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Here we give a self-contained new proof of the asymptotic behavior of the radially
symmetric entire solution of

Δ2u = −u−p, in R
3.

These results were obtained by I. Guerra in [4]. Our proof is much more direct and
simpler.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Consider solutions to the following equation with negative exponent:

Δ2u = −u−p, in R
3, where p > 1. (1.1)

This problem has its root in Riemannian geometry. Let us briefly describe the background of this equation.
Let g = (gij) be the standard Euclidean metric on R

N , N � 3, with gij = δij . Let ḡ = u
4

N−4 g (N �= 4) be a
second metric derived from g by the positive conformal factor u : RN → R. Then u satisfies

Δ2u = N − 4
2 Qḡu

N+4
N−4 ,

where Qḡ is the scalar curvature of ḡ. If we assume that Qḡ > 0 is a constant, we can obtain (1.1) via
scaling. The existence and properties of solution have been considered by various authors, see [1,2,4,5,7]
and the references therein. Here we recall some results which are related to the present paper:
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• (See [1].) If 1 < p � 7, u ∈ C4(R3) is a positive solution of (1.1) such that

lim
|x|→∞

u(x)
|x| = α1 uniformly for some constant α1 > 0,

then p = 7.
• (See [7].) There is no radial solution with linear growth for 4 < p < 7.

However, I. Guerra in [4] pointed out that the above results were incorrect and gave a detail explanation
for mistakes of the proof, and used the involved phase–space analysis to obtain the following results:

Theorem 1.1.

(i) For p = 3 there exists a radial solution of (1.1) such that

lim
r→∞

u(r)
r(log r) 1

4
= 2 1

4 .

(ii) For p > 3 there exists a radial solution of (1.1) such that for any α > 0 its asymptotic behavior is given
by

lim
r→∞

u(r)
r

= α.

Remark 1.2. For 1 < p < 3, due to the technique developed by [3], the asymptotic of radial solutions of (1.1)
have been studied extensively, for details see [2,5]. However, this technique is invalid for p � 3, and not until
the work of I. Guerra, could one completely understand the asymptotic of radial solutions.

In the present paper, using the technique of simple ordinary differential equations, we give a self-contained
new proof for I. Guerra’s result (Theorem 1.1). Our proof is much more direct and simpler.

2. Proof of Theorem 1.1

In this section, we give the new proof of Theorem 1.1. We first consider the radial version of (1.1)
{

Δ2u(r) = −u−p, for r ∈
(
0, Rmax(β)

)
,

u(0) = 1, Δu(0) = β, u′(0) = (Δu)′(0) = 0.
(2.1)

Here [0, Rmax(β)) is the interval of existence of the solution. We say that the solution of (2.1) is entire
(resp., local) if Rmax(β) = ∞ (resp., Rmax(β) < ∞). Now we recall some results in the following Lemma 1
for Eq. (2.1) (for details see [4,5,7]), which will be used for our proofs.

Lemma 1. Assume p > 1. Then there is a unique β0 > 0 such that:

a) If β < β0 then Rmax(β) < ∞;
b) If β � β0 then Rmax(β) = ∞ and limr→∞ Δuβ(r) � 0;
c) We have β = β0 if and only if limr→∞ Δuβ(r) = 0.

Now, inspired by the arguments of [6], we use an Emden–Fowler transformation to transform (2.1) into
an ODE whose linear part has constant coefficients.
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Lemma 2. Let p > 1. If u is a positive radial solution of (2.1), then

W (s) = emsu
(
es
)

= rmu(r), s = log r = log |x|, m = − 4
p + 1 ,

is such that

Q4(m− ∂s)W (s) := (∂s −m + N − 4)(∂s −m + N − 2)(∂s −m− 2)(∂s −m) = −W−p(s).

Proof. Since ∂r = e−s∂s, a short computation allows us to write the radial Laplacian as

Δ = ∂2
r + (N − 1)r−1∂r = e−2s(n− 2 + ∂s).

Using the operator identity ∂se
−ks = e−ks(∂s − k), one can then easily check that

Δ2e−ms = e−4s−msQ4(m− ∂s) = e−mpsQ4(m− ∂s).

This also implies that Q4(m− ∂s)W (s) = empsΔ2U(es) = −W−p(s), as required. �
Now, we prove the variation of parameters formula by integral method.

Lemma 3. For a given f , let Z(t) be the solution of

(∂t − λ1)(∂t − λ2)(∂t − λ3)(∂t − λ4)Z(t) = f(Z)(t) for t ∈ R. (2.2)

Given any t0 ∈ R, then there exist some constants αi, di such that

Z(t) =
i=4∑
i=1

(
αie

λis + di

t∫
t0

eλi(t−τ) · f(Z)(τ)dτ
)

(2.3)

in the case λi �= λj (i, j = 1...4) and

Z(t) =
i=3∑
i=1

(
αie

λit + di

t∫
t0

eλi(t−τ) · f(Z)(τ)dτ
)

+ α4te
λ4t + d4

t∫
t0

(t− τ)eλ4(t−τ) · f(Z)(τ)dτ (2.4)

in the case λ1 �= λ2 �= λ3 and λ3 = λ4. Moreover, each αi depends on t0 and λi (i = 1, ..., 4), whereas each
di depends solely on the λi (i = 1, ..., 4).

Proof. We multiply Eq. (2.2) by e−λ1s and then integrate to get

(∂t − λ2)(∂t − λ3)(∂t − λ4)Z(t) = A1e
λ1t +

t∫
t0

eλ1(t−τ) · f(Z)(τ)dτ

for some constant A1. Repeating the same argument once again, we arrive at

(∂t − λ3)(∂t − λ4)Z(t) = B1e
λ1t + B2e

λ2t +
t∫ ρ∫

eλ2(t−ρ)eλ1(ρ−τ) · f(Z)(τ)dτ

t0 t0
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because λ1 �= λ2. We now switch the order of integration to get

(∂t − λ3)(∂t − λ4)Z(t) = B1e
λ1t + B2e

λ2t +
t∫

t0

eλ1(t−τ) − eλ2(t−τ)

λ1 − λ2
· f(Z)(τ)dτ.

In the first case, we can repeat our approach two times to deduce (2.3). In the second case, our approach
also leads to (2.4). �
Remark 2.1. For the first case, we have, by simple calculation,

d1 = 1
(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)

; d2 = 1
(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)

;

d3 = 1
(λ3 − λ4)(λ3 − λ2)(λ3 − λ1)

; d4 = 1
(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)

.

Proof of Theorem 1.1. Let W (s) = emsuβ0(r), where β0 is defined as in Lemma 1 and r = es. We, by the
following Lemma 2, have

Q4(m− ∂s)W (s) = W (4)(s) + K3W (s)′′′ + K2W (s)′′ + K1W
′ + Q4(m)W (s) = −W−p(s), (2.5)

where K3,K2,K1 are fixed constants.
Step 1. We claim W (s) is unbounded for N = 3, p � 3. Suppose by contradiction that W (s) is bounded.

Indeed, since N = 3, and p ∈ [3,+∞) then Q4(m) � 0, and there exist ε > 0 and s0 � 1 such that

−Q4(m)W (s) −W−p(s) � −W−p(s) < −ε, ∀s ∈ (s0,+∞). (2.6)

After integration in (2.5), by (2.6) we obtain as s → +∞

W ′′′(s) + K3W
′′(s) + K2W

′(s) < −ε(s− s0) + O(1).

Two further integrations yield

W ′(s) < −ε

6(s− s0)3 + O
(
s2) as s → +∞.

This contradicts the fact that W (s) > 0 for any s ∈ (s0,+∞).
Step 2. We claim that W (s) → ∞ as s → ∞ for p = 3, N = 3. Indeed, W (s) satisfies

(∂s + 2)(∂s + 1)(∂s − 1)W ′(s) = −W−p(s) < 0. (2.7)

Multiplying by e2s and integrating over (−∞, s), we get

e2s(∂s + 1)(∂s − 1)W ′(s) � 0.

We now ignore the exponential factor and use the same argument to get

(∂s − 1)W ′(s) � 0, i.e.,
(
e−sWs(s)

)′ � 0.

Since limr→∞ Δuβ0(r) = 0, we have
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lim
s→+∞

e−sWs = lim
s→+∞

(
e−2sW (s) + ur

r

)
= 0,

and then W ′(s) > 0. Combining with step 1, we prove our claim.
Step 3. limr→∞

uβ0

r(log r)
1
4

= 2 1
4 , for N = 3, p = 3.

Combining with step 2, we can take (2.5) as

Q4(m− ∂s)W = −W−3 = o(1) as s → +∞.

The linearly independent solutions of the homogeneous equation Q4(m− ∂s)z = 0 are eλis with

λ1 = 0, λ2 = −2, λ3 = −1, λ4 = 1.

And then we have

W (s) =
i=4∑
i=1

Cie
λis +

i=4∑
i=1

di

s∫
s0

eλi(s−τ)(−W−3(τ)
)
dτ (2.8)

where d1 = −2−1, di (i = 2, 3, 4) are fixed constants and s � s0. Since λ4 = 1 > 0, and using the fact that∫ s

s0
=

∫ +∞
s0

−
∫ +∞
s

, we have

W (s) =
i=4∑
i=1

C ′
ie

λis + 2
s∫

s0

W−3(τ)dτ +
i=3∑
i=2

di

s∫
s0

eλi(s−τ)W−3(τ)dτ − d4

+∞∫
s

e(s−τ)W−3(τ)dτ.

Obviously, we have

+∞∫
s

eλ4(s−τ)W−3(τ)dτ,
s∫

s0

eλi(s−τ)W−3(τ)dτ → 0, as s → +∞ (i = 2, 3).

Since uβ0(r) = o(r2) as r → ∞, we conclude that

W (s) = o
(
es
)

as s → +∞.

And so we obtain that

C ′
4 = 0,

and then

W (s) = C + 2−1
s∫

s0

W−3(τ)dτ + r(s) (2.9)

where

r(s) =
i=3∑
i=2

di

s∫
eλi(s−τ)W−1(τ)dτ − d4

+∞∫
eλ4(s−τ)W−3(τ)dτ = o(1) as s → +∞. (2.10)
s0 s
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Moreover, we have

r′(s) = o(1) as s → +∞. (2.11)

Now using (2.9), we obtain

W ′W 3 = 2−1 + r′(t)W 3(s) and W ′(s) → 0 as s → +∞.

Now, we claim r′(s)W 3(s) → 0 as s → +∞. Indeed,

r′(s)W 3(s) =
i=3∑
i=2

(
diW

3(s)λi

t∫
s0

eλi(s−τ)W−3(τ)dτ + di

)
+ d4λ4W

3
+∞∫
s

eλi(s−τ)W−3(τ)dτ + d4.

By l’Hôspital’s rule we obtain our claim, where we have used the fact that W ′(s) → 0 as s → +∞.
Integrating over (s0, s) and using (2.10), we conclude that

1
4W

4(s) = 2−1(s− s0) + o(s− s0) for s � 1.

From this, we immediately have

lim
s→+∞

W (s)
4
√
s

= 2 1
4 , (2.12)

which gives the proof of Theorem 1.1(i).
Step 4. limr→∞

uβ0
r = α > 0 for N = 3, p > 3. Indeed, by

W (s) =
i=4∑
i=1

Cie
λis +

i=2∑
i=1

di

+∞∫
s

eλi(s−τ)W−p(τ)dτ +
i=4∑
i=3

di

s∫
s0

eλi(s−τ)W−p(τ)dτ

where di (i = 1, 2, 3, 4) are fixed constants and s � s0, and λ1 = m+1 > 0, λ2 = m+2 > 1, λ3 = m−1 < 0,
λ4 = m < 0. Since by Lemma 13 of [2], we have

lim inf
s→+∞

W (s) > 0,

and then

i=2∑
i=1

di

+∞∫
s

eλi(s−τ)W−p(τ)dτ +
i=4∑
i=3

di

s∫
s0

eλi(s−τ)W−p(τ)dτ = O(1).

Besides, u(s) = o(e2s), as s → +∞, so C2 = 0, and then we have, by step 1,

lim
s→+∞

e−(m+1)sW (s) = C,

which is a desired result. �
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