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In this paper we look at models of nonlocal (or anomalous) diffusion which are
defined on subsets of the lattice εZn, for some ε > 0, and ask if they can be ap-
proximated by continuum models. The answer is given by an operator semigroup
convergence theorem. As an application, we establish hypotheses under which a dis-
crete model of nonlocal diffusion satisfying an absorbing boundary condition has a
continuum limit which is conservative.
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1. Introduction

The study of nonlocal diffusion (also called anomalous diffusion) has recently emerged as an impor-
tant area of scientific research, with applications in such disparate areas as groundwater hydrology (see
Meerschaert and Sikorskii [11]), optimal search theory (Raposo et al. [12]), and financial market modeling
(Mantegna [10]). Roughly speaking, nonlocal diffusion occurs when a “particle” moves in a way similar
to a simple random walk but has different asymptotic properties because it occasionally takes very large
jumps. It is well known that, under appropriate hypotheses, simple random walks can be approximated by
continuum models governed by the heat equation (see Burdzy and Chen [3], Lin and Segel [9]). The aim of
this paper is to prove some related results for models of nonlocal diffusion.

As a starting point, consider the system of equations

d

dt
p(x, t) =

∑
y∈Zn\{x}

C(p(y, t) − p(x, t))
|y − x|n+α

, x ∈ Z
n (1)

where C > 0 and α ∈ (0, 2). The solution to this system gives the probability p(x, t) that a randomly moving
particle is at the point x at time t, given an appropriate initial condition and given that the position Xt of
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the particle at time t is a continuous time Markov chain with transition probabilities given by

P(Xt+s = y|Xt = x) = sC
|y − x|n+α

+ o(s).

For a given ε > 0, if we rescale space and time so that the movement of the particle is described by X(ε),
where X

(ε)
t = εXε−αt, then one can easily verify that the probability pε(x, t) of finding the particle at x at

time t satisfies

d

dt
pε(x, t) =

∑
y∈εZn\{x}

C(pε(y, t) − pε(x, t))εn

|y − x|n+α
, x ∈ εZn. (2)

The results of Husseini and Kassmann [7] show that as ε → 0, X(ε) converges to a stochastic process
governed by a fractional diffusion equation.

A natural generalization of (2) for subsets E of εZn is the system

d

dt
p(x, t) =

∑
y∈E\{x}

C(p(y, t) − p(x, t))εn

|y − x|n+α
, x ∈ E. (3)

This model has appeared in certain applied contexts (as a special case of the model of human mobility in
Brockmann [2] and as a model of anomalous diffusion in Condat, Rangel and Lamberti [4]). In what follows
we will study this model, as well as an altered version involving an absorbing boundary condition. We will
give hypotheses under which they converge, in a sense to be made precise in the next section, as ε → 0.
This is a continuation of previous work with Seidman in [15].

2. Formal construction of the models and statement of the main results

To motivate all the definitions below, let us briefly summarize the elements of the argument to follow.
Given a lattice εZn and a bounded open set U ⊂ R

n, we consider a family of n-dimensional cubes S1, . . . , Sm

which cover U . We choose the cubes so that each one is centered at a lattice point in εZn, has non-empty
intersection with U , and has volume εn. Letting zi denote the lattice point at the center of Si, δzi denote the
Dirac measure centered at zi, and 1Si

denote the characteristic function for Si, we see that each probability
measure μ =

∑m
i=1 ciδzi on {z1, . . . , zm} can be associated with a probability density v = 1

εn

∑m
i=1 ci1Si

on
⋃m

i=1 Si, which satisfies μ({zi}) =
∫
Si

v(x) dx for all i. Using this correspondence, we can identify the
transition semigroup of a given Markov chain on {z1, . . . , zm} with a semigroup acting on a space of piecewise
constant functions g :

⋃m
i=1 Si → R. For sufficiently small ε, the latter semigroup will approximate some

limiting semigroup acting on L2(U), and this is the continuum-limit model.
We can now proceed with the detailed construction of the models. In everything that follows, α ∈ (0, 2),

C is a positive constant and (εk)k∈N is a sequence of positive real numbers such that εk ↓ 0. We will assume
U is a bounded open subset of Rn satisfying the segment property: for each x contained in the boundary
∂U of U , there is a neighborhood Nx of x in R

n and a vector yx, distinct from the zero vector 0, such
that z + tyx ∈ U for every z ∈ U ∩Nx and t ∈ (0, 1). (All bounded Lipschitz open sets satisfy the segment
property, see Grisvard [6, Theorem 1.2.2.2].) We assume in addition that

lim
ξ↓0

λ
({

x ∈ R
n: d(x, ∂U) < ξ

})
= 0

where λ denotes the Lebesgue measure on R
n. For each k, fix a bijection N → εkZ

n : i �→ zki. Define the
cube
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S =
{(

r1, . . . , rn
)
∈ R

n:
∣∣ri∣∣ < 1

2 for i = 1, . . . , n
}

and for each i, k ∈ N let

Ski = zki + εkS

(so Ski is a cube centered at zki) and

S∗
ki = Ski ∩ U.

To construct the conservative model, we now define

Ik = {i ∈ N: Ski ∩ U �= ∅},

Ek =
{
zki ∈ εkZ

n: i ∈ Ik
}
,

Vk =
{∑

i∈Ik

ai1Ski
: ai ∈ R ∀i ∈ Ik

}
.

One can see that Ik is an index of cubes intersecting U , Ek consists of the lattice points at the centers of these
cubes, and Vk denotes the set of functions on Uk :=

⋃
i∈Ik

Ski which are constant when restricted to a cube
Ski. We make Vk a Hilbert space by giving it the L2(Uk) inner product. Define the maps πk : L2(U) → Vk

and Fk : Vk → L2(U) by

πk : f �→
∑
i∈Ik

ai1Ski
, ai = 1

λ(S∗
ki)

∫
S∗
ki

f dλ,

Fk :
∑
i∈Ik

ai1Ski
�→

∑
i∈Ik

ai1S∗
ki
.

For every g =
∑

i∈Ik
ai1Ski

∈ Vk, let

Tk(t)g = 1
εnk

∑
i∈Ik

pk(zki, t)1Ski

where pk is the unique solution to

d

dt
pk(zki, t) =

∑
zkj∈Ek\{zki}

C(pk(zkj , t) − pk(zki, t))εnk
|zkj − zki|n+α

, zki ∈ Ek (4)

such that pk(zki, 0) = aiε
n
k for all i ∈ Ik. Given v ∈ L2(U), we may interpret ‖v − FkTk(t)g‖L2(U) as the

distance between v and pk(., t). It is easy to see that (Tk(t))t�0 is a C0-semigroup on Vk. By a continuum-limit
for pk, we mean a C0-semigroup (T (t))t�0 on L2(U) such that FkTk(t)πkf → T (t)f (in L2(U)) for every
f ∈ L2(U) and t � 0.

The other discrete model we shall consider is one with an absorbing boundary condition. To construct
it, let M be a positive real number and define

Îk =
{
i ∈ Ik: d

(
zki,R

n\U
)
> Mεk

}
,

Êk = {zki ∈ Ek: i ∈ Îk}.
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In the above, Îk is an index of lattice points inside of U , and Ek\Êk can be thought of as the boundary
of Ek. Notice that if we choose M >

√
n/2, then we have Ski ⊂ U for all i ∈ Îk. (For some results below

we will need the stronger condition M >
√
n.) Also define

θki =
{

1 if zki ∈ Êk,

0 otherwise,

V̂k =
{∑

i∈Ik

ai1Ski
∈ Vk: θki = 0 =⇒ ai = 0

}
,

π̂k : f �→
∑
i∈Ik

ai1Ski
, ai := θki

1
λ(S∗

ki)

∫
S∗
ki

f dλ.

Notice that V̂k is simply the space of functions in Vk which vanish on the boundary cubes Ski, i ∈ Ik\Îk.
If we take the particle described by (4) and “kill” it (and immediately remove it from Ek) upon its fist
entrance to the set Ek\Êk, then the probability of finding the particle at zki at time t is p̂k(zki, t), where
p̂k solves

d

dt
p̂k(zki, t) =

∑
zkj∈Ek\{zki}

C(p̂k(zkj , t) − p̂k(zki, t))εnk
|zkj − zki|n+α

, zki ∈ Êk, (5)

p̂k(zki, t) = 0, zki ∈ Ek\Êk. (6)

We define a C0-semigroup (T̂k(t))t�0 on V̂k by setting, for every g =
∑

i∈Ik
ai1Ski

∈ V̂k,

T̂k(t)g = 1
εnk

∑
i∈Ik

p̂k(zki, t)1Ski

where p̂k is the unique solution to (5)–(6) such that p̂k(zki, 0) = aiε
n
k for every zki ∈ Ek. Thus we seek a

C0-semigroup (T̂ (t))t�0 on L2(U) such that FkT̂k(t)π̂kf → T̂ (t)f for f ∈ L2(U) and t � 0.
Let us now construct the limiting semigroup models. For a Hilbert space H, a dense linear subspace D[F ]

and a symmetric bilinear form F defined on D[F ], we say that (F ,D[F ]) is a closed symmetric bilinear
form on H if D[F ] is a Hilbert space with respect to the inner product (.,.)D[F ] := (.,.)H +F(.,.). (From this
point forward, for any bilinear form (F ,D[F ]), we will always give D[F ] the topology defined by (.,.)D[F ].)
It is known that (see Fukushima, Oshima, and Masayoshi [5, Theorem 1.3.1]) for any such closed symmetric
bilinear form (F ,D[F ]), there is a unique C0-semigroup (S(t))t�0 of symmetric contraction operators on H
such that

F(f, g) = (
√
−Af,

√
−Ag)H

and

D[F ] = D(
√
−A )

where (A,D(A)) is the generator of (S(t))t�0 and (
√
−A,D(

√
−A )) denotes the square root of −A. We call

(S(t))t�0 the semigroup associated with (F ,D[F ]). Let (E ,D[E ]) be the bilinear form

E(f, g) = 1
2C

∫∫ (f(y) − f(x))(g(y) − g(x)) dx dy
|y − x|n+α

,

U×U
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D[E ] =
{
f ∈ L2(U):

∫∫
U×U

(f(y) − f(x))2 dx dy
|y − x|n+α

< ∞
}
.

This is a closed symmetric bilinear form, and in fact the space D[E ] is equivalent to the fractional-order
Sobolev space Hα/2(U) (see Wloka [16]). Define (Ê ,D[Ê ]) so that D[Ê ] is the closure of C∞

0 (U) in D[E ] and
Ê is the restriction of E to D[Ê ]. Let (T (t))t�0 and (T̂ (t))t�0 denote the semigroups associated with (E ,D[E ])
and (Ê ,D[Ê ]), respectively. The generator of (T (t))t�0 is known as the Neumann fractional Laplacian (see
Siudeja [13]). The underlying stochastic models for these semigroups, and the relationships between them,
were studied by Bogdan, Burdzy and Chen [1].

Here is the main theorem of this paper, which we will prove in the next section:

Theorem 2.1. Let f ∈ L2(U) and τ > 0.

1. We have

lim
k→∞

max
0�t�τ

∥∥FkTk(t)πkf − T (t)f
∥∥
L2(U) = 0.

2. If M >
√
n, then

lim
k→∞

max
0�t�τ

∥∥FkT̂k(t)π̂kf − T̂ (t)f
∥∥
L2(U) = 0.

Corollary 2.2. Let f ∈ L2(U) be a probability density and let π̂kf =
∑

i∈Ik
aki1Ski

. For every k, let p̂k be
the solution to (5)–(6) such that p̂k(zki, 0) = akiε

n
k for all i ∈ Ik. If C∞

0 (U) is dense in D[E ], then for every
t � 0,

lim
k→∞

∑
i∈Ik

p̂k(zki, t) = 1. (7)

Remark 2.3. Under the assumptions we have made so far, if U has a Lipschitz boundary, then C∞
0 (U) is

dense in D[E ] if and only if α ∈ (0, 1] (see [1]). Thus the corollary above is not vacuous. It also should
be emphasized that when C∞

0 (U) is not dense in D[E ], the model (T̂ (t))t�0 is not conservative (see [1,
Corollary 2.6]).

The corollary states that the model (5)–(6) becomes conservative in the continuum limit, provided that
C∞

0 (U) is dense in D[E ]. This somewhat odd result is closely related to Theorem 1.1 of [1], where the
authors investigated (among other things) the boundary behavior for the stochastic models associated with
the semigroups (T (t))t�0 and (T̂ (t))t�0. However, Corollary 2.2 above is of interest in its own right because
it connects the results of [1] with the behavior of discrete models.

3. Convergence of the operator semigroups

In this section we prove Theorem 2.1. We will do this by proving convergence for certain sequences of
bilinear forms, in the following sense:

Definition 3.1. Suppose (Hk)k∈N is a sequence of Hilbert spaces, H is a Hilbert space, Φk : Hk → H is a
bounded linear operator for every k, Πk : H → Hk is a bounded linear operator such that ΠkΦk is the
identity on Hk for every k, and limk→∞ ‖Πkf‖Hk

= ‖f‖H for every f ∈ H. Let (F ,D[F ]) be a closed
symmetric bilinear form on H, and for every k, let (Fk,D[Fk]) be a closed symmetric bilinear form on Hk.
We say that (Fk,D[Fk]) converges to (F ,D[F ]) if the following two conditions hold.
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1. For every sequence (hk)k∈N in H and h ∈ H such that ΦkΠkhk converges weakly to h in H, we have

lim inf
k→∞

Fk(Πkhk, Πkhk) � F(h, h),

where for any bilinear form (G,D[G]) we define G(f, f) = ∞ for all f /∈ D[G].
2. For every h ∈ D[F ], there is a sequence (hk)k∈N such that hk ∈ D[Fk] for every k, hk → h in H, and

lim sup
k→∞

Fk(hk, hk) � F(h, h).

The extension of the Trotter–Kato theorem given below is from Kim [8].

Theorem 3.2. With the notation and hypotheses of the previous definition, if (Sk(t))t�0 is the C0-semigroup
associated with (Fk,D[Fk]) and (S(t))t�0 is the C0-semigroup associated with (F ,D[F ]), then the following
are equivalent:

1. The sequence (Fk,D[Fk]) converges to (F ,D[F ]).
2. For every h ∈ H and τ > 0,

lim
k→∞

max
0�t�τ

∥∥ΦkSk(t)Πkh− S(t)h
∥∥
H = 0.

In order to prove the first part of Theorem 2.1, define the bilinear form (Ek,D[Ek]) by D[Ek] = Vk and

Ek
( ∑

i∈Ik

ai1Ski
,
∑
i∈Ik

bi1Ski

)
= 1

2C
∑

i,j∈Ik
i�=j

(aj − ai)(bj − bi)ε2nk
|zkj − zki|n+α

.

It is easy to see that (Tk(t))t�0 is the semigroup associated with (Ek,D[Ek]). Thus the following lemma,
which states that (Ek,D[Ek]) converges to (E ,D[E ]), establishes the first part of Theorem 2.1. In the proof
we will use Lemmas 4.4 and 4.5 from [15]. Although it is assumed in [15] that the domain has a Lipschitz
boundary, in the proofs of Lemmas 4.4 and 4.5 this assumption was only used in order to guarantee the
existence of a dense subset of D[E ] consisting of Lipschitz functions. Thus by [16, Theorem 3.6], Lemmas 4.4
and 4.5 of [15] are still valid in the present context because we have assumed that U satisfies the segment
property.

Lemma 3.3. The bilinear forms (Ek,D[Ek]) converge to (E ,D[E ]). If f ∈ C∞
0 (U), then

lim
k→∞

Ek(πkf, πkf) = E(f, f).

Proof. Suppose Fkπkfk converges weakly to f in L2(U), and let Fkπkfk =
∑

i∈Ik
ai1S∗

ki
. Then since

Ek(πkfk, πkfk) � 1
2C

∑
i,j∈Ik
i�=j

(akj − aki)2λ(S∗
ki)λ(S∗

kj)
|zkj − zki|n+α

,

we have

lim inf
k→∞

Ek(πkfk, πkfk) � E(f, f)

by [15, Lemma 4.4].
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Now let f be the restriction to U of a function in C∞
0 (Rn). The set of such functions, which we shall

denote by C∞
0 (Rn)|U , is dense in (E ,D[E ]) because U satisfies the segment property (see [16, Theorem 3.6]).

Let πkf =
∑

i∈Ik
aki1S∗

ki
. By [15, Lemma 4.5],

lim
k→∞

1
2C

∑
i,j∈Ik
i�=j

(akj − aki)2λ(S∗
ki)λ(S∗

kj)
|zkj − zki|n+α

= E(f, f).

Because f is Lipschitz, for any γ such that 0 < n + α − γ < n, we may choose a positive constant C1
independent of i, j and k such that

(aki − akj)2 � C1|zkj − zki|γ .

Additionally, for any x ∈ Ski and y ∈ Skj such that i �= j, we have

1
|zkj − zki|n+α−γ

� C2

|y − x|n+α−γ

where C2 is independent of x, y, i, j, k. Consequently,

∑
i,j∈Ik

i�=j, S∗
kj �=Skj

(akj − aki)2ε2nk
|zkj − zki|n+α

� Cλ
({

x ∈ R
n: d(x, ∂U) <

√
nεk

}) ∫
B(0,R)

dx

|x|n+α−γ

for some positive constants C and R independent of k. Since the right-hand side goes to 0 as k → ∞, and

∣∣∣∣Ek(πkf, πkf) − 1
2C

∑
i,j∈Ik
i�=j

(akj − aki)2λ(S∗
ki)λ(S∗

kj)
|zkj − zki|n+α

∣∣∣∣ � 4C
∑

i,j∈Ik

i�=j, S∗
kj �=Skj

(akj − aki)2ε2nk
|zkj − zki|n+α

,

it follows that

lim
k→∞

Ek(πkf, πkf) = E(f, f).

Using the density of C∞
0 (Rn)|U in D[E ] and the fact that πkf → f , we are finished. �

Let us now look at the bilinear forms associated with the model (T̂k(t))t�0. Define (Êk,D[Êk]) to be the
restriction of Ek to the space D[Êk] := V̂k.

Lemma 3.4. Assume M >
√
n, g ∈ L2(U), and (gk)k∈N is a sequence such that gk ∈ V̂k for every k. Suppose

that there is a subsequence (gk(i))i∈N such that Fk(i)gk(i) converges weakly to g in L2(U) and

sup
i

Êk(i)(gk(i), gk(i)) < ∞.

Then g ∈ D[Ê ].

Proof. It will be clear from the proof that, given our other assumptions, we can assume without loss of
generality that (k(i))i∈N is really just the sequence (k)k∈N. Thus we will assume the hypotheses of the lemma
hold with (k(i))i∈N replaced by (k)k∈N.
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Letting 1 be the vector in R
n with each component equal to 1, we see that each set 1

2εk1 + Ski is an
n-cube such that all vertices are elements of the set εkZ

n. This n-cube can be subdivided into n! simplices
such that the vertices of each simplex are vertices of 1

2εk1 + Ski. We choose some such subdivision for each
1
2εk1+Ski, and denote the resulting simplices by Δ1

ki, . . . ,Δn!
ki. For each simplex Δ�

ki, the maximum distance
between any two points in Δ�

ki is bounded by εk
√
n. Since M >

√
n, if zki ∈ Êk, then it must be the case

that Δ�
ki ∩ (Rn\U) = ∅ for all � = 1, . . . , n!.

Any point x ∈ U is contained in some simplex Δ�
ki with vertices zki0 , . . . , zkin . As a convex combination

of those vertices, x has a unique representation

x =
n∑

j=0
γjzkij .

We define

gΔ
k (x) =

n∑
j=0

γjakij

where

akij = 1
λ(Skij )

∫
Skij

gk(y) dy.

(Notice that since gk ∈ V̂k, akij = 0 if zkij /∈ Êk.) Since any two simplices (as constructed in the previous
paragraph) can only intersect on their boundaries, gΔ

k is well defined and continuous as a function U → R.
Also notice that if Δ�

ki ∩ (Rn\U) �= ∅, then all the vertices of Δ�
ki are outside of Êk, and consequently the

restriction of gΔ
k to Δ�

ki is identically zero; hence gΔ
k has compact support in U . In addition, it is easy to

see that each gΔ
k is a Lipschitz function. Thus, gΔ

k ∈ D[Ê ] by [16, Theorem 3.3].
We will now show that

sup
k

E
(
gΔ
k , gΔ

k

)
< ∞. (8)

Clearly, it suffices to show that

sup
k

∫∫
U×U

(gΔ
k (y) − gΔ

k (x))2hk(x, y) dx dy
|y − x|n+α

< ∞ (9)

and

sup
k

∫∫
U×U

(gΔ
k (y) − gΔ

k (x))2(1 − hk(x, y)) dx dy
|y − x|n+α

< ∞ (10)

where hk is defined by

hk(x, y) =
∑
i∈Ik

∑
j∈Ik\Aki

1Ski×Skj
(x, y)

and
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Aki := {m ∈ Îk: Skm ∩ Ski �= ∅}.

We will start by proving (9). We have
∫∫
U×U

(gΔ
k (y) − gΔ

k (x))2hk(x, y) dx dy
|y − x|n+α

=
∫∫
U×U

([gk(y) − gk(x)] + [gk(x) − gΔ
k (x)] + [gΔ

k (y) − gk(y)])2hk(x, y) dx dy
|y − x|n+α

. (11)

If we expand ([gk(y)− gk(x)] + [gk(x)− gΔ
k (x)] + [gΔ

k (y)− gk(y)])2 by multiplying without separating terms
in brackets, we get nine integrals

∫∫
U×U

(gk(y) − gk(x))2hk(x, y) dx dy
|y − x|n+α

, (12)

∫∫
U×U

(gk(y) − gk(x))(gk(x) − gΔ
k (x))hk(x, y) dx dy

|y − x|n+α
, (13)

∫∫
U×U

(gk(y) − gk(x))(gk(y) − gΔ
k (y))hk(x, y) dx dy

|y − x|n+α
, (14)

and so on. We will show that each of these nine integrals stays bounded as k → ∞, which will prove (9).
For every x ∈ Ski we have

(
gk(x) − gΔ

k (x)
)2 =

(
aki −

∑
j∈Aki

γjakj

)2

�
∑

j∈Aki

(aki − akj)2

by Jensen’s inequality. Also, for some positive constants Ci which are independent of k,

∑
i∈Ik

∑
j∈Aki

(akj − aki)2λ(Ski) � C1
∑
i∈Ik

∑
j∈Aki\{i}

(akj − aki)2ε2nk
|zkj − zki|n+α

εαk

� C2Êk(gk, gk)εαk
� C3ε

α
k

because supk Êk(gk, gk) < ∞. Putting all this together, it follows that, for some positive Ci, R independent
of k,

∫∫
U×U

(gk(x) − gΔ
k (x))2hk(x, y) dx dy
|y − x|n+α

�
∑
i∈Ik

∫∫
U×Ski

∑
j∈Aki

(akj − aki)2hk(x, y) dx dy
|y − x|n+α

�
∑
i∈Ik

∑
j∈Aki

(akj − aki)2λ(Ski)
∫

B(0,R)\B(0,C1εk)

dx

|x|n+α

� C2ε
α
k

∫
B(0,R)\B(0,C1εk)

dx

|x|n+α

� C3ε
α
k ε

−α
k

= C3.
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Thus

sup
k

∫∫
U×U

(gk(x) − gΔ
k (x))2hk(x, y) dx dy
|y − x|n+α

< ∞. (15)

Now, let

σk(x, y) =
∑

i,j∈Ik

hk(x, y)
|zkj − zki|n+α

.

For some real C > 0 independent of k, x, y, we have

hk(x, y)
|y − x|n+α

� Cσk(x, y),

from which it follows that ∫∫
U×U

(gk(y) − gk(x))2hk(x, y) dx dy
|y − x|n+α

� CÊk(gk, gk),

so

sup
k

∫∫
U×U

(gk(y) − gk(x))2hk(x, y) dx dy
|y − x|n+α

< ∞. (16)

Eqs. (15) and (16) together imply that

sup
k

∫∫
U×U

(gk(y) − gk(x))(gk(x) − gΔ
k (x))hk(x, y) dx dy

|y − x|n+α
< ∞.

The convergence of the other six integrals can be proved by using these facts, along with arguments similar
to those given above. Thus (9) holds.

We will now prove (10). If Δ�
ki is a simplex as constructed above with vertices zki0 , . . . , zkin , and x, y ∈

Δ�
ki, then for some convex combinations

∑
j ηjzkij and

∑
j γjzkij

|gΔ
k (y) − gΔ

k (x)|
|y − x| =

|
∑n

j=0 ηjakij −
∑n

j=0 γjakij |
|
∑n

j=0 ηjzkij −
∑n

j=0 γjzkij |

=
|
∑n

j=0 ηj(akij − aki0) −
∑n

j=0 γj(akij − aki0)|
|
∑n

j=0 ηj(zkij − zki0) −
∑n

j=0 γj(zkij − zki0)|

=
|
∑n

j=0(ηj − γj)(akij − aki0)|
|
∑n

j=0(ηj − γj)(zkij − zki0)

� C
|
∑n

j=0(ηj − γj)(akij − aki0)|
|
∑n

j=0(ηj − γj)εkej |

� C
maxj=1,...,n |akij − aki0 |

εk

where C is independent of x, y, i and k, and {e1, . . . , en} is the standard basis for R
n. Now let x ∈ S∗

ki and
y ∈ S∗

kj be such that hk(x, y) = 0. Consequently, for some C independent of x, y, i, j and k,
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∣∣gΔ
k (y) − gΔ

k (x)
∣∣ � 1

εk
C|y − x| max

l,m∈Aki∪Akj

|akl − akm|.

It follows that for some positive numbers Ci independent of k,

∫∫
U×U

(gΔ
k (y) − gΔ

k (x))2(1 − hk(x, y)) dx dy
|y − x|n+α

� C1
1
ε2k

∑
i∈Ik

∑
j �=i

(aj − ai)2λ(Ski)
∫

B(0,2
√
nεk)

dx

|x|n+α−2

� C2
εαk
ε2k

∑
i∈Ik

∑
j �=i

(aj − ai)2εnk
|zkj − zki|n+α

∫
B(0,2

√
nεk)

dx

|x|n+α−2

� C3
εαk
ε2k

∑
i∈Ik

∑
j �=i

(aj − ai)2ε2nk
|zkj − zki|n+α

∫
B(0,2

√
nεk)

dx

|x|n+α−2

� C4
εαk
ε2k

∑
i∈Ik

∑
j �=i

(aj − ai)2ε2nk
|zkj − zki|n+α

ε2−α
k

� C5Êk(gk, gk)

which stays bounded as k → ∞. This proves (10), and thus establishes (8).
Now by the Banach–Saks theorem, there is a subsequence (gkl

) of (gk) such that gm → g in L2(U), where

gm := 1
m

m∑
l=1

gkl
.

Also define

gΔ
m := 1

m

m∑
l=1

gΔ
kl
.

We have

‖gm − gΔ
m‖2

L2(U) � 1
m

m∑
l=1

∫
U

(
gΔ
kl
− gkl

)2
dλ

� 1
m

m∑
l=1

∑
j∈Ikl

∑
q∈Akj

(akq − akj)2λ(Skj)

� 1
m

m∑
l=1

Cεαkl
Êkl

(gkl
, gkl

)

→ 0.

Thus gΔ
m → g in L2(U). In addition, by Jensen’s inequality and (8),

sup
m

Ê
(
gΔ
m, gΔ

m

)
� sup

m

1
m

m∑
l=1

Ê
(
gΔ
kl
, gΔ

kl

)
< ∞.

Thus we have a sequence gΔ
m which is bounded in D[Ê ], and is such that gΔ

m → g in L2(U). Applying the
Banach–Saks theorem a second time, we obtain a Cauchy sequence in D[Ê ] with limit equal to g. �
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Lemma 3.5. Suppose M >
√
n. Then (Êk,D[Êk]) converges to (Ê ,D[Ê ]).

Proof. First let f ∈ C∞
0 (U). Then for all sufficiently large k, π̂kf = πkf , and consequently Êk(π̂kf, π̂kf) =

E(πkf, πkf) for sufficiently large k. Thus by Lemma 3.3, Êk(π̂kf, π̂kf) → Ê(f, f) as k → ∞. Since C∞
0 (U)

is dense in D[Ê ], this proves the second condition in Definition 3.1.
If (fk)k∈N is a sequence such that Fkπ̂kfk converges weakly to f in L2(U), then setting gk := Fkπ̂kfk,

we see that Fkπkgk converges weakly to f in L2(U) because πkgk = π̂kfk for every k. Consequently,

lim inf
k

Êk(π̂kfk, π̂kfk) = lim inf
k

Ek(πkgk, πkgk) � E(f, f)

by Lemma 3.3. Thus

lim inf
k→∞

Ek(π̂kfk, π̂kfk) � Ê(f, f) if f ∈ D[Ê ].

It remains to show that if f ∈ L2(U)\D[Ê ], then

lim inf
k

Êk(π̂kfk, π̂kfk) = ∞. (17)

Suppose there is some f ∈ L2(U)\D[Ê ] such that Fkπ̂kfk converges weakly to f but (17) is not satisfied.
Then there is a subsequence (fki

)i∈N satisfying the hypotheses of Lemma 3.4, from which we may conclude
that f ∈ D[Ê ], which is a contradiction. �

Lemmas 3.3 and 3.5, combined with Theorem 3.2, prove Theorem 2.1. We now finish the paper by proving
the corollary.

Proof of Corollary 2.2. If C∞
0 (U) is dense in D[E ], then (E ,D[E ]) = (Ê ,D[Ê ]) and thus (T (t))t�0 = (T̂ (t))t�0.

Since f is a probability density, we have (e.g., by an argument using part 1 of Theorem 2.1)

∫
U

T (t)f(x) dx = 1.

Since M >
√
n, if S∗

ki �= Ski, then zki /∈ Êk and p̂k(zki, t) = 0. It follows that

∫
U

FkT̂k(t)π̂kf(x) dx =
∑
i∈Ik

∫
Ski

T̂k(t)π̂kf(x) dx =
∑
i∈Ik

p̂k(zki, t).

This proves the corollary because by part 2 of Theorem 2.1,
∫
U

FkT̂k(t)π̂kf(x) dx →
∫
U

T (t)f(x) dx

as k → ∞. �
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