, b0, θ0) satisfies

0 < inf
0≤x≤1

ρ0 ≤ sup
0≤x≤1

ρ0 < ∞, 0 < inf
0≤x≤1

θ0 ≤ sup
0≤x≤1

θ0 < ∞,

ρ0 ∈ C1+α(Ω), (u0,w0, b0, θ0) ∈

C2+α(Ω)

6
for some α ∈ (0, 1).

Then there exists a unique classical solution (ρ, u,w, b, θ) of (1.1), (1.3), (1.8) and (1.9) such that for any T > 0,

0 < ρ(x, t), θ(x, t) < ∞ for all (x, t) ∈ ΩT , Ω × (0, T ),

(ρ, ρx, ρt) ∈


Cα,α/2
x,t (ΩT )

3
, (u,w, b, θ) ∈


C2+α,1+α/2
x,t (ΩT )

6
.

Remark 1.1. Theorem 1.1 especially implies that the thermal radiation is indeed a mathematically ‘‘regularizing’’ effect for
compressibleMHD flows, since the global existence of the classical solution to the 1D perfect full MHD equations (1.1), (1.3),
(1.7) is still unknown when all the viscosity, diffusivity and heat conductivity coefficients are constant (cf. [2,10]).

Remark 1.2. A regularizing effect of radiation in the multi-dimensional equations of fluid dynamics was also observed
in [33]. However, the regularizing mechanisms between [33] and the one observed in the present paper are different from
the mathematical point of view. Roughly speaking, the regularizing effect in [33] mainly comes from the specific form of
the heat conductivity which contains an extra ‘‘radiative’’ term (∼ θ3). However, the mechanism of the regularizing effect
in this paper is mainly due to the additional radiative parts of the pressure and the internal energy in the equations of state
(1.8).

Remark 1.3. The conclusion of Theorem 1.1 is also valid for other models of radiative gases satisfying the equations of
state (1.8). We hope that the ideas of proof can be adopted to remove/improve the growth conditions (1.11) for real gases
considered in [1,2,5] and to study the 1D perfect MHD equations with constant physical coefficients λ, µ, ν and κ .

We now comment on the proof of Theorem 1.1. As usual, the global existence will be proved by continuing the local
solutions with respect to the time based on the global a priori estimates. The local existence can be proved by using the
fixed point theorem in a standard way, whose proof is therefore omitted and referred to [4] for simplicity. So, to extend
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the local solution to be a global classical one, it suffices to establish some global a priori estimates on the solution and its
derivatives. It turns out that the key steps are to bound the L2-norm of the gradient of the density and to estimate the
upper bound of the temperature. To achieve these, the growth condition (1.12) with suitably large q > 0 in the previous
works [25–28,30–32] is technically needed for their analysis. So, in the case that the heat conductivity is only a positive
constant, the situation becomes somewhat different and some new ideas have to be developed. A key observation here is
that we can utilize the radiative parts in the equations of state (1.8) to derive some preliminary estimates of the higher
integrability of the temperature (see Lemma 2.4), which in turn give a preliminary estimate of ∥∇ρ∥L2(Ω) in terms of
∥uxx∥

α

L2(ΩT )
with 0 < α < 1 (see Lemma 2.5). Thus, the gradient of the longitudinal velocity can be bounded only by the

upper bound of the temperature with appropriate order. With the help of these preliminary estimates, we then utilize the
specific form of the additional radiative internal energy again to obtain the upper bound of the temperature (see Lemma 2.7),
which particularly close the proofs of Lemmas 2.4–2.6.With these estimates at hand, the global estimates of the second order
derivatives can then be proved in a standard way.

The method used for the proof of Theorem 1.1 can be adopted to deal with the case of non-constant heat conductivity.
More precisely, we have the following.

Theorem 1.2. Assume that (ρ0, u0,w0, b0, θ0) satisfy the conditions of Theorem 1.1. Assume also that the heat conductivity
κ = κ(ρ, θ) is strictly positive, continuously differentiable on R+

×R+ and there exist two positive constants κ1 and κ2 such that
for any q > 0,

κ1(1 + θ)q ≤ κ(ρ, θ) ≤ κ2(1 + θ)q, (1.13)

|κρ(ρ, θ)| ≤ κ2(1 + θ)q, |κθ (ρ, θ)| ≤ κ2(1 + θ)q−1 (1.14)

for all ρ, θ ∈ (0, ∞). Then for any T > 0, the problem (1.1), (1.3), (1.8), (1.9) with fixed positive µ > 0 has a unique classical
solution (ρ, u,w, b, θ) on ΩT as the one in Theorem 1.1.

2. Proof of Theorem 1.1

This section is devoted to the derivation of the global estimates which are needed for the proof of Theorem 1.1. We begin
with the following lemmawhich is mainly concernedwith the standard energy–entropy estimates and the upper and lower
bounds of the density. The proof can be found in [25, Lemmas 2.1–2.3] and is therefore omitted here for simplicity.

Lemma 2.1. There exists a positive constant C, which may depend on T , such that

m(t) ,

 1

0
ρ(x, t)dx =

 1

0
ρ0(x)dx , m0, (2.1)

E(t) ,

 1

0


ρ


e +

1
2
(u2

+ |w|
2)


+

1
2
|b|2


(x, t)dx

=

 1

0


ρ


e +

1
2
(u2

+ |w|
2)


+

1
2
|b|2


(x, 0)dx , E(0), (2.2)

sup
0≤t≤T

 1

0


cVρ(θ − ln θ − 1) + R(ρ ln ρ − ρ + 1) +

1
2


ρu2

+ ρ|w|
2
+ |b|2


dx

+

 T

0

 1

0


κθ2

x

θ2
+

λu2
x + µ|wx|

2
+ ν|bx|

2

θ


dxdt ≤ C, (2.3) T

0


∥θ∥

4
L∞ + ∥b∥2

L∞ + ∥θ∥
8
L8

dt ≤ C, (2.4)

C−1
≤ ρ(x, t) ≤ C, (x, t) ∈ ΩT , [0, 1] × [0, T ], (2.5)

and  T

0


∥ux∥

2
L2 + ∥wx∥

2
L2 + ∥bx∥

2
L2

dt ≤ C . (2.6)

As a result of (2.5) and (2.6), one has the following.

Lemma 2.2. For any given T > 0, one has

sup
0≤t≤T


∥wx∥

2
L2 + ∥bx∥

2
L2

+

 T

0


∥wt∥

2
L2 + ∥bt∥

2
L2 + ∥wxx∥

2
L2 + ∥bxx∥

2
L2

dt ≤ C . (2.7)
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Proof. It follows from (1.1)3 and (1.1)4 that

ρ|wt |
2
+ µ2ρ−1

|wxx|
2
− 2µwt · wxx = ρ−1 (ρuwx − bx)

2 ,

|bt |
2
+ ν2

|bxx|
2
− 2νbt · bxx = (ubx + uxb − wx)

2 .

Thus, adding them together and integrating by parts, we infer from (2.5) that

d
dt

 1

0


µ|wx|

2
+ ν|bx|

2 dx +

 1

0


ρ|wt |

2
+ µ2ρ−1

|wxx|
2
+ |bt |

2
+ ν2

|bxx|
2 dx

≤ C

∥u∥2

L∞∥wx∥
2
L2 + ∥bx∥

2
L2 + ∥u∥2

L∞∥bx∥
2
L2 + ∥b∥2

L∞∥ux∥
2
L2 + ∥wx∥

2
L2


≤ C

1 + ∥ux∥

2
L2
 

1 + ∥wx∥
2
L2 + ∥bx∥

2
L2

, (2.8)

where we have used (2.2), (2.5) and the Sobolev type inequality:

∥u∥2
L∞ ≤ C∥u∥L2∥ux∥L2 ≤ C∥ux∥L2 , ∥b∥2

L∞ ≤ C∥b∥L2∥bx∥L2 ≤ C∥bx∥L2 . (2.9)

Combining (2.6), (2.8) with the Gronwall inequality immediately leads to (2.7). �

Next, we present a preliminary estimate of ∥uux∥L2(0,T ;L2) which will be used later.

Lemma 2.3. For any given T > 0, there exists a positive constant C > 0 such that

sup
0≤t≤T

∥u∥4
L4 +

 T

0
∥uux∥

2
L2dt ≤ C + C sup

0≤t≤T
∥ux∥L2 . (2.10)

Proof. Multiplying (1.1)2 by 4u3 and integrating the resulting equation by parts over Ω give

d
dt

 1

0
ρu4(x, t)dx + 12λ

 1

0
u2u2

xdx = 12
 1

0


p +

1
2
|b|2


u2uxdx

≤ λ

 1

0
u2u2

xdxds + C∥u∥2
L∞

 1

0


1 + θ8

+ |b|4

dxds,

which, integrated over (0, T ) and combined with (2.4), (2.7), (2.9), yields

sup
0≤t≤T

∥u∥4
L4 +

 T

0
∥uux∥

2
L2dt ≤ C + C sup

0≤t≤T
∥u∥2

L∞ ≤ C + C sup
0≤t≤T

∥ux∥L2 .

This finishes the proof of (2.10). Note that, here we have also used the fact that ∥b∥L∞ ≤ C due to (2.2), (2.7) and (2.9). �

By making use of the specific form of the radiative internal energy in (1.8), we can obtain some preliminary estimates of
the higher integrability of the temperature which play a key role in the entire analysis.

Lemma 2.4. Let κ be the heat-conducting coefficient of the flows. Then for any T > 0,

sup
0≤t≤T

 1

0
θ8(x, t)dx +

 T

0

 1

0
κθ3θ2

x dxdt ≤ C + C
 T

0
∥uxx∥

2
L2dt

1/2

(2.11)

and

sup
0≤t≤T

 1

0
θ11(x, t)dx +

 T

0

 1

0
κθ6θ2

x dxdt ≤ C + C
 T

0
∥uxx∥

2
L2dt

7/8

. (2.12)

Proof. In view of (1.1)1–(1.1)4 and (1.8), we can write (1.1)5 in the form:
cVρθ + aθ4

t +

cVρuθ + auθ4

x +


Rρθ +

a
3
θ4

ux = (κθx)x + λu2

x + µ|wx|
2
+ ν|bx|

2, (2.13)

which, multiplied by θ4 and integrated over Ω × (0, T ), gives

sup
0≤t≤T

 1

0
θ8(x, t)dx +

 T

0

 1

0
κθ3θ2

x dxdt

≤ C + C
 T

0

 1

0


θ8

|ux| + θ4 u2
x + |wx|

2
+ |bx|

2 dxdt, (2.14)
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where we have also used (2.5) and integration by parts to get that T

0

 1

0
(uθ4)xθ

4dxdt = −4
 T

0

 1

0
uθ7θxdxdt =

1
2

 T

0

 1

0
uxθ

8dxdt.

Note that (2.2), together with (1.8), implies ∥θ∥L4 ≤ C . So, using (2.4), (2.6) and (2.7), we can bound the second term on
the right-hand side of (2.14) as follows: T

0

 1

0


|ux|θ

8
+ θ4u2

x + θ4 
|wx|

2
+ |bx|

2 dxdt
≤ C

 T

0
∥θ∥

4
L4

∥θ∥

4
L∞∥ux∥L∞ + ∥ux∥

2
L∞

dt + C

 T

0
∥θ∥

4
L∞

∥bx∥

2
L2 + ∥wx∥

2
L2

dt

≤ C + C
 T

0


∥θ∥

8
L∞ + ∥ux∥

2
L∞

dt. (2.15)

Using the boundedness of ∥θ∥L4 again, we deduce from the Hölder inequality that

∥θ∥
9/2
L∞ ≤ C + C

 1

0
θ2θ3/2

|θx|dx ≤ C + C
 1

0
κθ3θ2

x dx
1/2

,

and consequently, T

0
∥θ∥

9
L∞dt ≤ C + C

 T

0

 1

0
κθ3θ2

x dxdt,

which, combined with the Young inequality, yields T

0
∥θ∥

8
L∞dt ≤ ε

 T

0
∥θ∥

9
L∞dt + Cε−1

≤ Cε

 T

0

 1

0
κθ3θ2

x dxdt + Cε−1. (2.16)

Thus, putting (2.15), (2.16) into (2.14) and choosing ε > 0 sufficiently small, we find

sup
0≤t≤T

 1

0
θ8(x, t)dx +

 T

0

 1

0
κθ3θ2

x dxdt ≤ C + C
 T

0


∥ux∥

2
L2 + ∥ux∥L2∥uxx∥L2


dt

≤ C + C
 T

0
∥uxx∥

2
L2dt

1/2

, (2.17)

which ends the proof of (2.11). Here,wehave also used (2.6), theHölder inequality and the following Sobolev type inequality:

∥vx∥
2
L∞ ≤ C


∥vx∥

2
L2 + ∥vx∥L2∥vxx∥L2


. (2.18)

Similar to the derivation of (2.14), we multiply (2.13) by θ7, integrate the resulting equation by parts over Ω × (0, T )
and use the Cauchy–Schwarz inequality to get that

sup
0≤t≤T

 1

0
θ11(x, t)dx +

 T

0

 1

0
κθ6θ2

x dxdt

≤ C + C
 T

0

 1

0


θ11

|ux| + θ7 u2
x + |bx|

2
+ |wx|

2 dxdt
≤ C + C

 T

0

 1

0
θ15dxdt + C

 T

0

 1

0
θ7 u2

x + |bx|
2
+ |wx|

2 dxdt. (2.19)

Note that the boundedness of ∥θ∥L4 implies

∥θ∥
6
L∞ ≤ C + C

 1

0
θ2θ3

|θx|dx ≤ C + C
 1

0
κθ6θ2

x dx
1/2

,

and thus, T

0

 1

0
θ15dxdt ≤

 T

0
∥θ∥

11
L∞∥θ∥

4
L4dt ≤ C

 T

0
∥θ∥

12
L∞dt

11/12

≤ C + C
 T

0

 1

0
κθ6θ2

x dxdt
11/12

. (2.20)
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On the other hand, using (2.6), (2.7), (2.11), (2.18) and the Hölder inequality, one gets T

0

 1

0
θ7 u2

x + |bx|
2
+ |wx|

2 dxdt ≤

 T

0
∥θ∥

7
L7

∥ux∥

2
L∞ + ∥bx∥

2
L∞ + ∥wx∥

2
L∞

dt

≤ C sup
0≤t≤T

∥θ∥
7
L7 + C sup

0≤t≤T
∥θ∥

7
L7

 T

0
∥uxx∥

2
L2dt

1/2

≤ C + C
 T

0
∥uxx∥

2
L2dt

7/8

, (2.21)

since it follows from the boundedness of ∥θ∥L4 and (2.11) that

sup
0≤t≤T

∥θ∥
7
L7 ≤ sup

0≤t≤T


∥θ∥L4∥θ∥

6
L8


≤ C + C
 T

0
∥uxx∥

2
L2ds

3/8

.

Thus, putting (2.20), (2.21) into (2.19) and using the Young inequality, we arrive at the desired estimate in (2.12). The
proof of Lemma 2.4 is thus complete. �

By virtue of Lemma 2.4, we now can estimate the gradient of the density, which is one of the most important step in the
proofs of the boundedness of the temperature and the higher order estimates of the longitudinal velocity.

Lemma 2.5. For any given T > 0, one has

sup
0≤t≤T

 1

0
ρ2
x (x, t)dx +

 T

0

 1

0
θρ2

x dxdt ≤ C + C sup
0≤t≤T

∥θ∥L∞ + C
 T

0
∥uxx∥

2
L2dt

7/8

. (2.22)

Proof. It follows from (1.1)1 and (2.5) that (1.1)2 can be written as follows:
ρ

λρ−2ρx + u


t +


ρu

λρ−2ρx + u


x = −


p +

1
2
|b|2


x
,

which, multiplied by (λρ−2ρx + u) and integrated over Ω × (0, T ), gives

1
2

 1

0
ρ

λρ−2ρx + u

2
dx
T
0

+ λR
 T

0

 1

0
ρ−2θρ2

x dxdt

= −

 T

0

 1

0


Ruθρx +


Rρθx +

4a
3

θ3θx + b · bx

 
λρ−2ρx + u


dxdt. (2.23)

The right-hand side of (2.23) can be estimated term by term as follows. First, by (2.2), (2.4) and (2.5), we findR  T

0

 1

0
uθρxdxdt

 ≤ ε

 T

0

 1

0
θρ2

x dxdt + Cε−1 sup
0≤t≤T

∥u∥2
L2

 T

0
∥θ∥L∞dt

≤ ε

 t

0

 1

0
θρ2

x dxdt + Cε−1, ∀ ε ∈ (0, 1). (2.24)

Second, using (2.2)–(2.5) and the Cauchy–Schwarz inequality, we haveR  T

0

 1

0
ρθx


λρ−2ρx + u


dxdt


≤ ε

 T

0

 1

0
θρ2

x dxdt + Cε−1
 T

0

 1

0


κθ2

x

θ
+ θu2


dxdt

≤ ε

 T

0

 1

0
θρ2

x dxdt + Cε−1
+ Cε−1 sup

0≤t≤T
∥θ∥L∞

 T

0

 1

0

κθ2
x

θ2
dxdt

≤ ε

 T

0

 1

0
θρ2

x dxds + Cε−1
+ Cε−1 sup

0≤t≤T
∥θ∥L∞ . (2.25)
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Next, it follows from (2.2), (2.4), (2.5) and Lemma 2.4 that4a3
 T

0

 1

0
θ3θx


λρ−2ρx + u


dxdt


≤ ε

 T

0

 1

0
θρ2

x dxdt + Cε−1
 T

0

 1

0


θ5θ2

x + θu2 dxdt
≤ ε

 T

0

 1

0
θρ2

x dxdt + Cε−1
+ Cε−1

 T

0

 1

0
(κθ3θ2

x + κθ6θ2
x )dxdt

≤ ε

 T

0

 1

0
θρ2

x dxdt + Cε−1
+ Cε−1

 T

0
∥uxx∥

2
L2dt

7/8

. (2.26)

Finally, it is easily seen from (2.2), (2.3), (2.5) and (2.7) that T

0

 1

0
(b · bx)


λρ−2ρx + u


dxdt


≤ ε

 T

0

 1

0
θρ2

x dxdt + Cε−1
 T

0

 1

0


|b|2

|bx|
2

θ
+ θu2


dxdt

≤ ε

 T

0

 1

0
θρ2

x dxdt + Cε−1
+ Cε−1 sup

0≤t≤T
∥b∥2

L∞

 T

0

 1

0

|bx|
2

θ
dxdt

≤ ε

 t

0

 1

0
θρ2

x dxds + Cε−1. (2.27)

Now, plugging (2.24)–(2.27) into (2.23) and taking (2.5) into account, we immediately obtain (2.22) by choosing ε > 0
sufficiently small. �

By Lemma 2.5, we have the following temporary estimates on the gradient of the longitudinal velocity.

Lemma 2.6. For any given T > 0, one has

sup
0≤t≤T

∥ux∥
2
L2 +

 T

0


∥uxx∥

2
L2 + ∥ut∥

2
L2

dt ≤ C + C sup

0≤t≤T
∥θ∥

2
L∞ , (2.28) T

0
∥ux∥

2
L∞dt ≤ C + C sup

0≤t≤T
∥θ∥L∞ , (2.29)

and  T

0
∥ux∥

4
L4dt ≤ C + C sup

0≤t≤T
∥θ∥

3
L∞ . (2.30)

Proof. Multiplying (1.1)2 by ut and integrating it by parts overΩt , we deduce from (2.5) and the Cauchy–Schwarz inequality
that

sup
0≤t≤T

 1

0
u2
x(x, t)dx +

 T

0
∥ut∥

2
L2dt ≤ C + C

 T

0

 1

0


u2u2

x + θ2
x + θ2ρ2

x + θ6θ2
x + |b|2|bx|

2 dxdt. (2.31)

The terms on the right-hand side of (2.31) can be estimated as follows. By (2.7) and (2.10), we easily see that T

0

 1

0


u2u2

x + |b|2|bx|
2 dxdt ≤ C + C sup

0≤t≤T
∥ux∥L2 , (2.32)

while, by (2.4) and (2.22), we find T

0

 1

0
θ2ρ2

x dxdt ≤ sup
0≤t≤T

∥ρx∥
2
L2

 T

0
∥θ∥

2
L∞dt

≤ C + C sup
0≤t≤T

∥θ∥L∞ + C
 T

0
∥uxx∥

2
L2dt

7/8

. (2.33)
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Moreover, due to (2.3) and (2.12), it holds that T

0

 1

0


θ2
x + θ6θ2

x


dxdt ≤ C + C sup

0≤t≤T
∥θ∥

2
L∞

 T

0

 1

0

κθ2
x

θ2
dxdt + C

 T

0
∥uxx∥

2
L2dt

7/8

≤ C + C sup
0≤t≤T

∥θ∥
2
L∞ + C

 T

0
∥uxx∥

2
L2dt

7/8

. (2.34)

So, putting (2.32)–(2.34) into (2.31) and using the Cauchy–Schwarz inequality give

sup
0≤t≤T

∥ux∥
2
L2 +

 T

0
∥ut∥

2
L2dt ≤ C + C sup

0≤t≤T
∥θ∥

2
L∞ + C

 T

0
∥uxx∥

2
L2dt

7/8

, (2.35)

which, together with (1.1)2, (2.5) and (2.32)–(2.34), also yields T

0
∥uxx∥

2
L2dt ≤ C

 T

0

 1

0


u2u2

x + θ6θ2
x + θ2ρ2

x + θ2
x + |b|2|bx|

2
+ u2

t


dxdt

≤ C + C sup
0≤t≤T

∥θ∥
2
L∞ + C

 T

0
∥uxx∥

2
L2dt

7/8

. (2.36)

Thus, combining (2.35), (2.36) with the Young inequality leads to (2.28). As an immediate result, (2.29) follows from (2.6),
(2.18), (2.28) and the Hölder inequality, and consequently, (2.30) holds due to (2.28) and (2.29). The proof of Lemma 2.6 is
therefore complete. �

With the help of Lemmas 2.4–2.6, we now can prove the upper bound of the temperature, which in turn concludes the
proofs of the above preliminary estimates.

Lemma 2.7. Let κ > 0 be a positive constant. Then for any given T > 0,

sup
0≤t≤T

 1

0
θ2
x (x, t)dx +

 T

0

 1

0
(1 + θ3)θ2

t dxdt ≤ C, (2.37)

which particularly implies

sup
0≤t≤T

∥θ∥L∞ ≤ C . (2.38)

Proof. Taking the L2-inner product of (2.13) with θt and integrating the resulting equation by parts, we have from (2.5),
(2.7), (2.30) and the Cauchy–Schwarz inequality that

sup
0≤t≤T

 1

0
θ2
x (x, t)dx +

 T

0

 1

0
(1 + θ3)θ2

t dxdt

≤ C + C
 T

0

 1

0


u2θ2

x + u2θ3θ2
x + θ2u2

x + θ5u2
x + u4

x + |wx|
4
+ |bx|

4 dxdt
≤ C + C sup

0≤t≤T
∥θ(t)∥3

L∞ + C
 T

0

 1

0


u2θ2

x + u2θ3θ2
x + θ2u2

x + θ5u2
x


dxdt, (2.39)

since it follows from (2.7) and (2.18) that T

0


∥wx∥

4
L4 + ∥bx∥

4
L4

dt ≤ sup

0≤t≤T


∥wx∥

2
L2 + ∥bx∥

2
L2
  T

0


∥wx∥

2
L∞ + ∥bx∥

2
L∞

dt

≤ C + C
 T

0


∥wxx∥

2
L2 + ∥bxx∥

2
L2

dt ≤ C .

Using (2.2), (2.3), (2.5), (2.9), (2.11) and (2.28), we find T

0

 1

0


u2θ2

x + u2θ3θ2
x


dxdt ≤ sup

0≤t≤T
∥u∥2

L∞


sup

0≤t≤T
∥θ∥

2
L∞

 T

0

 1

0

κθ2
x

θ2
dxdt +

 T

0

 1

0
θ3θ2

x dxdt


≤ C sup
0≤t≤T

∥ux∥L2


1 + sup

0≤t≤T
∥θ∥

2
L∞ +

 T

0
∥uxx∥

2
L2dt

1/2


≤ C + C sup
0≤t≤T

∥θ∥
3
L∞ ,
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while, it is easily deduced from (2.6) that T

0

 1

0


θ2u2

x + θ5u2
x


dxdt ≤ sup

0≤t≤T


∥θ∥

2
L∞ + ∥θ∥

5
L∞
  T

0
∥ux∥

2
L2dt

≤ C + C sup
0≤t≤T

∥θ∥
5
L∞ ,

which, inserted into (2.39), gives

sup
0≤t≤T

∥θx∥
2
L2 +

 T

0

 1

0
(1 + θ3)θ2

t dxdt ≤ C + C sup
0≤t≤T

∥θ∥
5
L∞ . (2.40)

By virtue of the boundedness of ∥θ∥L4 due to (1.8) and (2.2), we have

∥θ∥
3
L∞ ≤ C + C

 1

0
θ2

|θx|dx ≤ C

1 + ∥θ∥

2
L4∥θx∥L2


≤ C


1 + ∥θx∥L2


,

which, together with (2.40) and the Young inequality, immediately yields (2.37) and (2.38). �

As a result of (2.37) and (2.38), we deduce the following from Lemmas 2.5 and 2.6.

Lemma 2.8. For any given T > 0, there exists a positive constant C > 0 such that

sup
0≤t≤T


∥ρx∥L2 + ∥ρt∥L2 + ∥u∥L∞ + ∥ux∥L2


+

 T

0


∥uxx∥

2
L2 + ∥ux∥

2
L∞ + ∥ux∥

4
L4 + ∥ut∥

2
L2

dt ≤ C . (2.41)

By Lemmas 2.1, 2.2, 2.7 and 2.8, the lower positive bound of the temperature and the higher order estimates of the
solution can be easily obtained.

Lemma 2.9. For any given T > 0, one has

sup
0≤t≤T


∥(ut ,wt , bt , uxx,wxx, bxx)∥

2
L2

+

 T

0
∥(uxt ,wxt , bxt)∥

2
L2dt ≤ C, (2.42)

inf
(x,t)∈ΩT

θ(x, t) ≥ C−1, (2.43)

sup
0≤t≤T


∥θt∥

2
L2 + ∥θxx∥

2
L2

+

 T

0
∥θxt∥

2
L2dt ≤ C . (2.44)

Proof. The proofs are sketched here for completeness. Differentiating (1.1)2 with respect to t , multiplying the resulting
equation by ut in L2, and integrating by parts, we have from Lemmas 2.1, 2.2, 2.7 and 2.8 and the Cauchy–Schwarz inequality
that

1
2

 1

0
ρu2

t (x, t)dx −
1
2

 1

0
ρu2

t (x, 0)dx + ν

 t

0
∥uxt∥

2
L2ds

=

 t

0

 1

0


Rρθ +

a
3
θ4

+
1
2
|b|2


t
uxt − (ρu)


u2
t + uuxut


x − ρuxu2

t


dxds

≤
ν

2

 t

0
∥uxt∥

2
L2ds + C + C

 t

0
(1 + ∥ux∥L∞) ∥ut∥

2
L2ds. (2.45)

So, combining (2.45) with (2.5) and the Gronwall inequality gives

sup
0≤t≤T

∥ut∥
2
L2 +

 T

0
∥uxt∥

2
L2dt ≤ C

which, together with (1.1)2, implies that ∥uxx∥L2 ≤ C . Analogously, one can also obtain the same estimates of (w, b). The
proof of (2.42) is thus complete.

Let L be a parabolic operator defined as follows:

L(f ) ,
∂ f
∂t

+ u
∂ f
∂x

+
uxpθ

ρeθ

f −
1

ρeθ

∂

∂x


κ

∂ f
∂x


.
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Then, it follows from (1.8) and (2.13) that

L(θ) = θt + uθx +
uxpθ

ρeθ

θ −
(κθx)x

ρeθ

=
λu2

x + µ|wx|
2
+ ν|bx|

2

ρeθ

≥ 0.

Set

θ̃ (t) , e−Kt inf
x∈[0,1]

θ0(x) with K ,

uxpθ

ρeθ


L∞(ΩT )

.

It is easy to check that

L(θ̃) ≤ 0 ≤ L(θ), θ |t=0 ≥ θ̃ |t=0 and θx|x=0,1 = θ̃x|x=0,1 = 0.

Thus, the standard comparison argument yields

θ(x, t) ≥ θ̃ (t) for all (x, t) ∈ ΩT ,

which finishes the proof of (2.43).
Finally, multiplying (2.13) t by θt in L2, integrating by parts, and using Lemmas 2.1, 2.2, 2.7 and 2.8 and (2.42), one can

prove (2.44) in a similar manner as that used for (2.42). The proof of Lemma 2.9 is therefore complete. �

With all the global a priori estimates established in Lemmas 2.1, 2.2 and 2.7–2.9, we can prove Theorem 1.1 in a standard
way. Indeed, similar to the proofs in [31], one easily deduces from Lemmas 2.2 and 2.7–2.9 that

(u,w, b, θ) ∈


C1,1/2
x,t (ΩT )

6
, (ux,wx, bx, θx) ∈


C1/2,1/4
x,t (ΩT )

6
and ρ ∈ C1/2,1/4

x,t (ΩT ).

Furthermore, by means of the classical theory in Ref. [34] of parabolic equations and the results in Ref. [35], we can obtain
the desired Hölder continuity of the solutions stated in Theorem 1.1. The uniqueness of the solution can also be proved in a
very standard way, basing on the energy method. Therefore, the proof of Theorem 1.1 is complete.

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. To this end, we first notice that the global estimates established in Lemmas 2.1–2.6
still hold under the conditions (1.13), (1.14) of Theorem 1.2. So, to complete the proof of Theorem 1.2, it suffices to prove
the following.

Lemma 3.1. Let the heat-conducting coefficient κ = κ(ρ, θ) be a function of (ρ, θ), satisfying (1.13) and (1.14) with q > 0.
Then, besides the estimates in Lemmas 2.1–2.6, one has

sup
0≤t≤T


∥θ∥L∞ +

 1

0
(1 + θ)2qθ2

x dx


+

 T

0

 1

0
(1 + θ)q+3θ2

t dxdt ≤ C . (3.1)

Proof. By the boundedness of ∥θ∥L4 due to (1.8) and (2.2), we infer from (1.13) that

∥θ∥
(q+4)/2
L∞ ≤ C + C

 1

0
θ2θ (q−2)/2

|θx|dx ≤ C + C
 1

0

κθ2
x

θ2
dx
1/2

,

which, combined with (2.3) and the boundedness of ∥θ∥L4 , gives T

0


∥θ∥

q+4
L∞ + ∥θ∥

q+8
Lq+8


dt ≤ C, ∀ q ≥ 0. (3.2)

Moreover, using (2.3), (2.11) and (2.28), we have T

0

 1

0
(1 + θ)3θ2

x dxdt ≤ C
 T

0

 1

0


θ2 κθ2

x

θ2
+ κθ3θ2

x


dxdt ≤ C


1 + Θ2 , (3.3)

where and whereafter we denote Θ , sup0≤t≤T ∥θ∥L∞ for simplicity.
To prove (3.1), we first observe from (1.1)1 that

(κθx)(κθt)x = (κθx)(κθx)t + (κθx)

κρρxθt − κρρtθx


=

1
2

d
dt

(κθx)
2
+ κκρθx (uρxθx + ρuxθx + ρxθt) .
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Now, similar to the derivations of (2.39) and (2.40), multiplying (2.13) by κθt in L2, and integrating by parts, we deduce from
(1.13), (1.14) and the Cauchy–Schwarz inequality that

sup
0≤t≤T

 1

0
(κθx)

2(x, t)dx +

 T

0

 1

0
(1 + θ)q+3θ2

t dxdt

≤ C
 T

0

 1

0
(1 + θ)q


u2θ2

x + u2θ3θ2
x + θ5u2

x + θ2u2
x + u4

x + |wx|
4
+ |bx|

4 dxdt
+ C

 T

0

 1

0

κκρθ2
x (uρx + ρux)

+ κκρθxρxθt
 dxdt + C

≤ C

1 + Θq+5

+ C
 T

0

 1

0

κκρθ2
x (uρx + ρux)

+ κκρθxρxθt
 dxdt. (3.4)

Using (1.13) and (1.14), we see that T

0

 1

0

κκρθ2
x (uρx + ρux)

+ κκρθxρxθt
 dxdt

≤ C
 T

0

 1

0
(|uρx| + |ux|) |κθx|

2dxdt + ε

 T

0

 1

0
(1 + θ)q+3θ2

t dxdt

+ Cε−1
 T

0

 1

0
(1 + θ)q−3 ρ2

x |κθx|
2dxdt

≤ ε

 T

0

 1

0
(1 + θ)q+3θ2

t dxdt + Cε−1 1 + Θ2+(q−3)+
  T

0
∥κθx∥

2
L∞dt, (3.5)

since it follows from (2.2), (2.5), (2.22) and (2.28) and the Hölder inequality that

∥uρx∥L1 + ∥ux∥L1 + ∥ρx∥
2
L2 ≤ C


1 + ∥ux∥

2
L2 + ∥ρx∥

2
L2


≤ C

1 + Θ2 .

Thus, putting (3.5) into (3.4) and choosing ε > 0 small enough give

sup
0≤t≤T

 1

0
(κθx)

2dx +

 T

0

 1

0
(1 + θ)q+3θ2

t dxdt ≤ C

1 + Θq+5

+ C

1 + Θ2+(q−3)+

  T

0
∥κθx∥

2
L∞dt. (3.6)

To deal with the second term on the right-hand side of (3.6), we first utilize (2.5) and (2.13) to get that

|(κθx)x| ≤ C(1 + θ)3 (|θt | + |uxθ | + |uθx|) + u2
x + |wx|

2
+ |bx|

2,

and consequently, T

0

 1

0
(1 + θ)q−3

|(κθx)x|
2dxdt ≤ C

 T

0

 1

0
(1 + θ)q+3θ2

t dxdt + C

1 + Θ3+(q−3)+


. (3.7)

Here, we have used (2.2), (2.5)–(2.7), (2.28), (2.30), (3.2) and (3.3) to get that T

0

 1

0
(1 + θ)q+3θ2u2

xdxdt ≤ CΘ sup
0≤t≤T

∥ux∥
2
L2 ≤ C


1 + Θ3 , T

0

 1

0
(1 + θ)q+3u2θ2

x dxdt ≤ C

1 + Θ2 sup

0≤t≤T
∥u∥2

L∞ ≤ C

1 + Θ3 ,

and  T

0

 1

0
(1 + θ)q−3 u4

x + |wx|
4
+ |bx|

4 dxdt ≤ C

1 + Θ3+(q−3)+


.

As a result of (3.3) and (3.7), we find
1 + Θ2+(q−3)+

  T

0
∥κθx∥

2
L∞dt ≤ C


1 + Θ2+(q−3)+

  T

0

 1

0
|κθx| |(κθx)x|dxdt

≤ C

1 + Θ3+(q−3)+

  T

0

 1

0
(1 + θ)q−3

|(κθx)x|
2dxdt

1/2
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≤ C

1 + Θ3+(q−3)+

  T

0

 1

0
(1 + θ)q+3θ2

t dxdt
1/2

+ C

1 + Θ(9+3(q−3)+)/2

≤ ε

 T

0

 1

0
(1 + θ)q+3θ2

t dxdt + Cε−1 1 + Θ6+2(q−3)+

. (3.8)

Therefore, putting (3.8) into (3.6) and choosing ε > 0 sufficiently small, we arrive at

sup
0≤t≤T

 1

0
(1 + θ)2qθ2

x dx +

 T

0

 1

0
(1 + θ)q+3θ2

t dxdt ≤ C

1 + Θ6+2(q−3)+


. (3.9)

Thanks to (2.12) and (2.28), we have

∥θ∥
q+ 13

2
L∞ ≤ C + C

 1

0
θ

11
2 θ qθxdx ≤ C + C(1 + Θ)

 1

0
θ2qθ2

x dx
1/2

,

from which and (3.9) it follows that

Θ2q+13
≤ C + C


1 + Θ2 sup

0≤t≤T

 1

0
θ2qθ2

x dx ≤ C

1 + Θ8+2(q−3)+


. (3.10)

Combining (3.10) with the Young inequality yields Θ ≤ C . This, together with (3.9), finishes the proof of (3.1)
immediately. �

With the help of (3.1), we can obtain all the estimates as those in Lemmas 2.8 and 2.9 in the exactly same way, and thus,
the proof of Theorem 1.2 is complete.
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