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It was shown by Rørdam and the second named author that a countable group G
admits an action on a compact space such that the crossed product is a Kirchberg 
algebra if, and only if, G is exact and non-amenable. This construction allows 
a certain amount of choice. We show that different choices can lead to different 
algebras, at least with the free group.
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1. Introduction

The special class of C∗-algebras, now called Kirchberg algebras, that are purely infinite, simple, separable, 
and nuclear, are of particular interest because of the classification of them (by K- or KK-theory) obtained 
by Kirchberg and Phillips in the mid 1990’s; see [13,19]. Many of the naturally occurring examples of 
Kirchberg algebras arise from dynamical systems. The Cuntz algebra On, for example, is stably isomorphic 
to the crossed product of a stabilized UHF-algebra by an action of the group of integers that scales the 
trace; see [10]. Crossed products have also been a rich source of examples which are problematic for the 
classification of C∗-algebras. One of the most famous examples is Rørdam’s simple, separable, nuclear crossed 
product in the UCT class which contains both an infinite and a non-zero finite projection, [20].

Prompted by Choi’s embedding of C∗
r(Z2∗Z3) into O2 [9], Archbold and Kumjian (independently) proved 

that there is an action of Z2 ∗Z3 on the Cantor set such that the corresponding crossed product C∗-algebra 
is isomorphic to O2 (see Introduction of [24]). A number of other constructions of Kirchberg algebras arising 
as crossed products of abelian C∗-algebras by hyperbolic groups have appeared in the literature; see [24,25,
15,2]. (Cf. also [11], in which the group is not hyperbolic.)
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For many cases of interest it is well understood when a crossed product is a Kirchberg algebra. For 
example, for a countable group G acting on the Cantor set X the crossed product C(X) �rG is a Kirchberg 
algebra precisely when the action is topologically free, amenable, and minimal, and the non-zero projections 
in C(X) are infinite as elements of C(X) �r G; see Proposition 2.1 below.

Recently, it was shown in [22] that a countable group G admits an action on a compact space such that 
the crossed product is a Kirchberg algebra if, and only if, G is exact and non-amenable. The referee for [22]
kindly suggested that it might be interesting to see which Kirchberg algebras can be obtained from a given 
group G. In this paper we give at least a partial answer to this question.

Let us briefly recall the idea of the construction of [22], with the emphasis on the parts that make the 
K-theory computation difficult. Let G be a countable group and let βG denote the Stone–Cech compactifi-
cation of G. The strategy is to select a proper sub-C∗-algebra A �r G of the Roe algebra C(βG) �r G and 
then divide out by an ideal to make the algebra simple. The selection involves three main steps:

(i) Recall that an action of G on a totally disconnected compact Hausdorff space X is free if, and only if, 
for each e �= t ∈ G there exists a finite partition {pi,t}i∈F of 1, such that pi,t ⊥ t.pi,t (easy exercise). 
By [22, Corollary 6.2] such projections {pi,t} exist if X = βG.

(ii) Recall that the action of G on a compact Hausdorff space X is said to be amenable if, and only if, 
for each i ∈ N there exists a family of positive elements {mi,t}t∈G in C(X) such that 

∑
t∈G mi,t = 1

and lim−→i(supx∈X

∑
t∈G |mi,st(x) − s.mi,t(x)|) = 0 (see Remark 2.6 following [3, Definition 2.1]). By [1, 

Theorem 4.5] and [17, Theorem 3] such elements {mi,t} exist if X = βG and G is exact.
(iii) Let p be a projection in C(βG) not contained in a proper closed two-sided ideal of C(βG) �r G. If G is 

non-amenable then p is properly infinite; see [22, Corollary 5.6]. By a density argument there exists a 
sequence {hi,p}i∈N in C(βG) such that p is properly infinite in C∗({hi,p}) �r G; see [22, Lemma 6.6].

By carefully selecting, according to this procedure, a countable subset of C(βG) (and dividing the resulting 
algebra by a maximal proper G-invariant closed two-sided ideal), a free, amenable, minimal action of G on 
a Cantor set X was obtained in [22] such that every non-zero projection in C(X) is properly infinite in the 
crossed product. As mentioned in the Introduction (see 2.1 below) the C∗-algebra C(X) �rG is a Kirchberg 
algebra.

In Section 3 we consider the specific case where G is the free group on two generators. We present two 
specific choices of maps in C(βG) such that the algebras they generate divided out by a G-invariant ideal 
give rise to two different crossed products. Perhaps surprisingly the ideal we use is the smallest G-invariant 
closed two-sided ideal in l∞(G) (∼= C(βG)) containing the finitely supported projections, and the projections 
we use are only the projections corresponding to cylinder sets and—for the second construction—also 
the projections corresponding to certain countable unions of cylinder sets. It is important to point out 
that the first example we consider has already been treated elsewhere, although by different methods, see 
Remark 3.11. Our main result is:

Theorem 1.1. Let G denote the free group on two generators. There exist two G-invariant sub-C∗-algebras 
of C(βG \G) such that the corresponding crossed products are different Kirchberg algebras with computable 
K-groups.

Since different choices of projections in C(βG) lead to different crossed products one might ask if the 
constructions of [22] can be carried out so as to result in a particular (i.e., identifiable) K0-group (or 
particular K1-group). In Section 6 we give an affirmative answer to this question, at least for the free 
groups; see Corollary 6.6.
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2. Notation and a preliminary result

All groups throughout this paper are equipped with the discrete topology. Let A+ denote the positive 
cone of a C∗-algebra A and e the neutral element of a group. Given a C∗-dynamical system (A, G) with 
G a discrete group, let A �r G and A � G denote the reduced and the full crossed product C∗-algebras, 
respectively. Consider the common subalgebra Cc(G, A) of both crossed products consisting of the finite 
sums 

∑
t∈G atut, where at ∈ A (only finitely many non-zero), and t �→ ut for t ∈ G, is the canonical unitary 

representation of G that implements the action of G on A. (If A is unital, then each ut belongs to the 
crossed product, and in general ut belongs to the multiplier algebra of the crossed product.) We suppress 
the canonical inclusion map A → A �r G and view A as being a sub-C∗-algebra of A �r G.

Recall that the action of G on Â (the spectrum of A) is said to be minimal if A does not contain 
any non-trivial G-invariant closed two-sided ideals, topologically free if for any t1, . . . , tn ∈ G \ {e}, the set ⋂n

i=1{x ∈ Â : ti.x �= x} is dense in Â, and amenable if there exists a net (mi)i∈I of continuous maps x → mx
i

from Â to the space Prob(G) such that limi‖s.mx
i −ms.x

i ‖1 = 0 uniformly on compact subsets of Â; cf. [3,4]. 
For an action of a discrete group G on an abelian C∗-algebra A the crossed product is simple and nuclear 
if, and only if, the action is minimal, topologically free, and amenable; cf. the proof of Proposition 2.1.

Let a, b be positive elements of a C∗-algebra A. Write a � b if there exists a sequence (rn) in A such that 
r∗nbrn → a. More generally, for a ∈ Mn(A)+ and b ∈ Mm(A)+ write a � b if there exists a sequence (rn) in 
Mm,n(A) with r∗nbrn → a. For a ∈ Mn(A) and b ∈ Mm(A) let a ⊕b denote the element diag(a, b) ∈ Mn+m(A).

A positive element a in a C∗-algebra A is said to be infinite if there exists a non-zero positive element 
b in A such that a ⊕ b � a. If a is non-zero and if a ⊕ a � a, then a is said to be properly infinite. This 
extends the usual concepts of infinite and properly infinite projections; cf. [14, p. 642–643].

A C∗-algebra A is purely infinite if there are no characters on A and if for every pair of positive elements 
a, b in A such that b belongs to the closed two-sided ideal in A generated by a, one has that b � a. 
Equivalently, a C∗-algebra A is purely infinite if every non-zero positive element a in A is properly infinite; 
cf. [14, Theorem 4.16].

A C∗-algebra A has real rank zero if the set of self-adjoint elements with finite spectrum is dense in the set 
of all self-adjoint elements ([7]). Real rank zero is a non-commutative analogue of being totally disconnected 
(because an abelian C∗-algebra C0(X), where X is a locally compact Hausdorff space, is of real rank zero 
if and only if X is totally disconnected).

Proposition 2.1. Let G be a countable group acting on the Cantor set X. The crossed product C(X) �r G is 
a Kirchberg algebra precisely when the action is topologically free, amenable, and minimal, and the non-zero 
projections in C(X) are infinite as elements of C(X) �r G.

Proof. The crossed product is simple and nuclear if, and only if, the action is topologically free, amenable, 
and minimal ([1, Theorem 4.5, Proposition 4.8] and [4, p. 124]). If the crossed product is purely infinite the 
non-zero projections in A are infinite. The converse follows from the proof of [22, Theorem 4.1, (i) ⇒ (iii)]
and [23, Remark 4.3.7] under the assumption of simplicity and nuclearity. �
3. Kirchberg algebras contained in C(βG \ G) �r G

Throughout this section we let G denote the free group on two generators a, b. We will now present two 
actions of G on the Cantor set such that the corresponding crossed products are different Kirchberg algebras.

Each element in G can be written as a (reduced) word, i.e., a finite sequence z1 . . . zn of letters in 
{a, b, a−1, b−1} such that zizi+1 �= e for i = 1, . . . , n − 1. For each t ∈ G let B(t) denote the subset of 
G consisting of all words starting with t and |t| the length (i.e. the number of letters) of the word t. For 
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each t ∈ G\{e} let tn denote the nth letter of t, hence t = t1t2 . . . t|t|−1t|t|. In particular if t = t1 . . . t|t|, s =
s1 . . . s|s| ∈ G\{e} and t|t|s1 �= e then ts = t1 . . . t|t|s1 . . . s|s|.

3.1. Example 1

Denote by A the (separable) G-invariant sub-C∗-algebra of l∞(G) generated by N = {1B(t) : t ∈ G, t �= e}
and consider the G-invariant closed two-sided ideal I in A generated by the projections with finite support. 
This makes sense since a.1B(a−1) = 1B(b) +1B(b−1) +1B(a−1) +1{e} (in other words, these projections belong 
to A!).

Theorem 3.1. The crossed product A/I �r G is a Kirchberg algebra in the UCT class with the following 
K-groups:

K0(A/I �r G) ∼= Z2, K1(A/I �r G) ∼= Z2.

Before we give a proof of Theorem 3.1 let us establish some preliminary results.

Lemma 3.2. The C∗-algebras A and A/I are unital, separable, abelian AF-algebras of real rank zero. The 
spaces Â and Â/I are totally disconnected, compact metric spaces. If the action of G on Â/I is minimal 
and topologically free then the space Â/I is a Cantor set.

Proof. Any unital abelian C∗-algebra C(X) generated by a sequence of projections is an AF-algebra; cf. [6, 
Proposition 1.6.10].

Suppose that G acts minimally and topologically freely on X. If there were an isolated point in X, the 
orbit of this would have to be all of X by minimality but by compactness it would have to be finite—which 
would contradict topological freeness. �
Lemma 3.3. Every projection in A/I lifts to a finite sum of projections in N .

Proof. Let p be any non-zero projection in A/I. Set N ′ = N ∪ {1{t} : t ∈ G}. Since A = C∗(N ′) has real 
rank zero, p lifts to a projection q ∈ A such that p = q + I; see [7, Theorem 3.14]. Since N ′ is a countable 
set of projections we may denote them by (pi)∞i=1. By a density argument and by reindexing the elements 
pi we can ensure

‖q −
m∑
i=1

cipi‖ < 1/2,

for some m ∈ N and ci ∈ C \ {0}. Since q = q∗ we may assume ci ∈ R \ {0}.
Let us now consider all the non-zero projections we obtain by multiplying p1 or (1 −p1) by p2 or (1 −p2), 

etc. except for the projection (1 − p1) · · · (1 − pm). We denote these projections by (ri)ki=1. Notice the 
projections ri are pairwise orthogonal (taking two different sequences starting with p1 or (1 − p1) followed 
by p2 or (1 −p2), etc. and multiplying them together gives zero). The union of the supports of the projections 
ri is equal to the union of the supports of the projections pj (every ri corresponds to some product with 
at least one pj , giving supp(ri) ⊆ supp(pj); conversely any x ∈ supp(pj) will also be supported by some 
product of elements pi or 1 −pi, not all of then being 1 −pi, and hence some element ri, giving x ∈ supp(ri)). 
We conclude

m∑
cipi =

k∑
diri,
i=1 i=1
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for some di ∈ R, where each di is selected in the canonical way. For clarity we show how to find the 
elements di. Fix j ∈ {1, . . . , k}. We have

rj = (
∏
i∈Ij

pi)(
∏

i∈{1,...,m}\Ij

(1 − pi))

for some non-empty set Ij ⊆ {1, . . . , m}. Fix x ∈ supp(rj). We have

dj =
( k∑
i=1

diri
)(
x
)

=
( m∑
i=1

cipi
)(
x
)

=
∑
i∈Ij

cipi(x) +
∑

i∈{1,...,m}\Ij

cipi(x) =
∑
i∈Ij

ci.

We have now shown

‖q −
k∑

i=1
diri‖ < 1/2, with rirj = 0, for each i �= j.

Fix j ∈ {1, . . . , k}. We have |q(x) −
∑k

i=1 diri(x)| < 1/2 for any x ∈ G. Using this inequality for x ∈ supp(rj)
we conclude that either |0 −dj| < 1/2 or |1 −dj | < 1/2. We can therefore define ej to be the choice of either 
0 or 1 such that |ej − dj | < 1/2. From

‖q −
k∑

i=1
eiri‖ ≤ ‖q −

k∑
i=1

diri‖ + ‖
k∑

i=1
(di − ei)ri‖ < 1,

we conclude q =
∑k

i=1 eiri; cf. [21, p. 23]. Upon reindexing and changing k we may assume q =
∑k

i=1 ri for 
some k ∈ N.

For j ∈ {1, . . . , k} we have rj = (
∏

i∈Ij
pi)(

∏
i∈{1,...,m}\Ij (1 −pi)) for some non-empty set Ij ⊆ {1, . . . , m}. 

Using N ′∪{0} is closed under multiplication and 1 −pi is a sum of projections in N ′ (since 1 =
∑

|t|=n 1B(t)+∑
|t|<n 1{t} for each n ∈ N) we see that rj is a finite sum of projections in N ′. We conclude q is finite sum 

of projections in N ′. By removing the finitely supported projections from this sum we obtain q with the 
desired properties. �
Lemma 3.4. Every non-zero projection p in A/I is infinite in A/I �r G.

Proof. Using Lemma 3.3 write p as

p =
n∑

i=1
pi + I, for some pi ∈ N .

The sum of two orthogonal infinite projections is again an infinite projection (if p = v∗v, vv∗ � p and 
q = w∗w, ww∗ � q for two orthogonal projections p, q then p + q = u∗u, uu∗ � p + q for u := v +w). Hence 
we may assume p = 1B(t) + I for some t �= e. Choose s ∈ G such that s.p � p (using that B(trt) � B(t), 
even modulo finite sets, for any r ∈ G\{e} fulfilling t|t|r1 �= e and r|r|t1 �= e). Since

p = (usp)∗(usp), (usp)(usp)∗ = s.p � p, and usp ∈ A/I �r G,

we have p is infinite as an element of A/I �r G. �
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Lemma 3.5. The action of G on Â/I is topologically free. Moreover, for every q ∈ N and t ∈ G\{e}, we 
have t.q + I �= q + I.

Proof. By Lemma 3.2, X = Â/I is a totally disconnected compact Hausdorff space.
It is easy to show that the action of G on X is topologically free if for any non-zero projection p ∈ C(X)

and t �= e there exists a projection q ≤ p such that t.q �= q. (Since X is a Hausdorff space it is enough 
to show that for t �= e the set {x ∈ X : t.x �= x} is dense in X. Let U be a neighbourhood of y ∈ X. 
Using X is totally disconnected find a projection p such that supp(p) ⊆ U . By assumption there exists a 
clopen set V ⊆ supp(p) such that t.V �= V . In particular, there is x ∈ V such that t.x �= x. We conclude 
U ∩ {x ∈ X : t.x �= x} �= ∅.)

Fix a non-zero projection p ∈ A/I and t �= e. By Lemma 3.3 there exists a projection 1B(s) ∈ N such 
that 1B(s) + I ≤ p for some s = s1 . . . s|s| �= e. Define q := 1B(s). We prove t.q + I �= q + I.

Assume t.q + I = q + I. By symmetry we can assume s|s| = a. Since

t.(s1 . . . s|s|−1.1B(a)) + I = t.q + I = q + I = s1 . . . s|s|−11B(a) + I,

we have r.1B(a) + I = 1B(a) + I for r := (s1 . . . s|s|−1)−1t(s1 . . . s|s|−1). If r = e then t = e and we get a 
contradiction, hence t.q+ I �= q+ I. If r|r| �= a−1 then r.1B(a) + I = 1B(a) + I ⇒ ra = a ⇒ r = e and we get 
a contradiction again. Finally if r|r| = a−1, then r = r1 . . . r|r|−1a

−1 and using a−1.1B(a) + 1B(a−1) + I = 1
we have r.1B(a) + I = (r1 . . . r|r|−1).(1 − 1B(a−1)) + I = 1 − 1B(r) + I. But then r.1B(a) + I �= 1B(a) + I and 
we get a contradiction once again (hence t.q + I �= q + I).

We conclude the action of G on Â/I is topologically free. �
Lemma 3.6. The action of G on Â/I is minimal.

Proof. Recall that by Lemma 3.2, X = Â/I is a totally disconnected compact Hausdorff space.
It is easy to show that the action of G on X is minimal if for any non-zero projection p ∈ C(X) there 

exist s, t ∈ G such that s.p + t.p ≥ 1. (Suppose the action fails to be minimal. Then one can find x ∈ X and 
a non-empty clopen set U in the complement of the orbit Ox := G.x. By assumption there exist s, t ∈ G

such that s.U ∪ t.U = X. Then Ox must intersect s.U or t.U or both. By G-invariance the orbit Ox must 
intersect U , contrary to the choice of U .)

Fix a non-zero projection p ∈ A/I. By Lemma 3.3 there exists a projection 1B(r) ∈ N such that 1B(r)+I ≤
p for some r �= e. By symmetry we may assume that r ends with a. With s = r−1

|r|−1 . . . r
−1
1 and t = ab−1a−1s

we obtain

s.p + t.p ≥ s.1B(r) + t.1B(r) + I

= 1B(a) + ab−1a−1.1B(a) + I

≥ 1B(a) + ab−1a−1.1B(aba−1) + I = 1

We conclude that the action of G on Â/I is minimal. �
Lemma 3.7. The action of G on Â/I is amenable.

Proof. Following [8, Section 4.3] define the ‖ · ‖2 norm on the convolution algebra Cc(G, A/I) by

‖S‖2 = ‖〈S, S〉‖1/2,
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where 〈S, T 〉 =
∑

s∈G a∗sbs for S =
∑

s∈G asus and T =
∑

t∈G btut in Cc(G, A/I). By [8, Definition 4.3.1, 
Lemma 4.3.7], the action is amenable if, and only if, there exists a sequence Ti ∈ Cc(G, A/I) such that 
0 ≤ Ti(t), 〈Ti, Ti〉 = 1 and ‖us · Ti − Ti‖2 → 0. For each i ∈ N define

Ti =
∑
|t|<i

( 1√
i
1B(t) + I)ut.

We trivially have Ti ∈ Cc(G, A/I) and 0 ≤ Ti(t). Using the equality 
∑

|t|=n 1B(t) + I = 1 for n ∈ N we get 
〈Ti, Ti〉 =

∑
t∈G Ti(t)2 = 1. Since 〈us · Ti, us · Ti〉 = 1 and 0 ≤ (Ti · T ∗

i )(s) = 〈Ti, us · Ti〉 we obtain

‖us · Ti − Ti‖2
2 = ‖2 − 〈Ti, us · Ti〉 − 〈us · Ti, Ti〉‖

= 2‖1 − (Ti · T ∗
i )(s)‖.

Using (n + 1)(Tn+1 · T ∗
n+1)(s) − n (Tn · T ∗

n)(s) = 1 for any n ∈ N and s ∈ G with |s| ≤ n (this is easy to 
verify) we get (for |s| ≤ i)

‖1 − (Ti · T ∗
i )(s)‖ = ‖1 − 1

i
((i− |s|)1 + |s| (T|s| · T ∗

|s|)(s))‖

= |s|
i
‖1 − (T|s| · T ∗

|s|)(s)‖.

Since ‖〈Ti, us · Ti〉‖ ≤ ‖Ti‖2‖us · Ti‖2 ≤ 1 ([8, Section 4.3]), we have

0 ≤ (T|s| · T ∗
|s|)(s) ≤ 1.

We conclude ‖us · Ti − Ti‖2
2 ≤ 2|s|

i (for |s| ≤ i). It follows that the action of G on Â/I is amenable. �
Lemma 3.8. The K0-group of A/I �r G is Z2.

Proof. Pimsner and Voiculescu were able to calculate a six-term exact sequence for the reduced crossed 
product for any action of G on any C∗-algebra. Considering the action of G on A/I, we have the exact 
sequence

K0(A/I)2 σ K0(A/I) ι K0(A/I �r G)

0

K1(A/I �r G) K1(A/I) K1(A/I)2.

Here, the map σ denotes 
∑

i(1 − ti) with t1 = a, t2 = b and ι is the map induced by the inclusion of A/I

in the crossed product A/I �r G. Recall that separable AF-algebras (in particular A/I) have trivial K1; 
cf. [21, p. 147]. Using exactness and the first isomorphism theorem we have

K0(A/I �r G) = ker(0) = im(ι) ∼= K0(A/I) / ker(ι) = K0(A/I) / im(σ)

= {[p]0 − [q]0 : p, q ∈ Mn(A/I) projections, n ∈ N} / im(σ)

Fix a projection p = [pij ] ∈ Mn(A/I). The projection p is equivalent to a direct sum p1⊕· · ·⊕pn of projections 
pi in A/I. The reason is that the AF approximation can be made using a finite-dimensional subalgebra of 
A/I together with the standard matrix units. (Alternatively, define Σ = {[p]0 : p is a projection in A/I}. Let 
eij denote the standard matrix units of Mn(A/I). Since Mn(A/I) has real rank zero (and p ≤ 1n =

∑n
eii) 
i=1
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[16, Corollary 3.3.17] provides projections pi ∈ Mn(A/I) such that [pi]0 ≤ [eii]0 and 
∑n

i=1 pi = p. By [5, 
p. 32], Σ = {x ∈ K0(A/I)+ : x ≤ [1]0}. Consequently each [pi]0 ∈ Σ allowing us to assume 

∑n
i=1[pi]0 = [p]0

for projections pi ∈ A/I. Using Lemma 3.3 each [pi]0 (hence also [p]0) is a finite sum of elements in 
{[f + I]0 : f ∈ N}.)

To simplify notation let us suppress I. We have that K0(A/I) is generated by the elements {[p]0 : p ∈ N}. 
Using this characterization we have im(σ) is generated by {[p]0 − [a.p]0, [p]0 − [b.p]0 : p ∈ N}. For p ∈ N
the translates a−1.p and b−1.p are orthogonal sums of elements in N . Hence the set {[p]0 − [a−1.p]0, [p]0 −
[b−1.p]0 : p ∈ N} is also contained in im(σ). We obtain

im(σ) = 〈[p]0 − [t.p]0 : p ∈ N , t ∈ G〉 ⊆ K0(A/I),

where 〈·〉 is the usual notation for “the smallest group containing”. Using this G-invariance we get that for 
any projections p, q ∈ Mn(A/I),

[p]0 − [q]0 = n[1B(a)]0 + m[1B(b)]0 + k[1B(a−1)]0 + l[1B(b−1)]0 + im(σ),

for some n, m, k, l ∈ Z. Since

σ(0,−[1B(b−1)]0) = [1B(a)]0 + [1B(a−1)]0,
σ(−[1B(a−1)]0, 0) = [1B(b)]0 + [1B(b−1)]0,

we can simplify the description of [p]0−[q]0 to contain only 1B(a) and 1B(b). These two projections are linearly 

independent in K0(A/I), which is isomorphic to C(Â/I, Z) by the isomorphism dim([p]0)(x) = Tr(p(x)). 
Moreover, n[1B(a)]0 + m[1B(b)]0 does not belong to im(σ) for any n, m ∈ Z, (n, m) �= (0, 0): To see this 
one essentially needs to repeat the argument of Lemma 3.9, replacing the assumption p + q = a.p + b.q by 
p +q = a.p +b.q+n′(1B(a) +I) +m′(1B(b) +I), not suppressing I, proving n′ = m′ = 0. We omit the details. 
We conclude that

K0(A/I �r G) = {n[1B(a)]0 + m[1B(b)]0 : n,m ∈ Z} / im(σ) ∼= Z2. �
Lemma 3.9. Let p and q be finite sums of projections in A/I with coefficients in Z. Then p + q = a.p + b.q

in A/I if, and only if, p = n1 and q = k1 for some n, k ∈ Z.

Proof. Using Lemma 3.3 write p and q as

p =
n∑

i=1
cipi + I, q =

m∑
i=1

djqj + I,

with ci, dj ∈ Z and pi, qj ∈ N fulfilling that pi �= pj and qi �= qj for i �= j.
It is enough to show that p is a sum (with coefficients in Z) of elements from {1B(a) + 1B(b) + 1B(b−1), 

1B(a−1)} + I and that q is a sum of elements from {1B(b) + 1B(a) + 1B(a−1), 1B(b−1)} + I. Having this we 
obtain the desired conclusion by counting the number of occurrences of 1B(a) + I, 1B(b) + I, 1B(a−1) + I and 
1B(b−1) + I in the equation p + q = a.p + b.q in A/I.

Let us show that p and q are sums as described above. First, write p and q using projections pi = 1B(xi)
and qj = 1B(yj), where all the words xi, yj have the same length k. Use that (modulo +I)

1B(a) = 1B(aa) + 1B(ab) + 1B(ab−1)

...

1B(b−1) = 1B(b−1a) + 1B(b−1a−1) + 1B(b−1b−1)
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to ensure that all words xi, yj have the same length. Now we must take into account how the condition 
p + q = a.p + b.q groups words together, in order to obtain the decompositions asserted above.

Suppose that k = 1. The projections a.pi, b.qj can only have the form

a.pi ∈
{
1B(aa), 1B(ab), 1B(ab−1), 1B(a−1) + 1B(b) + 1B(b−1)

}
+ I,

b.qj ∈
{
1B(ba), 1B(bb), 1B(ba−1), 1B(a) + 1B(a−1) + 1B(b−1)

}
+ I.

Since p = a11B(a) + a21B(b) + a31B(a−1) + a41B(b−1) + I for some ai ∈ Z, we must be able to group 1B(aa), 
1B(ab) and 1B(ab−1) together in order to get p + q = a.p + b.q in A/I; this implies that a1 = a2 = a4. 
Similarly the projections 1B(ba), 1B(bb) and 1B(b−1a) must be grouped together, i.e., must occur with the 
same coefficient. We conclude that p and q are sums of the form predicted above.

Suppose that k ≥ 2. We will now argue that one can reduce the case k to the case k − 1 by grouping the 
projections in an appropriate way.

Let C and D denote the sets {xi : i = 1, . . . , n} and {yj : j = 1, . . . , m}. The subsets a.C and b.D of G
consist of reduced words of length k − 1 or k + 1. Let z = z1 . . . zk be a word of length k.

(1) Assume that z ∈ C and z1 �= a−1. Then az1z2 . . . zk ∈ a.C. One can argue that a.C must contain any 
word az1 . . . zk−1y of length k + 1. To see this notice that az1z2 . . . zk ∈ a.C has length k + 1 and cannot 
be found among words in C ∪D of length k. Therefore we are forced to group az1z2 . . . zk together with 2 
other words az1z2 . . . zk−1y of length k + 1 in a.C (no words of length k + 1 in b.D start with a). Together, 
these three words of length k + 1 in a.C correspond to one word az1 . . . zk−1 in C ∪D of length k. (We will 
not use that az1 . . . zk−1 ∈ C ∪ D. The point is that any az1z2 . . . zk−1y belongs to a.C.) Hence C must 
contain any word z1 . . . zk−1y of length k. Replace these words xi (not starting with a−1) by words x′

i of 
length k − 1 and replace the corresponding projections pi by projections p′i.

(2) Assume that z ∈ D and z1 �= b−1. By symmetry, D must contain any word z1 . . . zk−1y of length k. 
Replace these words yj (not starting with b−1) by words y′j of length k − 1 and replace the corresponding 
projections qj by projections q′j .

(3) Assume that z ∈ C and z1 = a−1. One can argue that C must contain any word z1 . . . zk−1y of 
length k. To see this notice that the only words in a.C ∪ b.D starting with a−1 have length k − 1. Hence 
z1z2 . . . zk cannot be found among words in a.C ∪ b.D. Therefore we are forced to group z1z2 . . . zk together 
with two other words z1z2 . . . zk−1y of length k in C (no words of length k in D start with a−1; if such a 
word existed it was eliminated in part (2)). Together, these three words of length k in C correspond to one 
word z1z2 . . . zk−1 in a.C ∪ b.D of length k − 1. (We will not use that z1 . . . zk−1 ∈ a.C ∪ b.D. The point is 
that any z1 . . . zk−1y belongs to C.) Hence C must contain any word z1 . . . zk−1y of length k. Replace these 
words xi (starting with a−1) by words x′

i of length k − 1 and replace the corresponding projections pi by 
projections p′i.

(4) Assume that z ∈ D and z1 = b−1. By symmetry, D must contain any word z1 . . . zk−1y of length k. 
Replace these words yj (starting with b−1) by words y′j of length k − 1 and replace the corresponding 
projections qj by projections q′j .

(1)–(4) We conclude that we can write p and q as

p =
n∑

i=1
c′ip

′
i, q =

m∑
i=1

d′jq
′
j ,

with c′i, d
′
j ∈ Z and p′i, q

′
j ∈ N fulfilling that p′i �= p′j and q′i �= q′j for i �= j. Furthermore, p′i = 1B(x′

i), q
′
j =

1B(y′
j) with x′

i, y′j words of length k − 1. This shows that one can reduce the case k to the case k − 1 for 
k ≥ 2. �
Lemma 3.10. The K1-group of A/I �r G is Z2.
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Proof. Consider the Pimsner–Voiculescu six-term exact sequence for the action of G on A/I:

K0(A/I)2 σ K0(A/I) K0(A/I �r G)

K1(A/I �r G)

δ

K1(A/I)0 K1(A/I)2.

Here the map σ denotes 
∑

i(1 − ti) with t1 = a, t2 = b and δ is the index map. Recall that separable 
AF-algebras (in particular A/I) have trivial K1. Using exactness we obtain that δ is injective (im(0) =
ker(δ)) and hence that

K1(A/I �r G) ∼= im(δ) = ker(σ)

= {(h, h′) ∈ K0(A/I)2 : σ(h, h′) = 0}.

Fix (h, h′) ∈ K0(A/I)2. Find projections e, f, e′, f ′ in Mm(A/I) for some m ∈ N such that h = [e]0 − [f ]0
and h′ = [e′]0 − [f ′]0. Suppose that σ(h, h′) = 0, i.e., ([e]0 − [f ]0) − a.([e]0 − [f ]0) + ([e′]0 − [f ′]0) − b.([e′]0 −
[f ′]0) = 0. Now note that K0(A/I) ∼= C(Â/I, Z) by the isomorphism dim([e]0)(x) = Tr(e(x)), where Tr is 
the non-normalized trace map. We obtain

p + q = a.p + b.q,

with p = Tr(e) −Tr(f) and q = Tr(e′) −Tr(f ′). By Lemma 3.9, p = n1 and q = k1 with n, k ∈ Z. It follows 
that (h, h′) = (n[1]0, k[1]0). Hence

K1(A/I �r G) ∼= {(h, h′) ∈ K0(A/I)2 : σ(h, h′) = 0}

= {(n[1]0, k[1]0) : n, k ∈ Z} ∼= Z2. �
Remark 3.11. The above example is precisely the standard boundary action of G on the space of infinite 
reduced words Σ(G); cf. [24]. It is straightforward to verify that A/I is isomorphic to C(Σ(G)) in an action 
preserving way. Even though this example is well known the previous computations are important as they 
present an alternative approach to the study of the standard boundary action and, more importantly, form 
a basis for the second construction which produces a Kirchberg algebra with different K-theory.

3.2. Example 2

Let us now turn our attention to the second construction. Let ya be any word (including e) that does not 
end with a−1. For the sake of clarity the symbol y is reserved for elements of G, hence never is a function. 
In particular ya is not evaluation but an element of G. Denote by B(yaaNb) and B(yaaNbNa) the unions

⋃
k∈N

B(ya a . . . a︸ ︷︷ ︸
k

b) and
⋃

k,l∈N

B(ya a . . . a︸ ︷︷ ︸
k

b . . . b︸ ︷︷ ︸
l

a).

Continuing this way define B(yaaNbNaN . . . aNb) and B(yaaNbNaN . . . bNa) for any strictly positive length of 
the alternating powers aN and bN. Set

Na = {1B(y aNbNaN...aNb), 1B(y aNbNaN...bNa)},
a a
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allowing any strictly positive length of the alternating powers aN and bN (odd length if the last power is aN
and even if it is bN) and any word ya that does not end with a−1. In a similar way define Nb, Na−1 and 
Nb−1 (using also a−N and b−N).

Recall N = {1B(t) : t ∈ G, t �= e}. Denote by B the (separable) G-invariant C∗-algebra in l∞(G) generated 
by N and M =

⋃
|t|=1 Nt and consider the G-invariant closed two-sided ideal I of B generated by the 

projections with finite support. We have the following result:

Theorem 3.12. The crossed product B/I �r G is a Kirchberg algebra in the UCT class with the following 
K-groups:

K0(B/I �r G) ∼= 0, K1(B/I �r G) ∼= Z4.

Before we give a proof of Theorem 3.12 let us establish some preliminary results.

Lemma 3.13. Every non-zero projection in B/I lifts to a finite sum of projections of the form

(p− p1) · · · (p− pn), fulfilling 0 ≤ pi � p,

with n ∈ N, p ∈ N ∪M and pi ∈ M∪ {0}.

Proof. Let p be any non-zero projection in B/I. Set N ′ = N ∪ {1{t} : t ∈ G} and M′ = N ′ ∪ M. Since 
B = C∗(M′) has real rank zero, p lifts to a projection q ∈ B such that p = q + I; see [7, Theorem 3.14]. 
Since M′ is a countable set of projections we may denote them by (pi)∞i=1. As in the proof of Lemma 3.3
there exist numbers m, k ∈ N and non-empty subsets I1, . . . , Ik ⊆ {1, . . . , m} such that

q =
k∑

j=1
rj , rj =

( ∏
i∈Ij

pi

)( ∏
i∈{1,...,m}\Ij

(1 − pi)
)
.

Without lost of generality we can assume that each rj /∈ I (any rj ∈ I can be removed from the sum without 
changing p). Fix any j ∈ {1, . . . , k}. Using that M′ ∪ {0} is closed under multiplication (this is easy to 
verify), and rj /∈ I, the projection f :=

∏
i∈Ij

pi belongs to N ∪M.
Fix any i ∈ Icj . We can assume fpi /∈ I (if fpi ∈ I, pi can be removed without changing p). We show that 

either fpi ∈ M or we can preform a reduction effectively removing i from Icj : If pi ∈ N ′ one can rewrite 
1 −pi as a sum of elements from N ′ and f−fpi as a sum of elements in M′. In effect rj is a sum of elements 
of the form f ′(

∏
j∈Ic

j \{i}(1 − pj)), with f ′ ∈ M′. We can assume f ′ ∈ N ∪M (discarding elements of I). 
We have “removed” i from Icj . Hence we may assume pi ∈ M. If f ∈ M then fpi ∈ M (since M ∪ {0} is 
closed under multiplication and fpi �= 0). Hence we may assume f ∈ N . If fpi ∈ N one can rewrite f − fpi
as a sum of elements from N ′ whereby (as before) i is in effect removed from Icj . Otherwise, fpi ∈ M as 
needed. We conclude that we can write rj as a sum of projections of the form

(f ′ − f ′p1) · · · (f ′ − f ′pn′),

with n′ ∈ N, f ′ ∈ N ∪M and f ′pi ∈ M ∪ {0} (it is possible each f ′pi = 0, e.g., when we try to lift f ′ + I

for f ′ ∈ N ∪M). �
Lemma 3.14. Every non-zero projection in B/I is infinite in B/I �r G. Moreover, for every projection 
r := (p − p1) · · · (p − pn), fulfilling 0 ≤ pi � p, with n ∈ N, p ∈ N ∪M and pi ∈ M ∪ {0}, there exist t ∈ G

and q ∈ N such that t.q ≤ r.
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Proof. The sum of two orthogonal infinite projections is again an infinite projection. By Lemma 3.13 we 
only need to show that a projection of the form

r := (p− p1) · · · (p− pn), fulfilling 0 ≤ pi � p,

with n ∈ N, p ∈ N ∪M and pi ∈ M∪{0}, is infinite in B/I �r G. We do this in two steps.
Suppose that p ∈ N . We find t ∈ G such that t.p + I � r + I. This implies that r + I (suppressing I in 

the line below) is infinite by

r = (utr)∗(utr), (utr)(utr)∗ = t.r ≤ t.p � r, utr ∈ B/I �r G.

Since p = 1B(s) for some s �= e we may assume that s ends with a, i.e., p = 1B(xa) for x = s1 . . . s|s|−1. 
Changing t we may assume that p = 1B(a). (If x �= e use that x−1.pi ∈ M∪{0} to find t′ ∈ G such that 
t′.(x−1.p) + I � (x−1.r) + I and define t := xt′x−1.) The key argument in finding t is to notice that each 
pi � 1B(a) (for i = 1, . . . , n) has support contained in one of the following sets (identifying ak with a . . . a︸ ︷︷ ︸

k

and b−k with b−1 . . . b−1︸ ︷︷ ︸
k

for k ∈ N):

B(aNb)

B(ak1b−Na−1), for ki ∈ N

B(ak1b−k2aNb), for ki ∈ N

B(ak1b−k2ak3b−Na−1), for ki ∈ N

B(ak1b−k2ak3b−k4aNb), for ki ∈ N

B(ak1b−k2ak3b−k4ak5b−Na−1), for ki ∈ N

... ,

where we have used the following convention: For any word y−b (including e) that does not end with b we 
denote by B(y−bb

−Na) the union 
⋃

k∈N
B(y−bb

−ka).
Let F be the collections of the sets listed above. It is clear that these sets are pairwise disjoint. We now 

prove each pi �= 0 has support contained in one these sets: Fix i ∈ {1, . . . , n}. Let S denote the support 
of pi. Since pi ∈ M = Na ∪ · · · ∪ Nb−1 ,

S ∈{B(yaaNbNaN . . . aNb),B(yaaNbNaN . . . bNa), . . . ,

B(yb−1b−Na−Nb−N . . . b−Na),B(yb−1b−Na−Nb−N . . . a−Nb)},

where yx (for x ∈ {a, b, a−1, b−1}) denotes all words, including e, that do not end with x−1. Using 
B(yaaNbNaN . . . aNb) ⊆ B(yaaNb), etc., we may assume, by possibly enlarging S, that

S ∈{B(yaaNb),B(yaaNb), . . . ,

B(yb−1b−Na−1),B(yb−1b−Na−1)}

= {B(yaaNb),B(ybbNa),B(ya−1a−Nb−1)},B(yb−1b−Na−1)}.

Suppose y ∈ B(a). If y = e then
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B(yaNb) = B(aNb) ∈ F and B(ybNa),B(ya−Nb−1),B(yb−Na−1) � B(a).

If S is one of these four sets we are done (noticing S ⊆ B(a)). Otherwise, if y �= e then y =
ak1b−k2ak3b−k4 . . . ckN , for some N ∈ N, k1, . . . , kN ∈ Z\{0}, and c ∈ {a, b−1}. We now prove we can 
assume ki ∈ N: Since y ∈ B(a) we have k1 ∈ N. If k2 /∈ N then for suitable y according to what S is 
(prohibiting letter cancellation)

B(yaNb),B(ybNa),B(ya−Nb−1),B(yb−Na−1) ⊆ B(y) ⊆ B(ak1b) ⊆ B(aNb) ∈ F .

If k2 ∈ N and k3 /∈ N then for suitable y

B(yaNb), . . . ,B(yb−Na−1) ⊆ B(y) ⊆ B(ak1b−k2a−1) ⊆ B(ak1b−Na−1) ∈ F .

If k2, k3 ∈ N and k4 /∈ N then for suitable y

B(yaNb), . . . ,B(yb−Na−1) ⊆ B(y) ⊆ B(ak1b−k2ak3b) ⊆ B(ak1b−k2aNb) ∈ F .

If k2, k3, . . . , kN−1 ∈ N and kN /∈ N then B(yaNb), . . . , B(yb−Na−1) ⊆ B(y) as before (for suitable y), but we 
have two cases

c = a ⇒ B(y) ⊆ B(ak1 . . . a−kN−2b−kN−1a−1) ⊆ B(ak1 . . . a−kN−2b−Na−1) ∈ F ,

c = b−1 ⇒ B(y) ⊆ B(ak1 . . . b−kN−2akN−1b) ⊆ B(ak1 . . . b−kN−2aNb) ∈ F .

We can therefore assume each ki ∈ N. Now if c = a then (for suitable y)

B(yaNb) = B(ak1 . . . b−kN−1akNaNb) ⊆ B(ak1 . . . b−kN−1aNb) ∈ F

B(ybNa) ⊆ B(yb) = B(ak1 . . . b−kN−1akN b) ⊆ B(ak1 . . . b−kN−1aNb) ∈ F

B(ya−Nb−1) can be disregarded as ya−1 does not end with a (and c = a),

B(yb−Na−1) = B(ak1 . . . b−kN−1akN b−Na−1) ∈ F .

For c = b−1 we can use a similar argument. We conclude that each pi has support contained in one of the 
sets from F . Hence for N ∈ N large enough one can find a projection

q = 1B(ak1b−k2ak3 ...b−kN aNb), ki = 1,

that is pairwise orthogonal to each pi, i = 1, . . . , n. Defining t = ak1b−k2 . . . b−kNab, we obtain

t.p = 1B(ak1b−k2ak3 ...b−kN aba)

� q ≤ p− pi

for each i = 1, . . . , n. Since 1B(ak1b−k2ak3 ...b−kN aba)+I � 1B(ak1b−k2ak3 ...b−kN aNb)+I we conclude t.p +I � r+I.
Suppose that p ∈ M. Let us find t ∈ G such that t.p + I � r + I. This implies that r + I is infinite in 

the crossed product. By symmetry we may assume that p ∈ Na, meaning that p has a support of the form 
B(yaaNbNaN . . . aNb) or B(yaaNbNaN . . . bNa), with yaa being a reduced word. To prevent redundancy we only 
consider p = 1B(yaaNbNaN...aNb). Changing t we may assume that ya = e. To simplify the notation, write p as 
1B(aNxb), where x = bNaN . . . bNaN (allowing x = e). For later use let y denote the word b1a1 . . . b1a1 where 
the powers N in x are replaced by 1. The key argument in finding t is to notice that each pi � 1B(aNxb), for 
i = 1, . . . , n, has support contained in one (or two) of the following sets:
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B(aNxbNa)

B(akxb), for k ∈ N.

Let q0, qk, k ∈ N denote the corresponding projections in B. For N ∈ N large enough we have that for every 
i = 1, . . . , n there exists a ki ∈ {0, . . . , N} such that pi ≤ qki

. This implies that

(p− q0) · · · (p− qN ) ≤ (p− qki
) ≤ (p− pi), for each i = 1, . . . , n.

Defining t := aN+1yba−1b we obtain

(t.p)p = 1B(aN+1yba−1baNxb)∩B(aNxb) = t.p,

(t.p)q0 = 1B(aN+1yba−1baNxb)∩B(aNxbNa) = 0,

(t.p)qk = 1B(aN+1yba−1baNxb)∩B(akxb) = 0, for k ∈ {1, . . . , N}.

Hence t.p ≤ (p − q0) · · · (p − qN ) ≤ (p − p1) · · · (p − pn) = r. (If all pi = 0, i.e., r = p, one can define t := a.) 
We conclude that t.p + I � r + I.

We now prove the second statement of the lemma. Let r be the projection defined in the first paragraph 
above. If p ∈ N we already know there exist t ∈ G such that t.p � r. Consequently we can simply choose 
q := p (hence t.q ≤ r). If p ∈ M we also know there exist t ∈ G such that t.p � r. The problem is that 
the support of p does not have the descried form. However, by definition, p is an infinite sum of projections 
from N (by the fact its support is the union of the supports of projections from N ). Selecting q to be one 
of these projections we get q ∈ N and q ≤ p (hence t.q ≤ r) completing the proof. �
Lemma 3.15. The action of G on B̂/I is topologically free, minimal and amenable.

Proof. 1) Topologically free: Follow the proof of Lemma 3.5, but use Lemma 3.13 and Lemma 3.14 instead 
of Lemma 3.3 to find the appropriate 1B(s) ∈ N .

2) Minimal: Follow the proof of Lemma 3.6, but use Lemma 3.13 and Lemma 3.14 instead of Lemma 3.3
to find the appropriate 1B(r) ∈ N .

3) Amenable: Since A ⊆ B the maps Ti from the proof of Lemma 3.7 ensure that the action of G on B̂/I

is amenable. �
Lemma 3.16. Every projection in B/I has trivial K0-class in K0(B/I �r G).

Proof. For two orthogonal projections p, q in B/I having trivial K0-class we have [p +q]0 = 0. By Lemma 3.13
we only need to show that [r]0 = 0 (suppressing I in this proof), where

r := (p− p1) · · · (p− pn), fulfilling 0 ≤ pi � p,

with n ∈ N, p ∈ N ∪M and pi ∈ M∪{0}. By induction we only need to consider the case n = 1. To see 
this notice that for n = 2 we have p − r = p1 + (p2 − p1p2) so

[p]0 = [p− r]0 + [r]0 = [p1]0 + [p2 − p1p2]0 + [r]0.

Since M ∪{0} is closed under multiplication (cf. proof of Lemma 3.13), the case n = 1 gives that [p]0, [p1]0, 
[p2 − p1p2]0 have trivial K0-classes. Hence, also [r]0 = 0. For n ≥ 3 we have p − r =

(
p −

∏n
i=3(p − pi)

)
+(

p − (p − p1)(p − p2)
)∏n (p − pi)) so we can use a similar argument on the equality
i=3
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[p]0 = [p− r]0 + [r]0

= [p−
n∏

i=3
(p− pi)]0 + [

(
p− p + p1 + p2 − p1p2

) n∏
i=3

(p− pi)]0 + [r]0

= [
(
(p1 − p1p2) + (p2 − p1p2) + p1p2

) n∏
i=3

(p− pi)]0 + [r]0

= [
n∏

i=2
(p1 − p1pi)]0 + [

∏
i∈{1,...,n},i �=2

(p2 − p2pi)]0 + [
n∏

i=3
(p1p2 − p1p2pi)]0 + [r]0,

here we eliminated [p −
∏n

i=3(p − pi)]0 using induction on [p]0 and [
∏n

i=3(p − pi)]0.
Let us now focus on the case n = 1. We may assume that p1 = 0, i.e., r = p. If p1 �= 0 simply use 

[p]0 = [p1]0 = 0 on [p]0 = [p − p1]0 + [p1]0.
Suppose that p ∈ N . Hence p = 1B(t) for some t �= e. By symmetry we may assume that t ends with 

a, i.e., p = 1B(xa) for x = t1 . . . t|t|−1. Since [x−1.p]0 = [p]0 (cf. proof of Lemma 3.4), we may assume that 
p = 1B(a). With e := 1B(bNa) it follows that b−1.e = e + p. Using the equality [b−1.e]0 = [e]0 we obtain 
[p]0 = 0.

Suppose that p ∈ M. By symmetry we may assume that p ∈ Na, meaning that p has a support of the 
form B(yaaNbNaN . . . aNb) or B(yaaNbNaN . . . bNa), with yaa being a reduced word. Since [y−1

a .p]0 = [p]0 we 
may assume that ya = e. To simplify the notation, write p as 1B(aNx), so x = bNaN . . . aNb or x = bNaN . . . bNa. 
With e := 1B(bNaNx) we have b−1.e = e + p. Hence [p]0 = 0. �
Lemma 3.17. The K0-group for B/I �r G is 0.

Proof. Following the proof of Lemma 3.8 we have K0(B/I �r G) = im(ι), where ι is the map induced by 
the inclusion of B/I in the crossed product B/I �r G. Using Lemma 3.16 together with the fact that any 
projection in Mn(B/I) is equivalent to a direct sum of projections in B/I, we have

K0(B/I �r G) = {ι([p]0 − [q]0) : p, q ∈ Mn(B/I) projections, n ∈ N}

= {[p]0 − [q]0 : p, q ∈ Mn(B/I) projections, n ∈ N}

= 0. �
Lemma 3.18. Let p and q be finite sums of projections in B/I with coefficients in Z. Denote by r and r′ the 
projections

1B(b)∪B(aNb)∪B(a−1)\B(a−Nb−1) and 1B(a)∪B(bNa)∪B(b−1)\B(b−Na−1).

Then p + q = a.p + b.q in B/I if, and only if, p = n1 + mr+I and q = k1 + lr′+I for some n, m, k, l ∈ Z.

Proof. Using Lemma 3.13 write p and q as

p =
n∑

i=1
cipi + I, q =

m∑
i=1

djqj + I,

with ci, dj ∈ Z and pi, qj ∈ N ∪M such that pi �= pj and qi �= qj for i �= j. We use here that N ∪M ∪ {0}
is closed under multiplication (when multiplying out the product in the statement of Lemma 3.13).
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It is enough to show that p is a sum (with coefficients in Z) of elements from {1B(a) + 1B(b) + 1B(b−1), 
1B(a−1), 1B(aNb) +1B(b), 1B(a−Nb−1), 1B(aNbNa) +1B(bNa), 1B(a−Nb−Na−1), . . . } +I and that q is a sum of elements 
from {1B(b) + 1B(a) + 1B(a−1), 1B(b−1), 1B(bNa) + 1B(a), 1B(b−Na−1), 1B(bNaNb) + 1B(aNb), 1B(b−Na−Nb−1), . . . } + I. 
We do this in a similar way to the proof of Lemma 3.9. First we write p and q using projections pi = 1B(xi)
and qj = 1B(yj), where all the words xi, yj have the same length k. To do this we formally allow xi, yj to 
have letters {aN, bN, a−N, b−N} when calculating the length of xi and yj and use that for n ∈ N and c ∈ {a, b}

1B(cNx) = 1B(c . . . c︸ ︷︷ ︸
n

cNx) + 1B(c . . . c︸ ︷︷ ︸
n

x) + · · · + 1B(cx),

1B(c−Nx) = 1
B(c−1 . . . c−1︸ ︷︷ ︸

n

c−Nx)
+ 1

B(c−1 . . . c−1︸ ︷︷ ︸
n

x)
+ · · · + 1B(c−1x).

Secondly we use the equality p + q = a.p + b.q to group some words together and exclude other words 
until we obtain only the elements listed above. Finally we conclude that p and q have the desired form by 
counting the number of occurrences of 1B(a) + I, 1B(b) + I, 1B(a−1) + I, 1B(b−1) + I, 1B(aNb) + I, 1B(bNa) + I, 
1B(a−Nb−1) + I, 1B(b−Na−1) + I, . . . in the equation p + q = a.p + b.q. Let us consider this computation in 
more detail: We have that

p = d1(1B(a) + 1B(b) + 1B(b−1)) + d21B(a−1)+

a1(1B(aNb) + 1B(b)) + a2(1B(aNbNa) + 1B(bNa)) + · · ·+

b11B(a−Nb−1) + b21B(a−Nb−Na−1) + · · · + I,

a.p = d11B(a) + d2(1B(a−1) + 1B(b) + 1B(b−1))+

a11B(aNb) + a21B(aNbNa) + · · ·+

b1(1B(a−Nb−1) + 1B(b−1)) + b2(1B(a−Nb−Na−1) + 1B(b−Na−1)) + · · · + I,

q = d′1(1B(b) + 1B(a) + 1B(a−1)) + d′21B(b−1)+

a′1(1B(bNa) + 1B(a)) + a′2(1B(bNaNb) + 1B(aNb)) + · · ·+

b′11B(b−Na−1) + b′21B(b−Na−Nb−1) + · · · + I,

b.q = d′11B(b) + d′2(1B(b−1) + 1B(a) + 1B(a−1))+

a′11B(bNa) + a′21B(bNaNb) + · · ·+

b′1(1B(b−Na−1) + 1B(a−1)) + b′2(1B(b−Na−Nb−1) + 1B(a−Nb−1)) + · · · + I,

and we obtain the following coefficients for the individual projections:

p + q a.p + b.q

1B(a) + I d1 + d′1 + a′1 d1 + d′2
1B(b) + I d1 + a1 + d′1 d2 + d′1
1B(a−1) + I d2 + d′1 d2 + d′2 + b′1
1B(b−1) + I d1 + d′2 d2 + b1 + d′2
1B(aNb) + I a1 + a′2 a1
1B(bNa) + I a2 + a′1 a′1
1B(a−Nb−1) + I b1 b1 + b′2
1B(b−Na−1) + I b′1 b′1 + b2
...

...
...
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We conclude that an, a′n, bn and b′n are all zero for n ≥ 2. With n = d1, m = a1, k = d′1, l = a′1 we get 
d2 = n + m, b1 = −m, d′2 = k + l and b′1 = −l, giving the desired form of p and q. �
Lemma 3.19. The K1-group for B/I �r G is Z4.

Proof. Consider the Pimsner–Voiculescu six-term exact sequence for the action of G on B/I:

K0(B/I)n σ K0(B/I) K0(B/I �r G)

K1(B/I �r G)

δ

K1(B/I)0 K1(B/I)n.

Here σ denotes the map 
∑

i(1 − ti) with t1 = a, t2 = b and δ is the index map. Recall that separable 
AF-algebras (in particular B/I) have trivial K1. Using exactness we obtain that δ is injective (im(0) =
ker(δ)) and hence that

K1(B/I �r G) ∼= im(δ) = ker(σ)

= {(h, h′) ∈ K0(B/I)2 : σ(h, h′) = 0}.

Fix (h, h′) ∈ K0(B/I)2. Find projections e, f, e′, f ′ in Mm(B/I) for some m ∈ N such that h = [e]0−[f ]0 and 
h′ = [e′]0−[f ′]0. Suppose that σ(h, h′) = 0, i.e., ([e]0−[f ]0) −a.([e]0−[f ]0) +([e′]0−[f ′]0) −b.([e′]0−[f ′]0) = 0. 
Let us now use that K0(B/I) ∼= C(B̂/I, Z) by the isomorphism dim([e]0)(x) = Tr(e(x)), where Tr is the 
non-normalized trace map, to obtain

p + q = a.p + b.q,

with p = Tr(e) − Tr(f) and q = Tr(e′) − Tr(f ′). Let r, r′ ∈ B denote the two non-trivial projections from 
Lemma 3.18 fulfilling that a.r = r, b.r′ = r′. Using Lemma 3.18 we have p = n1 +mr+I and q = k1 + lr′+I

for some n, m, k, l ∈ Z. Suppressing I, we conclude that (h, h′) = (n[1]0 +m[r]0, k[1]0 + l[r′]0). We now have

K1(B/I �r G) ∼= {(h, h′) ∈ K0(B/I)2 : σ(h, h′) = 0}

= {(n[1]0 + m[r]0, k[1]0 + l[r′]0) : n,m, k, l ∈ Z} ∼= Z4. �
Proofs of Theorem 1.1, Theorem 3.1, and Theorem 3.12: By Proposition 2.1 the results stated in Theo-
rem 1.1, Theorem 3.1 and Theorem 3.12 are an immediate consequence of Lemmas 3.2–3.10 and, Lem-
mas 3.13–3.19 (cf. [22]). Both crossed products are the C∗-algebras of amenable groupoids, and such algebras 
have been proved to belong to the UCT class by Tu in [26, Proposition 10.7]. �
4. Actions of free groups of higher rank

Our first example is easily generalised to the case n > 2. Let Fn denote the free group on 1 < n < ∞
generators a1, . . . , an. Define Nn to be the set of projections {1B(t) : t ∈ Fn, t �= e}, where the support of 
any projection in Nn consist of all words in Fn that start with a fixed word. Let An denote the (separable) 
G-invariant sub-C∗-algebra of l∞(G) generated by Nn, and In the (separable) G-invariant closed two-sided 
ideal in An generated by projections with finite support. We have

Theorem 4.1. The crossed product An/In �r Fn is a Kirchberg algebra in the UCT class with K0(An/In �r

Fn) ∼= Zn, and K1(An/In �r Fn) ∼= Zn.
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Our second example also generalizes to higher rank producing Kirchberg algebras in UCT with trivial 
K0-groups. Define Bn to be the (separable) G-invariant sub-C∗-algebra of l∞(G) generated by Nn and the 
sets Na1 , Na−1

1
, . . . , Nan

, Na−1
n

, where Na1 consists of projections with support of the form

B(ya1a
N

1a
N

i a
N

j . . . aNl ak), where 1 �= i, i �= j, . . . , l �= k,

i.e. consists of all words in G that start with a fixed word not ending with a−1
1 , followed by any finite 

sequence of a1, then any finite sequence of ai (i �= 1), then any finite sequence of aj, (j �= i), and so on until 
one last single letter ak (different from the previous one), followed by any finite word (not starting with 
a−1
k ). We have the following result:

Theorem 4.2. The crossed product Bn/In �r Fn is a Kirchberg algebra in the UCT class with K0(Bn/In �r

Fn) ∼= 0, and K1(Bn/In �r Fn) ⊇ Z2n, with � for n > 2.

Proof. This is a straightforward generalisation of our second example. The group Z2n arises inside 
K1(Bn/In �r Fn) as follows: Denote by ri (i = 1, . . . , n) the projection

∑
k∈{1,...,n},k �=i

1B(ak)∪B(aN

i ak) + 1B(a−1
i ) −

∑
k∈{1,...,n},k �=i

1B(a−N

i a−1
k ).

Since ai.ri+I = ri+I we have (suppressing +I)

K1(Bn/In �r Fn) ∼= {(h1, . . . , hn) ∈ K0(Bn/In)n : σ(h1, . . . , hn) = 0}

⊇ {(m1[1]0 + l1[r1]0, . . . ,mn[1]0 + ln[rn]0) : mk, lk ∈ Z} ∼= Z2n,

where σ denotes the map 
∑

i(1 − ai). To verify that K1(Bn/In �r Fn) �= Z2n for n > 2 consider any 
projection p in Bn with support

B(a−N

i a−N

j . . . a−N

l′ a−1
k ), where i �= j, . . . , l′ �= k.

Select any two distinct indices l, m ∈ {1, . . . , n} different from i. Denote by hl, and hm, the ele-
ments [1B(a−N

l a−N

i a−N

j ...a−N

l′ a−1
k )]0, and −[1B(a−N

m a−N

i a−N

j ...a−N

l′ a−1
k )]0, and let the other elements hi′ for i′ ∈

{1, . . . , n}\{l, m} be zero. It follows that σ(h1, . . . , hn) = 0, but (h1, . . . , hn) is independent of the pre-
vious 2n elements. �
Remark 4.3. The use of the Pimsner–Voiculescu six-term exact sequence puts a constraint on what type of 
examples allow for a detailed computation of the K-groups. We can only do that for crossed products by 
the free group. However, as the above examples suggest, even for the crossed products by the free groups 
one can obtain a variety of different K-groups.

5. The K-theory of the Roe algebra

Let G be a countable group and let l∞(G) �r G (∼= C(βG) �r G) denote the corresponding Roe algebra
crossed product; cf. [12, p. 152]. This algebra encodes many crucial properties of the group. It is well 
known that the Roe algebra l∞(G) �r G is nuclear precisely when G is exact [1,17]. The crossed product 
is properly infinite if, and only if, G is non-amenable; cf. [23, Theorem 2.5.1]. Moreover, if a subset E of G
is G-paradoxical, then 1E ∈ l∞(G) is properly infinite in l∞(G) �r G. Remarkably, in [22, Proposition 5.5], 
the converse was shown to be true. This observation leads to an entirely new way to tackle open problems 
regarding the Roe algebra. In particular we show that it is possible to determine part of the structure of 
K0(l∞(G) �r G) when G is non-amenable. Our result is:
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Theorem 5.1. Let G be a non-amenable discrete group. Then every projection in l∞(G) belongs to the trivial 
K0-class of K0(l∞(G) �r G).

In particular, if G is the free group on 1 < n < ∞ generators then K0(l∞(G) �r G) = 0.

Question 5.2. Is K0(l∞(G) �r G) = 0 for every non-amenable group G?

Before we give a proof of Theorem 5.1 let us establish some preliminary results.

Lemma 5.3. Let G be a discrete group. Every projection in l∞(G) is a sum of three projections having a 
complement that is full (i.e., not contained in a proper G-invariant closed two-sided ideal in l∞(G) �r G).

Proof. Find a partition e, f, h ∈ l∞(G) of the unit 1 and t ∈ G such that each of these projections is 
orthogonal to its translate by t; see [22, Corollary 6.2]. Using the inequality t.e ≤ f + h = 1 − e we obtain 
that the closed two-sided ideal in l∞(G) �r G generated by 1 − e contains t.e (and e). Hence 1 − e is a full 
projection in l∞(G) �r G.

Now fix a projection p ∈ l∞(G). Partition p into subprojections pe, pf , ph below e, f, h. Since 1 − e is full 
in l∞(G) �r G and 1 − e ≤ 1 − pe we also have that 1 − pe is full. In particular, p = pe + pf + ph is a sum 
of three projections with full complements, 1 − pe, 1 − pf , 1 − ph. �
Lemma 5.4. Let G be a non-amenable discrete group. Then every projection in l∞(G) that is full in 
l∞(G) �r G belongs to the trivial K0-class.

Proof. Assume first that G is countable. Fix any projection p ∈ l∞(G) that is full in l∞(G) �r G. By [22, 
Corollary 5.6] the projection p is properly infinite in l∞(G) �r G. By (independent) Lemma 6.2, below, 
there exist projections e, f ∈ l∞(G) that are equivalent to p in the crossed product and add up to p. Hence 
[p]0 = 0.

Now let G be arbitrary (non-amenable). It suffices to extend [22, Corollary 5.6]—or, rather, [22, Propo-
sition 5.5]—to this case. In order to do this, it turns out to be sufficient to replace the statement in [22] of 
Dini’s theorem for increasing sequences by the statement of it for arbitrary increasing nets (for which the 
proof is the same). �
Lemma 5.5. Let G be a non-amenable discrete group. Then every projection in l∞(G) belongs to the trivial 
K0-class of K0(l∞(G) �r G).

Proof. Let p be a projection in l∞(G). Using Lemma 5.3 find projections pe, pf , ph that add up to p and 
have a full complement. Using Lemma 5.4 we have

[1]0 = 0, [1 − pe]0 = 0, [1 − pf ]0 = 0, [1 − ph]0 = 0.

We conclude that [p]0 = 0. �
Proof of Theorem 5.1: Let G denote the free group on n generators. Consider the Pimsner–Voiculescu 
six-term exact sequence for the action of G on l∞(G):

K0(l∞(G))n K0(l∞(G)) 0 K0(l∞(G) �r G)

0

K1(l∞(G) �r G) K1(l∞(G)) K1(l∞(G))n
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Using that K1(M) = 0 for any von Neumann algebra together with Lemma 5.5 we have two zero maps, 
as indicated above. Here we also use that any projection in Mn(l∞(G)) is equivalent to a direct sum of 
projections in l∞(G). Using exactness we obtain

0 = im(0) = ker(0) = K0(l∞(G) �r G). �
6. Refining the construction of [22]

It was shown in [22, Theorem 6.11] that every discrete countable non-amenable exact group admits a 
(free, amenable, minimal) action on the Cantor set such that the corresponding crossed product C∗-algebra 
is a Kirchberg algebra in the UCT class. We have the following strengthened version of [22, Theorem 6.11].

Theorem 6.1. Let G be a countable discrete group. Then G admits a free, amenable, minimal action on the 
Cantor set X such that C(X) �r G is a Kirchberg algebra in the UCT class if, and only if, G is exact and 
non-amenable.

The action may be chosen in such a way that [p]0 = 0 in K0(C(X) �r G) for every projection p in C(X). 
In particular, if K0(C(X)) → K0(C(X) �r G) is surjective then K0(C(X) �r G) = 0.

Before we give a proof of Theorem 6.1 let us establish some preliminary results. The core idea is contained 
in the following lemma:

Lemma 6.2. Let G be a discrete group and let P denote the set of all projections in l∞(G). Then a projection 
p ∈ P is properly infinite in l∞(G) �r G if, and only if, there exist v, w ∈ Cc(G, P) such that

p = vv∗ = ww∗ = v∗v + w∗w, v∗v, w∗w ∈ l∞(G).

Proof. Suppose that p = 1E ∈ P is properly infinite in l∞(G) �r G. By [22, Proposition 5.5] the set E ⊆ G

is G-paradoxical, i.e there exist non-empty sets V1, V2, . . . , Vn+m of G and elements t1, t2, . . . , tn+m in G
such that 

⋃n
i=1 Vi =

⋃n+m
i=n+1 Vi = E and such that 

(
tk.Vk

)n+m

k=1 are pairwise disjoint subsets of E; cf. [27, 
Definition 1.1]. Using the Banach–Schröder–Bernstein Theorem (cf. [27, Theorem 3.5]) one may moreover 
assume that 

(
Vk

)n
k=1 are pairwise disjoint, that 

(
Vn+k

)m
k=1 are pairwise disjoint, and that 

⋃n+m
i=1 ti.Vi = E. 

Following the proof of [22, Proposition 4.3], construct the desired partial isometries v, w ∈ Cc(G, P) such 
that p = vv∗ = ww∗ = v∗v + w∗w and v∗v, w∗w ∈ l∞(G). �

Using Lemma 6.2 we obtain a strengthened version of [22, Proposition 6.8] as follows:

Proposition 6.3. Let G be a countable discrete group, and let N be a countable subset of l∞(G). Then there 
exists a separable G-invariant sub-C∗-algebra A of l∞(G) which is generated by projections and contains N , 
with the following property: For every projection p in A, if p is properly infinite in l∞(G) �r G, then p is 
properly infinite in A �r G.

One can refine the construction is such a way that each properly infinite projection p is a sum of two 
projections in A equivalent to p in A �r G.

Proof. Let Pinf denote the set of properly infinite projections in l∞(G) �r G. Use [22, Lemma 6.7] to find 
a countable G-invariant set of projections P0 ⊆ l∞(G) such that N ⊆ C∗(P0). Let Q0 denote the set 
of projections in C∗(P0). The set Q0 is countable because C∗(P0) is separable and abelian; cf. proof of 
Lemma 3.3. For each p ∈ Q0 ∩Pinf use Lemma 6.2 to find a countable subset M(p) of l∞(G) such that p is 
properly infinite in A �r G, and is in fact a sum of two projections in A equivalent to p in A �r G, whenever 
A is a G-invariant sub-C∗-algebra of l∞(G) that contains {p} ∪M(p). Put
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N1 = Q0 ∪
⋃

p∈Q0∩Pinf

M(p).

Use Lemma [22, Lemma 6.7] to find a countable G-invariant set of projections P1 ⊆ l∞(G) such that 
N1 ⊆ C∗(P1).

Continue in this way to find countable subsets N0 = N, N1, N2, . . . of l∞(G) and countable G-invariant 
subsets P0, P1, P2, . . . consisting of projections in l∞(G) such that if Qj is the (countable) set of projections 
in C∗(Pj), then Qj ⊆ Nj+1 ⊆ C∗(Pj+1) and every p ∈ Qj ∩ Pinf is properly infinite in C∗(Pj+1) �r G, and 
is in fact a sum of two projections in C∗(Pj+1) equivalent to p in C∗(Pj+1) �r G.

Put P =
⋃∞

n=0 Pn and put A = C∗(P ). Notice that

A =
∞⋃

n=1
C∗(Pn).

Then P is a countable G-invariant subset of l∞(G) consisting of projections, N ⊆ C∗(P ). Moreover, if 
p is a projection in A which is properly infinite in l∞(G) �r G, then p is equivalent (and hence equal to) 
a projection in C∗(Pn) for some n, whence p belongs to Qn ∩ Pinf , which by construction implies that p is 
properly infinite in C∗(Pn+1) �r G and hence also in A �r G.

Moreover, the projection p is a sum of two projections C∗(Pn+1) equivalent to p in C∗(Pn+1) �rG. Hence, 
p is a sum of two projections in A equivalent to p in A �r G. �
Proof of Theorem 6.1: Following the proof of [22, Theorem 6.11] use Proposition 6.3 instead of [22, Propo-
sition 6.8] (together with the fact that homomorphisms preserve equivalence). This ensures that every 
projection p in C(X) is a sum of two projections in C(X) equivalent to p in C(X) �r G. In particular, 
[p]0 = 0 in K0(C(X) �r G).

Suppose that ι : K0(C(X)) → K0(C(X) �r G) is surjective. Following the proof of Lemma 3.17 we 
conclude that K0(C(X) �r G) = 0. �
Remark 6.4. There is another way to strengthen [22, Theorem 6.11]. One can carry out the construction in 
such a way that K0(C(X) �r G) = 0 provided that G has the following two properties: First, K0(l∞(G) �r

G) = 0 and, second, whenever G acts on an abelian C∗-algebra A of real rank zero then the map K0(A �r

G) → K0(A/I �r G) is surjective for every G-invariant closed two-sided ideal I in A.
Recall that the crossed product C(X) �rG in [22, Theorem 6.11] is constructed as the limit of a sequence 

of separable properly infinite algebras Ai �r G, divided by an ideal I �r G. The algebra A = lim−→Ai is a 
unital abelian separable C∗-algebra of real rank zero. Hence each K0(Ai �r G) arises from a countable set 
of projections in Zi ⊆ Ai �r G; cf. [21]. We conclude that K0(A �r G) arises from the set of projections ⋃∞

i=1 Zi; cf. [21]. We therefore need to ensure that each p ∈ Zi has trivial K0-class:
Let p be a projection in l∞(G) �r G such that [p]0 = 0 in K0(l∞(G) �r G). Because Cc(G, l∞(G)) is 

dense in l∞(G) �r G there exists a countable subset N(p) of l∞(G) such that whenever A is a G-invariant 
sub-C∗-algebra of l∞(G) which contains N(p), then [p]0 = 0 in K0(A �r G); cf. [22, Lemma 6.6]. Again 
by a Blackadar-type argument, one can add these sets N(p) to the inductive construction of the Ai’s in 
such a way that we obtain a new version of [22, Proposition 6.8] with the following additional statement: If 
K0(l∞(G) �rG) = 0 then K0(A �rG) = 0. Since K0(l∞(G) �rG) = 0 by assumption, we have K0(A �rG) = 0, 
and hence again by hypothesis, K0(A/I �r G) = 0, i.e., K0(C(X) �r G) = 0, as desired.

Question 6.5. Can we ensure A �r G is K0-liftable; cf. [18]?

Corollary 6.6. Let G denote the free group on n generators. Then G admits a free, amenable, minimal action 
on the Cantor set X such that C(X) �rG is a Kirchberg algebra in the UCT class and K0(C(X) �r G) = 0.
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