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In this paper we identify certain classes of non-stretch mappings that enjoy a sharp
estimate of the Beurling–Ahlfors operator. We first make use of a property of subharmonic
functions to prove that the Bañuelos–Wang conjecture and the Iwaniec conjecture are
true for a class of mappings that satisfy a quasilinear conjugate Beltrami equation. By
utilizing the principal solutions of Beltrami equations, we further explicitly construct some
classes of non-stretch mappings for which the Bañuelos–Wang conjecture and the Iwaniec
conjecture are true.
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1. Introduction

The Beurling–Ahlfors operator T is defined on Lp(C), 1 < p < ∞, by

T f (z) = − 1

π
pv

∫ ∫
C

f (ζ )

(z − ζ )2
dm(ζ ), (1.1)

where pv means the Cauchy principal value and m is the Lebesgue measure in the plane C. The Beurling–Ahlfors operator
arises naturally in the study of the solutions of Beltrami equations [3,5]. This operator and its multidimensional analogues
are fundamental tools in several areas including quasiconformal mappings, partial differential equations, calculus of varia-
tions and differential geometry (see [3–6,8,18,25,30] and the references therein for more details).

For a function f = u + iv :C →C, we denote its formal partial derivatives by

∂̄ f = f z̄ = 1

2
( fx + i f y) = 1

2

(
ux − v y + i(u y + vx)

)
,

∂ f = f z = 1

2
( fx − i f y) = 1

2

(
ux + v y + i(vx − u y)

)
,

and write

D f =
[

ux u y

vx v y

]
.
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Let Ẇ 1,p(C,C), 1 < p < ∞, be the homogenous Sobolev space of complex-valued locally integrable functions in the plane
whose distributional first derivatives are in Lp(C). A function f : C →C is called radial if f (reiθ ) = g(r), while, f is said to
be a stretch mapping if it is of the form f (reiθ ) = g(r)eiθ , where z = reiθ , and g is a nonnegative locally Lipschitz function
on (0,∞) with g(0) = 0 and limr→∞ g(r) = 0. Let S denote the set of all stretch mappings.

The Beurling–Ahlfors operator T is an isometric operator in L2(C) that sends ∂̄ f to ∂ f for f ∈ Ẇ 1,p(C,C) (pp. 52–53
in [3], or pp. 94–96 in [5]). The Calderón–Zygmund lemma says that T has a finite Lp -norm bound C p with C p → 1 as
p → 2 in Lp(C) (pp. 62–66 in [3]). In [26], Lehto showed that ‖T‖Lp(C) � p∗ − 1, p∗ = max{p,

p
p−1 }, by using a family of

stretch mappings. Iwaniec [24] conjectured that ‖T‖Lp(C) = p∗ − 1. This conjecture is equivalent to the inequality∫ ∫
C

|∂ f |p dm �
(

p∗ − 1
)p

∫ ∫
C

|∂̄ f |p dm (1.2)

for complex-valued functions f ∈ Ẇ 1,p(C,C).
The Bañuelos–Wang conjecture is stated as follows [11]: For every function f ∈ Ẇ 1,p(C,C), it is true that∫ ∫

C

Bp(D f )dm � 0, (1.3)

where the Burkholder functional Bp is given by

Bp(D f ) = ((
p∗ − 1

)|∂̄ f | − |∂ f |)(|∂̄ f | + |∂ f |)p−1
. (1.4)

The Šverák conjecture is as follows [31]: If f ∈ Ẇ 1,2(C,C), then∫ ∫
C

S(D f )dm � 0,

where the Šverák functional S is defined by

S(D f ) =
{ |∂̄ f |2 − |∂ f |2, if |∂ f | + |∂̄ f | � 1,

2|∂̄ f | − 1, otherwise.

The validity of the Šverák conjecture implies that of the Bañuelos–Wang conjecture (see Section 1 in [7] for a proof). By
the Burkholder inequality (pp. 16–17 in [13])

p

(
1 − 1

p∗

)p−1((
p∗ − 1

)|∂̄ f | − |∂ f |)(|∂̄ f | + |∂ f |)p−1 �
(

p∗ − 1
)p|∂̄ f |p − |∂ f |p, (1.5)

the Bañuelos–Wang conjecture in turn implies the Iwaniec conjecture.
In 1952, Morrey [28] conjectured that the rank-one convexity of a functional F : M(m,n) → R does not imply its quasi-

convexity when both m and n are at least 2, where M(m,n) denotes the set of all m × n matrices with real entries. Due to
the rank-one convexity of the Burkholder functional and the Šverák functional, the above three conjectures are also closely
connected with the Morrey conjecture. One can see Section 5 in [7] or [6,32] for a precise statement of these relations.

Bañuelos and Wang [11] used martingale inequalities [13] to show that ‖T‖Lp(C) � 4(p∗ − 1). Utilizing an analytic
approach with Bellman functions, Nazarov and Volberg [29] improved it and got 2(p∗ − 1). So far, the best result is
‖T‖Lp(C) � 1.575(p∗ − 1), obtained by Bañuelos and Janakiraman [9] by probabilistic techniques of Burkholder [13,14]. One
can refer to [12,21] for its asymptotical estimates and see [19,20] for the Lp -norm estimates of the powers Tn .

On one hand, there have been efforts to decrease the constant C in the inequality

‖T f ‖L p(C) � C
(

p∗ − 1
)‖ f ‖L p(C) (1.6)

for all functions f ∈ Lp(C), while, on the other hand, there were results establishing this inequality with C = 1 but just for
particular subclasses of Lp(C).

Baernstein and Montgomery-Smith [7] showed that the Bañuelos–Wang conjecture holds for every stretch mapping
f ∈ S ∩ Ẇ 1,p(C,C) and consequently the Iwaniec conjecture is valid for this class of mappings. Recently, Volberg [32]
extended the above result to complex radial functions.

Theorem A. If a complex-valued function f has an expression

f (z) = f
(|z|), f ∈ C∞

0 (C),

then it follows

‖T f ‖L p(C) �
(

p∗ − 1
)‖ f ‖L p(C). (1.7)
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Let H be a separable Hilbert space over R with norm | · | and scalar product 〈· , ·〉, and F : C → H belong to L p(C).
Bañuelos and Osȩkowski [10] used martingale inequalities to show that the inequality (1.7) holds for all radial functions F
and the constant p∗ − 1 is the best possible for 1 < p � 2.

Let Ω be a simply-connected domain of C. Recall that a harmonic mapping f defined on Ω is a solution of the conjugate
Beltrami equation

f z̄ = a fz (1.8)

in W 1,2
loc (Ω), where a is analytic and |a| < 1 on Ω . We refer to [17,22,23] for the study of harmonic mappings. In [7],

Baernstein and Montgomery-Smith proved the following

Theorem B. If f ∈ Ẇ 1,p(C,C), 1 < p < ∞, is harmonic on C∪ ∞\{|z| = 1}, then the inequality (1.3) holds.

In this paper, we aim to give several new classes of complex-valued functions that validate the Bañuelos–Wang conjec-
ture and the Iwaniec conjecture.

Firstly, we study the class of logharmonic mappings f : Ω → C which are solutions of the quasilinear conjugate Beltrami
equation

f z̄ = a
f̄

f
f z (1.9)

in W 1,2
loc (Ω), where a is an analytic function on Ω with |a| < 1. For two analytic functions h and g with |g′h/gh′| < 1

on Ω , f = hḡ satisfies (1.9) with a = g′h/gh′ almost everywhere. There are solutions of (1.9) which are not of the form
f = hḡ . For instance, f (z) = z|z|2α , �{α} > −1/2, f (1) = 1, is a solution of (1.9) on C with a = ᾱ/(1 + α). Denote by
F(a,Ω) all nonconstant solutions in W 1,2

loc (Ω) satisfying (1.9) almost everywhere in Ω . Abdulhadi and Bshouty [2] obtained
the representation theorem and boundary behaviors of functions in F(a,Ω). In [15], it is shown that a sense-preserving
logharmonic mapping f in C2(Ω) is ρ-harmonic with ρ = 1

| f |2 , that is, it satisfies

f zz̄ + (logρ)ζ ◦ f f z f z̄ = 0 (1.10)

almost everywhere in Ω , where ζ = f (z). See [1,16] and the references therein for more properties about logharmonic
mappings.

Let D be the unit disk of C, and D
c the exterior of D. Set

ϕ(z) =
{

z, z ∈ D,

1/z̄, z ∈ D
c.

Using the technique of subharmonic functions, we obtain

Theorem 1.1. Suppose g is a locally univalent logharmonic mapping of the unit disk D in W 1,2
loc (D). Let f = g ◦ ϕ . If f ∈ Ẇ 1,p(C,C),

then the Bañuelos–Wang conjecture and the Iwaniec conjecture are true for f .

Secondly, we will use principal solutions to construct some classes of mappings validating the Bañuelos–Wang conjecture
and the Iwaniec conjecture. Let μ be a measurable function satisfying ‖μ‖∞ � 1 on C. A principal solution is a global
W 1,2

loc (C)-solution of the Beltrami equation

f z̄ = μ f z (1.11)

with the asymptotic normalization

f (z) = z + b1z−1 + b2z−2 + · · · , for |z| → ∞.

The function μ is called the Beltrami coefficient of (1.11). A series

μ + μTμ + μTμTμ + μTμTμTμ + · · ·
is called the Neumann series. When μ satisfies ‖μ‖∞ � k < 1 and has a compact support, the Neumann series converges in
Lp(C) norm, where k is a constant (see p. 163 in [5]). If μ is degenerative, i.e., ‖μ‖∞ = 1, the convergence of the Neumann
series is not easy to be determined. For some particular classes of degenerative Beltrami coefficients μ, the convergence of
their Neumann series can be determined if there exist explicit representations of Cμ and Tμ (see Lemma 3.1).

If the conjugate of a Beltrami coefficient μ is analytic, then we call it a co-analytic Beltrami coefficient. Let I be the
identical mapping in this text. We show that if f + I is a principal solution with a co-analytic Beltrami coefficient, then the
Bañuelos–Wang conjecture and the Iwaniec conjecture are true for f (see Theorem 3.1).



808 X.D. Chen, T. Qian / J. Math. Anal. Appl. 412 (2014) 805–815
Moreover, using the Parseval formula we give two classes of principal solutions f + I with degenerative Beltrami coeffi-
cients that enable the corresponding mappings f validating the Bañuelos–Wang conjecture and the Iwaniec conjecture for
p = 2 and p = 4 (see Example 3.2 and Theorem 3.2). We note that these mappings are not stretch or complex radial.

This rest of this paper is organized as follows. In Section 2, using the fact that the integral means of a subharmonic
function are non-decreasing, we obtain the proof of Theorem 1.1. In Section 3, we use principle solutions to construct
several classes of non-stretch mappings that validate the Bañuelos–Wang conjecture and the Iwaniec conjecture.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. By the assumption that g ∈ W 1,2
loc (D) and |a| < 1, we have that, as a solution of (1.9), g is a locally

quasiregular mapping of D. Consequently, it is open and sense preserving. Denote by Z(g) the zero set of g . For any point
z0 ∈ D\Z(g), there exists an r > 0 such that log g is harmonic on D(z0, r) = {z | |z − z0| < r} and thus g ∈ C∞(D(z0, r)).
Hence, by (1.10) we have g is 1

|g|2 -harmonic on D(z0, r), that is, g satisfies

ggzz̄ = gz gz̄, z ∈D(z0, r). (2.1)

Differentiating both sides of (2.1) in z, we obtain

gzzz̄ = gzz gz̄

g
, z ∈D(z0, r).

The assumption of the locally univalence of g implies that log g is locally univalent on D(z0, r). By the Lewy theorem [27],
the harmonicity of log g on D(z0, r) implies that the Jacobian J log g > 0 on D(z0, r) and consequently |gz| > 0 on D(z0, r).
Multiplying gz to both sides of the above equality, we have

gz gzzz̄ = gzz gzz̄, z ∈D(z0, r).

Direct computation shows that


 log |gz| = 0 (2.2)

holds for all z ∈ D\Z(g). This implies that log |gz| is subharmonic on D. The relation (1.9) and the subharmonicity of
log |gz| and log |a| show that log |gz̄| is also subharmonic on D. Hence, the logarithms of both |gz|(|gz| + |gz̄|)p−1 and
|gz̄|(|gz| + |gz̄|)p−1 are subharmonic on D. Thus, the functions themselves are subharmonic on D.

Let f = g ◦ ϕ and ζ = 1
z̄ . For any z ∈D

c , it follows that

f z = (g ◦ ϕ)z =
(

g

(
1

z̄

))
z
= gζ (ζ )ζz + gζ̄ (ζ )ζ̄z = −ζ̄ 2 gζ̄ (ζ ), (2.3)

and

f z̄ = (g ◦ ϕ)z̄ =
(

g

(
1

z̄

))
z̄
= gζ (ζ )ζz̄ + gζ̄ (ζ )ζ̄z̄ = −ζ 2 gζ (ζ ). (2.4)

For z ∈ D, we have

f z = (g ◦ ϕ)z = gz, f z̄ = (g ◦ ϕ)z̄ = gz̄. (2.5)

By the definition of Bp(D f ) and the assumption that f ∈ Ẇ 1,p(C,C), we get from (2.3), (2.4) and (2.5) that∫ ∫
C

Bp(D f )dm =
∫ ∫
D

Bp(D f )dm +
∫ ∫
Dc

Bp(D f )dm

=
∫ ∫
D

[(
p∗ − 1

)|gζ̄ | − |gζ |
](|gζ | + |gζ̄ |

)p−1
dm(ζ )

+
∫ ∫
D

[(
p∗ − 1

)|gζ | − |gζ̄ |
](|gζ | + |gζ̄ |

)p−1|ζ |2(p−2) dm(ζ )

=
∫ ∫
D

[(
p∗ − 1

) − |ζ |2(p−2)
]|gζ̄ |

(|gζ | + |gζ̄ |
)p−1

r dr dθ

+
∫ ∫
D

[(
p∗ − 1

)|ζ |2(p−2) − 1
]|gζ |

(|gζ | + |gζ̄ |
)p−1

r dr dθ = I + II,

where ζ = reiθ . It is clear that I = II = 0 when p = 2. If 2 < p < ∞, then I > 0. Now we can also show that II > 0.
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Write

I1(r) = 1

2π

2π∫
0

|gζ |
(|gζ | + |gζ̄ |

)p−1
dθ, I2(r) = 1

2π

2π∫
0

|gζ̄ |
(|gζ | + |gζ̄ |

)p−1
dθ. (2.6)

Then II can be written as

II = 2π

1∫
0

[
(p − 1)r2p−3 − r

]
I1(r)dr.

Integration by parts gives

II = 2π

1∫
0

(
r2

2
− r2p−2

2

)
dI1(r). (2.7)

When 2 < p < ∞, the inequality r2

2 − r2p−2

2 > 0 holds for 0 < r < 1. The subharmonic property of the integrand of I1(r)
implies that I1(r) is non-decreasing for 0 < r < 1, that is, dI1(r) � 0 a.e. Hence, II > 0.

When 1 < p < 2, II > 0 is obvious and the inequality I > 0 can be deduced from the non-decreasing property of I2(r) on
(0,1) and the technique that we use in the case 2 < p < ∞. Thus, for 1 < p < ∞, we have∫ ∫

C

Bp(D f )dm � 0.

So, the Bañuelos–Wang conjecture is true for a mapping f = g ◦ ϕ ∈ Ẇ 1,p(C,C), when g satisfies the partial differential
equation (1.9). As a consequence, the Iwaniec conjecture is also true for this class of mappings. �
3. Non-stretch explicit examples constructed by principal solutions

The Cauchy operator is defined by

C f (z) = − 1

π

∫ ∫
C

(
1

ζ − z
− χC\D

ζ

)
f (ζ )dm(ζ ), (3.1)

for a function f ∈ Lp(C), p � 2. For f ∈ Lp(C), p > 2, C f is Hölder continuous with exponent 1 − 2/p (see Theorem 4.3.13
of [5] or [3]), while, for f ∈ L2(C), C f belongs to the space VMO(C) (see Theorem 4.3.9 of [5]). When f is also compactly
supported, the integral is going to be analytic near ∞ with the Laurent series

C f (z) = 1

π

∫ ∫
C

χC\D
ζ

f (ζ )dm(ζ ) +
(

1

π

∫ ∫
C

f (ζ )dm(ζ )

)
1

z
+

∞∑
n=2

bn

zn
,

where bn , n � 2, are constants. One can see Chapter 4 of [5] for more properties of the Cauchy operator. Before constructing
explicit examples which are non-stretch, we need some lemmas. From the Green formula and a limit process, we have

Lemma A. If f ∈ Lp(C), p � 2, then the relations

∂C f = T f , ∂̄C f = f , (3.2)

hold in the distributional sense.

See pp. 52–53 in [3] and p. 112 in [5] for a proof of Lemma A.
Let Ω be a bounded domain and χΩ the characteristic function of Ω . Let μ be a measurable function on C with

‖μ‖∞ � 1. Then μχΩ belongs to Lp(C) for any p � 2 and thus C(μχΩ) and T(μχΩ) are well defined. Define

Q f = μχΩT f

for f ∈ Lp(C). Write

Qn f = Q ◦ · · · ◦ Q︸ ︷︷ ︸( f ), n ∈ N
+.
n
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By induction, Qn(μχΩ) is well defined for all n ∈ N
+ . If the series

∑∞
n=1 Qn(μχΩ) converges and its sum h belongs to

Lp(C), p � 2, then

f = z + C(μχΩ + h) (3.3)

is a principal solution of the Beltrami equation

f z̄ = μχΩ f z.

Moreover, f z − 1 ∈ Lp(C), p � 2, and

f z = 1 + T(μχΩ + h), f z̄ = μχΩ + h.

Lemma 3.1. Let μ = z̄nzm, where n and m are integers. Then the following relations hold. If n � m, then

C(μχD)(z) = zm ϕ(z̄)n+1

n + 1
(3.4)

and

T(μχD)(z) =

⎧⎪⎨
⎪⎩

m
n+1 zm−1 z̄n+1, m �= 0, z ∈D,

0, m = 0, z ∈D,

− n−m+1
(n+1)zn−m+2 , z ∈D

c .

(3.5)

If n = m − 1, then

C(μχD)(z) = −1 − |z|2n+2

n + 1
χD (3.6)

and

T(μχD)(z) = zn z̄n+1χD. (3.7)

If n � m − 2, then

C(μχD)(z) = − zm−(n+1)

n + 1

(
1 − |z|2n+2)χD (3.8)

and

T(μχD)(z) =
(

−m − (n + 1)

n + 1
zm−(n+2) + m

n + 1
zm−1 z̄n+1

)
χD. (3.9)

Proof. Let ζ = reiθ . By the definition of the Cauchy operator, we have

C(μχD)(z) = − 1

π

∫ ∫
C

ζ̄nζmχD

ζ − z
dm(ζ ) = −2

1∫
0

r2n+1 Iz(r)dr, (3.10)

where

Iz(r) = 1

2π i

∮
|ζ |=r

1

ζn−m+1(ζ − z)
dζ. (3.11)

When n � m, we obtain

Iz(r) = − 1

zn−m+1
χD. (3.12)

Thus, it follows from (3.12) that

C(μχD)(z) = −2

1∫
r2n+1 Iz(r)dr = 1

(n + 1)zn−m+1
, z ∈ D

c

0
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and

C(μχD)(z) = −2

|z|∫
0

r2n+1 Iz(r)dr +
1∫

|z|
r2n+1 Iz(r)dr = 1

(n + 1)
zmz̄n+1, z ∈ D.

By the first equality of (3.2) of Lemma A, one can get (3.5).
The proofs of the cases n = m − 1 and n � m − 2 can be obtained by the method used in the case n � m, we omit for

simplicity. �
Example 3.1. Let μ = z. Then a principal solution of the Beltrami equation

f z̄ = μχD f z

is given by

f (z) = zeϕ(z̄) − 1. (3.13)

Proof. Choose m = 1, n = 0 in Lemma 3.1. Then by the relation (3.7), we have

Q(μχD) = zz̄χD.

The relation (3.5) gives

Q2(μχD) = 1

2
zz̄2χD.

Hence, it follows from induction that

Qn(μχD) = 1

n! zz̄nχD, n ∈N
+.

Set Q0(μχD) = μχD . By the convergence of the series
∑∞

n=0 Qn(μχD) and the fact that its sum belongs to Lp(C), p � 2,
we have that f = z + C(

∑∞
n=0 Qn(μχD)) is a principal solution of the Beltrami equation f z̄ = zχD f z . Moreover, for z ∈D,

f (z) = z + C

( ∞∑
n=0

Qn(μχD)

)

= z − (
1 − |z|2) + z

(
1

2
z̄2 + 1

3 · 2! z̄3 + · · · + 1

(n + 1) · n! z̄n+1 + · · ·
)

= zez̄ − 1.

Similarly, for z ∈D
c , we have f (z) = ze

1
z − 1. �

Next, we will use principal solutions to construct several classes of mappings validating the Bañuelos–Wang conjecture
and the Iwaniec conjecture.

Theorem 3.1. Let I be the identical mapping and μ is co-analytic on C. If f + I is a principal solution with the Beltrami coefficient
μχD , then∫ ∫

C

Bp(D f )dm � 0, (3.14)

and the equality holds when p = 2.

Proof. The assumption on μ implies that μ can be represented by a power series
∑∞

n=0 anz̄n . Owing to (3.5), we have that
μχDT(z̄nχD) = 0 for all n ∈ N

+ . Now the linearity of the Beurling–Ahlfors operator implies

QμχD(z) = 0.

So,

Qn(μχD) = 0, n ∈N
+.
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By the linearity of the Cauchy operator, we get

f + I = z + C

( ∞∑
n=0

Qn(μχD)

)
= z +

∞∑
n=0

C
(
anznχD

)
.

According to (3.4), we have

f (z) =
∞∑

n=0

C
(
anznχD

) =
∞∑

n=0

an
ϕ(z̄)n+1

n + 1
. (3.15)

Now we prove that f validates the Bañuelos–Wang conjecture.∫ ∫
C

Bp(D f )dm =
∫ ∫
D

Bp(D f )dm +
∫ ∫
Dc

Bp(D f )dm = I + II.

By (3.15), we have

I =
∫ ∫
D

(p − 1)

∣∣∣∣∣
∞∑

n=0

anzn

∣∣∣∣∣
p

dx dy,

and

II =
∫ ∫
Dc

∣∣∣∣∣
∞∑

n=0

an
1

zn+2

∣∣∣∣∣
p

dx dy =
∫ ∫
D

∣∣∣∣∣
∞∑

n=0

anzn+2

∣∣∣∣∣
p

|z|−4 dm(z).

Let z = reiθ . Then,∫ ∫
C

Bp(D f )dm =
∫ ∫
D

|μ|p(
(p − 1) − r2(p−2)

)
r dr dθ � 0,

and the equality holds when p = 2. �
Generally, it is difficult to explicitly represent a principal solution for a given Beltrami coefficient. For some special classes

of Beltrami coefficients, we can obtain their explicit principal solutions and use them to construct non-stretch examples
validating the Bañuelos–Wang conjecture and the Iwaniec conjecture.

Example 3.2. Let g(z) = f (z) − z + 1, where f (z) is given by Example 3.1. Then∫ ∫
C

B2(Dg)dm = 0,

∫ ∫
C

B4(Dg)dm > 0.

Proof. By Eq. (3.13), we get

gz =
{

ez̄ − 1, |z| < 1,

e
1
z − 1

z e
1
z − 1, |z| > 1,

gz̄ =
{

zez̄, |z| < 1,

0, |z| > 1.
(3.16)

It follows from the Parseval formula that∫ ∫
D

(∣∣zez
∣∣2 − ∣∣ez − 1

∣∣2)
dm(z) = π

∞∑
n=2

n − 1

(n!)2
(3.17)

and ∫ ∫
D

|ez − zez − 1|2
|z|4 dm(z) = π

∞∑
n=2

n − 1

(n!)2
. (3.18)

By the above two equations we have∫ ∫
B2(Dg)dm =

∫ ∫ (∣∣zez
∣∣2 − ∣∣ez − 1

∣∣2 − |ez − zez − 1|2
|z|4

)
dm(z) = 0.
C D
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From the power series
∑∞

n=0
zn

n! of ez , it follows that

z2e2z =
∞∑

n=2

2n−2

(n − 2)! zn,
(
ez − 1

)2 =
∞∑

n=2

2n − 2

n! zn, (3.19)

(
ez − zez − 1

z

)2

=
∞∑

n=2

2n(n − 2) + 2

n + 2

zn

n! . (3.20)

Next we prove the second assertion of Example 3.2. By direct calculations, we have∫ ∫
C

B4(Dg)dm =
∫ ∫
C

(
3|gz̄|4 − |gz|4 + 6|gz|2|gz̄|2 + 8|gz||gz̄|3

)
dm

�
∫ ∫
C

(
3|gz̄|4 − |gz|4

)
dm(z) = III − IV,

where

III =
∫ ∫
D

[
3
∣∣z2e2z

∣∣2 − ∣∣(ez − 1
)2∣∣2]

dm(z), IV =
∫ ∫
D

|(ez − zez − 1)2|2
|z|4 dm(z).

Using the Parseval formula, we obtain from (3.19) and (3.20) that

III − IV =
∞∑

n=2

π

[(n − 2)!]2(n + 1)

{
3 · 22n

16
− (2n − 2)2(n + 2)2 + [2n(n − 2) + 2]2

[(n − 1)n(n + 2)]2

}

� π

{
31

16
+

∞∑
n=3

11

144

4n

[(n − 2)!]2(n + 1)

}
> 0.

The proof of Example 3.2 is now complete. �
Moreover, we can get a more general result as follows

Theorem 3.2. Let I be the identical mapping and μ = z̄nz on C, where n � 1. If f + I is a principal solution of the Beltrami equation
with the Beltrami coefficient μχD , then∫ ∫

C

B4(D f )dm > 0.

Proof. By induction, we get from the equality (3.5) at Lemma 3.1 that

Qk =
⎧⎨
⎩

1
k!

1
(n+1)k z̄k(n+1), |z| � 1,

− kn+k+1
k!(n+1)k

1
zkn+k+2 , |z| > 1,

(3.21)

where k � 1. Hence, by the equality (3.4) of Lemma 3.1 we have

C
(
Qk(μχD)

) =
⎧⎨
⎩

1
(k+1)!

1
(n+1)k+1 z̄k(n+1)z, |z| � 1,

1
(k+1)!

1
(n+1)k+1

1
zk(n+1)+k , |z| > 1.

Then the representation (3.3) gives

f (z) = ze
ϕ(z̄)n+1

n+1 − z.

Moreover, it follows

f z =
⎧⎨
⎩ e

z̄n+1
n+1 − 1, |z| � 1,

e
1

(n+1)zn+1 − 1 e
1

(n+1)zn+1 − 1, |z| > 1,

zn+1
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and

f z̄ = zz̄ne
z̄n+1
n+1 χD.

Using change of variable, we have∫ ∫
C

B4(D f )dm =
∫ ∫
C

(
3| f z̄|4 − | f z|4 + 6| f z|2| f z̄|2 + 8| f z|| f z̄|3

)
dm

�
∫ ∫
C

(
3| f z̄|4 − | f z|4

)
dm = V − VI,

where

V =
∫ ∫
D

[
3
∣∣z2(n+1)e2 zn+1

n+1
∣∣2 − ∣∣(e

zn+1
n+1 − 1

)2∣∣2]
dm(z),

and

VI =
∫ ∫
D

|(e
zn+1
n+1 − zn+1e

zn+1
n+1 − 1)2|2

|z|4 dm(z).

From the power series expansion ez = ∑∞
n=0

zn

n! , it follows

(
e

zn+1
n+1 − zn+1e

zn+1
n+1 − 1

)2 =
∞∑

k=2

1

(k − 2)!
(

2k−2(n + 1)2 − 2k − 2

k − 1

(
(n + 1) − 1

k

))(
zn+1

n + 1

)k

.

Utilizing the Parseval formula, we obtain, from (3.19) and the above relation, that

V − VI = 2π

∞∑
k=2

1

((k − 2)!(n + 1)k)2

{(
3 ∗ 22(k−2)(n + 1)4 − (2k − 2)2

k2(k − 1)2

)

× 1

2k(n + 1) + 2
−

(
2k−2(n + 1)2 − 2k − 2

k − 1

(
(n + 1) − 1

k

))2 1

2k(n + 1) − 2

}
.

The assumptions that n � 1 and k � 2 imply that

2k−2(n + 1)2 − 2k − 2

k − 1

(
n + 1 − 1

k

)
>

(
2k

2
− 2k − 2

k − 1

)
(n + 1) � 0

and

22(k−2)(n + 1)4 − (2k − 2)2

k2(k − 1)2
> 22k − 22k

4
= 3

4
22k > 0.

Thus, we have

V − VI > 2π

∞∑
k=2

1

((k − 2)!(n + 1)k)2

{
3

4

22k

2k(n + 1) + 2
+ 22(k−2)(n + 1)4 k(n + 1) − 3

2((k(n + 1))2 − 2)

}
> 0.

Therefore, Theorem 3.2 follows. �
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