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michailrassias@math.princeton.edu michail.rassias@math.ethz.ch
2. Department of Mathematics, Guangdong University of
Education, Guangzhou, Guangdong 510303, P. R. China

E-mail: 1*. Corresponding author: michael.rassias@math.ethz.ch
2. bcyang@gdei.edu.cn bcyang818@163.com

Abstract

A new Hilbert-type integral inequality in the whole plane with the non-homogeneous

kernel and parameters is given. The constant factor related to the hypergeometric func-

tion and the beta function is proved to be the best possible. As applications, equivalent

forms, the reverses, some particular examples, two kinds of Hardy-type inequalities,

and operator expressions are considered.
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1 Introduction

If f (x), g(y)≥ 0, satisfy

0 <
∫ ∞

0
f 2(x)dx < ∞

and

0 <
∫ ∞

0
g2(y)dy < ∞,
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then we have the following Hilbert’s integral inequality (cf. [1]):

∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy < π
(∫ ∞

0
f 2(x)dx

∫ ∞

0
g2(y)dy

) 1
2

, (1.1)

where the constant factor π is the best possible. The inequality (1.1) is very important in

Mathematical Analysis and its applications (cf. [1], [2]). In recent years, by the use of

the method of weight functions, a number of extensions of (1.1) were given by Yang (cf.

[3]). Noticing that inequality (1.1) is a homogenous kernel of degree -1, in 2009, a survey

of the study of Hilbert-type inequalities with the homogeneous kernels of degree equal to

negative numbers and some parameters is given in [4]. Recently, some inequalities with

the homogenous kernels of degree 0 and non-homogenous kernels have been proved (cf.

[5]-[10]). Other kinds of Hilbert-type inequalities are shown in [11]-[16]. All of the above

integral inequalities are constructed in the quarter plane of the first quadrant.

In 2007, Yang [17] presented a new Hilbert-type integral inequality in the whole plane,

as follows:

∫ ∞

−∞

∫ ∞

−∞

f (x)g(y)
(1+ ex+y)λ dxdy

< B(
λ
2
,
λ
2
)(
∫ ∞

−∞
e−λx f 2(x)dx

∫ ∞

−∞
e−λyg2(y)dy)

1
2 , (1.2)

where the constant factor B(λ
2
, λ

2
)(λ > 0) is the best possible.

If 0 < λ < 1, p > 1, 1
p +

1
q = 1, Yang [20] derived another new Hilbert-type integral in-

equality in the whole plane. Namely, he proved that

∫ ∞

−∞

∫ ∞

−∞

1

|1+ xy|λ f (x)g(y)dxdy

< kλ

[∫ ∞

−∞
|x|p(1− λ

2 )−1 f p(x)dx
] 1

p
[∫ ∞

−∞
|y|q(1− λ

2 )−1gq(y)dy
] 1

q

, (1.3)

where the constant factor

kλ = B(
λ
2
,
λ
2
)+2B(1−λ,

λ
2
)

is still the best possible. Furthermore, Yang et al. [19]-[28] proved as well some new

Hilbert-type integral inequalities in the whole plane.

In this paper, using methods from Real Analysis and by estimating the weight functions,

a new Hilbert-type integral inequality in the whole plane with the non-homogeneous ker-

nel and multi-parameters is shown, which gives an extension of (1.3). The constant factor

related to the hypergeometric function and the beta function is proved to be the best possi-

ble. As applications, equivalent forms, the reverses, some particular examples, two kinds

of Hardy-type inequalities, and operator expressions are also considered.
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2 Some Lemmas

Initially, we introduce the following formula of the hypergeometric function F (cf. [29]):

If Re(γ)> Re(θ)> 0, |arg(1− z)|< π, (1− zt)−α|z=0 = 1, then

F(α,θ,γ,z) :=
Γ(γ)

Γ(θ)Γ(γ−θ)

∫ 1

0
tθ−1(1− t)γ−θ−1(1− zt)−αdt,

where,

Γ(η) =
∫ ∞

0
xη−1e−xdx(Re(η)> 0)

is the gamma function. In particular, for z =−1,γ = θ+1 (θ > 0), α ∈ R, we have

∫ 1

0
tθ−1(1+ t)−αdt =

1

θ
F(α,θ,1+θ,−1) ∈ R+. (2.1)

Lemma 2.1. If β > −1,μ,σ > −β,μ+σ = λ < 1−β,δ ∈ {−1,1}, we define two weight
functions ω(σ,y) and ϖ(σ,x) as follows:

ω(σ,y) : =
∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β
|y|σ

|x|1−δσ dx(y ∈ R\{0}), (2.2)

ϖ(σ,x) : =
∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β
|x|δσ

|y|1−σ dy(x ∈ R\{0}). (2.3)

Then we have

ω(σ,y) = ϖ(σ,x) = K(σ) :=
1

β+σ
F(λ+β,β+σ,1+β+σ,−1)

+
1

β+μ
F(λ+β,β+μ,1+β+μ,−1)

+B(1−λ−β,β+σ)+B(1−λ−β,β+μ) ∈ R+. (2.4)

Proof. (i) For δ = 1, by (2.2) it follows that

ω(σ,y) =
∫ ∞

−∞

(min{1, |xy|})β

|1+ xy|λ+β
|y|σ
|x|1−σ dx.

(a) If y < 0, setting u = xy, we obtain

ω(σ,y) =
∫ −∞

∞

(min{1, |u|})β

|1+u|λ+β
(−y)σ

|u/y|1−σ
1

y
du

=

∫ ∞

−∞

(min{1, |u|})β

|1+u|λ+β
(−y)σ(−y)1−σ

|u|1−σ
1

(−y)
du

=
∫ ∞

−∞

(min{1, |u|})β|u|σ−1

|1+u|λ+β du;

(b) if y > 0, setting u = xy, it yields

ω(σ,y) =
∫ ∞

−∞

(min{1, |u|})β

|1+u|λ+β
yσdu

|u/y|1−σy
=

∫ ∞

−∞

(min{1, |u|})β|u|σ−1

|1+u|λ+β du.
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(ii) For δ =−1, setting X = x−1, we obtain

ω(σ,y) =

∫ 0

−∞

(min{1, |x−1y|})β

|1+ x−1y|λ+β
|y|σ
|x|1+σ dx+

∫ ∞

0

(min{1, |x−1y|})β

|1+ x−1y|λ+β
|y|σ
|x|1+σ dx

=

∫ −∞

0

(min{1, |Xy|})β

|1+Xy|λ+β
−|y|σdX

|X−1|1+σX2
+

∫ 0

∞

(min{1, |Xy|})β

|1+Xy|λ+β
−|y|σdX

|X−1|1+σX2

=
∫ 0

−∞

(min{1, |Xy|})β

|1+Xy|λ+β
|y|σdX
|X |1−σ +

∫ ∞

0

(min{1, |Xy|})β

|1+Xy|λ+β
|y|σdX
|X |1−σ

=
∫ ∞

−∞

(min{1, |xy|})β

|1+ xy|λ+β
|y|σ
|x|1−σ dx.

Hence, for δ ∈ {−1,1}, we obtain the following expression:

ω(σ,y) =
∫ ∞

−∞

(min{1, |u|})β|u|σ−1

|1+u|λ+β du = K1(σ)+K2(σ),

K1(σ) : =
∫ 1

−1

(min{1, |u|})β|u|σ−1

(1+u)λ+β du,

K2(σ) : =
∫

R\(−1,1)

(min{1, |u|})β|u|σ−1

|1+u|λ+β du.

In view of (2.1), and the following formula of the beta function (cf. [29]):

B(p,q) :=
∫ 1

0

vp−1

(1− v)1−q dv(p,q > 0),

we obtain

K1(σ) =
∫ 0

−1

(−u)β+σ−1

(1+u)λ+β du+
∫ 1

0

uβ+σ−1

(1+u)λ+β du

=
∫ 1

0

vβ+σ−1

(1− v)λ+β dv+
∫ 1

0

uβ+σ−1

(1+u)λ+β du

= B(1−λ−β,β+σ)+
1

β+σ
F(λ+β,β+σ,1+β+σ,−1). (2.5)

Setting v = 1
u , it follows that

K2(σ) =
∫ −1

−∞

(min{1,(−u)})β(−u)σ−1

|1+u|λ+β du+
∫ ∞

1

(min{1,u})βuσ−1

|1+u|λ+β du

= −
∫ −1

0

(min{1,(− 1
v )})β(− 1

v )
σ−1

|1+ 1
v |λ+βv2

dv−
∫ 0

1

(min{1, 1
v})β(1

v )
σ−1

|1+ 1
v |λ+βv2

dv

=
∫ 0

−1

(min{1,(−v)})β(−v)λ−σ−1

|1+ v|λ+β dv+
∫ 1

0

(min{1,v})βvλ−σ−1

|1+ v|λ+β dv

=
∫ 1

−1

(min{1, |v|})β|v|μ−1

(1+ v)λ+β dv = K1(μ)

= B(1−λ−β,β+μ)+
1

μ
F(λ+β,β+μ,1+β+μ,−1). (2.6)
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Setting u = xδy in (2.3), for x < 0 (x > 0), we also get

ϖ(σ,x) =
∫ ∞

−∞

(min{1, |u|})β|u|σ−1

|1+u|λ+β du = K(σ).

Hence we have (2.4).

Remark 2.2. By Taylor’s formula, we obtain

1

β+σ
F(λ+β,β+σ,1+β+σ,−1)

=

∫ 1

0

uβ+σ−1du
(1+u)λ+β =

∫ 1

0

∞

∑
k=0

(−λ−β
k

)
uk+β+σ−1du

=
∫ 1

0

∞

∑
k=0

(−1)k
(

λ+β+k−1
k

)
uk+β+σ−1du

=
∫ 1

0

∞

∑
k=0

[
(

λ+β+2k−1
2k

)
−
(

λ+β+2k
2k+1

)
u]u2k+β+σ−1du.

Since we have(
λ+β+2k−1
2k

)
−
(

λ+β+2k
2k+1

)
u = [1− (λ+β+2k)u

2k+1
]
(

λ+β+2k−1
2k

)
,

there exists a large number k0 ∈ N0 = N∪{0}, such that λ+β+2k0 > 0, and for any s ∈ N,(
λ+β+2(k0+s)−1

2(k0+s)

)
−
(

λ+β+2(k0+s)+1

2(k0+s+1)

)
u

= [1− (λ+β+2k0 +2s)u
2(k0 + s)+1

]
(

λ+β+2(k0+s)−1

2(k0+s)

)
= [1− (λ+β+2k0 +2s)u

2(k0 + s)+1
]

×λ+β+2k0 +2s−1

2k0 +2s
· · · λ+β+2k0

2k0 +1

(
λ+β+2k0−1
2k0

)
,

1− (λ+β+2k0 +2s)u
2(k0 + s)+1

≥ 1− λ+β+2k0 +2s
2(k0 + s)+1

=
1−λ−β

2(k0 + s)+1
> 0(u ∈ (0,1]).

It follows that for any s ∈ N, we have

sgn(
(

λ+β+2(k0+s)−1

2(k0+s)

)
−
(

λ+β+2(k0+s)+1

2(k0+s+1)

)
u) = sgn

(
λ+β+2k0−1
2k0

)
.

By Lebesgue’s term by term integration theorem (cf. [31]), we have

1

σ
F(λ+β,β+σ,1+β+σ,−1)

=
∞

∑
k=0

∫ 1

0
[
(

λ+β+2k−1
2k

)
−
(

λ+β+2k
2k+1

)
u]u2k+β+σ−1du

=
∞

∑
k=0

(−λ−β
k

)∫ 1

0
uk+β+σ−1du =

∞

∑
k=0

1

k+β+σ

(−λ−β
k

)
.
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Similarly, since

(−1)k
(−λ−β

k

)
= (−1)k (−λ−β)(−λ−β−1) · · ·(−λ−β− k+1)

k!

= (−1)2k (λ+β)(λ+β+1) · · ·(λ+β+ k−1)

k!
=
(

λ+β+k−1
k

)
,

we obtain

B(1−λ−β,β+σ) =
∫ 1

0

uβ+σ−1du
(1−u)λ+β =

∫ 1

0

∞

∑
k=0

(−1)k
(−λ−β

k

)
uk+β+σ−1du

=
∫ 1

0

∞

∑
k=0

(
λ+β+k−1
k

)
uk+β+σ−1du.

There exists a large number k1 ∈ N, such that λ+β+ k1 > 0.
Hence, for any s ∈ N, we have(

λ+β+k1+s−1
k1+s

)
=

λ+β+ k1 + s−1

k1 + s
· · · λ+β+ k1

k1 +1

(
λ+β+k1−1
k1

)
,

and then it follows that

sgn
(

λ+β+k1+s−1
k1+s

)
= sgn

(
λ+β+k1−1
k1

)
.

Still by Lebesgue’s term by term integration theorem, we obtain

B(1−λ−β,β+σ) =
∞

∑
k=0

(
λ+β+k−1
k

)∫ 1

0
uk+β+σ−1du =

∞

∑
k=0

(−1)k

k+β+σ

(−λ−β
k

)
.

Hence, we deduce the following series expressions:

K1(σ) = 2
∞

∑
k=0

1

2k+β+σ

(−λ−β
2k

)
, (2.7)

K2(σ) = 2
∞

∑
k=0

1

2k+β+μ

(−λ−β
2k

)
, (2.8)

K(σ) = 2
∞

∑
k=0

4k+2β+λ
(2k+β+σ)(2k+β+μ)

(−λ−β
2k

)
. (2.9)

Lemma 2.3. Suppose that p > 1, 1
p +

1
q = 1,β > −1,μ,σ > −β,μ+σ = λ < 1− β, δ ∈

{−1,1}, K(σ) as indicated by (2.4) (or (2.9)).
If f (x) is a non-negative measurable function in R, then we have

J : =

∫ ∞

−∞
|y|pσ−1

[∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β f (x)dx

]p

dy

≤ K p(σ)
∫ ∞

−∞
|x|p(1−δσ)−1 f p(x)dx. (2.10)

6



Proof. By Hölder’s inequality (cf. [30]) and (2.2), we derive that[∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β f (x)dx

]p

=

{∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β [
|x|(1−δσ)/q

|y|(1−σ)/p
f (x)][

|y|(1−σ)/p

|x|(1−δσ)/q
]dx

}p

≤
∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β
|x|(1−δσ)(p−1)

|y|1−σ f p(x)dx

×
[∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β
|y|(1−σ)(q−1)

|x|1−δσ dx

]p−1

(2.11)

=
(ω(σ,y))p−1

|y|pσ−1

∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β
|x|(1−δσ)(p−1)

|y|1−σ f p(x)dx.

Then, by (2.4) and Fubini’s theorem (cf. [31]), it follows that

J ≤ Kp−1(σ)
∫ ∞

−∞

[∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β
|x|(1−δσ)(p−1)

|y|1−σ f p(x)dx

]
dy

= K p−1(σ)
∫ ∞

−∞
ϖ(σ,x)|x|p(1−δσ)−1 f p(x)dx. (2.12)

Hence, by (2.4), inequality (2.10) follows.

3 Main Results and Applications

Theorem 3.1. Let p > 1, 1
p +

1
q = 1,β > −1,μ,σ > −β, μ+σ = λ < 1−β, δ ∈ {−1,1},

K(σ) as indicated by (2.4) (or (2.9)).
If f ,g ≥ 0, satisfy

0 <
∫ ∞

−∞
|x|p(1−δσ)−1 f p(x)dx < ∞

and
0 <

∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy < ∞,

then we have the following equivalent inequalities:

I : =
∫ ∞

−∞

∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β f (x)g(y)dxdy

< K(σ)
[∫ ∞

−∞
|x|p(1−δσ)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (3.1)

J : =
∫ ∞

−∞
|y|pσ−1

[∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β f (x)dx

]p

dy

< K p(σ)
∫ ∞

−∞
|x|p(1−δσ)−1 f p(x)dx. (3.2)

7



where, the constant factors K(σ) and K p(σ) are the best possible.
In particular, for δ = 1, we obtain the following equivalent inequalities:

∫ ∞

−∞

∫ ∞

−∞

(min{1, |xy|})β

|1+ xy|λ+β f (x)g(y)dxdy

< K(σ)
[∫ ∞

−∞
|x|p(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (3.3)

∫ ∞

−∞
|y|pσ−1

[∫ ∞

−∞

(min{1, |xy|})β

|1+ xy|λ+β f (x)dx

]p

dy

< K p(σ)
∫ ∞

−∞
|x|p(1−σ)−1 f p(x)dx. (3.4)

Proof. If (2.11) takes the form of equality for some y ∈ (−∞,0)∪ (0,∞), then, there exist

constants A and B, such that they are not all zero, and

A
|x|(1−δσ)(p−1)

|y|1−σ f p(x) = B
|y|(1−σ)(q−1)

|x|1−δσ a.e. in R.

Let us suppose that A �= 0 (otherwise B = A = 0). Then it follows that

|x|p(1−δσ)−1 f p(x) = |y|q(1−σ) B
A|x| a.e. inR,

which contradicts the fact that

0 <

∫ ∞

−∞
|x|p(1−δσ)−1 f p(x)dx < ∞.

Hence (2.11) takes the form of strict inequality. So does (2.12), and we obtain (3.2).

By Hölder’s inequality (cf. [30]), we have

I =
∫ ∞

−∞

[
|y|σ− 1

p

∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β f (x)dx

]
(|y| 1

p−σg(y))dy

≤ J
1
p

[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

. (3.5)

Then by (3.2), we get (3.1). On the other hand, suppose that (3.1) is valid. We then set

g(y) := |y|pσ−1

[∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β f (x)dx

]p−1

(y �= 0), (3.6)

and then

J =
∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy.
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By (2.12), we have J < ∞. If J = 0, then (3.2) is trivially true; if 0 < J < ∞, then by (3.1),

we obtain

0 <
∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy = J = I

< K(σ)
[∫ ∞

−∞
|x|p(1−δσ)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

< ∞, (3.7)

J
1
p =

[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
p

< K(σ)
[∫ ∞

−∞
|x|p(1−δσ)−1 f p(x)dx

] 1
p

. (3.8)

Hence, we obtain (3.2), which is equivalent to (3.1).

We set Eδ := {x ∈ R; |x|δ ≥ 1}, and E+
δ := Eδ ∩R+ = {x ∈ R+;xδ ≥ 1}. For ε > 0, we

define two functions f̃ (x), g̃(y) as follows:

f̃ (x) : =

{
|x|δ(σ− 2ε

p )−1, x ∈ Eδ
0, x ∈ R\Eδ

,

g̃(y) : =

{
0, y ∈ (−∞,−1]∪ [1,∞)

|y|σ+ 2ε
q −1, y ∈ (−1,1)

.

Then we obtain

L̃ : =

[∫ ∞

−∞
|x|p(1−δσ)−1 f̃ p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1g̃q(y)dy

] 1
q

= 2

(∫
E+

δ

x−2δε−1dx
) 1

p
(∫ 1

0
y2ε−1dy

) 1
q

=
1

ε
.

We find

I(x) : =
∫ 1

−1

(max{1, |xδy|})β

|1+ xδy|λ+β |y|σ+ 2ε
q −1dy

y=−Y
=

∫ 1

−1

(max{1, |− xδY |})β

|1− xδY |λ+β |−Y |σ+ 2ε
q −1dY = I(−x),

and then I(x) is an even function. It follows that

Ĩ :=
∫ ∞

−∞

∫ ∞

−∞

(min{1, |xδy|})β

|1+ xδy|λ+β f̃ (x)g̃(y)dxdy

=

∫
Eδ

|x|δ(σ− 2ε
p )−1I(x)dx = 2

∫
E+

δ

xδ(σ− 2ε
p )−1I(x)dx

u=xδy
= 2

∫
E+

δ

x−2δε−1

[∫ xδ

−xδ

(min{1, |u|})β

|1+u|λ+β |u|σ+ 2ε
q −1du

]
dx.
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Setting v = xδ in the above integral, by Fubini’s theorem (cf. [31]), we find

Ĩ = 2

∫ ∞

1
v−2ε−1

[∫ v

−v

(min{1, |u|})β

|1+u|λ+β |u|σ+ 2ε
q −1du

]
dv

= 2

∫ ∞

1
v−2ε−1

{∫ v

0
[
(min{1,u})β

|1−u|λ+β +
(min{1,u})β

(1+u)λ+β ]uσ+ 2ε
q −1du

}
dv

= 2

∫ ∞

1
v−2ε−1

{∫ 1

0
[

1

(1−u)λ+β +
1

(1+u)λ+β ]u
β+σ+ 2ε

q −1du
}

dv

+2

∫ ∞

1
v−2ε−1

{∫ v

1
[

1

(u−1)λ+β +
1

(1+u)λ+β ]u
σ+ 2ε

q −1du
}

dv

=
1

ε

∫ 1

0
[

1

(1−u)λ+β +
1

(1+u)λ+β ]u
β+σ+ 2ε

q −1du

+2

∫ ∞

1
(
∫ ∞

u
v−2ε−1dv)[

1

(u−1)λ+β +
1

(1+u)λ+β ]u
σ+ 2ε

q −1du

=
1

ε

{∫ 1

0
[

1

(1−u)λ+β +
1

(1+u)λ+β ]u
β+σ+ 2ε

q −1du

+
∫ ∞

1
[

1

(u−1)λ+β +
1

(1+u)λ+β ]u
σ− 2ε

p −1du
}
.

If the constant factor K(σ) in (3.1) is not the best possible, then, there exists a positive

number k, with K(σ) < k, such that (3.1) is valid when replacing K(σ) by k. Then in

particular, we have εĨ < εkL̃, and

∫ 1

0
[

1

(1−u)λ+β +
1

(1+u)λ+β ]u
β+σ+ 2ε

q −1du

+
∫ ∞

1
[

1

(u−1)λ+β +
1

(1+u)λ+β ]u
σ− 2ε

p −1du = εĨ < εkL̃ = k. (3.9)

By (2.5), (2.6) and Fatou’s lemma (cf. [31]), we have

K(σ) =
∫ 1

0
[

1

(1−u)λ+β +
1

(1+u)λ+β ]u
β+σ−1du

+

∫ ∞

1
[

1

(u−1)λ+β +
1

(1+u)λ+β ]u
σ−1du

=
∫ 1

0
lim

ε→0+
[

1

(1−u)λ+β +
1

(1+u)λ+β ]u
β+σ+ 2ε

q −1du

+

∫ ∞

1
lim

ε→0+
[

1

(u−1)λ+β +
1

(1+u)λ+β ]u
σ− 2ε

p −1du

≤ lim
ε→0+

{∫ 1

0
[

1

(1−u)λ+β +
1

(1+u)λ+β ]u
β+σ+ 2ε

q −1du

+
∫ ∞

1
[

1

(u−1)λ+β +
1

(1+u)λ+β ]u
σ− 2ε

p −1du
}
≤ k,
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which contradicts the fact that k < K(σ). Hence the constant factor K(σ) in (3.1) is the best

possible.

If the constant factor in (3.2) is not the best possible, then by (3.5) we would reach the

contradiction that the constant factor in (3.1) is not the best possible.

Theorem 3.2. If in the assumptions of Theorem 3.1, we replace p > 1 by 0 < p < 1, we
obtain the equivalent reverses of (3.1) and (3.2) with the same best constant factors.

Proof. By Hölder’s reverse inequality (cf. [30]), we derive the reverses of (2.11), (2.12),

(2.10) and (3.5). It is easy to obtain the reverse of (3.2). In view of the reverses of (3.2)

and (3.5), we obtain the reverse of (3.1). On the other hand, if we suppose that the reverse

of (3.1) is valid, then if we set g(y) as in (3.6), by the reverse of (2.12), we have J > 0. If

J = ∞, then the reverse of (3.2) is obviously true; if J < ∞, then by the reverse of (3.1),

we obtain the reverses of (3.7) and (3.8). Hence, we obtain the reverse of (3.2), which is

equivalent to the reverse of (3.1).

If the constant factor K(σ) in the reverse of (3.1) is not the best possible, then, there

exists a positive constant k, with k > K(σ), such that the reverse of (3.1) is still valid when

replacing K(σ) by k. By the reverse of (3.9), we have

∫ 1

0
[

1

(1−u)λ+β +
1

(1+u)λ+β ]u
β+σ+ 2ε

q −1du

+
∫ ∞

1
[

1

(u−1)λ+β +
1

(1+u)λ+β ]u
σ− 2ε

p −1du > k. (3.10)

By Levi’s theorem (cf. [31]), we find
∫ ∞

1
[

1

(u−1)λ+β +
1

(1+u)λ+β ]u
σ− 2ε

p −1du

→
∫ ∞

1
[

1

(u−1)λ+β +
1

(1+u)λ+β ]u
σ−1du(ε → 0+).

There exists a constant δ0 > 0, such that σ− 1
2
δ0 >−β, and then K(σ− δ0

2
) ∈ R+. For

0 < ε < δ0|q|
4

(q < 0), since uβ+σ+ 2ε
q −1 ≤ uβ+σ− δ0

2 −1,u ∈ (0,1], and

0 <
∫ 1

0
[

1

(1−u)λ+β +
1

(1+u)λ+β ]u
β+σ− δ0

2 −1du ≤ K(σ− δ0

2
),

then by Lebesgue’s control convergence theorem (cf. [31]), we have

∫ 1

0
[

1

(1−u)λ+β +
1

(1+u)λ+β ]u
β+σ+ 2ε

q −1du

→
∫ 1

0
[

1

(1−u)λ+β +
1

(1+u)λ+β ]u
β+σ−1du (ε → 0+).

By (3.10) and the above results, for ε → 0+, we get K(σ) ≥ k, which contradicts the fact

that k > K(σ). Hence, the constant factor K(σ) in the reverse of (3.1) is the best possible.

If the constant factor in the reverse of (3.2) is not the best possible, then, by the reverse

of (3.5), we would reach the contradiction that the constant factor in the reverse of (3.1) is

not the best possible.
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Remark 3.3. (i) For δ = −1 in (3.1) and (3.2), replacing |x|λ f (x) by f (x), we obtain

0 <
∫ ∞
−∞ |x|p(1−μ)−1 f p(x)dx < ∞, and the following equivalent inequalities with the homo-

geneous kernel and the best possible constant factors:

∫ ∞

−∞

∫ ∞

−∞

(min{|x|, |y|})β

|x+ y|λ+β f (x)g(y)dxdy

< K(σ)
[∫ ∞

−∞
|x|p(1−μ)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (3.11)

∫ ∞

−∞
|y|pσ−1

[∫ ∞

−∞

(max{|x|, |y|})β

|x+ y|λ+β f (x)dx

]p

dy

< K p(σ)
∫ ∞

−∞
|x|p(1−μ)−1 f p(x)dx. (3.12)

In particular, for λ = 0 = μ+σ(μ,σ >−β), 0 < β < 1, we find

K(σ) = K0(σ) :=
1

β+σ
F(β,β+σ,1+β+σ,−1)

+
1

β+μ
F(β,β+μ,1+β+μ,−1)

+B(1−β,β+σ)+B(1−β,β+μ), (3.13)

and the following equivalent inequalities:

∫ ∞

−∞

∫ ∞

−∞

(
min{|x|, |y|}

|x+ y|
)β

f (x)g(y)dxdy

< K0(σ)
[∫ ∞

−∞
|x|p(1−μ)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (3.14)

∫ ∞

−∞
|y|pσ−1

[∫ ∞

−∞

(
min{|x|, |y|}

|x+ y|
)β

f (x)dx

]p

dy

< K p
0 (σ)

∫ ∞

−∞
|x|p(1−μ)−1 f p(x)dx. (3.15)

(ii) For λ = 0 = μ+σ(μ,σ >−β), 0 < β < 1 in (3.1) and (3.2), we have the following

equivalent inequalities:

∫ ∞

−∞

∫ ∞

−∞

(
min{1, |xδy|}
|1+ xδy|

)β

f (x)g(y)dxdy

< K0(σ)
[∫ ∞

−∞
|x|p(1−δσ)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (3.16)
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∫ ∞

−∞
|y|pσ−1

⎡⎣∫ ∞

−∞

(
min{1, |xδy|}
|1+ xδy|

)β

f (x)dx

⎤⎦p

dy

< K p
0 (σ)

∫ ∞

−∞
|x|p(1−δσ)−1 f p(x)dx. (3.17)

In particular, for δ= 1,we have the following equivalent inequalities (cf. [25], for σ = μ = 0):

∫ ∞

−∞

∫ ∞

−∞

(
min{1, |xy|}
|1+ xy|

)β
f (x)g(y)dxdy

< K0(σ)
[∫ ∞

−∞
|x|p(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (3.18)

∫ ∞

−∞
|y|pσ−1

[∫ ∞

−∞

(
min{1, |xy|}
|1+ xy|

)β
f (x)dx

]p

dy

< K p
0 (σ)

∫ ∞

−∞
|x|p(1−σ)−1 f p(x)dx. (3.19)

(iii) For β = 0 < λ < 1, σ = μ = λ
2

in (3.3), we obtain

K(
λ
2
) =

∫ ∞

0

u
λ
2−1

(1+u)λ du+2

∫ 1

0

u
λ
2−1

(1−u)λ du = kλ,

and then (1.3) follows. Hence, (3.1)-(3.3) is an extension of (1.3).

4 Some Corollaries

In the following two sections, if the constant factors are related to K1(σ), then we call them

Hardy-type inequalities (operators) of the first kind; if the constant factors are related to

K2(σ), then we call them Hardy-type inequalities (operators) of the second kind.

Setting the kernel

H(xy) :=

{
0, |xy|> 1
(min{1,|xy|})β

|1+xy|λ+β , |xy| ≤ 1
,

it follows that

H(u) =

{
0, |u|> 1
(min{1,|u|})β

|1+u|λ+β , |u| ≤ 1
,

∫ ∞

−∞
H(u)|u|σ−1du =

∫ 1

−1

(min{1, |u|})β

|1+u|λ+β |u|σ−1du = K1(σ).

In view of Theorems 3.1-3.2 (for δ = 1), we obtain the following Hardy-type inequalities

of the first kind with the non-homogeneous kernel:
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Corollary 4.1. Suppose that p > 1, 1
p +

1
q = 1,β >−1,μ,σ >−β, μ+σ = λ < 1−β, K1(σ)

is indicated by (2.5) (or 2.7). If f , g ≥ 0, satisfy

0 <
∫ ∞

−∞
|x|p(1−σ)−1 f p(x)dx < ∞

and
0 <

∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy < ∞,

then we have the following equivalent inequalities:

∫ ∞

−∞

[∫ 1
|y|

− 1
|y|

(min{1, |xy|})β

|1+ xy|λ+β f (x)dx

]
g(y)dy

< K1(σ)
[∫ ∞

−∞
|x|p(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (4.1)

∫ ∞

−∞
|y|pσ−1

[∫ 1
|y|

− 1
|y|

(min{1, |xy|})β

|1+ xδy|λ+β f (x)dx

]p

dy

< K p
1 (σ)

∫ ∞

−∞
|x|p(1−σ)−1 f p(x)dx. (4.2)

where, the constant factors K1(σ) and K p
1 (σ) are the best possible. Replacing p > 1 by

0 < p < 1, we have the equivalent reverses of (4.1) and (4.2) with the same best constant
factors.

If we set Ey := {x ∈ R; |xy| ≥ 1}, and

H(xy) :=

{
0, |xy|< 1
(min{1,|xy|})β

|1+xy|λ+β , |xy| ≥ 1
,

then it follows that

H(u) =

{
0, |u|< 1
(min{1,|u|})β

|1+u|λ+β , |u| ≥ 1
,

∫ ∞

−∞
H(u)|u|σ−1du =

∫
E1

(min{1, |u|})β

|1+u|λ+β |u|σ−1du = K2(σ).

In view of Theorems 3.1-3.2 (for δ = 1), we have the following Hardy-type inequalities of

the second kind with the non-homogeneous kernel:

Corollary 4.2. Suppose that p > 1, 1
p +

1
q = 1,β >−1,μ,σ >−β, μ+σ = λ < 1−β, K2(σ)

is indicated by (2.6) (or 2.8).
If f , g ≥ 0, satisfy

0 <
∫ ∞

−∞
|x|p(1−σ)−1 f p(x)dx < ∞
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and
0 <

∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy < ∞,

then we have the following equivalent inequalities:
∫ ∞

−∞

[∫
Ey

(min{1, |xy|})β

|1+ xy|λ+β f (x)dx

]
g(y)dy

< K2(σ)
[∫ ∞

−∞
|x|p(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (4.3)

∫ ∞

−∞
|y|pσ−1

[∫
Ey

(min{1, |xy|})β

|1+ xy|λ+β f (x)dx

]p

dy

< K p
2 (σ)

∫ ∞

−∞
|x|p(1−δσ)−1 f p(x)dx. (4.4)

where, the constant factors K2(σ) and K p
2 (σ) are the best possible. Replacing p > 1 by

0 < p < 1, we obtain the equivalent reverses of (4.3) and (4.4) with the same best constant
factors.

If we set Ẽy := {x ∈ R; | y
x | ≤ 1} and

Kλ(x,y) :=

{
0, | y

x |> 1
(min{|x|,|y|})β

|x+y|λ+β , | y
x | ≤ 1

,

then it follows

Kλ(1,u) =

{
0, |u|> 1
(min{1,|u|})β

|1+u|λ+β , |u| ≤ 1
,

∫ ∞

−∞
Kλ(1,u)|u|σ−1du =

∫ 1

−1

(min{1, |u|})β

|1+u|λ+β |u|σ−1du = K1(σ).

In view of Remark 3.3 (i), we have the following Hardy-type inequalities of the first kind

with the homogeneous kernel:

Corollary 4.3. Suppose that p > 1, 1
p +

1
q = 1,β >−1,μ,σ >−β, μ+σ = λ < 1−β, K1(σ)

is indicated by (2.5) (or 2.7). If f , g ≥ 0, satisfy

0 <

∫ ∞

−∞
|x|p(1−μ)−1 f p(x)dx < ∞

and
0 <

∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy < ∞,

then we have the following equivalent inequalities:
∫ ∞

−∞

[∫
Ẽy

(min{|x|, |y|})β

|x+ y|λ+β f (x)dx

]
g(y)dy

< K1(σ)
[∫ ∞

−∞
|x|p(1−μ)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (4.5)
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∫ ∞

−∞
|y|pσ−1

[∫
Ẽy

(min{|x|, |y|})β

|x+ y|λ+β f (x)dx

]p

dy

< K p
1 (σ)

∫ ∞

−∞
|x|p(1−μ)−1 f p(x)dx. (4.6)

where the constant factors K1(σ) and K p
1 (σ) are the best possible. Replacing p > 1 by

0 < p < 1, we derive the equivalent reverses of (4.5) and (4.6) with the same best constant
factors.

Setting the kernel

Kλ(x,y) :=

{
0, | y

x |< 1
(min{|x|,|y|})β

|x+y|λ+β , | y
x | ≥ 1

,

then it follows that

Kλ(1,u) =

{
0, |u|< 1
(min{1,|u|})β

|1+u|λ+β , |u| ≥ 1
,

∫ ∞

−∞
Kλ(1,u)|u|σ−1du =

∫
E1

(min{1, |u|})β

|1+u|λ+β |u|σ−1du = K2(σ).

In view of Remark 3.3 (i), we have the following Hardy-type inequalities of the second kind

with the homogeneous kernel:

Corollary 4.4. Suppose that p > 1, 1
p +

1
q = 1,β < 1,μ,σ > 0, μ+σ = λ < 1−β,K2(σ) is

indicated by (2.6) (or 2.8). If f , g ≥ 0, satisfy

0 <
∫ ∞

−∞
|x|p(1−μ)−1 f p(x)dx < ∞

and
0 <

∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy < ∞,

then we have the following equivalent inequalities:

∫ ∞

−∞

[∫ |y|

−|y|
(min{|x|, |y|})β

|x+ y|λ+β f (x)dx

]
g(y)dy

< K2(σ)
[∫ ∞

−∞
|x|p(1−μ)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (4.7)

∫ ∞

−∞
|y|pσ−1

[∫ |y|

−|y|
(min{|x|, |y|})β

|x+ y|λ+β f (x)dx

]p

dy

< K p
2 (σ)

∫ ∞

−∞
|x|p(1−μ)−1 f p(x)dx. (4.8)

where the constant factors K2(σ) and K p
2 (σ) are the best possible. Replacing p > 1 by

0 < p < 1, we get the equivalent reverses of (4.7) and (4.8) with the same best constant
factors.
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5 Operator Expressions

Suppose that p > 1, 1
p +

1
q = 1,β > −1,μ,σ > −β, μ+σ = λ < 1−β. We set the follow-

ing functions: ϕ(x) := |x|p(1−σ)−1,ψ(y) := |y|q(1−σ)−1,φ(x) := |x|p(1−μ)−1(x,y ∈ R), where-

from, ψ1−p(y) = |y|pσ−1. Define the following real normed linear space:

Lp,ϕ(R) :=

{
f : || f ||p,ϕ :=

(∫ ∞

−∞
ϕ(x)| f (x)|pdx

) 1
p

< ∞

}
,

wherefrom,

Lp,ψ1−p(R) =

{
h : ||h||p,ψ1−p =

(∫ ∞

−∞
ψ1−p(y)|h(y)|pdy

) 1
p

< ∞

}
,

Lp,φ(R) =

{
g : ||g||p,φ =

(∫ ∞

−∞
φ(x)|g(x)|pdx

) 1
p

< ∞

}
.

(a) In view of Theorem 3.1 (δ = 1), for f ∈ Lp,ϕ(R), setting

H(1)(y) :=
∫ ∞

−∞

(min{1, |xy|})β

|1+ xy|λ+β | f (x)|dx(y ∈ R),

by (3.4), we have

||H(1)||p,ψ1−p =

[∫ ∞

−∞
ψ1−p(y)(H(1)(y))pdy

] 1
p

< K(σ)|| f ||p,ϕ < ∞. (5.1)

Definition 5.1. Define the Hilbert-type integral operator with the non-homogeneous kernel

in the whole plane T (1) : Lp,ϕ(R) → Lp,ψ1−p(R) as follows: For any f ∈ Lp,ϕ(R), there

exists a unique representation T (1) f = H(1) ∈ Lp,ψ1−p(R), satisfying

T (1) f (y) = H(1)(y),

for any y ∈ R.

In view of (5.1), it follows that ||T (1) f ||p,ψ1−p = ||H(1)||p,ψ1−p ≤ K(σ)|| f ||p,ϕ. Then, the

operator T (1) is bounded satisfying

||T (1)||= sup
f ( �=θ)∈Lp,ϕ(R+)

||T (1) f ||p,ψ1−p

|| f ||p,ϕ ≤ K(σ).

Since the constant factor K(σ) in (5.1) is the best possible, we have ||T (1)||= K(σ).
If we define the formal inner product of T (1) f and g as follows:

(T (1) f ,g) : =
∫ ∞

−∞

[∫ ∞

−∞

(min{1, |xy|})β

|1+ xy|λ+β f (x)dx

]
g(y)dy

=
∫ ∞

−∞

∫ ∞

−∞

(min{1, |xy|})β

|1+ xy|λ+β f (x)g(y)dxdy,
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then we can rewrite (3.3) and (3.4) in the form:

(T (1) f ,g)< ||T (1)|| · || f ||p,ϕ||g||q,ψ, ||T (1) f ||p,ψ1−p < ||T (1)|| · || f ||p,ϕ. (5.2)

(b) In view of Corollary 4.1, for f ∈ Lp,ϕ(R), setting

H(1)
1 (y) :=

∫ 1
|y|

− 1
|y|

(min{1, |xy|})β

|1+ xy|λ+β | f (x)|dx(y ∈ R),

by (3.14), we obtain

||H(1)
1 ||p,ψ1−p =

[∫ 1
|y|

− 1
|y|

ψ1−p(y)(H(1)
1 (y))pdy

] 1
p

< K1(σ)|| f ||p,ϕ < ∞. (5.3)

Definition 5.2. Define the Hilbert-type integral operator of the first kind with the non-

homogeneous kernel in the whole plane T (1)
1 : Lp,ϕ(R) → Lp,ψ1−p(R) as follows: For any

f ∈ Lp,ϕ(R), there exists a unique representation T (1)
1 f = H(1)

1 ∈ Lp,ψ1−p(R), satisfying

T (1)
1 f (y) = H(1)

1 (y),

for any y ∈ R.

In view of (5.3), it follows that ||T (1)
1 f ||p,ψ1−p = ||H(1)

1 ||p,ψ1−p ≤ K1(σ)|| f ||p,ϕ, and then

the operator T (1)
1 is bounded satisfying

||T (1)
1 ||= sup

f ( �=θ)∈Lp,ϕ(R+)

||T (1)
1 f ||p,ψ1−p

|| f ||p,ϕ ≤ K1(σ).

Since the constant factor K1(σ) in (5.3) is the best possible, we have ||T (1)
1 ||= K1(σ).

If we define the formal inner product of T (1)
1 f and g as follows:

(T (1)
1 f ,g) :=

∫ ∞

−∞

[∫ 1
|y|

− 1
|y|

(min{1, |xy|})β

|1+ xy|λ+β f (x)dx

]
g(y)dy,

then we can rewrite (3.13) and (3.14) in the following way:

(T (1)
1 f ,g)< ||T (1)

1 || · || f ||p,ϕ||g||q,ψ, ||T (1)
1 f ||p,ψ1−p < ||T (1)

1 || · || f ||p,ϕ. (5.4)

(c) In view of Corollary 4.2, for f ∈ Lp,ϕ(R), setting

H(1)
2 (y) :=

∫
Ey

(min{1, |xy|})β

|1+ xy|λ+β | f (x)|dx(y ∈ R),

by (3.16), we have

||H(1)
2 ||p,ψ1−p =

[∫
Ey

ψ1−p(y)(H(1)
2 (y))pdy

] 1
p

< K2(σ)|| f ||p,ϕ < ∞. (5.5)
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Definition 5.3. Define the Hilbert-type integral operator of the second kind with the non-

homogeneous kernel in the whole plane T (1)
2 : Lp,ϕ(R)→ Lp,ψ1−p(R) as follows: For any

f ∈ Lp,ϕ(R), there exists a unique representation T (1)
2 f = H(1)

2 ∈ Lp,ψ1−p(R), satisfying

T (1)
2 f (y) = H(1)

2 (y),

for any y ∈ R.

In view of (5.5), it follows that ||T (1)
2 f ||p,ψ1−p = ||H(1)

2 ||p,ψ1−p ≤ K2(σ)|| f ||p,ϕ, and then

the operator T (1)
2 is bounded satisfying

||T (1)
2 ||= sup

f ( �=θ)∈Lp,ϕ(R+)

||T (1)
2 f ||p,ψ1−p

|| f ||p,ϕ ≤ K2(σ).

Since the constant factor K2(σ) in (5.5) is the best possible, we have ||T (1)
2 ||= K2(σ).

If we define the formal inner product of T (1)
2 f and g as follows:

(T (1)
2 f ,g) :=

∫ ∞

−∞

[∫
Ey

(min{1, |xy|})β

|1+ xy|λ+β f (x)dx

]
g(y)dy,

then we can rewrite (3.15) and (3.16) as shown below:

(T (1)
2 f ,g)< ||T (1)

2 || · || f ||p,ϕ||g||q,ψ, ||T (1)
2 f ||p,ψ1−p < ||T (1)

2 || · || f ||p,ϕ. (5.6)

(d) In view of Remark 3.3 (i), for f ∈ Lp,φ(R), setting

H(2)(y) :=
∫ ∞

−∞

(min{|x|, |y|})β

|x+ y|λ+β | f (x)|dx(y ∈ R),

by (3.12), we have

||H(2)||p,ψ1−p =

[∫ ∞

−∞
ψ1−p(y)(H(2)(y))pdy

] 1
p

< K(σ)|| f ||p,φ < ∞. (5.7)

Definition 5.4. Define the Hilbert-type integral operator with the homogeneous kernel in

the whole plane T (2) : Lp,φ(R)→ Lp,ψ1−p(R) as follows: For any f ∈ Lp,φ(R), there exists

a unique representation T (2) f = H(2) ∈ Lp,ψ1−p(R), satisfying

T (2) f (y) = H(2)(y),

for any y ∈ R.

In view of (5.7), it follows that ||T (2) f ||p,ψ1−p = ||H(2)||p,ψ1−p ≤ K(σ)|| f ||p,φ, and then

the operator T (2) is bounded satisfying

||T (2)||= sup
f ( �=θ)∈Lp,φ(R+)

||T (2) f ||p,ψ1−p

|| f ||p,φ ≤ K(σ).
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Since the constant factor K(σ) in (5.7) is the best possible, we have ||T (2)||= K(σ).
If we define the formal inner product of T (2) f and g as follows:

(T (2) f ,g) : =
∫ ∞

−∞

[∫ ∞

−∞

(min{|x|, |y|})β

|x+ y|λ+β f (x)dx

]
g(y)dy

=
∫ ∞

−∞

∫ ∞

−∞

(min{|x|, |y|})β

|x+ y|λ+β f (x)g(y)dxdy,

then we can rewrite (3.11) and (3.12) as follows:

(T (2) f ,g)< ||T (2)|| · || f ||p,φ||g||q,ψ, ||T (2) f ||p,ψ1−p < ||T (2)|| · || f ||p,φ. (5.8)

(e) In view of Corollary 4.3, for f ∈ Lp,φ(R), setting

H(2)
1 (y) :=

∫
Ẽy

(min{|x|, |y|})β

|x+ y|λ+β | f (x)|dx(y ∈ R),

by (3.18), we have

||H(2)
1 ||p,ψ1−p =

[∫
Ẽy

ψ1−p(y)(H(2)
1 (y))pdy

] 1
p

< K1(σ)|| f ||p,φ < ∞. (5.9)

Definition 5.5. Define the Hilbert-type integral operator of the fist kind with the homo-

geneous kernel in the whole plane T (2)
1 : Lp,φ(R) → Lp,ψ1−p(R) as follows: For any f ∈

Lp,φ(R), there exists a unique representation T (2)
1 f = H(2)

1 ∈ Lp,ψ1−p(R), satisfying

T (2)
1 f (y) = H(2)

1 (y),

for any y ∈ R.

In view of (5.9), it follows that ||T (2)
1 f ||p,ψ1−p = ||H(2)

1 ||p,ψ1−p ≤ K1(σ)|| f ||p,φ, and then

the operator T (2)
1 is bounded satisfying

||T (2)
1 ||= sup

f ( �=θ)∈Lp,φ(R+)

||T (2)
1 f ||p,ψ1−p

|| f ||p,φ ≤ K1(σ).

Since the constant factor K1(σ) in (5.9) is the best possible, we have ||T (2)
1 ||= K1(σ).

If we define the formal inner product of T (2)
1 f and g as follows:

(T (1)
1 f ,g) :=

∫ ∞

−∞

[∫
Ẽy

(min{|x|, |y|})β

|x+ y|λ+β f (x)dx

]
g(y)dy,

then we can rewrite (3.17) and (3.18) as follows:

(T (2)
1 f ,g)< ||T (2)

1 || · || f ||p,φ||g||q,ψ, ||T (2)
1 f ||p,ψ1−p < ||T (2)

1 || · || f ||p,φ. (5.10)
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(f) In view of Corollary 4.4, for f ∈ Lp,φ(R), setting

H(2)
2 (y) :=

∫ |y|

−|y|
(min{|x|, |y|})β

|x+ y|λ+β | f (x)|dx(y ∈ R),

by (4.1), we have

||H(2)
2 ||p,ψ1−p =

[∫ |y|

−|y|
ψ1−p(y)(H(2)

2 (y))pdy
] 1

p

< K2(σ)|| f ||p,φ < ∞. (5.11)

Definition 5.6. Define the Hilbert-type integral operator of the second kind with the ho-

mogeneous kernel in the whole plane T (2)
2 : Lp,φ(R) → Lp,ψ1−p(R) as follows: For any

f ∈ Lp,φ(R), there exists a unique representation T (2)
2 f = H(2)

2 ∈ Lp,ψ1−p(R), satisfying

T (2)
2 f (y) = H(2)

2 (y),

for any y ∈ R.

In view of (5.11), it follows that ||T (2)
2 f ||p,ψ1−p = ||H(2)

2 ||p,ψ1−p ≤ K2(σ)|| f ||p,φ, and thus

the operator T (2)
2 is bounded satisfying

||T (2)
2 ||= sup

f ( �=θ)∈Lp,φ(R+)

||T (2)
2 f ||p,ψ1−p

|| f ||p,φ ≤ K2(σ).

Since the constant factor K2(σ) in (5.11) is the best possible, we have ||T (2)
2 ||= K2(σ).

If we define the formal inner product of T (2)
2 f and g as

(T (2)
2 f ,g) :=

∫ ∞

−∞

[∫ |y|

−|y|
(min{|x|, |y|})β

|x+ y|λ+β f (x)dx

]
g(y)dy,

then we can rewrite (3.19) and (4.1) as follows:

(T (2)
2 f ,g)< ||T (2)

2 || · || f ||p,φ||g||q,ψ, ||T (2)
2 f ||p,ψ1−p < ||T (2)

2 || · || f ||p,φ. (5.12)
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[1] G.H. Hardy, J.E. Littlewood, G.Pólya, Inequalities, Cambridge University Press, Cam-

bridge, USA, 1934.
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