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1. Introduction

In the classical Newtonian mechanics, the motion of a particle can be described by Duffing equation

2" +V'(z) = p(t), (1.1)
where 2/ = (cil_f The question of the boundedness of all solutions is the famous Littlewood’s problem, which
was investigated by many authors since 1960s. For example, several authors considered the question with
superlinear potentials, see [7,13,23,30-32] and the references therein. The sublinear case was studied in [12,
17,29], and the results about the boundedness or unboundedness of all solutions of the semilinear equation
can be found in [16,25,26] and the references therein.

Recently, in particular, attention has been devoted to singular potentials. In this framework, we refer to
the papers [4,15,18]. In [4], the authors studied a second order scalar equation (1.1) with a singular potential
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1 1
V)= =22 + ——— — 1,
(m) 2x++ (17‘%2_)7
where v is a positive integer, x4 = max{z,0}, and z_ = max{—=, 0}, and found some sufficient conditions

on V, p such that all solutions are bounded, also obtained the existence of Aubry—Mather set.

On the other hand, in the last years, relativistic oscillator models also have been considered by several
authors. First of all, let us introduce this model. In relativistic mechanics ([9]), the quality m of a particle
in motion increases as the speed increases, that is,

where mg is the quality at rest, ¢ is the light speed and m is the quality at the speed of v. Thus the

momentum can be written in the following form

where f(z,t) is an external field. After normalized by mo = 1, ¢ = 1, the equation can be written in the

d x
7 (W) = f(z,1),

where ' = v is the speed of the relativistic oscillator. Recently, the stability of the equilibrium of relativistic

form

oscillators had been studied in [5], and the existence of periodic solutions also had been investigated by
many authors, see [1-3,6,8,20,22,27] and the references therein.

In the relativistic framework, the motions of relativistic oscillators with the potentials are described by
the following form

d x’ b
T (m) + V'(x) = p(t). (1.2)

As far as we know, there are not too much results on the Littlewood’s boundedness problem for oscillators
with relativistic effects.
When taking a harmonic potential, namely, V() = 22, (1.2) can be written in the following form

=4
V1+y?
Yy =—x+p(t),

which is equivalent to
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/! y /
Y+ e = p/(t
V1+y? (

Wang ([28]) proved the boundedness of all solutions and the existence of quasi-periodic solutions.
The general case was considered in [19]. In [19], the authors investigated the Littlewood’s boundedness
problem to the relativistic oscillator with anharmonic potentials
V(z) = L|az|0‘+1 a>0
@ + 1 ) )
and the result also holds provided the 1-periodic function p € C°.
In [21], the author was concerned with the dynamics of the differential equation

d ! .
7 (1_7W> +asin z = f(t),

and applied KAM theory to prove that all solutions have bounded momentum and obtained the existence
of quasi-periodic solutions in a generalized sense.

In this paper, we extend the Littlewood’s boundedness problem to the relativistic oscillator with the
singular potential same as in [4], that is,

V(z) = lxi + ﬁ —1, (1.3)

where v is a positive integer. The main result of this paper is as follows.

Theorem 1.1. Assume that the singular potential V is given by (1.3) and the external force p(t) € C5, is
1-periodic in t, then every solution of (1.2) with the initial value (xg,x(), To > —1, z € R, is bounded.
More precisely, if x = x(t) is a solution of (1.2) with the initial value (xo,xy), xo > —1, x, € R, then it is
defined in (—oo, +00), and satisfies

—1 < x(t) < +oo, suplz'(t)] < 1.
teR

Furthermore, (1.2) has infinitely many quasi-periodic solutions.

The proof of Theorem 1.1 is based on Moser’s twist theorem ([10,11,24]), and the process is similar to
that in [19]. On the other hand, since the Hamiltonian function in (1.2) not only possesses the quadratic
character in z > 0, but also has the singularity at x = —1, we have to adopt some estimate techniques from
[4,13,19]. After some changes of coordinates and canonical transformations, the associated Poincaré mapping
possesses the intersection property and satisfies the corresponding smallness estimates, then Moser’s twist
theorem can be applied, and thus the invariant closed curves exist, which implies the boundedness of all
solutions and the existence of infinitely many quasi-periodic solutions.

The rest of this paper is organized as follows. After introducing action and angle variables, we state some
important estimates in Section 3. Because of the complexity of these estimates, we shall show the proofs in
Sections 5, 6. In Section 4, we firstly exchange the role of time variable and angle variable, then introduce
some canonical transformations, thus obtain the corresponding Poincaré mapping and Theorem 1.1 can be
proved by Moser’s twist theorem.

2. Reduction to the action-angle variables

In this section, we carry out the standard reduction for (1.2) to the action-angle variables.
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Firstly, define a function ¢ : R — (—1,1) by

Y

d(y) = 7@

The primitive function of ¢ is

Y

3

Oly) = | ——=—==dE =/1+y>—1,
0/\/1+£2

and the inverse function of ® is

o(x) = Va2 +2z.

/

Let y = , then (1.2) can be rewritten into

/ Yy

RVl

y = —V'(x) +p(t),

which is a planar Hamiltonian system

OH
[
r = ay (l’,y,t),
OH
I -
Yy = 6.23 (.’E,yﬂf)

with
H(z,y,t) = ®(y) + V(z) — 2 p(?).

Consider an auxiliary system

7 = Y
V1ity?
y/:_V/(:E),

which is an integrable Hamiltonian system with the Hamiltonian
hz,y) = (y) + V().
For every h > 0, denote by Ip(h) the area enclosed by the closed curve
Tp: h=3o(y)+ V(x).
Let —1 < —ay, < 0 < By, be such that
V(=an) = V(Ba) = h.

That is,

1427
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1\~
ap = 1_(1—|——h> 5 Bh:\/ﬁ

Thus
For every h > 0, let

and

I_(h) =2 / (b — V(€))dE,

then
Moreover, we define

and

Br

Ty (h) == I'.(h) = 2/ h=V(©+1

| en—vie)

0
rw=rm=2 [ LEE0E

—Qp

de.

Note also that T,"™ (k) = I" "V (k) for all n > 1.
Now let us construct the mapping ¥y : (x,y) — (6,1) by

I(iE, y) = Io(h((E, y))?

and
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T_(h) V
2T (h) / df, x>0,y >0,
T_(h)
1_2T0h Toho/ df, x>0,y <0,
O(x,y) = (2.3)
1 / VIO + 1 x <0,y >0,
2T—(h)7a o(h =V (¢ ))
1 [ h-V(E)+1
— d
Carm | o vie re0ysh

where
h=h(z,y) =2(y) +V(z).

Since the mapping ¥, is symplectic, in the new variables (6,7), system (2.1) is also the Hamiltonian

system
g O
., 3§ - (2.4)
00
with

H(0,1,t) = h(I)+ Hy(0,1,1),

where h(I) is the inverse function of I = Iy(h), H1(0,1,t) = —x(0,I) p(t), and x(0, I) is determined by the
mapping Ug.

3. Some estimates on Iy(h), h(I) and H,(0,1,t)

In this section, in order to apply Moser’s twist theorem to prove the existence of invariant closed curves,
we shall give some estimates on the functions Iy(h), h(I) and Hy(0,1I,t) for h or I large enough. For this
purpose, we first list the properties of the singular potential V. Let us define the function W : (=1, 4+0c0) — R
by W(x) = “//,(—(Z)) It is easy to see that for z > 0, W(z) = 2z, and W'(z) = 1, W (z) =0, k > 2. In
the following lemma, we give some estimates on V' (z) and W (z) for —1 < z < 0. Although this lemma can
be found in [4], here we prove it in detail for the reader’s convenience. We denote different constants by
0 <c¢<1and C > 1 in different places through the paper.

Lemma 3.1. For any h > 0, the inequality
l(an + )V (2)] < |h =V (z)|, —ap<z<0 (3.1)
holds, and for x € (—1,0), the following inequalities are also true:
(1+2)k" 1}v<k ’<C[|V()|+(1+x)k’1], k> 1, (3.2)

WEISCO+a), - W<y,
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‘W(k)(x)’ <C,  k>2 (3.4)
Proof. Firstly, we prove inequality (3.1). Recall that
Vie)=1-2H)"-1, —-1<z<0.
Then
V'(z)=2yzx(1-2*)7"1 <0, —-1<z<0,
and
V' (z) =291 —2?) 7 4 29(y + D21 — 2772 >0, —-1<z<0,

which implies that the potential V' in the interval (—1,0) is monotonically decreasing and convex. Therefore
inequality (3.1) is equivalent to

—(ap +2)V'(x) <h—-V(z), —ap<z<0.
Set g(z) == h — V(z) + (ap, + z)V'(z). Since ¢'(z) = V" (x)(ap, + x) > 0, then g(x) > g(—ap) = 0 for
—ay, < x < 0. This finishes the proof of (3.1).

Next let us consider inequality (3.2). Clearly, (3.2) holds for k = 1. We rewrite V'(z) and V"' (z) (-1 <
x <0) as

V'(z) = 2y2(1 =) 7 (1 +2) 777,
V() =29(1 — )71 (1 +2)7 1 + 29y + Da(l — 2) 31 + 7)1
—2y(y+ Dz(l —z) "1 +2)7 2

Thus, we have

(L4 )V (@) = 2y(1—2) 7 (1 4+2) 7" + 29(7 + Da(l —2) 7> +2)
— 2y + Dl —2) 1+ 2)

The second term and the third term in the expression of (1+x)V"(z) can be bounded by C'|V'(x)|. As for

the first term, when z € (—1,—1), we have

291+ 2)(1-2)7 T 1+ 2) 7 <V (@),
and when z € (—1,0), we get
29(14+2)(1 —2) 71 +2)7 7 <427F2(1 4 ),
which together imply that for —1 < z <0,

29(1 —2) 7M1+ 2)7 <O (V' ()| + 1+ z).

Thus we have finished the proof of (3.2) for k = 2. By Leibniz formula, differentiating V'(x) with respect
to x by k — 1 times, one can prove (3.2) for k > 2.
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Thirdly we prove inequality (3.3). For z € (—1,0),

(12?1 - (1 - 2%))
2vx

W(x) =

Since

_ _ 2\
Tl Gl LY
z—0 2vx

then
W(z)| <C(1+xz), =ze(-1,0).
Finally we estimate W'(z). Also,

Wi(x)=1-p(), -1<z<0,

where
() = % 1-(0- 952)7]; + (27 + 1)2?]
B %[1 + (L =a?) o (L= 2?) [ (29 + 1)),
Therefore

1
pla) < ooy 2y +2)=7+1,
B
which implies that

W' (x) > —~.

Next we prove W'(z) < 1. If v = 1, then ¢(z) = 1+§’“'2 > 1 and (3.3) holds in this case. For v > 2, since

o(—x) = p(x), we consider 0 < z < 1 instead of —1 < z < 0. A direct computation yields that

, 2[-1+ (1 —2?) +92%(1 — 2%)7 +v(2y + D)z (1 — 2?)7 7]
2y¢'(x) = p :
Let

P(x) = =1+ (1 — 2B +y2%(1 — 22) + 2y + Da*(1 — 2L
Then

V(@) = 29(y + 1)a’(1 - 2?)772[3 = (29 + 1)a7,

_3 _3
2v+1° 2v+1°

¥(0) =0, ¥(1) = —1, then ¢(x) first increases in the interval (0, ) and then decreases in the interval (z, 1)
for some 7 € (0,1). By ¢(0) = %, ¢(1) = VT‘H, we know that o(z) > 3 for 0 < z < 1. Consequently,

2
—y < W'(z) < % Thus we have finished the proof of (3.3). The inequality (3.4) can be proved easily by
noticing that W’ (z) is a polynomial. O

which implies that the function ¢ (z) increases for 0 < = < decreases for 1 > z > Since
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Lemma 3.2. For all h large enough, the following inequalities are valid:

ch? <I.(h)<Ch?, ch<I_(h)<Ch, ch® <Iyh)<Ch3,
ch 1 () < 1)y <ch 1 (h), TP <Ch ™ I_(h), k=1,2,
ch™*Io(h) < I8P (h) < ChFIg(h), k=12,
Iy < ch*r(h), 1% () <Ch ™ I (h), 3<k<9,
1Y (W) < ChFIo(h), 3< k<0,

The proof of the lemma is very complicate and we postpone it in Section 5. Although the following lemma
was obtained in [13], we restate it here for the reader’s convenience.

Lemma 3.3. If a real function o(z) satisfies |o™ (z)] < Cax~™p(z),1 < m < k and ¢'(z) > =~ p(x) for
all = large enough, then the inverse function ¢ = ¢~ satisfies ™ (y)| < Cy~™(y),1 < m < k. If,
moreover, |¢"(z)| > ca™2p(x), then [ (y)] = cy™*Y(y).

Applying Lemma 3.3 to h(I), by Lemma 3.2, it is easy to obtain the properties of h(I), here h(I) is the
inverse function of Iy(h).

Lemma 3.4. For all I large enough, the following inequalities hold:

In order to obtain the estimates of Hy(0,I,t), we first give the estimates on z (0, I).
Lemma 3.5. For all I large enough and 0 € S', we have

072(0,1)] < C T *2(0,1), >0, 0<k<7,
|0Fz(0,1)) <CT*[1+2(0,1)], <0, 0<k<T.

Taking into account the complexity of the proof process, we put it as a separate section. The following
lemma gives the estimate on the perturbation term Hj.

Lemma 3.6. For I large enough and (0,t) € T2, the perturbation term Hy possesses the following estimates

0:00 05 Hy(0,1,8)| < C 175, k=0,1,
v
(h—V(z)+1)3’

V(@) +1+a
(h—V(z)+1)3

0107 07 H(0,1,1)] < C T~
000092 H(0,1,1)] < C 173
where 0 < i <7,0< 5 <5, and h=nh(I), v =x(0,1).

Proof. Let us consider k = 0 first. Hy (6, I,t) = —2(0, I) p(t) yields that 90! H, (6, I,t) = —dx(6, I)pW)(t).
On one hand, if x > 0, by Lemma 3.4 and Lemma 3.5, we obtain
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0000 Hy(0,1,1)| = | — 9ia(0, )pD) (8)] < C T35,
On the other hand, if < 0, by Lemma 3.5, we also have
810! Hy (0,1,1)] = | — 95z (0, NpWD ()| < C T (1 +2) < CI,

which completes the proof of this lemma in the case k = 0.
Now we prove this lemma for £ = 1. First we remark that the closed curve I'}, is symmetric with respect
to xz-axis, we only need to prove the conclusion in the cases: x < 0,y > 0 and x > 0,y > 0, which correspond
T_(h) T_(h) 1 :
to0 <6< 5To (1) and o) < 0 < 5, respectively.
The definition of 6 leads to

p(h = V(z))

zg = To(h) - h—V(@) 1

which implies that

i oj _ k [ plh=V(z)) j
010]0pH1(0,1,1) = — k%;icm 91To(h) - 07 (m pI(t).

Here we use Leibniz formula and C; is a constant depending only on k,[. By Lemmas 3.2 and 3.4, it follows
that

D5 To(m) = | > Cryen, TS (WO R 0k
it tko=k

<C Y BT b TR R
kit tks=k

< CIMTy(h)| < CTM5,

here we use Bruno formula and Cj,...,,, is a constant depending only on ky,--- , ks.
Also by the proof process of Lemma 3.5, we have

(PR (i) ser

Thus,
101070 H,(0,1,t)| < C I,

which leads to completeness of the lemma in the case k = 1.
Finally we prove this lemma under the case k = 2. Similarly, let us first consider z > 0, y > 0. Differen-
tiating (3.5) by € on both sides yields that

—4(To(h))? - V'(x)

9201 =~ T

which implies that

& OH,(0,1,1) = —4(To(h))? - V'(x)

h—V(x) £ 1)° ).
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From Lemmas 3.2, 3.4 and the proof process of Lemma 3.5, we obtain

0F(To(m)?| = | Y Crars 07" To(h) - 07> To ()

ki1+ko=k

<C Y IMTy(h) - TRTy(h)

k1+ko=k

< Ik,

07V (2)] = || < CTH5,

8,,—1
T(h=V(2)+1)?
1
=| X Con 7501 (h=V(@))--- 07" (h = V(2))
pit-+ps=p (h=V(z)+1)
1
<C Z I e
p1te+ps=p (h=V()+1)
S CIPp. 1

(h—=V(x)+1)3

Consequently, it follows that

_ k 2 glyray. P~ ()
) ‘Clclp O (To(h))” - 01V'(x) - 0] h—V@) + 13 P (t)
k+Il+p=1i
2 1 1
<C ks -ty -
< E — 3
el (h—=V(z)+1)
é CI—i-i—l . 1

(h—V(x)+1)3

As for the case x < 0,y > 0, similarly we have

—4(To(h))* - V'(x) D

O OFHL(0,1,1) = Vi 717 (t).

By Lemmas 3.2, 3.4 and the proof process of Lemma 3.5, we also obtain

08 (To(h))?| < C T3,
1
(h—=V(x)+1)3

1

% (h—V(z)+1)3

< CcIP.

Meanwhile, according to Lemma 3.1 and 3.5, one has

oV (@) =] Y Ch, Ve (@)oo

li+-+ls=l

<c D WE@Irthta) I+ )
L=l
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<Oy T (V@) + (1 +2)*)
< OI_‘l(|V’(m>| +1+ ).

Therefore we obtain

V'(z)|+1+ =

i 57 52 <orE. T T
010/ 05 H1(0,1,1)] < CI (h— V() +1)%

Thus we complete the proof of this lemma. 0O
4. New action-angle variables and proof of Theorem 1.1
We remark that H(0,1,t) = h(I)+ H1(6,1,t). It is easy to see that for I large enough
OrH =W (I)+ 0, Hy(0,1,t) >cI 5 —cI™5 >0.
Then by implicit function theorem, there is a function I (¢, H,#) such that
I(t,H,0) = In(H) + I, (t, H,0). (4.1)
From the definition of I(¢, H, ), we have H = h(I(H)) + H1(I(H)), and

I,(H)

Iy(H — Hy) — Iy(H)
1

—I,(H)H, + /(1 — 8)I)(H — sH,)H?ds,
0

(4.2)

where we treat H as the independent variable and 6, I as parameters. Therefore, for simplicity, here and here-
after, we use the symbols I(H), I (H) instead of I(¢t, H,0), I, (t, H,0) respectively. Then (2.4) is equivalent
to

dt ol

@_a_H(thag)y 43
dH 01 -
a9 ot "

with the Hamiltonian I = I(t, H,#) and the action, angle and time variables are H, t, 6, respectively.
The following lemmas give the estimates on the new perturbation term I;. The proof is similar to the
proof of Lemma 3.1 in [14].

Lemma 4.1. For H large enough and (,t) € T2, the perturbation term I,(t, H,0) satisfies the following
inequalities

0%50]0K 1 (t, H,0)| < C H™'H1,
where 0 <1 <7, 0<5<5 k=0,1.
Proof. We prove this lemma according to the values of i, j, k.

Case (i) i = 0, j = 0, k = 0. Firstly, we estimate H(I) and I(H). By Lemma 3.4 and Lemma 3.6, we
have
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Wl

cI5 <cI3 —cIs <H(I)=h(I)+ Hy(0,1,t) <CI3+CIs <CI5.

Since I(H) is the inverse function of H(I), then we have

3
2

cH? <I(H)<CH?.

Now we estimate I1(H). From Lemma 3.6 and the estimate of I(H), we have

|H\(I(H))| < C(I(H))s < CH?,
\I,(H)H,| < C H 'Io(H) - H? <
|IJ(H — sH,)H?| < C(H — sHy) " 2Iy(H — sHy)H?

Therefore, (4.2) leads to
\I,(H)|<CH+CH? <CH.

Case (ii) 7 > 1, j = 0, k = 0. Differentiating (4.2) by H, we have
1

Oy li(H) = — Y Cop ISV (H)O Hy + 0 /(1 — $)IJ/(H — sHy)H?ds.
I+p=i 0

Since

OyHy = Y Cpyop, O HL(I(H))OG I(H) -~ 0% I(H),

piteps=p
then it suffices to show the following estimate:
0L I(H)| < CH™PI(H).
The proof of (4./). Differentiating I(H) = Io(H — H1(I(H))) by H leads to
I'(H) = Ig(H — Hy)[1 - H{(I(H)) - I'(H)],
which implies that

I I (H — Hy)
I'#H) = 1 +I{)(I;)’ — Hy\)H{(I(H))

Since

I§(H — Hy)H{(I(H))
= Io(H — Hi) - W (Io(H — Hy)) m

it follows that

<CH
<CH ?Iy(H)H <CH?=.
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, , | H{(I(H)) I
coWH —H)) _ (HE oy
I3 H

which implies that Ij(H — H1)H{(I(H)) — 0 as H — +o00, thus we have

I'(H) < 2I,(H — Hy) < C(H — Hy) "Io(H — Hy)
<CH 'Iy(H)<CH ' -H? <CH 'I(H).

Suppose that for p < k, (4.4) holds. Then the k + 1 derivative of I(H) possesses the following form

O I(H) = Y CuypdyIy(H — Hy)oGA,
l+p=k

where A = [1+ I}(H — Hy)H}(I(H))]~%.
Firstly, let us prove |04 15(H — Hy)| < C H-'I{(H — H;). By Lemma 3.4 and the above assumption, we
deduce that

|0 (H — Hy)
= [0 h(I(H))]

—| S Cupr, O Ho(L(H) O I(H) - - 95 1(H)
byt tle=l

<C > (I(H) *h(I(H)H"I(H)---H“I(H)
Lhi++ls=l

< CH 'Hy(I(H))

<CHYH - H)).

Hence, by Lemma 3.2 and the above inequality, we have
|0 1o(H — Hy)

= > Ciea ITV(H — H)OG(H — Hy) - 0 (H — Hy)
L4 Hl=l
<C Y (H-H)Ij(H-H)H"(H—-H) --H"(H- H)
4ol =l
<CH'I\(H - Hy).

Next, we prove |05, A| < C'H™P. From Lemma 3.6 and the above assumption, we get
|05 H{(I(H))|

=| > Cupn, HEPVU(H)OGI(H) - 037 T(H)

nit+-+ns=n

<Cc Y @) Ot gTmIH) - H T I(H)

ni+--+ns=n
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<CH "(I(H))™5
<CH™"™,

which implies that
|03 [1 + Io(H — H1)H{(I(H))]]

=| > ConOFI(H — H)OEH{(I(H))

m—+n=p

<C Y H™I(H-H) H "

m+n=p
<CH P 'I)(H—-H) <CH P '(H - Hy)?
<CH™P'. H:<CH™.

Since Ij(H — H1)H{(I(H)) — 0 as H — 400, then we have

N
= > G L+ IHH - HYH{I(H)

R

Op 1+ Io(H — Hy)Hy (I(H))]

SO Z H Pr... HPs
pit-+ps=p

<CH™,
which leads to
O I(H) <C Y H'Ij(H—Hy)-H?<CH *Ij(H— Hy)
p+i=k
<CH"H-H))>*<CH *H>
<CH *VH: <cH-FD1(H).

The proof of (4.4) is completed.
Now we estimate I;(H). First we remark that

Oy H\|<C > (I(H)"*S - H P I(H) - HOPI(H)

p1tps=p

< CH "(I(H))" <CH P,

and

STVt | <o Y BT (H)H P
l+p=i l+p=i

<CH " 3Iy(H) < CH
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Therefore, in order to get the estimate of 9%.1;(H), according to the expression of 911 (H), we also need
to estimate the following term

1

1
0% /(1 — 8)IY(H — sH,)H?ds = /(1 — 8)0%4 (I (H — sHy)H?)ds.
0 0

Since

Oy (If (H — sHy)HY) = > Ci, 0 I(/(H — sHy) 0% Hy,
l+p=1

we need to estimate 0% I)(H — sHy) and 0% H? respectively. From Lemma 3.2 and the previous proof, we
obtain

I (H — sHy)| < C(H — sHy) U2 Iy (H — sHy)
<CH U (H)<CH 2,
057 (H — sHy)| = |0 [(H — Hy) + (1 — s)Hi]|
< |0F (H — Hy)| + C|0 H |
<CH ™H-H))+CH ™3
<CH ™' yOoH ™ <OoH M

which implies that

|05 16 (H — sH))]

—| Y Gl WU = sH)O}(H — sHy) - 0l (H — sH))
Iy 4eetlg=l
<C Z g% . g—htl. . pglatl
Iyt tlg=l
<CH 3,
Since
ap H1| = Z Cpips aleH18€;H1
p1+p2=p
< C Z H—P1+% _H—Pz-l-%
p1+p2=p
< CH P,

then it follows that

1
oy / (1—s)If(H — sHy)H}ds| <C > H™'=2 g7 < CH ™3,
0 I+p=i

Therefore, we obtain
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041 (H)| < CH "
Case (iii) ¢ > 0,7 > 1, k =0. From I, (H) = Io(H — H1) — Io(H), we deduce that
0.1y (H) = I)(H — Hy)(—0,Hy — 0 Hy - O,I(H)).
Since I(H) = Io(H — Hy), then 0.I(H) = 0,1, (H), which leads to

—O0Hy - I)(H — Hy)

Oli(H) = 1+ 0rH,y - I (H — Hy)

= —0,Hy - 9 I(H).

By Lemma 3.6, differentiating H; with respect to t does not change the power of I, thus so is I;.
Case (iv) k = 1. Since OpI1(H) = —0pH; - OgI(H), according to Lemma 3.6, one can easily prove this
case. 0O

Lemma 4.2. For H large enough and (0,t) € T2, the perturbation term I,(t, H,0) satisfies the following
inequalities

[N

. . 2
|8%,0) 021, (t, H,0)| < CH™? (H + (H—) , x>0,

h—=V(z)+1)3

. . 1 /
OO (1, H,0) < CH™ (Hz pglV@litlte ) |

(h—=V(x)+1)3
where 0 < i <7,0<4<5, and h=Hy(I(H)),x =x(0,1(H)).

Proof. Let us first consider x > 0. Differentiating the equality I(¢t, H(,1,t),0) = I with respect to 6 yields
that

OpI1(H) = —0pHy - Oy I(H),
which leads to

031 (H) = —0g0ply(H) - 0pH, — Oy I(H) - 03 Hy
— OuI(H) - 03I, (H) - 050, H,,
O O3 11 (H) = — |94 (On G011 (H) - 0pH1) + Oy (O I(H) - 93 Hy)

O I(H) - 8y (H) - aga,Hl)} .

Firstly, we estimate 0% (0g0pl1(H) - 99 H1). It is easy to see that

0% (00 H1)| =

Y. Coip. - 030 H\OR I(H)--- 8113?](11’)‘
p1-+-tpe=p

<C Y IYs.HPI(H)---H "I(H)

p1t++ps=p
< CHP. [%
<CH "t

Then we have
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|01 (O 0e Iy (H) - 0gHY )| = | > Cipp - 04 011 (H) - 0% (0p H1)

l+p=i

<C Z gD+ gpts
l+p=1i

<CH s,

Next, we estimate 9% (0l (H)-07 Hy). By Lemma 3.6 and the proof process of previous lemma, we obtain

0% O3H) = | Y Cppp - O503H - O I(H) - 0% I(H)
p1+e+ps=p
1
<C st - 00 gPir(H).-.-H P I(H
I e A
—p+3
<C a

— (h=V(z)+1)3

Then it follows that

|04 OuI(H) - 05 )| = | Y Cup- 0 1(H) - 9(95 Hn)

l+p=1
: 1
<C bz R0l 0 0 W 2 S —
= Z_ (H) V@) 1P
l+p=1i
H7i+2

RCET

Finally, we estimate 0% (0 I(H) - 9pI1(H) - 9901 Hy). From Lemma 3.6 and the proof of previous lemma,
we know

0% (0001 H) = | Y Copq, 07 0pHy - O I(H) - 03 1(H)
a1t +gs=q
<C Z [ (stD+3 H I(H)---H %“I(H)
g1+ +4s=4q
<CH .

Then we obtain
|04 (OuI(H) - 0p11(H) - 9901 Hy)|

=| > Cupg- O I(H) - 0%0p11(H) - 0f (9901 Hy)
l+p+q=i

<c Y HUVIH)-HP . H
l+p+q=i
<CH " 'I(H)

<CH "tz
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Therefore, we have

. , 1 H?
i 92 < —1 3 = @ ).
94,021, (H)| < CH (H + (h_v(m)ﬂ)g)

Differentiating 0%03 11 (H) by t does not affect the above estimate, thus we complete the proof of this lemma
inx > 0.
As for the case = < 0, similarly we have

OO 1y (H) = — |04y (0 Dy Ty (H) - 0 Hy) + O3y (0 I(H) - 95 H1)
+ O (Ou I(H) - 9L (H) - 0p0r H1)
Let us estimate 9%, (0 0pI1(H) - 9 Hy) first. By Lemma 3.6, we still know
0%, (g Hy)| < C HP*3,
Then we have
0% (00911 (H) - 9gHy)| < C H 3.
Next, we estimate 0% (OyI(H) - 93H,). By Lemma 3.6 and the proof process of previous lemma, we obtain

O@RH) = | S Cpap, - O503H, - O I(H) - 9 I(H)
P1+-+ps=p
!
<C Z 5t MH—IHI(H) ~-H P I(H)

_ 3
prt+e+ps=p (h=V(z)+1)

V)| +1+2
(h—V(z)+1)3

< CH*IH’l

Then it follows that

|03 (O I(H) - 95 H\)| = | Y Cup - O I(H) - 0%(95 Hy)
l+p=1
g V@I 414

<C Z H=UD 1) V@I IP

l+p=i

iz V(@) |+ 1+
< Z+2"—,
scH (h=V(x)+1)3

Finally, we need to estimate 0% (OgI(H) - OgI1(H) - 9901 Hy). From Lemma 3.6 and the proof process of
previous lemma, we still have

|0%; (001 Hy)| < CH 91,
Then we obtain

0% (OuI(H) - 8911 (H) - 9901 Hy)| < C H 3.
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Therefore, we have

!/
03 cop-i(gty gV @Ir1re
04031, (H)| < C H (H T )

By Lemma 3.6, differentiating 94,051, (H) by t yields that the same estimate holds. Hence we have finished
the proof of this lemma. O

We remark that the Poincaré mapping corresponding to the new Hamiltonian system is far from a small
perturbation of the standard twist mapping. Hence we cannot use Moser’s twist theorem directly and now
introduce a canonical transformation.

Lemma 4.3. For H large enough, there exists a canonical transformation
\Ill : (7A-7p) — (th)a
which transforms (4.1) into a new Hamiltonian

H(’]A—apa 0) = HO(pv 9) +H1(7ﬁap30>’ (45)

where

1
Ho(p.0) = To(p) + [1)(p.0). [11](p.0) = / L1(s, p. 6)ds,
0

and the new perturbation H, satisfies
|0,00H1(,p,0)| < Cp 2,

i 5l (4 o=l IS p2
|060,0LH1 (T, p,0)] < Cp (p + (h_v(w)+1)3> : x>0,

z <0,

- ~ —q 1 VI +1+
0,0 7,000 < (o4 pe i IS,

(h—=V(x)+1)3

where 0 < i < 6,0 < j <5, and h = h(I(¥1(7,p),0)), x = x(0,I(V1(F,p),0)) are determined by the
mappings Vo, Uy.

Proof. We define a time-dependent canonical transformation
\Ill : (%7p) = (th)

as

oG oG
Pt o bp0) 7=t 5 (0, 0),
where G will be determined later. Under this transformation, the Hamiltonian system (4.1) is transformed
into a new one
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H(%, P, (9) = Io(p + 8tG) + Il(t, P+ 0:G, 9) + 09G
1
Io(p) + I(')(p)&gG + /(1 — S)I(l)l(p + s@tG)(atG)zds =+ Il (t, P, 9)
0

+ /BH_Tl (t7 1% + s@tG, G)GtGds + 89G

= HO(P» 9) + IH1(7A',P, 0) + I(/J(p)atG + Il(tvpv 0) - [Il](p, 9)7

where

1
Ho(p,0) = To(p) + [11)(p,0), [11](p,0) :/Il(s7p7 0)ds,
0
(7,p,0 (1 —8)I}/(p + 50;G)(0,G)?ds
-/

1
+ /aHh (t, p + $0:G,0)0:Gds + 9yG.

Now we need to find G(¢, p, ) such that

Iy(p)0G + Li(t, p, 0) — [11](p, 0) = 0.

Thus it is easy to get that

Glt.p.0) = [ 7 ([1)(6.0) = Iis,p.0))ds,

By Lemma 4.1, we have
000105 Gt p,0)| < Cp~i*3, i+j<5, k=01 (4.6)

In particular, |0,0,G(t, p,0)| < C’p’%. Then we can solve ¢t = (7, p,0) from 7 = ¢ + ap (t, p,0). Moreover,

we obtain
000205t < Cp~i72, i+ <5, k=01 (4.7)
By (4.6) and (4.7), one can easily obtain the estimate of the new perturbation H;. O

After the canonical transformation, we observe that the new perturbation term 7, is still not small.
Therefore we must perform another transformation in the similar way.

Lemma 4.4. For p large enough, there exists a canonical transformation

\112 : (T’ :U’) = (%ap)a
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which transforms (4.5) into a new Hamiltonian
\7(7—7#’0) - jO(:“‘ao) + \-71(7—7“’0)7 (48)

where

Jo(p, 0) = To(p) + [11] (1, 0) + [Ha] (1, 0),

and the new perturbation J1 satisfies

o i p
007 H <Cpu |14 —"-—"———= 0
| " 7-\71(7-’“7 )‘ = M < + (h—V(.’E)—i—l)g)’ x > )

V'(z)] + 1 +x>

9.0] ) < Cu™ (14 ps-
| o Tj1(7—71u7 )‘ = M ( +M (h—V(fE)-l-l)?)

where i+3j <5, and h = h(I(¥10Wa(T,p1),0)),x = (0, [(¥10Vs(7, 1),0)) are determined by the mappings
W;(i=0,1,2).

Now system (4.1) is changed into the following form

dr
@ :aujo(/lge)"i'a‘ujl(’rvﬂ?e)v ( )
4.9
du
@ - 8Tj1(T>Na9)'
Define the transformation W3 by
1
A= /Bujo(u, s)ds, T=1, 6 =10, (4.10)
0
then system (4.9) is of the form
dX
@ = fl(Ta)‘va)a
(4.11)
dr

@ = A+f2l(TaA56> + f22(T’ A’e)’

where

1
ﬁh%@=—&%hm@/%ﬁ%®w
0

1
M@mm:m%wmf/m%wgw
0

Jaa (T, A, 0) = 0, T (T, 1, 0).

By Lemma 3.2 and Lemma 4.4, it follows that
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L0 f1 (r, 0, 0)] < C A~ (A‘l + W) , v >0,
10000 f(r A, 0) < C A A1+‘W iiﬁf) z <0,
0307 fa1 (1, A, 0)| < C AT,

|@Wﬁﬂ7A9<0Aﬂ(A2+ 1)+D> x>0,
18509 fon (7, , 6) (A +A*‘W&Aiiﬁf> v <0,

where

@ =a(1,),0) = x(6, (Y1 0 Uy 0 U3 (X, 7),6)),
h=h(1,\,0) := h(I(¥; 0 Uy 0 T3 (N, 7),0)).

Let (A(0, 70, o), 7(0, 70, Ao)) be the solution of (4.11) with the initial value (79, Ag) at 6 = 0. Integrating
(4.11) from 0 to 0 yields that

A0, 70, Mo) = Ao + E1(0, 70, Xo),
7'(9,7'0,/\0) =170 + )\09 + E2(0,7—07)\0),

where

0
E (0 7'0,)\0) = /f (7-(9 7'0,/\0) /\(G,To,/\o),g)de,

0
2(0,70, Xo) = / E1(0,70,X0) + f21(7(68, 70, Xo), A(6, 70, Xo), 6)
0

+ faa(7(0, 70, Ao), A(0, 70, Ao), 8) | dO.
In order to obtain the desired estimates on E1(1, 79, Ag), E2(1, 70, Ao), we first prove the following lemma.

Lemma 4.5. For Ay large enough, the following inequalities

V()|
(h—V(z)+1)3

[o- 7757 | U= 75051

1
do —1-1
- < A 2
/(h—v<w>+1>3—c 0
0

hold, where C' is independent of Xy, and

do < CN\*,

= IE(97TO’ )\0) = :E(T(@,To, /\0), )\(9,7’0, )\0)7 0),
= h(a,To,Ao) = h(T(G,T@,)\o),A(a,To,)\o),e).
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Proof. The second inequality had been proved in [19]. Now we are going to show that the first inequality
holds. We first observe that

1
H(‘T7y7t) :(I)(y)+ (1_1;2),}/ _1_‘Tp(t>7
which implies that
1 1
— | <CH <CH~
‘(1—952)7 s CH, 1 — 22 ¢

We also remark that A is corresponding to the initial Hamiltonian H, and the definitions of ¥;(i = 0,1, 2, 3)
implies that H ~ O()\2) as A\g — +o00. Hence there exist two constants ¢ and C such that

A2 < B(y) +V(z) < CN

which leads to

2

V'(2)| < CHYS <oxT.

Let E = {9 € [o, QTT‘O—((hh))] Ull- Z(h) 1] : y(8, 70, Ao)| < )\(1)+5} with % < ¢ < 1. Let us first consider

2To (h)’
6 ¢ E. In this case we have

< C,)\as(wé) < 0)63735.

(1+y2)3
Then it follows that
V/ 2 —1— 2
%C@ <ONFTEAT <oNTTT <ot

T_ (h) T_ (h)
(0 25y VL = 37503y - ADNE

Now we suppose 6 € E. In this case, y < A\J™°, which implies that |V (z)| > ¢ H. Since V(z) — 0 as
x — 0, then |z| > ¢. Thus, the following inequalities

242
>cHY, |[V'(z)|>cHY> zc)\o—s_7

‘1—302

are true. Moreover, we have
dy 2+2 dt
B R R TSN EPoN
which leads to
dy 3+2
’E Z C >\O .

Therefore, we obtain
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N
V@ ot [,
3 0 3 aY
(1+y2)> (1+y?)>
Aote
242 _3-2 d
SCX 7oAy 7 / —y§
(1+92)>

<CN
and thus the proof of this lemma is completed. O
Now we are in a position to prove Theorem 1.1.

The proof of Theorem 1.1. For Ag large enough, integrating (4.11) from 6 = 0 to § = 1, we obtain that the
Poincaré mapping P is of the form

P T1 = T0 +)\0 + El(l,’ro,)\o), )\1 = )\0 +E2(1,T0,>\0),
where, for ¢ +j < 4 and \g > 1,
105,00 Byl < CAyT7, (k=1,2).

Now the Poincaré mapping P satisfies all assumptions of Moser’s twist theorem, which implies that P
possesses a sequence of invariant closed curves tending to infinity. Then all solutions of (2.1) are bounded
and there exists a corresponding sequence of invariant closed curves of the Poincaré mapping, that is,

—1 < z(t) < +o0, suply(t)] < +oc.
teR
/
We notice that y(t) = xi(t), then sup |2/(¢)| < 1. Moreover, a corresponding sequence of invariant
V1= (2'(t)? teR

closed curves implies the existence of infinitely many quasiperiodic solutions. 0O

Remark 4.6. The above results are sufficient for any continuous potential V : (a,+00) — R*,a € R, which
satisfies the following assumptions:

(V1) there exists b > a such that V(b) =0 = V'(b);
(V2) V € C((a,+00)\{b}), lim,_,,- V(z) = +o0;
(V3) the function W(z) = “,/,((i)), is of class C%((a, +00)\{b}), and

lim WY (z)] < +oo, j=0,--,9

r—a— ,xc—bT

(V4) there exists C' > 0 such that

dk
(x — a)k*1 dx—kV(a:) <C(|V'(z)| + (z — a)kil), forr>aand k=1,---,9;

(V5) V(z) = gn*az® + r(z), where r is of the form

’ 1 1
7’(1‘)20(1‘)7 T(x):c—’_O(;)? T(k)(m):O<xl+k) 5 k227 .T—)"‘OO,
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(Vs) for cH < |V(z)] < C H, we can get
cHB <|V'(z)] < CHA, (B < A),
where H is a large enough variable.

ﬁ — 1 satisfies (V1)—(Vs). Moreover, we remark
— 2

that, as far as Theorem 1.1 is concerned, the restriction v € N, can be weakened; indeed, it is sufficient to
require v € R\ N with v > 8, where v > 8 is to ensure that W (x) satisfies (V3).

It is easy to see that the function V(z) = %xi +

5. Proof of Lemma 3.2

In this section we shall prove Lemma 3.2. The estimate techniques are similar to that in [19] but there
are significant differences. Because of the complexity of higher order derivatives, we employ some results
in [4].

Case (i) k = 0. We first observe that the positive function y = y(z,h) > 0 determined by the closed
curve I'y, : ®(y) + V(x) = h is convex, here h is a parameter. In fact, differentiating the above equation
with respect to x twice yields that

dy

¥(y)- W Vi) =o,
dy 2 d?y
) (L) +o) G+ V@ =0

which implies that

d’y dy\’
— (1)L " (Y " 0
=y <<I> w- (%) +v <x>><o, y>0

since ®'(y), ®"(y), V" (x) are positive for —1 < & < 400, y > 0. Hence, for h large enough, we get
ch? < By y(0.h) < I (h) < 28, - y(0,h) < 2-V2h-V/h? + 20 < Ch?.
Also, since o, 1 as h — +00, then for h large enough, 1 > «j, > %, and
ch<ap-y0,h) <I_(h) <2ap-y(0,h) <24/h2+2h < Ch.
Therefore, for h large enough, we have
ch® < Ig(h) = I.(h) +I_(h) < Ch>.

Case (ii) k£ = 1. We recall that

Choosing @ = s € [0,1] as the new variable of integration, we have
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I+2(h) = /<p(h— sh) V’}EE) ds,
0

where £ is a function of s and h, that is, £ = v/2sh.

Differentiating this equality by h, noticing that g% = @, we get
I' (h) (h —sh+1)(h — sh) , h
= h — sh) - d
e G ER U

1 1
2 E/
0
Bn
(h=VEO+D(h=V(E)  1r -
O/ { P2(h = V(€)) W (5)} p(h =V (£))de,

where W(z) = “//,((‘3 Since 1 < (h=V(z) +1)(h—V(x))

+ W'(z) < 3 for > 0, then

ch™' 1y (h) < I}(h) < Ch™' L (h).

Similarly, for —1 < x < 0,

and

) 1 [ [V + ) - V()
2

; e w@) et - viende

—ap

By Lemma 3.1, we have

+W(z)

[UELGEBIELE) <yl

¢*(h = V()

which implies that
[I'(h)| < Ch™'I_(h).
Therefore, it follows that

ch™'Iy(h) < ch? <ch® —c < ch I (h) —ch ' I_(h) < I} (h)
=I' (W) + I'"(h) < Ch™ I (h) + Ch™ I_(h) < Ch™tIy(h).

Case (iii) £ = 2. Similar to case (ii), we first obtain that

Bn
1 fhevE s
2 _h!¢@WOW&
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and

rn 7 1 h—V(E)+1

1 y
2 h/[(h—v<s>+1><h—v<s>+2>+ ©) s vey)

0

de.

Since — L
(h—V(x)+1)(h—V(x)+2)

+ W' (z) < % for z > 0, then

I''(h) < Ch™ I (k) < Ch 2L (h).
In order to obtain the inverse inequality
Ch™>Iy (k) < I (h),
we need another form of I/ (h). Now let Q(y) = (y) Since Q(y) — +oo for y — 400, then there exists a

'(y)

constant do such that |Q(y)| > 2 for all |y| > do. We notice that I—+2@ can be written in another form

LW - [ ven= e

0

where ®(~;,) = h with 4, > 0. Differentiating the above equality by h yields that

I(h) } L 4
N N )
Choosing % = s € [0, 1] as the new variable of integration, we obtain

I,

w1k
2 _O/,/z(h—sh) v ™

Differentiating the above equality by h again yields that

1
) 1 o 1 h
- EO/ (Q © - 5) 3(h — sh) I
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1

h dO
1 1}%615_5/;%
n\8) Vah—e@©) " 8/ \Vah-a©)
1(1 5 1
> (2 -2— .4
~h (8 +(h) 8 \/2(h — ®(do)) 0)
> ChiQI—i—(h)a
which implies that
ch™2Iy(h) < I (h) < Ch 2L, (h).
On the other hand, we have

0

) 1 [ h-V(+1
2 _h_a/ V)
and
0
I"th) 1 [] 1 ey | VO +1
2 ha/ v v ) S v

- ! + W/ ()

By Lemma 3.1, (h—=V(@)+1)(h—V(z)+2)

<~v+ % for —1 < x < 0, which implies that

|1 (h)| < Ch™21_(h).
Therefore, we get
ch™2I(h) < I}/(h) < Ch™2I(h).
Case (iv) 3 < k < 9. First we state some important claims.

Claim 5.1. Suppose the function u = u(&, h — V(&)) is smooth in & and h, and define an operator B by

8 - 1 [u. VO L0 _ViE)

- ST (W)

then
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Claim 5.2. For all integer k <9, it follows that

Bn Bn
[Bo o B - v <ont [on- v,
0 k 0

0 0
U Bo---0B(1)p(h—V(€)dE| < Ch* / @(h =V (&))de.
ap k —Qp

From Claim 5.1, we obtain

which together with Claim 5.2 implies that

Bh
IOW] < Ch* [ o= Viende < Ch1,n),
0

Similarly, one can prove
1™ (n)| < Ch*I_(h).

Therefore, it follows that
IO ) <ch *1(h). o

Proof of Claim 5.1. We only prove the case k = 1, and the case k > 1 can be proved by iteration step by
step. Let

B

J(h) = / u(.h— V(E)p(h — V(€))de.

0

Using the same change of the variable of integration, we have

1
J(h) = /u(@h — sh)p(h — sh) - V/L(g)ds.
0

Differentiating the above equality by h, we obtain

1
— %/ U 6 h*Sh (5)+U2(§,h7$h)(h—5h)+u(§7h7$h)
0

(h —sh+1)(h — sh) , h
S HuEh = smW ()] p(h = sh) - ol

Bh
1

7 / [ul (57 h— V(&))W(E) + u2 (f, h — V(f))(h —V(¢)

0
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(h=V(&) +1)(h=V(S))
p?(h =V (¢))

+u(&h = VO)W'©)]e(h— V(©)de,

+u(&h— V() -

where uy(€,h — V(£)) denotes the derivative of w(£, h — V(£)) with respect to the first variable &, and
us (&, h — V(€)) represents the derivative of u(§,h — V(£)) with respect to the second variable h — V(£). In
this way, we have

un(§;h = V(§)) = ua (&, h = V(€)),
ug(§h = V() = ur(§, h = VI(§)) + ua(&, h = V() (=V'()),

and

Then we have

+unh + (u-W(&))e|p(h — V(§))dE

Using the same method, one can prove the second inequality. This completes the proof of Claim 5.1. O

To prove Claim 5.2, we need to estimate

Because of the complexity of B(u), we will estimate B(u) by B1(u), where
1
Bi(u) = 2u+uhh+ (u-W(&))e

(h— V(&) + 1)(h— V(&)

Now we introduce the properties of By (u). Let v(§, h) =

Claim 5.3. The operator By has the following properties:
(1) By is the linear operator;

@ (bu(o- 1)) = 1 (o —%)%lw—#u%

1, V@) ) _ 1 (- Vi) 2= VO
o (h2 % V£)>_h2<p(h v2<§>>%1” Ve
8, (hlnu L V ) th(g By () — L= VIE)T?,

hn-i-l (p2n+2(h V(f))’
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(4) Byo--0Bi(1) = #Pk(f), where
k

{ Peia(§) = (§ = k) Pe(&) + (WP (€),k = 1
Pi(§) = 5+ W'(9).

From this one can know that Py(§) is bounded.

Proof. Tt is easy to see that properties (1)—(3) hold, and property (4) can be found in [4]. O
Proof of Claim 5.2. For k = 1, we have
Bn

Bh Bh

[ et -viende| < | [80) - B+ | [ Batayode
0 0 0
ﬁhl 1 Bhr 1
< [3lo-g|eae+ [ Hm©ede
0 0
Bn
<Ch™' [ pde.
/
If £ = 2, on one hand, we have
Bn
/% o B(1)pde
0
Bn
< / (%B 0 B(1) — By 0 B(1))pde
0
Bh Bn
0 0

On the other hand, the first term in the above inequality can be estimated in the following way

Bh

/ (B 0 B(1) — B, 0 B(1))pde
0

Bn
- /(% —9B,) 0 B(1)pde

_ /%%(1) (v _ %) e
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The second term has the following estimate

Bn
/ (B 0 B(1) — B, 0By (1) pde
0

Bh

- / B, (B(1) — By (1))pde
0

Bh

1 1
- [ (i (r=2)) s
0
1 1 6-ve)
=\ (v g) moee - [ e
0 0
Br
1
< Cﬁ/SOdf
0
Finally, we obtain
Bh Bh Bh
1 1
0 0 0
Therefore, we have
Bh i Bn
/%o%(l)gpdf SCﬁ/godg.
0 0

Similarly, one can prove the claim for 3 < k < 9. Moreover, we have

0 0
/%o...o%(1)<p(h—V(§))d§ <Ch™* / @(h =V (&))ds.
an k ap

6. Proof of Lemma 3.5

In this section, we will prove Lemma 3.5. Let us consider the case z > 0,y > 0 first.
Case (i) k = 1. By the definition of 6, we have

T_(h) 7 [h—V(©)+1
(o= 3may) ™0 = / S —viE)

Differentiating the above equality on both sides by I yields that

<9 TY(R) - T;“) hy =0 (/ %d&) . (6.1)
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Now we compute the right hand of the above equality. Let V(£) = sh, under the new variable s of integration
we get

+ 1 —sh+1
/ de = / — sh) V’ dS
0
. Then the direct computation leads to
fh—sh+1 h
0 . d
' </ o(h—sh) " V'(E) )

_h=V(@)+1 & ,
T p(h V(@) Vi) '

where o0 =

V(x)
h

hr . 1 h—sh+1 h
+70 (W (€ - (h—sh+1)(h—sh+2)> o(h — sh) 'v'(g)ds
h—V(m)+1.x7@ .

- vy )
M [ 1 h—V(E) +1
iy (7O~ vgrnn o) w v
From (6.1), we obtain
ok hi o(h—V(x)) [T_(h)-RT4(h) AT (R)
xf_f‘”“”# h—V(z)+1 2T0(h)O T2

h 1 h— V() +1
+f <T0<h> W+ <hV(£>+1><hV<f>+2>> ECETI

Let

T_(h)-hTy(h) KT (h)

2Th(h) 2
TWh |
OISR GEN (4 GED)
o h— Vi) +1
K= —vien™

+ [ f(& I)de
/

a(h) =

f(&1) =

Then
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k
From Lemma 3.2 and Lemma 3.3, it is easy to prove that |Ikdd‘}(,€h)| < C. Since [W(z)] < Cz < CIs,

ph—V(x) h=V()+1

h=V(z)+1 ¢h=V(E))
the proof of k£ = 1.

Case (ii) £ = 2. Differentiating (6.2) on both sides with respect to I leads to

<1for0<¢&<m and |f(&1)] <C, then |z;| < CI-'*3, which completes

= 0r (h—hl) W(z) + %W’(x) ~xy + 0r (%) : % F(z, )
h p(h = V(z)) hi  o(h = V(x))

Since plh—V(z) F(z, I)' < C' I3, then we only need to prove that

h—V(z)+1
r (%) -F(x,])’ <CI s, (6.3)
R anen) o

The proof of (6.3). We notice that

or (=)

h—V(z)+1
_ [ p(h—V(x))  V'(@)F(a,1)
h [(h=V(@)+12(h-V(x)+2) (h—V(z)+1)3]’

it suffices to prove that

V' (z) ¢(h —V(x))
'h—V(:c)+1 'F(x’l)’ SOy Vo1 (6.5)
which is equivalent to
e =V@) _ FlaD) < C plh —V(z)) (6.6)

Vi(x) V(x)

Now we first prove that F(8,I) = 0, that is,

Bn
+ [ #e.nie=o.

0

T_(h)-hTy(h)  hT'(h)
2To(h) 2

By direct computation, the above equality is equivalent to

Br

0

Ty (h) (h=V(E+1D(h=V(E)+2)) ¢(h-V(C))

Differentiating the equality

Bh
nn _ frovie s

2 ) e(h—V(9)

dg
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on both sides by I yields that

Bh

T (h) h—V(E)+1

o hi =0 (/ p(h —V(€)) dg) '
0

At the same time,

Bh
T b LR RV 1
R ) / Ve
and
Fh-vie)+1
o (/ so(h—ws))dg)
Bh
_h ey 1 h—V()+1
o / (O~ G o v ) W v
hence,
Bh
hy Ti(R)h [h—=V({)+1
hTL) / Vi)
Bh
[ e ! h-V(©)+1
ey (O~ G roo v ) W v
which implies that F(3,,1) = 0.
Let
_ p(h—V(z))
Gz, I) = V)
Since G(Bn,I) = F(Bn,I) =0, in order to show (6.6), it is enough to prove that
C0,G(x,I) <0, F(z,I) < —C0,G(x,I). (6.7)
Indeed, 0, F(x,I),8,G(x,I) have the following expressions:
|0, F (z, 1)
_(mmh 1 h—V(z)+1
-|(Far v+ e e e ) v
h—V(z)+1
= va)

and

0,C(w, I) = — [1 L V@) - V(x))] h— Vi) +1

(V'(@)? h=V(@)+1] o(h—V(2)’
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Meanwhile, we have

and

Thus, (6.7) holds, and so is (6.5).
Moreover, we obtain

which implies that (6.3) holds.
We shall prove (6.4) by the following claim.

Claim 6.1. Let f(&,1) be a real function continuously differentiable on & and I and define an operator £ by

hr

2 = |reD W) - 161 1

(h=V () +1)(h=V()+2)

+fI7

then

o ( / f(f,f)cif) = / S(7(6.1))de + "L f (e, 1) P(a, D),

where F(x,I) is defined previously.

Proof. Let V(§) = sh, under the new variable s of integration, we have

f o h—sh+1  h
O/ (6. 1) = 0/ el ). D2 B s,

—sh) V(£

where o = ng). Therefore,

o7 h—sh+l b
o (/“’5(5””’” ol h) V/(&)d)
W) h—sh+1 h . (1=shr h
0/ l(ff i) i e v

h—sh+1 hr h
p(h—sh) h V'(g)

h—V(z)+1 h

- S —V@) V(@)

W(€)

ds+or- f(z,I)-
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= / [’2’ ((f(& DW(E©)e =D =57 1)1<h —sh+ 2>)
0

h—sh+1 h hy h— V() +1
| gt (o= ve) e SRR
rTh |
0

h—V(E)+1 hr
+/1 Wd§+ﬁf(x7I)F(xﬂj)7

and thus we complete the proof of Claim 6.1. O
The proof of (6.4). From Claim 6.1, we have

p(h = V(z))

v 1 o@D
- = V_(Zfi))l (d‘;(f) + / S(f(& D)de + %f(x,DF(m)) :
0
Therefore in order to prove (6.4), we only need to prove that
el <cr . (6.8)
Since
L(f(&, 1))
_ (Ty(W)h hr| o ~wrienz o To(Wh o
() + 5 |-wremwie - o+ BN wie
(L) V) 1
(h=V(E©+1)2? (h=V()+2)?) (h=V()+1(h-V(E)+2)
Ty (h)h 1 o
(B * aoverve-very 2 (5)”’
we rewrite the above equality as the following form
8() =213 eg(Dplh ~ V(E) + a(1),

where e(&) = ¢, [gM ()| < CI7F, [p")(y)] < C 4. y >0, and [¢ M (1)] < C 17+,
By the definition of £(f), it is easy to verify that (6.8) is valid, which implied that the proof of (6.4) is
completed. Therefore, we have

|LL‘[[| S CI_2+%.

Let
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hy(I) = 0y (%) . A D=3+ % F(x,1),
ha(I) = % fala, 1) = 5 + % O F (1),
hall) = (hF) oD = | Gy VT
- %.F(m) F(a,1).
Then
11 = h (D) fa (2, 1) + ho(D) folx, I) + hs(D) f3(, T), (6.9)
and

()| < C T2, |ho(D)| < CT 7Y, |hs(I)] < C T2,
\fi(z, )| < CT5, |fo(x, 1) < CI75 | fy(2, 1) < CT5.

Case (iii) k£ = 3. Differentiating (6.9) on both sides by I, we have

zrrr = Or(hi(1)) fr(x, I) + Or(ha(1)) f2(x, I) + Or(hs(1)) f3(x, I)
+ h1(1)81f1 (l‘, I) + ho (I)a[f2<x, [) + hg([)ajfg(a)‘, I),

which implies that it suffices to prove that

|01 fr (2, T)| < CT71F5, (6.10)
01 fale, I)| < CT >3, (6.11)
07 f3(z, 1) < CT 715, (6.12)

The proof of (6.10). According to

_1 e(h —V(z)) p(h—V(z))
8[f1($,[) = §$1 +8[ (m) . F(.T,I) + m . 8]F(.’137I),
it is easy to show (6.10).
The proof of (6.11) By
1 p(h —V(z)) p(h —V(z))
8If2(337l) = §$II + 8[ <m> 'BIF(.’L',I) + m . aIIF(l',I)a

it is enough to prove that

’%'GIIF(.%I)‘ SCI_2+%.

By Claim 6.1, we have
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d*a(h)

et [@wder e pen vor (B s Fen).

0

OrrF(z,I) =

which implies that we only need to prove that

1L2(f)| <CI72, (6.13)
|07 f(z, )| < CT1. (6.14)

Firstly, the definition of £(f) yields that

() = [(%’) o (%)] S e€g(Dplh —V(©))

hr

+ o D eOmDp(h = V(€) +a(D),

where

+1
im® (1) < 017 g0 ()| < ¢ 17 *+2),

_ 1
le(©)] = ¢, | ()] < O 17, [p® (y)] < Coirvzl

Hence, (6.13) is true.
From the definition of f(z,I), we have

orf(x, 1)

Ty(Wh 1
=0 ( Tt " O G V@ D) V@) + 2>>

_ T5(h)h -1 B -1 v
=0 ( TOO(h) ) " [(h— V() +1)2  (h—V(z) +2)2] Or(h = V(x)).

Since
olh Ve = {(h Vi) - % V(@) F(a:,l)} :
it is easy to see that
- -1
‘maﬂh ~V(z)| <CoI ™t

Thus, (6.14) holds, which implies that the proof of (6.11) is completed.

The proof of (6.12). Differentiating fs(z, I) with respect to I yields that

Orf3(x
1
< +1)'(h—V(l‘)+l)(h—V(x)+2)
L plh = V(w)) —1 - 1 o
h ($) ((h —V(z)+1)2 (h— V(a:) T 2)2> a[(h V( ))
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" F(x,I) , 1
V@ Gy V0 () e
a M%@]F(Z,I) F(x,I)

oh— V() V()
+ h—V(@) +12h—V(@)+2) (h—V(z)+ 1)3F(x,]) OrF(z,1),

thus (6.12) can be proved easily according to the above expression.
Case (iv) k = 4. It suffices to prove the following inequalities

011 f1(z, )| < CT72%5 |0y, folw, I)| < CT735, |0y fa(z, )| < C T3,

which implies that we only need to prove that

e(h —V(z)) o p(h—V(x))
orf| —————= || < CI"—8—"
H(hV(az)+1 = h—V(z)+1

‘ p(h = V(z))
h—V(z)+1

~(9111F(l‘,])’ < 0173+%,

8[[(h — V(x)) < CcI 2.

1
e

The proof of (6.15). From the expression of dry (M), we only need to prove that

h—V(z)+1

‘V’(ac) IBIF(:C,I)‘ <o - V@)

h—V(x)+ h—=V(xz)+1
From Claim 6.1, it follows that

T

+ / S(f(E D)+ 2L fa, P (2, 1),

0

da(h)
dI

9 F(z,1) =

From (6.5), it suffices to prove that

<CI™

Vi@)3— V?x) 1 (dcglh) * /S(f(g’ Dﬂf)

0
which is equivalent to

x

Bn

%

Since F(Bn,I) = a(h) + /f(g,])dﬁ = 0, differentiating this equality by I yields that

0
Br

/X)(f(§7 I))dVE = 0, then we need to prove that
0

1p(h =V (2))
h—V(z)+1’

(6.15)

(6.16)

(6.17)

(6.18)
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—1g (plh = V(@) p(h — V() —1g (plh=V(2))
ere (S ) =20 gy ey =0 (T ™)

By a direct computation, we have

ph=V(x))\ _ P*(h=V(z)) V"(x) p(h—V(x))
aﬂ”( )‘(‘1_h—V(x>+1'(V/(x))2>'h—V(x)+1'

o Ph V(@) V(@)
h=V(z)+1 (V'(z))

5 > 0, then

?*(h=V(z)) V'(2)
T Ve +1 e =

Therefore, |£(f)| < C I~! implies that the estimate (6.18) holds, which leads to (6.15).
The proof of (6.16). Differentiating 0y F (x, I) with respect to I yields that

x

3
o 0) = 2 [ (e + T ) Pla)

0
h[ hI
+0r | 5 L) Fla, 1) ) + 01 | - flz, 1) - Flz,1) ),
which implies that it is enough to verify that

[ (HI=Cr,
ore(f)l < CT72,
071 f(z,1)| < C 172
These inequalities and (6.17) can be proved in a similar way.
Case (v) 5 < k < 7. The proof does not contain any new difficulties, and we omit it here.

Next let us prove the inequality in Lemma 3.5 for z < 0, y > 0.
Case (i) £ = 1. The definition of 6 yields that

x

0 To(h) = / L@)Hd&

el V)
then it follows that
TR T e () N
where
DL 1
D=0y VO avE OG-V T2
. h=V()+1
= h—vien ™

Fla.T) = / F(&, TVt
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Since |W(z)| < C(1+z), and |f(§,I)] < C, it suffices to prove that

¢(h—V(x))
The proof of (6.20). Let

(ap +2)(h =V (z)+1)
p(h —V(x)) ’

M(z,I) =
then we need to prove that
—CM(z,I) < F(z,I) < CM(z,I).
Indeed, since F(—ap,I) = M(—ayp, ) =0, it is enough to prove that
—C Oy M(x,I) < 0, F(x,I) < COyM(z,I). (6.21)

By a direct computation, we obtain

0, F (. 1)
(T | h—V(z)+1
- ’( T O G V@ D V@) +2>> V(@) '
h—V(z)+1
SO vE)
and
B (ap +2)V'(2) h—V(z)+1
OuM(z T) = [1 T RG V@ V@ T 1>} V@)
V@) 1 2h— V(x)) .
S Q?h—V(x)) =2 @Q(h—V(.T))(h—V(I)—Fl)‘ <1, th
‘ (an + 2)V'(x) ‘ <L
P2(h—=V(z))(h—V(z)+1)| — 2

which implies that

(an +2)V'(x)
¢*(h = V(2))(h = V() +1)

1
> —.
-2

N W

>1+

Therefore (6.21) holds, and as a consequence, (6.20) is valid. Thus, by (6.19) and (6.20), we obtain
lzr| < CT7H1 + ),

which completes the proof of this case.
Case (ii) k£ = 2. Differentiating x; with respect to I yields that

rrr = 51(%)W(9:) * %W’(x) R 81(%) . fm .

i, olh=V(z)) hi  p(h = V(z))

+7'8I(h—V(x)+1 h h—V(z)+1

(z, 1)

) F(z,I) + -OrF(x,I),
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which implies that it is enough to prove that

p(h —V(x)) 1
Or (m> -F(ac,])’ <CI ' (1+ux), (6.22)
'% - OrF(z, 1)‘ <CI'(1+2). (6.23)

The proof of (6.22). Since

p(h = V() Vi(2)F (2, 1)

(h=V(z)+1)2(h—=V(z)+2) (h=V(z)+1)3|

o (jr) -

it is enough to verify that

p(h = V(z))

‘mx) h— V() 1

mF(x,[)‘ <C

which can be proved similar to (6.20). Therefore, we obtain
p(h —V(z)) L ph=V(x))
| ————= )| < 0T ———~
‘I<hV(x)+1 = h—V(z)+1

and (6.22) follows from the above discussions.

The proof of (6.23). Similarly, using the same method as in Claim 6.1, we have

o ( / f(&l)cié‘) = / S(F(& D) + 2L f(a, PG,

ap “h

where

1
(h =V +1(h=V(£)+2)

2 =" |6 W), - 161

:|+fIa

and F(xz, ) is defined previously. From the above equality, we have

D - 221 i nerin).

—Qp

In order to prove (6.23), we need to state an important claim. The proof of this claim is similar to that
of (6.20), we omit it here.

Claim 6.2. Suppose that the function g(¢,1) is continuous and there is a constant C such that |g(&,I)| <
CI7*, for some k € N. Then there exists a constant C such that, for —ay < x <0,

p(h = V(x))

Y —k
R [ st < o1+ o)

—ap
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By Claim 6.2, it is enough to prove that
el <cr .

A direct computation leads to

£(f) =5 2 e©gD)p(h = V(&) +a(l),

where [e®) (&) < C, |g®™(I)] < CTF,[p®) (y)| < Cy——}—I’y > 0,|¢"™)(I)| < CT-*++D, As a consequence,

the above inequality holds, which leads to (6.23). Thus we have

|JL‘U‘ < 0172(1+x).

Let
hi(I) = 01 (h—hl) . fil@ D) =W(x) + Z)(hx;fm - F(z,1),
ho(I) = % ol I) = W'(z) - 21 + % Oz, 1),
hall) = (%)2 falw: 1) = (h—V(x;Dihl);(/h(x—))V(m)H) B (hvi%gxffp Flz.1).
Then
zrr = hi(I) fi(z, 1) + ho(I) fo(z, I) + hs(I) f3(, 1),
and

(D] < CI7%, |hao(D)] < CI7Y |ha(D)] < C 172,
|f1($,1)| < O(1+£C), |f2(I7I)| < OI?I(1+$)7 |f3($,[)| < C(1+l‘)

Case (iii) k£ = 3. Differentiating xz;; by I leads to

xrrr = Or(hi(I)) f1(w, I) + Or(ho (1)) f2(x, I) + Or(hs(1)) f3(x, I)
+ h1(1)0r f1(x, I) + ho(I)Or fo(x, I) 4 hs(1)0; f3(x, 1),

which implies that it suffices to verify that

|8[f1(.’L‘7I)| SCI?1(1+$)a
01 fo(, 1) < CT72(1 + ),
‘8[f3<.’)3‘,])| < CI_l(l —|—x)

In fact, we need to prove the following inequalities

‘% .a,,F(x,I)‘ <CI%(1+2),

or(h—V(x)| <Cr,

v

(6.24)

(6.25)
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V" (x) - xr

p(h—V(z))
(h—=V(x)+1)3

1+z|.
V@l T

-F(;m])' <cr! [
The proofs of (6.24) and (6.25) contain no new difficulties, here we only prove (6.26).
The proof of (6.26). By Lemma 3.1, V(x) possesses the following property

(L+2)* VP (@) < O V(@) + (1 +2) 1],
which implies that we need to prove that
|F(z,I)| < C.

From the definition of F(x, ), we know

T

x 0
Fenl=| [ seni<c| [al<c| [a-c.EM<c

p

Therefore, we obtain

V" (x) - xy
v )
<1+ V@) | Gy
F(xz,I)

<CI M (|V'(z)|+ (1 +2)) ‘

(h—=V(x)+1)3

—1 ((plh=V(z))
<CI 1(m+1+$>7

which implies that (6.26) holds.
Case (iv) k = 4. It is enough to verify that

011 f1(2, I)| < CT7%(1 + ),
011 f2(2, I)| < CT73(1 + ),

which are guaranteed by the following inequalities
p(h —V(x)) o ((p(h—=V(2))
— 2 || <(CI ——+1
’an(h—V(x)—l—l SO G V@ )
01F(z, I)| < CIY,
plh— V()
h—V(z)+1

8111F($,I)’ < 01_3(1 + x),

The proofs of (6.27), (6.29), (6.30) are similar to that for > 0, here we verify (6.28) merely.

1469

(6.26)

(6.27)
(6.28)

(6.29)

(6.30)



1470 Y. Han, X. Li / J. Math. Anal. Appl. 449 (2017) 1424-1471

The proof of (6.28). We remark that

x

v h

ouF(ed) = [ (& D)+ 5L (. DF (D)

then it suffices to prove that
[ sutenie <o,

Indeed,

T T 0

[ svene<cr| [ d<cr| [ i

=CcrIt. T‘;h) <CcIt,

which implies that (6.28) holds.
Case (v) 5 < k < 7. The proof does not contain any new difficulties, and we omit it here.
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