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a b s t r a c t

We study Hilbert spaces L2(E,G), where E ⊂ Rd is a measurable set, |E| > 0 and for
almost every t ∈ E the matrix G(t) (see (3)) is a Hermitian positive-definite matrix. We
find necessary and sufficient conditions for which the projection operators Tk(f )(·) =

fk(·)ek, 1 ≤ k ≤ n are bounded. The obtained results allow us to translate various ques-
tions in the spaces L2(E,G) to weighted norm inequalities with weights which are the di-
agonal elements of the matrix G(t). In Section 3 we study the properties of the system
{ϕm(t)ej, 1 ≤ j ≤ n;m ∈ N} in the space L2(E,G), where Φ = {ϕm}

∞

m=1 is a complete
orthonormal system defined on a measurable set E ⊂ R. We concentrate our study on
two classical systems: the Haar and the trigonometric systems. Simultaneous approxima-
tions of n elements F1, . . . , Fn of some Banach spaces X1, . . . , Xn with respect to a system
Ψ which is a basis in any of those spaces are studied.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The theory of weighted spaces is well developed in the case of scalar functions. A standard weighted space in this regard
is the Lp(w) defined as follows. Letw be a nonnegative integrable on [0, 1] function. Define for 1 ≤ p < ∞

∥f ∥p
p,w :=

 1

0
|f (t)|pw(t)dt.

The main interest of this paper is in consideration of weighted spaces of vector-valued functions, say, functions of the form
f = (f1, . . . , fd), where fj are scalar functions. A straightforward way to generalize a scalar setting to the vector-valued
setting would be as follows. Introduce d weightsW := (w1, . . . , wd) and define

∥f ∥p,W :=


d

j=1

∥fj∥2
p,wj

1/2

. (1)

This definition corresponds to a diagonal matrix with diagonal elements (w1, . . . , wd). We opt for a definition based on a
given Hermitian positive-definite form rather than on a diagonal matrix. We consider here only the case p = 2 and define
the norm corresponding to a given Hermitian positive-definite form with a matrix G as follows

∥f ∥L2(E,G) :=


E
f ∗(t)G(t)f (t)dt

1/2

. (2)
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Clearly, definition (2) is more general than definition (1). It turns out that this generality brings about some unexpected
phenomena. For instance, it is obvious that in the case of (1) the projection operator that maps f into (0, . . . , 0, fj, 0 . . . , 0)
is a bounded operator. We prove in Section 2 that it is not always the case in the space L2(E,G).

We study Hilbert spaces of vector-valued functions L2(E,G), where E ⊂ Rd is a measurable set, |E| > 0 and for almost
every t ∈ E the matrix

G(t) =

gjk(t)


1≤j,k≤n (3)

is a Hermitian positive-definite (HPD) matrix. Similar spaces appeared in the literature earlier (e.g. see [1]). Our approach is
based on a Hermitian positive-definite matrix G. In Section 2 we find necessary and sufficient conditions (see Theorem 2.1)
for the above described projection operators to be bounded. Those conditions are fundamental for the proof of results
obtained in Sections 3 and 4. Proposition 2.2 which is based on Theorem 2.1 allows us to translate various questions in
the spaces L2(E,G) to weighted norm inequalities with weights which are the diagonal elements of the matrix G(t). In
Section 3 we study the properties of the system {ϕm(t)ej, 1 ≤ j ≤ n;m ∈ N} in the space L2(E,G), whereΦ = {ϕm}

∞

m=1 is a
complete orthonormal system defined on a measurable set E ⊂ R. We concentrate our study on two classical systems: the
Haar and the trigonometric systems. M. Nielsen [9] has studied a similar question for the trigonometric system. Conditions
obtained in the cited article are different because the questions that have been considered are different. In [9] the author in
fact has studied the question of being a summation basis of the considered system.

The obtained results are applied in the next section to study simultaneous approximation of n elements F1, . . . , Fn of
some Banach spaces X1, . . . , Xn with respect to a system Ψ which is a basis in each of those spaces. We discuss there the
properties greedy and democratic of a basis which are important in nonlinear sparse approximation.

2. General L2(E,G) spaces

2.1. Hermitian forms

Let V be a vector space over a field K(K = C orR) and let dim V = n. A transformation Φ : V × V → K is called a
Hermitian form if

Φ(αu + βv,w) = αΦ(u,w)+ βΦ(v,w);
Φ(w, αu + βv) = ᾱΦ(w,u)+ β̄Φ(w, v);
Φ(u, v) = Φ(v,u)

for all u, v,w ∈ V and α, β ∈ K. If {ej}nj=1 is a basis of V then for

x =

n
j=1

xjej; y =

n
j=1

yjej

we will have that

Φ(x, y) =

n
j=1

n
k=1

xjȳkΦ(ej, ek) =


j,k

Φjkxjȳk.

The Hermitian matrix

Φ =

Φjk

1≤j,k≤n , Φjk = Φ̄kj

is called the matrix of the given Hermitian form with respect to the basis {ej}nj=1 of the space V . If {e′

j}
n
j=1 is another basis of

the vector space V and

e′

j =

n
k=1

akjek, 1 ≤ j ≤ n.

Then the matrixΦ ′ of the Hermitian formΦ(·, ·)with respect to the basis {e′

j}
n
j=1 is defined by the following formula

Φ ′
= A∗

· Φ · A,

where A =

akj

1≤k,j≤n and A∗ is the conjugate transpose of A, obtained from A by taking transpose and then taking the

complex conjugate.
The quadratic formΦ(x, x) is called Hermitian positive-definite if

Φ(x, x) =


j,k

Φjkxjx̄k > 0 for all xj ∈ K, 1 ≤ j ≤ n

such that x = (x1, x2, . . . , xn) is nonzero. In this case thematrixΦ is called Hermitian positive-definite (HPD) matrix. Recall
some properties of HPD matrices (see for example [2]):

Every HPD matrix is invertible and its inverse is also HPD matrix.
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IfΦ is aHPDmatrix then the diagonal entriesΦjj are real andpositive. As a consequence the trace, tr(Φ) > 0. Furthermore

|Φjk| ≤

ΦjjΦkk, 1 ≤ j, k ≤ n. (4)

2.2. General L2(E,G) spaces

Let E ⊂ Rd be a measurable set, |E| > 0. A V -valued function η : E → V will be called measurable if it is defined by the
equation η(t) =

n
k=1 αk(t)ek, where αk : E → K, 1 ≤ k ≤ n are Lebesgue measurable functions. Let B : E → Kn×n be a

matrix-valued function defined on E such that for any t ∈ E the matrix

B(t) =

βkj(t)


1≤k,j≤n

is a nonsingular matrix and the functions βkj are measurable on E. We define V -valued measurable functions

ej(t) =

n
k=1

βkj(t)ek, 1 ≤ j ≤ n (5)

and observe that for any t ∈ E{ej(t)}nj=1 is a basis of the vector space V . Such a basis we will call the measurable basis of V .
For any t ∈ E let

B−1(t) =


β
(−1)
kj (t)


1≤k,j≤n

be the inverse of the matrix B(t). The functions β(−1)
kj are measurable on E. It follows from Kramer’s rule.

Let for any t ∈ EGt : V × V → K be a Hermitian form such that the functions

gjk(t) = Gt(ej(t), ek(t)) 1 ≤ j, k ≤ n

are measurable and the matrix

G(t) =

gjk(t)


1≤j,k≤n (6)

is a HPD matrix a.e. on E. Observe that by properties formulated above

gkk(t) ≥ 0 a.e. on E, 1 ≤ k ≤ n. (7)

The HPD matrices are invertible, hence, for a.e. t ∈ E the matrix G(t) is invertible. Let

G−1(t) =


g(−1)
jk (t)


1≤j,k≤n

be the inverse matrix for any t ∈ E for which G(t) is HPD. As it was shown above the functions g(−1)
jk are measurable on E.

If w ≥ 0 is a measurable function on E then we say that φ ∈ L2(E, w) if φ : E → K is measurable on E and the norm is
defined by

∥φ∥L2(E,w) :=


E
|φ(t)|2w(t)dt

 1
2

< +∞.

Let L be the vector space of all V -valued functions f : E → V such that

f (t) =

n
k=1

fk(t)ek(t), (8)

where the functions fj (1 ≤ j ≤ n) are measurable and fj ∈ L2(E, gjj), 1 ≤ j ≤ n. We will write f = h for f , h ∈ L if and only
if fj = hj a.e. on E for all 1 ≤ j ≤ n.

By (4) we have that

|gjk(t)| ≤

gjj(t)gkk(t) a. e. on E, 1 ≤ j, k ≤ n. (9)

Furthermore if we write f (t) = ⟨f1(t), f2(t), . . . , fn(t)⟩ it will be understood that the Eq. (8) holds. For f , h ∈ L let

⟨f |h⟩G =


E
h∗(t)G(t)f (t)dt =


E


j,k

h̄j(t)gjk(t)fk(t)dt. (10)

By (9) it follows that ⟨f |h⟩G exists for any f , h ∈ L. We define a norm on L based upon the inner product

∥f ∥L2(E,G) :=


⟨f |f ⟩G.
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Afterwards we consider the closure of L in the norm defined above and denote by L2(E,G) the obtained Hilbert space. As
usual, we identify L2(E,G)with the quotient L2(E,G)/L0,where

L0 := {f : E → V : f (t) = 0 a.e. on E}.

Observe that the values of a given Hermitian form don’t depend on the choice of the basis. Hence the inner product and
consequently the norm in L2(E,G) doesn’t depend on the choice of the measurable basis of V .

Let for k ∈ [1, n]

ηk(t) = ⟨g(−1)
1k (t), g(−1)

2k (t), . . . , g(−1)
nk (t)⟩ =

n
j=1

g(−1)
jk (t)ej(t). (11)

The system {ηk(t)}nk=1 is biorthogonal to {ek(t)}nk=1. Using the property gjk = ḡkj it is easy to check that ⟨ek|ηs⟩G = δks. The
following statement holds.

Proposition 2.1. Let ϕ,ψ : E → K be measurable functions. Inclusion

ϕ(t)ek(t) ∈ L2(E,G)

holds for some k (1 ≤ k ≤ n) if and only if ϕ ∈ L2(E, gkk). Then

∥ϕ(·)ek(·)∥L2(E,G) = ∥ϕ∥L2(E,gkk).

Inclusion

ψ(t)ηk(t) ∈ L2(E,G)

holds for some k (1 ≤ k ≤ n) if and only if ψ ∈ L2(E, g(−1)
kk ). Then

∥ψηk∥L2(E,G) = ∥ψ∥L2(E,g(−1)
kk )

.

Proof. We only give the proof of the second assertion. The first one follows from the definition of ⟨·|·⟩G. We have

η∗

k (t)G(t)ηk(t) =

n
l=1

n
j=1

g(−1)
lk (t)glj(t)g

(−1)
jk (t)

=

n
l=1

g(−1)
lk (t)δlk = g(−1)

kk (t),

where δlk is the Kronecker delta, equal to zero whenever l ≠ k and equal to 1 if l = k. Hence,

⟨ψηk|ψηk⟩G =


E
|ψ(t)|2g(−1)

kk (t)dt. �

Lemma 2.1. For any k, 1 ≤ k ≤ n

1 ≤ gkk(t)g
(−1)
kk (t) a.e. on E.

Proof. For any ϕ ∈ L2(E, gkk), ψ ∈ L2(E, g(−1)
kk )we have that

⟨ϕ(·)ek(·)|ψ(·)ηk(·)⟩G =


E
ϕ(t)ψ̄(t)dt

and by the Cauchy–Schwartz inequality
E
ϕ(t)ψ̄(t)dt

 ≤ ∥ϕek∥L2(E,G)∥ψηk∥L2(E,G)

= ∥ϕ∥L2(E,gkk)∥ψ∥L2(E,g(−1)
kk )

.

The above inequality with ϕ = ψ(gkk)−1 yields
E
|ψ(t)|2

1
gkk(t)

dt
 1

2

≤ ∥ψ∥L2(E,g(−1)
kk )

.
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Recall that gkk(t) > 0, g(−1)
kk (t) > 0 a.e. on E. We now apply a well known result on a multiplication operator TM : L2(E) →

L2(E) defined by the equation TM(g) = Mg is bounded if and only ifM ∈ L∞(E) and ∥TM∥ = ∥M∥L∞(E). Hence,

1

gkk(t)g
(−1)
kk (t)

≤ 1 a.e. on E. �

Lemma 2.2. If for some k (1 ≤ k ≤ n) there exists ϕ0 ∈ L2(E, 1/g(−1)
kk ) such that ϕ0 ∉ L2(E, gkk) then the transformation

Tk(f )(t) = fk(t)ek(t)

is not a bounded projection on L2(E,G).

Proof. Let h0(t) =
ϕ0(t)

g(−1)
kk (t)

. It is easy to check that h0 ∈ L2(E, g(−1)
kk ). By Proposition 2.1 we have that

h0ηk ∈ L2(E,G).

Then

Tk(h0ηk) = h0(t)g
(−1)
kk (t)ek(t) = ϕ0(t)ek(t).

By Proposition 2.1 it follows that ϕ0(·)ek(·) ∉ L2(E,G). Hence Tk is not a bounded projection on L2(E,G). �

Theorem 2.1. The transformation Tk is a bounded projection in L2(E,G) if and only if

gkkg
(−1)
kk ∈ L∞(E). (12)

Proof. We begin with proving that (12) is a necessary condition. The proof goes by contradiction. Suppose that gkkg
(−1)
kk ∉

L∞(E). Then there exists a function ψ1 ∈ L2(E) such that the function ψ1gkkg
(−1)
kk ∉ L2(E). Hence, ψ2 := ψ1

√
gkkg

(−1)
kk ∉

L2(E, gkk). We write
E
|ψ2(t)|2

1

g(−1)
kk (t)

dt =


E
|ψ1(t)|2gkk(t)g

(−1)
kk (t)dt.

If the last integral is finite then by Lemma 2.2with ϕ0 = ψ2 we obtain that the transformation Tk is not a bounded projection

in L2(E,G). If the last integral is infinite then setting ϕ0 := ψ1


g(−1)
kk we get on the one hand that ϕ0 ∉ L2(E, gkk). On the

other hand we have that
E
|ϕ0(t)|2

1

g(−1)
kk (t)

dt =


E
|ψ1(t)|2dt < +∞

and by Lemma 2.2 it follows that the transformation Tk is not a bounded projection in L2(E,G). Thus if Tk is a bounded
projection in L2(E,G) then (12) holds.

Let us prove the sufficiency of condition (12). Suppose gkkg
(−1)
kk ≤ C2 almost everywhere. Let f = (f1, . . . , fn) ∈ L2(E,G).

Take any function ψ ∈ L2(E, gkk). Then ψgkk ∈ L2(E, g(−1)
kk ) and

∥ψgkk∥L2(E,g(−1)
kk )

≤ C∥ψ∥L2(E,gkk).

Using Proposition 2.1 we obtain
E
fk(t)ψ(t)gkk(t)dt = ⟨f |ψ̄gkkηk⟩G ≤ ∥f ∥L2(E,G)∥ψ̄gkkηk∥L2(E,G)

= ∥f ∥L2(E,G)∥ψgkk∥L2(E,g(−1)
kk )

≤ C∥f ∥L2(E,G)∥ψ∥L2(E,gkk).

This implies

∥fk∥L2(E,gkk) ≤ C∥f ∥L2(E,G)

and completes the proof. �

The following example shows that there exist HPD matrices for which the condition (12) does not hold.

Example 2.1. Let α > 0 and t ∈ (0, 1), then the following 2 × 2 matrices

Gα(t) =


t−α


t−2α − 1

t−2α − 1 t−α


are HPD matrices for any t ∈ (0, 1) and the condition (12) does not hold.
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Proof. It is easy to check that for any a ∈ (0, 1) the matrix
1 a
a 1


is HPD. We have that detGα(t) ≡ 1 for t ∈ (0, 1). Hence,

G−1
α (t) =


t−α −


t−2α − 1

−


t−2α − 1 t−α


. �

By Theorem 2.1 and Proposition 2.1 we obtain

Proposition 2.2. If the condition (12) holds for all k (1 ≤ k ≤ n) then there exists C0 > 1 such that for any f = ⟨f1, f2, . . . , fn⟩ ∈

L2(E,G)

∥f ∥L2(E,G) ≤

n
k=1

∥fk∥L2(E,gkk) ≤ C0∥f ∥L2(E,G).

Proof. We write f (t) =
n

k=1 fk(t)ek(t) and afterwards apply the triangle inequality and Proposition 2.1 to prove the left
hand inequality. The right hand inequality follows directly from Theorem 2.1. �

Consider the following measurable basis of V
1

√
g11(t)

e1(t), η2(t), η3(t), . . . , ηn(t)

. (13)

For any t ∈ E the matrix of our Hermitian form with respect to the basis (13) has the following form

G′(t) = A∗(t) · G(t) · A(t), (14)

where

A(t) =



1
√
g11(t)

g(−1)
12 (t) · · · g(−1)

1n (t)

0 g(−1)
22 (t) · · · g(−1)

2n (t)

0 g(−1)
32 (t) · · · g(−1)

3n (t)
0 · · ·

0 · · ·

0 g(−1)
n2 (t) · · · g(−1)

nn (t)


;

A∗(t) =



1
√
g11(t)

0 0 0 0 0

g(−1)
12 (t) g(−1)

22 (t) · · · g(−1)
n2 (t)

g(−1)
13 (t) g(−1)

23 (t) · · · g(−1)
n3 (t)

· · · ·

· · · ·

g(−1)
1n (t) g(−1)

2n (t) · · · g(−1)
nn (t)


.

Matrix multiplication operations yield

G′(t) =



χE(t) 0 0 0 0 0

0 g(−1)
22 (t) · · · g(−1)

n2 (t)

0 g(−1)
23 (t) · · · g(−1)

n3 (t)
0 · · ·

0 · · ·

0 g(−1)
2n (t) · · · g(−1)

nn (t)


.

By Proposition 2.1 we have that 1
√
g11(t)

e1(t) ∈ L2(E,G). For any t ∈ E we consider the subspace V0(t) of V generated by
linearly independent vectors {ζj(t)}nj=2. We have that

g(−1)
kj (t) = G(ηj(t), ηk(t)) := hj−1k−1(t) 2 ≤ j, k ≤ n.
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Hence

H(t) =

hjk(t)


1≤j,k≤n−1

is a HPD matrix. The Eq. (14) yields

detH(t) =
g11(t)
detG(t)

. (15)

By induction we obtain the following

Theorem 2.2. There exists a measurable basis {εj(t)}nj=1 of V such that εj ∈ L2(E,G), 1 ≤ j ≤ n and the matrix E(t) of the
Hermitian form with respect to the basis {εj(t)}nj=1 has the following form

E(t) =


χE(t) 0 0 0 0 0
0 χE(t) 0 0 0 0
0 0 χE(t) 0 0 0
· · · · ·

· · · · ·

0 0 0 0 0 χE(t)

 .

3. Some classical systems in L2(E,G)

Let Φ = {ϕm}
∞

m=1 be a complete orthonormal system defined on a measurable set E ⊂ R. We will study the matrices
(3) for which the system {ϕm(t)ej, 1 ≤ j ≤ n;m ∈ Z} is a basis in some sense in the spaces L2(E,G). It will be natural to
begin our study with the Haar and the trigonometric systems. In this section we prove some preliminary results which can
be used for both systems. A system of functions {φm}

∞

m=1 ⊂ L∞(E) is called total with respect to L(E) if
E
g(t)φm(t)dt = 0 for some g ∈ L(E) and for allm ∈ N

if and only if g(t) = 0 a.e.

Lemma 3.1. Let Φ = {ϕm}
∞

m=1 ⊂ L∞(E) be an orthonormal system defined on a measurable set E ⊂ R total with respect to
L(E). Let G(t) be an HPDmatrix for a.e. t ∈ E such that gjj ∈ L(E) for all 1 ≤ j ≤ n. Then the system {ϕm(t)ej, 1 ≤ j ≤ n;m ∈ Z}

is complete in L2(E,G).

Proof. Suppose that for some f ∈ L2(E,G)

⟨ϕm(t)ej|f ⟩G = 0, 1 ≤ j ≤ n; m ∈ N. (16)

For a fixed j (1 ≤ j ≤ n)we have that

f ∗(t)G(t)ϕm(t)ej = ϕm(t)
n

k=1

gjk(t)fk(t).

Hence, by (16) it follows
T
ϕm(t)

n
k=1

fk(t)gjk(t)dt = 0, 1 ≤ j ≤ n; m ∈ N.

Then our assumption thatΦ is total with respect to L(E) implies
n

k=1

fk(t)gjk(t) = 0 a.e. on E, 1 ≤ j ≤ n.

Recall that detG(t) ≠ 0 a.e. on E. Thus fk(t) = 0 a.e. on E for all 1 ≤ k ≤ n. �

3.1. The Haar system in L2([0, 1],G)

Let H = {hk}
∞

k=0 be the Haar system enumerated in its natural order. Let∆ be a collection of all dyadic intervals of [0, 1]

∆ := {I ⊂ [0, 1] : I = [(l − 1)2−n, l2−n), n = 0, 1, . . . , l = 1, . . . , 2n
} ∪ {[0, 1]}
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and N0 = N


{0}. Let w be a nonnegative integrable function on [0, 1]. We say that w belongs to Muckenhoupt’s dyadic
class A(d)p , 1 ≤ p < ∞ if there exists a constant B(p) > 0 such that for any I ∈ ∆we have

I
w(t)dt


I
w(t)−

1
p−1 dt

p−1

≤ B(p)|I|p. (17)

A.S. Krantzberg [8] proved that the condition w ∈ A(d)p is a necessary and sufficient condition for the Haar system H

to be a basis of Lp([0, 1], w), 1 < p < ∞. In [4] it was pointed out that the condition w ∈ A(d)p guarantees that H is an
unconditional basis of Lp([0, 1], w), 1 < p < ∞. In [5] we prove that the condition w ∈ A(d)p implies that H is a greedy
basis of Lp([0, 1], w), 1 < p < ∞.

In this subsectionwe consider V = Rn,K = R and the domain of the vector-valued functionswill be [0, 1]. Furthermore,
{ej}nj=1 will denote the standard basis for the space Rn.

For any t ∈ [0, 1] let Gt : Rn
× Rn

→ R be a symmetric bilinear form such that the functions

gjk(t) = Gt(ej, ek), 1 ≤ j, k ≤ n,

are measurable and the matrix

G(t) =

gjk(t)


1≤j,k≤n

is a symmetric positive definite matrix a.e. on [0, 1]. Moreover, we suppose that gjj ∈ L1([0, 1]) for all 1 ≤ j ≤ n. By
Lemma 3.1 it follows that the system

H = {hm(t)ej, 1 ≤ j ≤ n;m ∈ N0}

is complete in L2([0, 1],G).

Proposition 3.1. The system H is minimal in L2([0, 1],G) if and only if

g(−1)
kk ∈ L([0, 1]), 1 ≤ k ≤ n. (18)

Proof. First, we prove sufficiency. Suppose that (18) holds. Then by Proposition 2.1

H∗
= {hm(t)ηk(t), 1 ≤ k ≤ n;m ∈ N0} ⊂ L2([0, 1],G). (19)

We have that for any 1 ≤ k, j ≤ n

η∗

k (t)G(t)ej =

n
l=1

g(−1)
kl (t)glj(t) = δkj a.e. on [0, 1].

This implies that for all 1 ≤ k, j ≤ n

⟨hl(t)ej|hm(t)ηk⟩G = δkjδlm, m, l ∈ N0. (20)

Hence, H is minimal in L2([0, 1],G).
Second, we prove necessity. Suppose that H is minimal in L2([0, 1],G). Then for any fixed j0 (1 ≤ j0 ≤ n) and

m0(m0 ∈ N0) there exists ζj0m0 ∈ L2([0, 1],G) such that for any m ∈ N0

⟨hm(t)ej|ζj0m0(t)⟩G = 0 for any j ≠ j0 (1 ≤ j ≤ n); (21)

for any j (1 ≤ j ≤ n)

⟨hm(t)ej|ζj0m0(t)⟩G = 0 for anym ≠ m0 (m ∈ Z); (22)

⟨hm0(t)ej0 |ζj0m0(t)⟩G = 1. (23)

Let ζj0m0(t) = ⟨τ1(t), τ2(t), . . . , τn(t)⟩. Then by (21) we have that
n

k=1

gjk(t)τk(t) = 0 a.e. on [0, 1] for any j ≠ j0 (1 ≤ j ≤ n).

Hence, ζj0m0(t) = ϕ0(t)⟨g
(−1)
j01

(t), g(−1)
j02

(t), . . . , g(−1)
j0n

(t)⟩. Which by (22) yields ϕ0(t) = c0hm0(t), where c0 ∈ R. By (23) it
follows that c0 = 1. Thus by Proposition 2.1 with ψ = h0 we obtain (18). �

By Lemma 3.1 we obtain

Proposition 3.2. The system H is complete in L2([0, 1],G).
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For any fixed j (1 ≤ j ≤ n) consider the partial sums

SNj(f ,H, t) = ej
N

m=0

⟨f |hmηj⟩G hm(t), N ∈ N0. (24)

We have that

η∗

j (t)G(t)f (t) =

n
l=1

n
k=1

g(−1)
lj (t)glk(t)fk(t) = fj(t).

Thus we obtain that

SNj(f ,H, t) =

N
m=0

am(fj)hm(t), N ∈ N0, (25)

where

am(φ) =


[0,1]

φ(t)hm(t)dt, m ∈ N0. (26)

We will say that the system H has natural enumeration if for any j (1 ≤ j ≤ n) it maintains the order of enumeration
between the elements of the system {hmej}m∈N0 .

Theorem 3.1. Let the system H be given in a natural enumeration and suppose that for all k (1 ≤ k ≤ n) (12), (18) hold. Then
the system H is a Schauder basis in L2([0, 1],G) if and only if there exists C > 1 such that for any dyadic interval I ⊂ [0, 1].

I
gkk(t)dt


I

1
gkk(t)

dt ≤ C |I|2 for all k (1 ≤ k ≤ n). (27)

Proof. Sufficiency. Let f = ⟨f1, f2, . . . , fn⟩ ∈ L2([0, 1],G). By (24), (25) any partial sum with respect to the system H of the
function f has the following form

n
j=1

SNjj(f , t) =

n
j=1

ejSNj(fj, t),

where SNj(fj, t) is the Njth partial sum of the Fourier series of the function fj. It is well known (see [8,4]) that if (27) holds
then we will have that for some C3 > 1 and for any j (1 ≤ j ≤ n)

∥SNj(fj, ·)∥L2([0,1],gjj) ≤ C3∥fj∥L2([0,1],gjj).

Hence, by Proposition 2.2 the proof of sufficiency is finished.
Necessity. By Proposition 2.2 H is a Schauder basis in L2([0, 1],G) if and only if the above inequalities hold for all

j (1 ≤ j ≤ n). Hence, as in [8,4] we finish the proof. �

Theorem 3.2. Suppose that for for all k (1 ≤ k ≤ n) (12), (18) hold. Then the system H is an unconditional basis in L2([0, 1],G)
if and only if there exists C > 1 such that for any dyadic interval I ⊂ [0, 1] (27) holds.

Proof. Evidently we have to check only the sufficiency. Let Hσ be the system H enumerated in any arbitrary order. Then for
any f = ⟨f1, f2, . . . , fn⟩ ∈ L2([0, 1],G) by (24), (25) we will have that any partial sum with respect to the system Hσ of the
function f has the following form

n
j=1

SNσ(j)j(f , t) =

n
j=1

ejSNσ(j)(fj, t).

Afterwards we apply conditions for which the Haar system is an unconditional basis in a weighted norm space Lp, 1 < p <
∞ (see the beginning of this section) and finish the proof. �

3.2. The trigonometric system in L2(T,G)

Let T := R/2πZ and letw be a nonnegative function defined on T. We say thatw ∈ Ap, 1 < p < ∞ if for some B(p) > 0
and for any interval I ⊂ T (17) holds. The proof that the trigonometric system is a basis in any Lp(T)1 < p < ∞ is based on
the fact that the operator that maps a function into its trigonometrical conjugate function is a bounded operator from Lp(T)
into itself (see e.g. [15]). Hence, after the result by Hunt, Muckenhoupt andWheeden [3] that the trigonometrical conjugate
operator is a bounded operator from Lp(T, w) into itself if and only if w ∈ Ap it was easy to observe that the trigonometric
system is a basis in Lp(T, w)1 < p < ∞ if and only ifw ∈ Ap (see e.g. [4]).
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In this section we specify V = Cn,K = C and the domain of the vector-valued function will be T := R/2πZ.
Furthermore, {ej}nj=1 will denote the standard basis for the space Cn.

For any t ∈ T let Gt : Cn
× Cn

→ C be a Hermitian form such that the functions

gjk(t) = Gt(ej, ek), 1 ≤ j, k ≤ n,

are measurable and the matrix

G(t) =

gjk(t)


1≤j,k≤n

is a HPD matrix a.e. on T. Moreover, we suppose that gjj ∈ L1(T) for all 1 ≤ j ≤ n.
We consider the following system

T = {ei2πmtej, 1 ≤ j ≤ n;m ∈ Z} (28)

in L2(T,G). As a corollary of Lemma 3.1 we obtain

Proposition 3.3. The system T is complete in L2(T,G).

As in the case of the Haar system we obtain

Proposition 3.4. The system T is minimal in L2(T,G) if and only if

g(−1)
jj ∈ L1(T), 1 ≤ j ≤ n. (29)

For any fixed j (1 ≤ j ≤ n) consider the partial sums

SNj(f , t) = ej


|m|≤N

⟨f |ei2πm·ηj⟩G ei2πmt , N = 1, 2, . . . . (30)

We have that

η∗

j (t)G(t)f (t) =

n
l=1

n
k=1

g(−1)
lj (t)glk(t)fk(t) = fj(t).

Thus we obtain that

SNj(f , t) = ej


|m|≤N

cm(fj)ei2πmt , N = 1, 2, . . . , (31)

where

cm(φ) =


T
φ(t)e−i2πmtdt. (32)

Theorem 3.3. Suppose that for all k (1 ≤ k ≤ n)

gkk g
(−1)
kk ∈ L∞(T) (33)

and that the conditions (29) hold for all j (1 ≤ j ≤ n). Then the system T is a Riesz basis in L2(T,G) if and only if there exists
C1 > 1 such that

C−1
1 ≤ gkk(t) ≤ C1 a.e. on T for all k (1 ≤ k ≤ n). (34)

Proof. Sufficiency. Let f = ⟨f1, f2, . . . , fn⟩ ∈ L2(T,G). Then by Theorem 2.1 and Proposition 2.1 we have that for all
k (1 ≤ k ≤ n) fk ∈ L2(T, gkk). Hence, by (34) it follows that fk ∈ L2(T) for all k (1 ≤ k ≤ n). This together with (31),
(32) imply that the sequence of the coefficients of the expansion of f with respect to the system T belongs to l2. Now let us
show that for any j (1 ≤ j ≤ n) the series ej


+∞

m=−∞
bmei2πmt converges in L2(T,G) for any {bm} ∈ l2. By Proposition 2.1

it is equivalent to the convergence of the series


+∞

m=−∞
bmei2πmt in the space L2(T, gjj). By (34) we have that the norms in

L2(T, gjj) and L2(T) are equivalent, which finishes the proof.
Necessity. Suppose that for some k0 (1 ≤ k0 ≤ n)

gk0k0 ∉ L∞(T) or
1

gk0k0
∉ L∞(T).

Let us consider the first case. There exists φ0 ∈ L2(T) such that
√
gk0k0φ0 ∉ L2(T). Evidently {cm(φ0)} ∈ l2 but the series

gk0k0(t)


+∞

m=−∞
cm(φ0)ei2πmt diverges in L2(T). Which leads to a contradiction. �
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Let ρ : N0 → Z be a bijection defined by the following relations

ρ(k) =


−

k + 1
2

if k = 2l − 1
k
2

if k = 2l; l = 0, 1, 2, . . . .

We will say that the set Z has natural enumeration if it is enumerated by means of the inverse of ρ. The corresponding
enumeration of the trigonometric system {ei2πmt

}m∈Z is also called natural enumeration. We will say that the order of
enumeration of the system T is natural if it maintains the order of natural enumeration between the elements of the system
{ei2πmtej}m∈Z for any j (1 ≤ j ≤ n).

Theorem 3.4. Let the system T be given with a natural enumeration and suppose that for all k, j (1 ≤ k, j ≤ n) the conditions
(33), (29) hold. Then the system T is a Schauder basis in L2(T,G) if and only if there exists C2 > 1 such that for any interval I ⊂ T

I
gkk(t)dt


I

1
gkk(t)

dt ≤ C2|I|2 for all k (1 ≤ k ≤ n). (35)

Proof. Sufficiency. Let f = ⟨f1, f2, . . . , fn⟩ ∈ L2(T,G). By (30), (31) any partial sum with respect to the system T of the
function f has the following form

n
j=1

SNjj(f , t) =

n
j=1

ejSNj(fj, t),

where SNj(fj, t) is the Njth partial sum of the Fourier series of the function fj. We will have that for some C3 > 1 for any
j (1 ≤ j ≤ n)

∥SNj(fj, ·)∥L2(T,gjj) ≤ C3∥fj∥L2(T,gjj).

Hence, by Proposition 2.2 the proof of sufficiency is finished.
Necessity. By Proposition 2.2T is a Schauder basis inL2(T,G) if and only if the above inequalities hold for all j (1 ≤ j ≤ n).

The proof of the remaining part one can obtain repeating by small modifications of the proof in [3] or directly applying
the result obtained in [10] where necessary and sufficient conditions on the weight function w were found such that the
trigonometric system is a basis in Lp(T, w) with respect to Abel-Poisson summation method. In this case also the weight
functionw should belong to the class Ap. �

4. Simultaneous greedy approximation

In this section we are going to discuss simultaneous approximation of n elements F1, . . . , Fn of some Banach spaces
X1, . . . , Xn with respect to a system Ψ which is a basis in each of those spaces. We interpret this problem as a problem of
approximation of a single element (F1, . . . , Fn) in a new Banach space with respect to a new dictionary. Let X be an infinite-
dimensional separable Banach space with a norm ∥ · ∥ := ∥ · ∥X and let Ψ := {ψk}

∞

k=1 be a basis for X . For a given f ∈ X we
define the best m-term approximation with regard to Ψ as follows:

σm(f ) := σm(f ,Ψ )X := inf
bk,Λ

f −


k∈Λ

bkψk


X

,

where the infimum is taken over coefficients bk and setsΛ of indices with cardinality |Λ| = m. There is a natural algorithm
of constructing an m-term approximant. For a given element f ∈ X we consider the expansion

f =

∞
k=1

ck(f )ψk.

We call a permutation ρ, ρ(j) = kj, j = 1, 2, . . . , of the positive integers decreasing and write ρ ∈ D(f ) if

|ck1(f )|∥ψk1∥X ≥ |ck2(f )|∥ψk2∥X ≥ · · · .

In the case of strict inequalities here D(f ) consists of only one permutation. We define the m-th greedy approximant of f
with regard to the basis Ψ corresponding to a permutation ρ ∈ D(f ) by formula

Gm(f ) := Gm(f ,Ψ ) := Gm(f ,Ψ , ρ) :=

m
j=1

ckj(f )ψkj .

It is a simple algorithm which describes a theoretical scheme for m-term approximation of an element f . This algorithm is
known in the theory of nonlinear approximation under the name of Thresholding Greedy Algorithm (TGA). The best we can
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achieve with the algorithm Gm is
∥f − Gm(f )∥X = σm(f ,Ψ )X ,

or a little weaker
∥f − Gm(f )∥X ≤ Cσm(f ,Ψ )X

for all f ∈ X with a constant C > 0 independent of f and m. The following concept of a greedy basis was introduced in [6].

Definition 4.1. We call a basis Ψ a greedy basis if for every f ∈ X there exists a permutation ρ ∈ D(f ) such that

∥f − Gm(f ,Ψ , ρ)∥X ≤ Cσm(f ,Ψ )X

with a constant C independent of f andm.

The reader can find a discussion of greedy bases in [7,11,12,14], and [13, Chapter 1]. The following characterization theorem
was proved in [6].

Theorem 4.1. A basis is greedy if and only if it is unconditional and democratic.

Definition 4.2. We say that a systemΨ = {ψk}
∞

k=1 is a democratic system for X if there exists a constant D := D(X,Ψ ) such
that, for any two finite sets of indices P and Q with the same cardinality |P| = |Q |, we have

k∈P

ψk

∥ψk∥X

 ≤ D


k∈Q

ψk

∥ψk∥X

 . (36)

Given some Banach spaces X1, . . . , Xn, we consider a new Banach space
Xn

:= {F = (F1, . . . , Fn), Fj ∈ X, j = 1, . . . , n}.
Denote Fej := (0, . . . , 0, Fj, 0, . . . , 0). Then Xn has the properties
(i) ∥Fej∥Xn = ∥Fj∥Xj for all j, 1 ≤ j ≤ n;
(ii) there exist 0 < c ≤ C < ∞ such that

c


n

j=1

∥Fj∥2
Xj

1/2

≤ ∥F∥Xn ≤ C


n

j=1

∥Fj∥2
Xj

1/2

. (37)

Dictionary Ψ generates a dictionary Ψ n in the space Xn defined as follows:
Ψ n

:= {ψkej = (0, . . . , 0, ψn, 0, . . . , 0), ψk ∈ Ψ , j = 1, . . . , n}.
It is clear that if Ψ is an unconditional basis of all Xj, 1 ≤ j ≤ n if and only if Ψ n is an unconditional basis of Xn.

For any j, 1 ≤ j ≤ n define

ϕj(ℓ) := sup
A:|A|≤ℓ


ν∈A

ψν

∥ψν∥Xj


Xj

.

It is clear from this definition that
ϕj(m + l) ≤ ϕj(m)+ ϕj(l). (38)

For any A ⊂ N with |A| = ℓwe have

D−1
j ϕj(ℓ) ≤


k∈A

ψk

∥ψk∥Xj


Xj

≤ ϕj(ℓ), 1 ≤ j ≤ n. (39)

Let
ϕ(ℓ) := max

1≤j≤n
ϕj(ℓ) and η(ℓ) := min

1≤j≤n
ϕj(ℓ). (40)

Definition 4.3. We say that a system Ψ is equidemocratic in the spaces Xj, 1 ≤ j ≤ n if Ψ is democratic in each space
Xj, 1 ≤ j ≤ n and for some c1 > 0

c1ϕ(ℓ) ≤ η(ℓ) ≤ ϕ(ℓ) for all ℓ ∈ N.

The following result holds.

Theorem 4.2. Let Ψ be a system which belongs to all spaces Xj, 1 ≤ j ≤ n. Then Ψ n is a democratic system of Xn if and only if
Ψ is a equidemocratic system for the spaces Xj, 1 ≤ j ≤ n.
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Proof. Suppose that Ψ is a democratic system of Xd. We fix any j, ν (1 ≤ j, ν ≤ n) and for any two finite sets of indices P
and Q with the same cardinality |P| = |Q | we have

k∈P

ψkej
∥ψkej∥Xn


Xn

≤ D


k∈Q

ψkeν
∥ψkeν∥Xn


Xn

.

Using the property (i) of the space Xn we obtain that
k∈P

ψk

∥ψk∥Xj


Xj

≤ D


k∈Q

ψk

∥ψk∥Xν


Xν

.

Hence, the system Ψ is equidemocratic for the spaces Xj, 1 ≤ j ≤ n.
Sufficiency. Let B = {(k, ν) : k ∈ N, 1 ≤ ν ≤ n} be of cardinality |B| = ℓ. Denote Bj := {k : (k, j) ∈ B}. Then on one hand

we have 
(k,j)∈B

ψkej
∥ψkej∥Xn


Xn

≤ C

 n
j=1



k∈Bj

ψk

∥ψk∥Xj


2

Xj


1/2

≤ C


n

j=1

ϕj(|Bj|)
2

1/2

≤ Cn1/2ϕ(ℓ). (41)

On the other hand at least for some ν, 1 ≤ ν ≤ n we have |Bν | ≥ s(ℓ, n), where s(ℓ, n) = ℓ/n if ℓ/n is an integer and
s(ℓ, n) = [ell/n] + 1 otherwise. Therefore 

(k,j)∈B

ψkej
∥ψkej∥Xn


Xn

≥ c

 n
j=1



k∈Bj

ψk

∥ψk∥Xj


2

Xj


1/2

≥ cD−1
ν ϕν(s(ℓ, n)),

where the last inequality follows by (39). Using the inequality (38) we obtain ϕν(s(ℓ, n)) ≥ n−1ϕν(ℓ). Thus, by (41) we
obtain that Ψ n is democratic for Xn. �

Theorem 4.3. Ψ n is a greedy basis of Xn if and only if Ψ is a greedy basis of the spaces Xj, 1 ≤ j ≤ n and Ψ is equidemocratic
for the spaces Xj, 1 ≤ j ≤ n.

Proof. By Theorem 4.1 a basis is greedy if and only if it is unconditional and democratic. As it was mentioned above Ψ n is
an unconditional basis of Xn if and only if Ψ is an unconditional basis of the spaces Xj, 1 ≤ j ≤ n. Hence by Theorem 4.2 the
proof is complete. �

Propositions 2.1 and 2.2 show when one can apply Theorem 4.3 for the spaces L2(E,G).
By Theorems 4.3 and 3.2 we obtain

Theorem 4.4. Suppose that for all k (1 ≤ k ≤ n) (12), (18) hold. Then the system H is a greedy basis in L2([0, 1],G) if and only
if there exists C > 1 such that for any dyadic interval I ⊂ [0, 1] (27) holds.

Proof. We have to check only that the Haar system is equidemocratic for the spaces L2([0, 1], gkk), 1 ≤ k ≤ n. For any
j, 1 ≤ j ≤ n define

ϕH
j (N) := sup

A:|A|≤N


k∈A

hk

∥hk∥L2(gjj)


XL2(gjj)

.

In [5] it was shown that ϕH
j (N) ≤ CjN1/2 if (27) holds. It is easy to observe that ϕH

j (N) ≥ N1/2. Thus the Haar system is
equidemocratic for the spaces L2([0, 1], gkk), 1 ≤ k ≤ n. �

The following theorem is an immediate corollary of Theorems 4.3 and 3.3.

Theorem 4.5. Suppose that for all k (1 ≤ k ≤ n) (33) holds and that the conditions (29) hold for all j (1 ≤ j ≤ n). Then the
system T is a greedy basis in L2(T,G) if and only if (34) holds.
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