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Abstract

We consider a backward problem of finding a function u satisfying a nonlinear parabolic equation
in the form ut + a(t)Au(t) = f (t, u(t)) subject to the final condition u(T ) = ϕ. Here A is a positive
self-adjoint unbounded operator in a Hilbert space H and f satisfies a locally Lipschitz condition.
This problem is ill-posed. Using quasi-reversibility method, we shall construct a regularized solution
uε from the measured data aε and ϕε. We show that the regularized problems are well-posed and that
their solutions converge to the exact solutions. Error estimates of logarithmic type are given and a
simple numerical example is presented to illustrate the method as well as verify the error estimates
given in the theoretical parts.
Keywords and phrases: Nonlinear parabolic problem, Backward problem, Quasi-reversibility, Ill-
posed problem, Contraction principle.
Mathematics subject Classification 2000: 35K05, 35K99, 47J06, 47H10.

1. Introduction

Let (H, ‖·‖) be a Hilbert space with the inner product 〈·, ·〉. Let A be a positive self-adjoint operator
defined on a dense subspace D(A) ⊂ H such that −A generates a compact contraction semi-group S (t)
on H. Let f : [0, T ] × H → H satisfy the locally Lipschitz condition: for each M > 0, there exists
k(M) > 0 such that

‖ f (t, u) − f (t, v)‖ ≤ k(M) ‖u − v‖ if max {‖u‖ , ‖v‖} ≤ M. (1)

We shall consider a backward problem of finding a function u : [0, T ]→ H such that

ut + a(t)Au(t) = f (t, u(t)), 0 < t < T,

u(T ) = ϕ, (2)

where a ∈ C([0, T ]) is a given real-valued function and ϕ ∈ H is a prescribed final value.
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This nonlinear nonhomogeneous problem is severely ill-posed. In fact, the problem is extremely
sensitive to measurement errors (see, e.g., [2]). The final data is usually the result of discrete exper-
imental measurements and is subject to error. Hence, a solution corresponding to the data does not
always exist, and in the case of existence, does not depend continuously on the given data. This, of
course, shows that a naturally numerical treatment is impossible. Thus one has to resort to a regular-
ization.

The backward problem (2) has a long history. The linear homogeneous case f = 0 has been
considered by many authors such as quasi-reversibility method [7, 8, 6, 10, 1], quasi-boundary value
method [4, 5]. The problem with constant coefficient and nonlinear source term, i.e.

ut + Au(t) = f (t, u(t)), 0 < t < T,

u(T ) = ϕ, (3)

was studied in [3, 13, 14, 15]. However, in these papers, the source function f is assumed to be
globally Lipschitz, that is

‖ f (t, u) − f (t, v)‖ ≤ k‖u − v‖
where k is independent of t, u, v. Recently, in [16], a regularization method for locally Lipschitz
source term has been established under an extra condition on the source term:

There exists a constant L ≥ 0, such that 〈 f (t, u) − f (t, v), u − v〉 + L‖u − v‖2 ≥ 0.

This condition holds for the source f (u) = u ‖u‖2H (see [16]). However, it is not satisfied in several
cases, for example, f (u) = au − bu3 (b > 0) when u ∈ H1(I) where I denotes some interval in R with
finite length. Hence, another regularization method which can be applied to any locally Lipschitz
source term is of interest. In this paper, we shall assume that the source term f is locally Lipschitz
with respect to u (i.e. f satisfies (1)). Our main idea is approximating the function f by a sequence fε
of Lipschitz functions

‖ fε(t, u) − fε(t, v)‖ ≤ kε‖u − v‖.
Then, we use the results in [13, 15] to approximate problem (3) by the following problem

d

dt
uε(t) + Aεu

ε(t) = B(ε, t) fε(t, uε(t)), t ∈ [0, T ],

uε(T ) = ϕ, (4)

where Aε, B(ε, t) are defined appropriately.
When the perturbed coefficient a is time-dependent, the problems turns to be more complicated.

Indeed, the strategies used for constant coefficient cannot be applied to the time-dependent coefficient
case. The problem with time-dependent coefficient has been recently investigated in [9]. However, the
methods proposed in [9] can be merely applied either for zero source with perturbed time-dependent
coefficient or for globally Lipschitz source with unperturbed time-dependent coefficient. We would
like to emphasize that our regularization method for constant coefficient also works for unperturbed
time-dependent coefficient.

The paper is organized as follows. In Section 2, we shall investigate a regularization method for
the case of constant coefficient a ≡ 1. In particular, we shall give precise formulas of Aε, B(ε, t) and
fε(t, v); show that the regularized problem (4) is well-posed and prove the convergence of uε to the
exact solution in C([0, T ]; H) with explicit error estimates. Section 3 provides a regularization method
for perturbed time-dependent coefficient a(t). A simple numerical example to illustrate the method is
given in Section 4 and we end this paper by a conclusion in Section 5.
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2. Regularization of backward parabolic problem with constant coefficient

2.1. The well-posedness of the regularized problem (4)

We shall first give the precise formula of the compact contraction semigroup S (t) that is generated
by −A. Assume that A is a positive self-adjoint operator in the separable Hilbert space (H, 〈·, ·〉) and
0 belongs to its resolvent set. Since A−1 is a compact self-adjoint operator, there is an orthonormal
eigenbasis {φn}∞n=1 of H corresponding to a sequence of its eigenvalues {λ−1

n }∞n=1 in which

0 < λ1 ≤ λ2 ≤ λ3 ≤ ... lim
n→∞ λn = ∞.

Thus A−1φn = λ
−1
n φn and Aφn = λnφn for each n ≥ 1. The compact contraction semi-group S (t)

corresponding to A is

S (t)v =
∞∑

n=1

e−tλn 〈v, φn〉 φn, v ∈ H.

Problem (3) can be written in the language of semi-groups as follows:

u(t) = S −1(T − t)ϕ −
T∫

t

S −1(s − t) f (s, u(s)) ds. (5)

For each ε > 0, we define the bounded operator

Aε(v) = − 1
T

∞∑
n=1

ln(ε + e−Tλn) 〈v, φn〉 φn. (6)

The compact contraction semi-group S ε(t) corresponding to Aε is

S ε(t)v =
∞∑

n=1

(
ε + e−Tλn

) t
T 〈v, φn〉 φn, v ∈ H.

It is easy to see that

S −1
ε (t)v =

∞∑
n=1

(
ε + e−Tλn

) −t
T 〈v, φn〉 φn, v ∈ H,

for all t ∈ [0, T ]. Obviously, (4) can be written as

uε(t) = S −1
ε (T − t)ϕε −

T∫
t

S −1
ε (s − t)B(ε, s) fε(s, uε(s)) ds, (7)

For each t ≤ T , we define by B(ε, t) the bounded operator

B(ε, t) := S −1
ε (T − t)S (T − t).

The operator B(ε, t) can be written explicitly as

B(ε, t)(v) =
∞∑

n=1

(1 + εeTλn)
t
T −1 〈v, φn〉 φn, v ∈ H. (8)

In particular,

B(ε, t)φn = S −1
ε (T − t)S (T − t)φn = S −1

ε (T − t)
(
e−(T−t)λnφn

)
=

(
ε + e−Tλn

) t−T
T

e−(T−t)λnφn = (εeTλn + 1)
t−T
T φn, ∀n ≥ 1.

We shall need some upper bounds of the operators S ε(−t) and B(ε, t).
3



Lemma 1. Let 0 ≤ t ≤ T. Then S −1
ε (t) and B(ε, t) are bounded operators and∥∥∥S −1
ε (t)

∥∥∥L(H)
≤ ε− t

T , ‖B(ε, t)‖L(H) ≤ 1.

Moreover,

‖[B(ε, t) − I] φn‖ ≤ εeTλn ,∀n ≥ 1.

Proof. For each n ≥ 1, one has∥∥∥S −1
ε (t)φn

∥∥∥ = (
ε + e−Tλn

)− t
T ≤ ε− t

T ,

‖B(ε, t)φn‖ = (1 + εeTλn)
t
T −1 ≤ 1,

‖[I − B(ε, t)] φn‖ = 1 − (1 + εeTλn)
t
T −1 ≤ 1 − (1 + εeTλn)−1 ≤ εeTλn .

The desired result follows.

Next, we define an approximation fε of f . Recall that f : [0, T ] × H → H satisfies the locally
Lipschitz condition (1):

For each M > 0, there exists k(M) > 0 such that
‖ f (t, u) − f (t, v)‖ ≤ k(M) ‖u − v‖ if max {‖u‖ , ‖v‖} ≤ M.

It is obvious that the function k(·) is increasing on [0,∞). We can choose a set {Mε > 0}ε>0 satisfying
lim
ε→0+

Mε = ∞ and k(Mε) ≤ ln(ln(ε−1))/(4T ). Define

fε(t, v) = f

(
t,min

{
Mε

‖v‖ , 1
}

v

)
, ∀(t, v) ∈ [0, T ] × H, (9)

in particular fε(t, 0) = f (t, 0). With this definition, we claim that fε is a Lipschitz function. In fact,
we have

Lemma 2. For ε > 0, t ∈ [0, T ] and v1, v2 ∈ H, one has

‖ fε(t, v1) − fε(t, v2)‖ ≤ kε ‖v1 − v2‖ ,
where kε = 2k(Mε) ≤ ln(ln(ε−1))/(2T ).

Proof. It is sufficient to prove Lemma 2 for non-zero vectors v1, v2. Assume that ‖v1‖ ≥ ‖v2‖ > 0.
Using the locally Lipschitz property of f , one has

‖ fε(t, v1) − fε(t, v2)‖ =
∥∥∥∥∥∥ f

(
t,min

{
Mε

‖v1‖ , 1
}

v1

)
− f

(
t,min

{
Mε

‖v2‖ , 1
}

v2

)∥∥∥∥∥∥
≤ k(Mε)

∥∥∥∥∥∥min
{

Mε

‖v1‖ , 1
}

v1 −min
{

Mε

‖v2‖ , 1
}

v2

∥∥∥∥∥∥ .
It remains to show that ∥∥∥∥∥∥min

{
Mε

‖v1‖ , 1
}

v1 −min
{

Mε

‖v2‖ , 1
}

v2

∥∥∥∥∥∥ ≤ 2 ‖v1 − v2‖ .
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This inequality is trivial if Mε ≥ ‖v1‖ ≥ ‖v2‖. When ‖v1‖ ≥ ‖v2‖ ≥ Mε, one has∥∥∥∥∥ Mε

‖v1‖v1 − Mε

‖v2‖v2

∥∥∥∥∥ = Mε

∥∥∥∥∥v1 − v2

‖v1‖ +
‖v2‖ − ‖v1‖
‖v1‖ . ‖v2‖ v2

∥∥∥∥∥
≤ Mε

(∥∥∥∥∥v1 − v2

‖v1‖
∥∥∥∥∥ + ∥∥∥∥∥‖v2‖ − ‖v1‖

‖v1‖ . ‖v2‖ v2

∥∥∥∥∥)
=

Mε

‖v1‖ (‖v1 − v2‖ + |‖v2‖ − ‖v1‖|) ≤ 2 ‖v1 − v2‖ .
Finally, if ‖v1‖ ≥ Mε ≥ ‖v2‖ then∥∥∥∥∥ Mε

‖v1‖v1 − v2

∥∥∥∥∥ = ∥∥∥∥∥Mε − ‖v1‖
‖v1‖ v1 + v1 − v2

∥∥∥∥∥
≤

∥∥∥∥∥Mε − ‖v1‖
‖v1‖ v1

∥∥∥∥∥ + ‖v1 − v2‖
= |Mε − ‖v1‖| + ‖v1 − v2‖ ≤ 2 ‖v1 − v2‖ .

Here we have used the inequality |Mε − ‖v1‖| ≤ |‖v2‖ − ‖v1‖| ≤ ‖v1 − v2‖.
We now study the existence, the uniqueness and the stability of a (weak) solution of problem (4).

Theorem 1. Let ε > 0. For each ϕ ∈ H, problem (4) has a unique solution uε ∈ C([0, T ]; H). More-

over, the solutions depend continuously on the data in the sense that if uεj is the solution corresponding

to ϕ j, j = 1, 2, then

‖uε1(t) − uε2(t)‖ ≤ ε t−T
T ekε(T−t)‖ϕ1 − ϕ2‖.

Proof. Step 1: Uniqueness
Fix ϕ ∈ H. For each w ∈ C([0, T ]; H), define by

F(w)(t) := S −1
ε (T − t)ε −

T∫
t

S −1
ε (s − t)B(ε, s) fε(s,w(s)) ds.

It is sufficient to show that F has a unique fixed point in C([0, T ]; H). This fact will be proved by
contraction principle.

We claim by induction with respect to m = 1, 2, ... that, for all w, v ∈ C([0, T ]; H),

‖Fm(w)(t) − Fm(v)(t)‖ ≤
(
kε

ε

)m (T − t)m

m!
|||w − v|||, (10)

where |||.||| is the sup norm in C([0, T ]; H). For m = 1, using lemmas 1 and 2, we have

‖F(w)(t) − F(v)(t)‖ =
∥∥∥∥∥∥∥∥

T∫
t

S −1
ε (s − t)B(ε, s)

[
fε(s,w(s)) − fε(s, v(s))

]
ds

∥∥∥∥∥∥∥∥
≤

T∫
t

∥∥∥S −1
ε (s − t)

∥∥∥L(H)
· ‖B(ε, s)‖L(H) · ‖ fε(s,w(s)) − fε(s, v(s))‖ ds

≤ kε

T∫
t

ε
t−s
T ‖w − v‖ ds ≤ kε

ε

T∫
t

‖w − v‖ ds

≤ kε

ε
(T − t)|||w − v|||.
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Suppose that (10) holds for m = j. We prove that (10) holds for m = j + 1. Infact, we have∥∥∥F j+1(w)(t) − F j+1(v)(t)
∥∥∥ = ∥∥∥F(F j(w))(t) − F(F j(v))(t)

∥∥∥
≤ kε

ε

T∫
t

∥∥∥F j(w)(s) − F j(v)(s)
∥∥∥ ds

≤ kε

ε

T∫
t

(
kε

ε

) j (T − s) j

j!
|||w − v||| ds

=

(
kε

ε

) j+1 (T − t) j+1

( j + 1)!
|||w − v|||.

Therefore (10) holds for all m = 1, 2, ... by the induction principle. In particular, one has

|||Fm(w)(t) − Fm(v)(t)||| ≤
(
kεT

ε

)m 1
m!
|||w − v|||.

Since

lim
m→∞

(
kεT

ε

)m 1
m!
= 0,

there exists a positive integer m0 such that Fm0 is a contraction mapping. It follows that Fm0 has a
unique fixed point uε in C([0, T ]; H). Since Fm0(F(uε)) = F(Fm0(uε)) = F(uε), we obtain F(uε) =
uε due to the uniqueness of the fixed point of Fm0 . The uniqueness of the fixed point of F also
follows the uniqueness of the fixed point of Fm0 . The unique fixed point uε of F is the solution of (7)
corresponding to final value ϕ.

Step 2: Continuous dependence on the data
We now let uε1 and uε2 be two solutions corresponding to final values ϕ1 and ϕ2, respectively. In the

same manner as Step 1, we have for every w, v ∈ C([0, T ]; H)

‖F(w)(t) − F(v)(t)‖ ≤ kε

∫ T

t

ε
t−s
T ‖w(s) − v(s)‖ ds.

Hence ∥∥∥uε1(t) − uε2(t)
∥∥∥ = ∥∥∥S −1

ε (T − t) (ϕ1 − ϕ2) + F(uε1)(t) − F(uε2)(t)
∥∥∥

≤ ∥∥∥S −1
ε (T − t)

∥∥∥L(H)
· ‖ϕ1 − ϕ2‖ +

∥∥∥F(uε1)(t) − F(uε2)(t)
∥∥∥

≤ ε t−T
T ‖ϕ1 − ϕ2‖ + kε

T∫
t

ε
t−s
T

∥∥∥uε1(s) − uε2(s)
∥∥∥ ds.

The latter inequality can be written as

ε−
t
T

∥∥∥uε1(t) − uε2(t)
∥∥∥ ≤ ε−1 ‖ϕ1 − ϕ2‖ + kε

T∫
t

ε−
s
T

∥∥∥uε1(s) − uε2(s)
∥∥∥ ds.

It follows from Grönwall’s inequality that

ε−
t
T

∥∥∥uε1(t) − uε2(t)
∥∥∥ ≤ ε−1ekε(T−t) ‖ϕ1 − ϕ2‖ , t ∈ [0, T ].

This completes the proof of Theorem 1.
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2.2. Regularization of problem (3)

Our purpose in this section is to construct a regularized solution of the ill-posed problem (3). We
mention that the existence of a solution of (3) is not considered here. Instead, we assume that there
is an exact solution u corresponding to the exact datum ϕ, and our aim is to construct, from the given
datum ϕε approximating ϕ, a regularized solution Uε which approximates u.

Denote by uε the solution of problem (4) corresponding to the final condition ϕε. We shall show
that for each fixed time t > 0, the function uε(t) gives a good approximation of u(t). Notice that, it
is more difficult to derive an approximation at t = 0 than at large t. We therefore need an adjustment
in choosing the regularized solution at t = 0. The main idea is that we first use the continuity of u to
approximate the initial value u(0) by u(tε) for some suitable small time tε > 0, and then approximate
u(tε) by uε(tε) . The parameter tε will be choosen as follows.

Lemma 3. Let T > 0 and let ε > 0 small enough. There exists a unique tε > 0 such that ε
tε
2T = tε.

Moreover,

tε ≤ 2T ln(ln(ε−1))
ln(ε−1)

.

Proof. Note that each solution t > 0 of ε
t

2T = t is a zero of the function

h(t) = ln(t) +
ln(ε−1)

2T
t, t > 0.

We have h is strictly increasing as h′(t) > 0. Moreover, lim
t→0+

h(t) = −∞ and

h

(
2T ln(ln(ε−1))

ln(ε−1)

)
= ln

[
2T ln(ln(ε−1))

]
> 0

for ε > 0 small enough. Thus the equation h(t) = 0 has a unique solution tε > 0 such that

tε ≤
2T ln

(
ln

(
1
ε

))
ln

(
1
ε

) .

We have the following regularization result.

Theorem 2. Let u ∈ C1([0, T ]; H) be a solution of problem (3) corresponding to ϕ ∈ H. Assume that

sup
t∈[0,T ]

⎛⎜⎜⎜⎜⎜⎝‖ut(·, t)‖ + ε T−t
T

[ ∞∑
n=1

eTλn | 〈φn, u(t)〉 |
]⎞⎟⎟⎟⎟⎟⎠ = M < ∞.

Let ϕε be a measured datum satisfying ‖ϕε − ϕ‖ ≤ ε with ε ∈ (0, e−1), and let uε be the solution of

problem (4) corresponding to ϕε. Choose tε > 0 as in Lemma 3. Define the regularized solution

Uε : [0, T ]→ H by

Uε(t) = uε(max {t, tε}), t ∈ [0, T ].

Then one has the error estimate, for ε ∈ (0, e−1), t ∈ [0, T ],

‖Uε(t) − u(t)‖ ≤ 2T 2(3M + 2)
ln(ln(ε−1))

ln(ε−1)
.
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Proof. We have in view of (5)

u(t) = S −1(T − t)ϕ −
T∫

t

S −1(s − t) f (s, u(s)) ds.

Using B(ε, t) = S ε(t − T )S (T − t), one has

B(ε, t)u(t) = S −1
ε (T − t)ϕ −

T∫
t

S −1
ε (s − t)B(ε, s) f (s, u(s)) ds.

We have in view of (7)

uε(t) = S −1
ε (T − t)ϕε −

T∫
t

S −1
ε (s − t)B(ε, s) fε(s, uε(s)) ds.

Thus

uε(t) − u(t) = S −1
ε (T − t) (ϕε − ϕ) + [B(ε, t) − I] u(t) +

−
T∫

t

S −1
ε (s − t)B(ε, s)

[
fε(s, uε(s)) − f (s, u(s))

]
ds.

Since the eigenfunctions {φn} forms an orthonormal basis of H, we can write u(t) as

u(t) =
∞∑

n=1

〈u(t), φn〉 φn.

Hence, using Lemma 1, we have

‖[B(ε, t) − I]u(t)‖ =
∥∥∥∥∥∥∥
∞∑

n=1

〈u(t), φn〉 [B(ε, t) − I]φn

∥∥∥∥∥∥∥ ≤
∞∑

n=1

|〈u(t), φn〉| ‖[B(ε, t) − I]φn‖

≤ ε
∞∑

n=1

|〈u(t), φn〉| eTλn .

Employing Lemma 1 again, and noting that for ε > 0 small enough, Mε ≥ sup
t∈[0,T ]

‖u(t)‖. This leads to

f (s, u(s)) = fε(s, u(s)). Thus, taking into account Lemma 2 we get

‖uε(t) − u(t)‖ ≤
∥∥∥S −1
ε (T − t)

∥∥∥ . ‖ϕε − ϕ‖ + ‖[B(ε, t) − I] u(t)‖ +

+

T∫
t

∥∥∥S −1
ε (s − t)

∥∥∥L(H)
. ‖B(ε, s)‖L(H) . ‖ fε(s, uε(s)) − f (s, u(s))‖ ds

≤ ε t−T
T · ε + ε

∞∑
n=1

eTλn |〈u(t), φn〉| + kε

T∫
t

ε
t−s
T ‖uε(s) − u(s)‖ ds

≤ (M + 1)ε
t
T + kε

T∫
t

ε
t−s
T ‖uε(s) − u(s)‖ ds.
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The latter inequality can be written as

ε−
t
T ‖uε(t) − u(t)‖ ≤ (M + 1) + kε

T∫
t

ε−
s
T ‖uε(s) − u(s)‖ ds.

It follows from Grönwall’s inequality that

ε−
t
T ‖uε(t) − u(t)‖ ≤ (M + 1)ekεT , ∀t ∈ (0, T ].

Notice that, for z > 1 it holds that ez ≥ z2. This implies
√

z ≥ ln(z). Hence, if we take z = ln(ε−1), we
see that z > 1 for ε < e−1. Therefore, we have√

ln(ε−1) ≥ ln(ln(ε−1)).

The above inequality is equivalent to

√
ln(ε−1) ≤ ln(ε−1)

ln(ln(ε−1))
.

Taking into account the definition of kε in Lemma 2 and that of tε in Lemma 3, we can bound the term
ekεT from above as follows

ekεT ≤
√

ln(ε−1) ≤ ln(ε−1)
ln(ln(ε−1))

≤ 2Tt−1
ε = 2Tε−

tε
2T .

Therefore, if t ∈ [tε, T ], since ε � 1, we have

‖Uε(t) − u(t)‖ = ‖uε(t) − u(t)‖ ≤ (M + 1)ekεTε
t
T ≤ 2T (M + 1)ε−

tε
2T ε

t
T ≤ 2T (M + 1)ε

tε
2T

= 2T (M + 1)tε ≤ 2T 2(2M + 2) ln(ln(ε−1))
ln(ε−1)

.

Let us now consider t ∈ [0, tε]. One has

‖Uε(t) − u(t)‖ = ‖uε(tε) − u(t)‖ ≤ ‖uε(tε) − u(tε)‖ + ‖u(tε) − u(t)‖ .
Thanks to Jensen’s inequality, we get

‖u(·, tε) − u(·, t)‖ =
∥∥∥∥∥∥∥∥

tε∫
t

ut(·, s)ds

∥∥∥∥∥∥∥∥ ≤ (tε − t)

tε∫
t

‖ut(·, s)‖ ds ≤ MTtε.

Thus, for t ∈ [0, tε],

‖Uε(t) − u(t)‖ ≤ 2T (M + 1)ε
tε
2T + MTtε = (3M + 2)Ttε

≤ 2T 2(3M + 2)
ln(ln(ε−1))

ln(ε−1)
.

This completes the proof of Theorem 2.
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3. Regularization of backward parabolic problem with time-dependent coefficient

In this section, we consider the following backward nonlinear parabolic problem with time-
dependent coefficient

ut + a(t)Au(t) = f (t, u(t)), 0 < t < T,

u(T ) = ϕ, (11)

where a ∈ C([0, T ]) is given. The function a is noised by the perturbed data aε ∈ C[0, T ] such that

‖aε − a‖C([0,T ]) ≤ ε, (12)

where the norm ‖·‖C([0,T ]) is given by the sup norm, i.e., ‖v‖C([0,T ]) = sup0≤t≤T |v(t)| for every continuous
function v : [0, T ] → R. We would like to emphasize that it is impossible to apply the technique in
Section 2 to solve problem (11) when the time-dependent coefficient is perturbed by noise. Therefore,
we investigate a new regularized problem as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

d

dt
vε(t) + aε(t)Ãεvε(t) = fε

(
t, vε(t)

)
, 0 < t < 1,

vε(T ) = ϕε,
(13)

where Ãε is defined by

Ãε(v) := − 1
QT

∞∑
n=1

ln
(
ε + e−QTλn

)
〈v, φn〉φn (14)

Moreover, we get

‖Ãε(v)‖2 = 1
QT

∞∑
n=1

ln
1

(ε + e−QTλn)2 〈v, φn〉 ≤ 1
QT

ln2(1/ε)

and Q := ‖aε‖C([0,T ]). The regularization result for time-dependent perturbed coefficient is given in the
following theorem.

Theorem 3. Let u ∈ C1([0, T ]; H) be a solution of problem (11) corresponding to ϕ ∈ H. Assume

that

sup
t∈[0,T ]

[ ∞∑
n=1

e2QTλn |(φn, u(t))|2 + ‖u′(t)‖
]
= EQ < ∞.

Let ϕε and aε be measured data satisfying ‖ϕε − ϕ‖ ≤ ε and ‖aε − a‖C([0,T ]) ≤ ε for ε > 0. We denote

by vε the solution of problem (13) corresponding to ϕε and aε. Choose tε > 0 as in Lemma 3. Define

the regularized solution Wε : [0, T ]→ H by

Wε(t) = vε(max {t, tε}), t ∈ [0, T ].

Then one has the following error estimate for ε > 0 small enough and t ∈ [0, T ],

‖Wε(t) − u(t)‖ ≤ 2EQ

√
2
(

1
Q
+ 1

)
e2T min

{
ε

t
2T ,

2T ln(ln(ε−1))
ln(ε−1)

}
.
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Proof. The existence of solutions to problem (11) is similar to that of Theorem 1 and we will not
consider it here. It remains to prove the error estimation between Wε and u. To this end, we first need
the error estimation between vε and u. The technique we use here is different from Theorem 2. The
problem (11) can be written as{

u′(t) + aε(t)Ãεu(t) = aε(t)Ãεu(t) − a(t)Au(t) + f
(
t, u(t)

)
,

u(T ) = ϕ.
(15)

Recall that vε solves the following problem{
v′ε(t) + aε(t)Ãεvε(t) = fε

(
t, vε(t)

)
,

vε(T ) = ϕε.
(16)

Subtracting (15) from (16) side-by-side, we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
v′ε(t) − u′(t) = −aε(t)Ãε

(
vε(t) − u(t)

) − aε(t)Ãεu(t) + a(t)Au(t)
+ fε

(
t, vε(t)

) − f
(
t, u(t)

)
,

vε(T ) − uε(T ) = ϕε − ϕ.
(17)

For b̃ > 0, we define by
zε(t) := eb̃(t−T )

(
vε(t) − u(t)

)
.

By differentiating zε(t) with respect to t and plugging (17) into this result, we get

z′ε(t) = b̃eb̃(t−T )
(
vε(t) − u(t)

)
+ eb̃(t−T )(v′ε(t) − u′(t)

)
= b̃zε(t) + eb̃(t−T )

[
− aε(t)Ãε

(
vε(t) − u(t)

)
+ fε

(
t, vε(t)) − f

(
t, u(t)

)]
−eb̃(t−T )

[(
aε(t) − a(t)

)
Au(t) + aε(t)

(
Ãε − A

)
u(t)

]
= b̃zε(t) − aε(t)Ãεzε(t) + eb̃(t−T )

[
fε
(
t, vε(t)

) − f
(
t, u(t)

)]
−eb̃(t−T )(aε(t) − a(t)

)
Au(t) − eb̃(t−T )aε(t)

(
Ãε − A

)
u(t). (18)

By taking the inner product of (18) and zε(t), we get〈
z′ε(t) + aε(t)Ãεzε(t) − b̃zε(t), zε(t)

〉
=

〈
eb̃(t−T )

[
fε
(
t, vε(t)

) − f
(
t, u(t)

)]
, zε(t)

〉
−eb̃(t−T )〈(aε(t) − a(t)

)
Au(t), zε(t)

〉
−eb̃(t−T )〈aε(t)(Ãε − A

)
u(t), zε(t)

〉
. (19)

A direct computation implies that

d

dt

∥∥∥zε(t)
∥∥∥2

H
= 2

〈
z′ε(t), zε(t)

〉
= 2

〈 − aε(t)Ãεzε(t), zε(t)
〉
+ 2̃b

〈
zε(t), zε(t)

〉
+2

〈
eb̃(t−T )

[
fε
(
t, vε(t)

) − f
(
t, u(t)

)]
, zε(t)

〉
−2eb̃(t−T )〈(aε(t) − a(t)

)
Au(t), zε(t)

〉
−2eb̃(t−T )〈aε(t)(Ãε − A

)
u(t), zε(t)

〉
= 2(Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4), (20)
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where

Ĩ1 =
〈 − aε(t)Ãεzε(t), zε(t)

〉
+ b̃

〈
zε(t), zε(t)

〉
,

Ĩ2 =
〈
eb̃(t−T )

[
fε
(
t, vε(t)

) − f
(
t, u(t)

)]
, zε(t)

〉
,

Ĩ3 = −eb̃(t−T )〈(aε(t) − a(t)
)
Au(t), zε(t)

〉
,

Ĩ4 = −eb̃(t−T )
〈
aε(t)

(
Ãε − A

)
u(t), zε(t)

〉
.

Since Q := supt∈[0,T ]

∣∣∣aε(t)∣∣∣, we have∣∣∣∣〈 − aε(t)Ãεzε(t), zε(t)
〉∣∣∣∣ ≤ sup

t∈[0,T ]

∣∣∣aε(t)∣∣∣∥∥∥Ãεzε(t)
∥∥∥

H

∥∥∥zε(t)
∥∥∥

H

≤ Q
1

QT
ln

(
1
ε

) ∥∥∥zε(t)
∥∥∥2

H

≤ 1
T

ln
(
1
ε

) ∥∥∥zε(t)
∥∥∥2

H
,

which gives 〈 − aε(t)Ãεzε(t), zε(t)
〉 ≥ − 1

T
ln

(
1
ε

) ∥∥∥zε(t)
∥∥∥2

H
.

Then the term Ĩ1 is estimated by

Ĩ1 =
〈 − aε(t)Ãεzε(t), zε(t)

〉
+ b̃

〈
zε(t), zε(t)

〉
≥ − 1

T
ln

(
1
ε

) ∥∥∥zε(t)
∥∥∥2

H
+ b̃

∥∥∥zε(t)
∥∥∥2

H
. (21)

Using Lemma 1 and noting that f (s, u(s)) = fε(s, u(s)) for ε > 0 small enough, Mε ≥ sup
t∈[0,T ]

‖u(t)‖, we

have the following estimate

Ĩ2 =
〈
e−b̃(T−t)

[
fε
(
t, vε(t)

) − f
(
t, u(t)

)]
, zε(t)

〉
= e−2̃b(T−t)〈 fε

(
vε(t), t

) − fε
(
t, u(t)

)
, vε(t) − u(t)

〉
≥ −kεe

−2̃b(T−t)
∥∥∥vε(t) − u(t)

∥∥∥2

H

= −kε
∥∥∥zε

∥∥∥2

H
. (22)

Employing the Hölder inequality, we can bound Ĩ3 as follows

Ĩ3 =
〈
e−b̃(T−t)(aε(t) − a(t)

)
Au(t), zε(t)

〉
≤ e−2̃b(T−t)

∣∣∣aε(t) − a(t)
∣∣∣2∥∥∥Au(t)

∥∥∥2

H
+

∥∥∥zε(t)
∥∥∥2

H

≤ e−2̃b(T−t)
∣∣∣aε(t) − a(t)

∣∣∣2 ⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=1

λ2
n

∣∣∣〈u(t), φn〉
∣∣∣2⎞⎟⎟⎟⎟⎟⎠ + ∥∥∥zε(t)

∥∥∥2

H

≤ e−2̃b(T−t)
∣∣∣aε(t) − a(t)

∣∣∣2 ⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=1

1
Q2T 2 e2QTλn

∣∣∣〈u(t), φn〉
∣∣∣2⎞⎟⎟⎟⎟⎟⎠ + ∥∥∥zε(t)

∥∥∥2

H

≤ e−2̃b(T−t)ε2E2
Q

QT
+

∥∥∥zε(t)
∥∥∥2

H
. (23)
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Using the Hölder inequality again, Ĩ4 can be bounded as

Ĩ4 =
〈
e−b̃(T−t)aε(t)

(
Ãε(t) − A(t)

)
u(t), zε(t)

〉
≤ e−2̃b(T−t)

∣∣∣aε(t)∣∣∣2∥∥∥(Ãε − A)u(t)
∥∥∥2

H
+

∥∥∥zε(t)
∥∥∥2

H

≤ e−2̃b(T−t)
∣∣∣aε(t)∣∣∣2 ∞∑

n=1

∣∣∣∣∣∣ 1
QT

ln
(

1
ε + e−QTλn

)
− 1

QT
ln(eQTλn)

∣∣∣∣∣∣2 ∣∣∣〈u(t), φn

〉∣∣∣2
+
∥∥∥zε(t)

∥∥∥2

H

≤ e−2̃b(T−t)
∣∣∣aε(t)∣∣∣2 1

Q2T 2

∞∑
n=1

∣∣∣∣∣∣ln
(

1
εeQTλn + 1

)∣∣∣∣∣∣2 ∣∣∣〈u(t), φn

〉∣∣∣2 + ∥∥∥zε(t)
∥∥∥2

H

≤ 1
T 2 e−2̃b(T−t)

∞∑
n=1

ln2
(
εeQTλn + 1

) ∣∣∣〈u(t), φn

〉∣∣∣2 + ∥∥∥zε(t)
∥∥∥2

H

≤ 1
T 2 e−2̃b(T−t)ε2

∞∑
n=1

e2QTλn

∣∣∣〈u(t), φn

〉∣∣∣2 + ∥∥∥zε(t)
∥∥∥2

H

≤ 1
T 2 e−2̃b(T−t)ε2E2

Q +
∥∥∥zε(t)

∥∥∥2

H
. (24)

Thus, (20), (21), (22), (23) and (24) yields

d

dt

∥∥∥zε(t)
∥∥∥2

H
≥

(
− 2

T
ln

(
1
ε

)
+ 2̃b − 2kε − 4

) ∥∥∥zε(t)
∥∥∥2

H

−2e−2̃b(T−t)ε2E2
Q

(
1

QT
+

1
T

)
. (25)

Since b = 1
T

ln
(

1
ε

)
we obtain

d

dt

∥∥∥zε(t)
∥∥∥2

H
≥ (−2kε − 4)

∥∥∥zε(t)
∥∥∥2

H
− 2ε2E2

Q

(
1

QT
+

1
T

)
.

Integrating the above inequality from t to T , we get

∥∥∥zε(T )
∥∥∥2

H
− ∥∥∥zε(t)

∥∥∥2

H
≥ (−2kε − 4)

T∫
t

∥∥∥zε(s)
∥∥∥2

H
ds

−2E2
Qε

2
(

1
QT
+

1
T

)
(T − t).

Since
∥∥∥zε(T )

∥∥∥2

H
= ‖ϕε − ϕ‖ ≤ ε, we have

∥∥∥zε(t)
∥∥∥2

H
≤ (2kε + 4)

1∫
t

∥∥∥zε(s)
∥∥∥2

H
ds + 2E2

Qε
2
(

1
Q
+ 1

)
+ ε2.

This implies that

e−2̃b(T−t)
∥∥∥vε(t) − u(t)

∥∥∥2

H
≤ (2kε + 4)

T∫
t

e−2̃b(T−s)
∥∥∥vε(s) − u(s)

∥∥∥2

H
ds

+2E2
Qε

2
(

1
Q
+ 1

)
+ ε2.
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Multiplying bothside by e2̃bT , we obtain

e2̃bt
∥∥∥vε(t) − u(t)

∥∥∥2

H
≤ (2kε + 4)

T∫
t

e2bs
∥∥∥vε(s) − u(s)

∥∥∥2

H
ds

+2E2
Q

(
1
Q
+ 1

)
.

Applying Grönwall’s inequality, we get

e2̃bt
∥∥∥vε(t) − u(t)

∥∥∥2

H
≤ 2E2

Q

(
1
Q
+ 1

)
e

T∫
t

(2kε+4)ds

,

or

e2̃bt
∥∥∥vε(t) − u(t)

∥∥∥2 ≤ 2E2
Q

(
1
Q
+ 1

)
e(2kε+4)(T−t).

Hence ∥∥∥vε(t) − u(t)
∥∥∥2

H
≤ 2E2

Q

(
1
Q
+ 1

)
e(2kε+4)(T−t)e−

2t
T ln( 1

ε ).

In particular, if t ∈ [tε, T ] then

‖Wε(t) − u(t)‖ = ‖vε(t) − u(t)‖ ≤ EQ

√
2
(

1
Q
+ 1

)
e2T ekεTε

t
T

≤ EQ

√
2
(

1
Q
+ 1

)
e2Tε

t
2T

≤ EQ

√
2
(

1
Q
+ 1

)
e2T 2T ln(ln(ε−1))

ln(ε−1)
.

Let us now consider t ∈ [0, tε]. One has

‖Wε(t) − u(t)‖ = ‖vε(tε) − u(t)‖ ≤ ‖vε(tε) − u(tε)‖ + ‖u(tε) − u(t)‖ .
Due to the continuity, we get for ε small enough

‖u(tε) − u(t)‖ =
∥∥∥∥∥∥∥∥

tε∫
t

ut(s)ds

∥∥∥∥∥∥∥∥ ≤
tε∫

0

‖ut(s)‖ ds ≤ EQtε.

Thus, for t ∈ [0, tε],

‖Wε(t) − u(t)‖ ≤ EQ

√
2
(

1
Q
+ 1

)
e2Tε

tε
2T + EQtε

≤ 2EQ

√
2
(

1
Q
+ 1

)
e2T min

{
ε

t
2T ,

2T ln(ln(ε−1))
ln(ε−1)

}
.

This completes the proof of Theorem 3.
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4. Numerical example

We end this paper by considering a simple example to illustrate our numerical strategy and verify
the error estimates given in the theoretical parts.

We shall investigate the following backward equation in one-dimension

ut − uxx = ‖u‖3u + h(x, t), x ∈ (0, π), t ∈ (0, 1),
u(0, t) = u(π, t) = 0, t ∈ (0, 1),
u(x, 1) = ϕ(x), x ∈ [0, π],

where we postulate that an exact solution u exists and u(·, t) ∈ L2(0, π) for every t ∈ (0, 1). By ‖u‖, we
mean the L2(0, π)-norm of u(·, t) when t is fixed. Indeed, when we choose

h(x, t) := 0.6(sin(x) +
1
2

sin(2x)) + 0.6t(sin(x) + 2 sin(2x))

−0.64t4(sin(x) +
1
2

sin(2x))
(∫ π

0
(sin(x) +

1
2

sin(2x))2 dx

)3/2

,

and
ϕ(x) := 0.6(sin(x) +

1
2

sin(2x)),

the above problem admits the exact solution

uex = 0.6t(sin(x) +
1
2

sin(2x)),

satisfying that uex(·, t) ∈ L2(0, π) for every t ∈ (0, 1).

ε 10−1 10−2 10−3 10−4 10−5 10−6

Mε 0.3736 0.4570 0.4943 0.5177 0.5345 0.5475
tε 0.5382 0.3990 0.3252 0.2780 0.2446 0.2195

Table 1: Mε and tε.

ε 10−1 10−2 10−3 10−4 10−5 10−6

# iter 11 11 11 12 12 12
t = 0.6 0.15491 0.13584 0.12958 0.12903 0.12895 0.12891
t = 0 0.08153 0.09460 0.10648 0.11507 0.11580 0.12635

Table 2: Comparing of errors when N = 18.

Notice that, a similar problem has been examined in [11] using the truncated Fourier series
method. In the present paper, we shall regularize the problem using quasi-reversibility method. We
shall follow the notations introduced in the theoretical parts. In this case, the coefficient a = 1,
the Hilbert space H is chosen to be L2(0, π), the positive operator A defined in a dense subset of
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Exact solution and regularized solution at t = 0.6 when the noise level ε = 10−1, . . . , 10−6 and N = 18.

L2(0, π) is − ∂2

∂x
. It is easy to check that A has eigenvalues λn = n2 with corresponding eigenvectors

φn(x) =
√

2
π

sin(nx). The sequence of eigenvectors {φn} forms an orthonormal basis of L2(0, π). The
compact contraction semigroup S (t) that is generated by −A reads

S (t)v =
N∑

n=1

e−tλn(φn, v)φn for all v ∈ H.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Exact solution and regularized solution at t = 0 when the noise level ε = 10−1, . . . , 10−6 and N = 1.

Here, we have truncated the infinite sum of S (t) by a positive integer N. In the following, we shall
choose N = 18, where N = 18 is the largest positive integer so that the condition

sup
t∈[0,T ]

⎛⎜⎜⎜⎜⎜⎝‖ut(·, t)‖ + e
T−t
T

[ ∞∑
n=1

eTλn |(φn, u(t))|
]⎞⎟⎟⎟⎟⎟⎠ = M < ∞.

in Theorem 2 holds true.
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The source function f is given by

f (t, x, u) := ‖u‖3u + h(x, t).

Notice that, for any u ∈ L2(0, π), it may happen that u3 � L2(0, π). For that reason, we consider the
source function f of the type ‖u‖3u. By simple computations, one can easily check that f is a locally
Lipschitz function w.r.t. L2(0, π)-norm, and this function is not globally Lipschitz w.r.t. the same
norm. Indeed,

‖ f (t, ·, u) − f (t, ·, v)‖ = ‖u‖u‖3 − v‖v‖3‖
= ‖(u − v)‖u‖3 + v(‖u‖3 − ‖v‖3)‖
≤ ‖u‖3‖u − v‖ + ∣∣∣‖u‖3 − ‖v‖3∣∣∣ ‖v‖
≤ ‖u‖3‖u − v‖ + |‖u‖ − ‖v‖|

(
‖u‖2 + ‖u‖‖v‖ + ‖v‖2

)
‖v‖

≤ ‖u − v‖(‖u‖3 + ‖v‖3 + ‖u‖2‖v‖ + ‖u‖‖v‖2),

where in the last inequality, we have used the fact that |‖u‖ − ‖v‖| ≤ ‖u − v‖. Hence, the source
function f w.r.t. the third variable is a locally Lipschitz function with Lipschitz constant k(M) =
‖u‖3 + ‖v‖3 + ‖u‖2‖v‖ + ‖u‖‖v‖2 for all ‖u‖, ‖v‖ ≤ M. Obviously, k is an increasing function in M.

Let us call ε > 0 the noise level. We define by

Mε := 3

√
1

16
ln(ln(

1
ε

)).

Notice that, the condition supt∈[0,T ] ‖u(t)‖ ≤ Mε in Theorem 2 fulfills when ε ≤ 10−3; but our numerical
experiments also cover the case ε > 10−3. More precisely, we shall choose the noise level ε ∈
{10−1, . . . , 10−6}. Obviously, Mε > 0, Mε → ∞ as ε → 0 and k(Mε) ≤ ln(ln(ε−1))/4. See Table 1 for
the value of Mε corresponding to different noise levels.

Now, we define a sequence fε that approximates f by replacing the value f (u) when u stays outside
the unit ball B(0,Mε) by the value of f on the boundary of B(0,Mε), i.e.,

fε(u) := f

(
min

(
1,

Mε

‖u‖
)

u

)
.

Lemma 2 shows that fε is a globally Lipschitz function with Lipschitz constant kε = 8M3
ε .

To define the measured data ϕε, we shall perturb the exact data ϕ with a random noise, which is
uniformly-distributed random numbers on the interval (−1, 1)

ϕε(x) := ϕ(x) +
ε√
π

(2 ∗ rand − 1).

It is easy to see that ‖ϕε − ϕ‖L2(0,π) ≤ ε.
Under the noise level ε > 0, Theorem 1 proves the existence and uniqueness of a solution uε,

which is implicitly defined by this formula

uε(x, t) = S ε(t − T )ϕε(x) −
∫ T

t

S ε(t − s)B(ε, s) fε(s, x, uε(x, s)) ds,

where S ε is the perturbation of S (t), and is defined by

S ε(t)v :=
N∑

n=1

(ε + e−Tλn)
t
T (φn, v)φn, ∀v ∈ H,
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and

B(ε, s)(v) :=
N∑

n=1

(1 + εeTλn)
s
T −1(φn, v)φn, ∀v ∈ H.

Since for all v ∈ H, it holds that

S −1
ε (s − t)B(ε, s)v = S −1

ε (T − t)S (T − s)v,

this implies

uε(x, t) = S −1
ε (T − t)ϕε(x) −

∫ T

t

S −1
ε (T − t)S (T − s) fε(s, x, uε(x, s)) ds, (26)

To numerically solve uε from (26), we shall discretize the space interval [0, π] and the time interval
[0, 1] by equi-distant grid points xi = (i − 1)Δx, i = 1, . . . ,Nx + 1,Δx = π

Nx
and t j = ( j − 1)Δt, j =

1, . . . ,Nt + 1,Δt = 1
Nt

respectively, and find an approximation ui, j of uε at (xi, t j). In this example, we
choose Δx = 0.1 and Δt = 0.1. From the discrete viewpoint, the L2(0, π)-norm will be replaced by the
root-mean-square deviation (RMSD)

‖u(·, t)‖L2(0,π) ≈
√√

1
Nx + 1

Nx+1∑
i=1

|u(xi, t)|2.

As a consequence, the inner product of L2(0, π) can also be approximated by

(u, v) ≈ 1
Nx + 1

Nx+1∑
i=1

u(xi)v(xi).

The integral, on the other side, will be calculated using the extended Simpson formula, that is∫ tNt+1

t1

w(t) dt ≈ Δt

⎛⎜⎜⎜⎜⎜⎜⎝3
8

w(t1) +
7
6

w(t2) +
23
24

w(t3) +
Nt−2∑
j=4

w(t j) +
23
24

w(tNt−1) +
7
6

w(tNt
) +

3
8

w(tNt+1)

⎞⎟⎟⎟⎟⎟⎟⎠ .
Now, we are in a position to give the iterative formula to define uε

uε(k+1)(xi, t j) :=
N∑

n=1

(ε + e−Tλn)
t j
T −1φn(xi)

(
(φn, ϕε) −

∫ T

t j

e−(T−s)λn(φn, fε(s, ·, uε(k)(·, s))) ds

)
where i = 1, . . . ,Nx+1, j = 1, . . . ,Nt+1, k ≥ 1 and the initial guess uε(0)(xi, t j) := sin(xi). The stopping
criterion is when the root-mean-square deviation between uε(k+1) and uε(k) is less than ε20.

The regularized solution Uε will take the same value as uε for large t, and will be regularized as
follows when t is near 0.

Uε(t) := uε(max(t, tε)), t ∈ [0, 1],

here tε is the unique root of the equation ε
t
2 − t = 0 as in Lemma 3. Notice that, the value of tε

decreases as the noise tends to 0. See Table 1 for the value of tε corresponding to different noise
levels. The error estimates between the exact solution and the numerical solution Uε at different time
when N = 18 are given in Table 2. Comparing the error estimates in Table 2 at t = 0.6 and t = 0,
we see that the convergence rates become worse and worse when time is close to 0. This reflects the
behavior of the rate of convergence in Theorem 2. This phenomenon is also illustrated via the figures:
in Figure 1, when t = 0.6, the numerical solution slowly converges to the exact solution when the
noise tends to 0, whilst in Figure 2, when t = 0, the smaller the noise level, the larger the deviation of
the numerical solution from the exact solution.
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5. Conclusion

In this paper, we have considered the problem of finding a function u satisfying the nonlinear
parabolic equation ut + a(t)Au(t) = f (t, u(t)) subject to the final condition u(T ) = ϕ, where f is a
locally Lipschitz function w.r.t. u. This is an ill-posed problem, and we have suggested a regularized
scheme using quasi-reversibility method to construct the regularized solution uε from the measured
data aε and ϕε. Error estimates of logarithm type are given, which explain the slow convergence rates
illustrated in figures 1 and 2.
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