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Highlights

• An integrable discretization of the generalized coupled dispersionless integrable system (dGCD) system via Lax pair is
presented.

• A Darboux transformation is proposed for dGCD system.
• Darboux matrix is defined in terms of quasideterminant.
• Quasideterminant multisoliton solutions have been computed.
• Explicit expressions of one and two soliton solutions have been computed.
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Abstract

An integrable discretization of generalized coupled dispersionless (dGCD) inte-
grable system via Lax pair is presented. A Lax pair for the dGCD system is defined.
A Darboux transformation is used on the Lax pair to obtain multi-soliton solutions
of the dGCD system. The solutions are expressed in terms of quasideterminants. Ex-
plicit expressions of discrete one- and two-soliton solutions are obtained for the SU(2)
case by using properties of quasideterminants. We also study continuous analogue of
the dGCD system by applying continuum limit.
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1 Introduction

Dispersionless integrable systems have attracted a great deal of interest due to their emer-

gence in various areas of theoretical physics [1]-[7]. Many of these integrable systems arise

as semi-classical limits of ordinary integrable systems with a dispersion term. Coupled

dispersionless integrable system is an important example of integrable systems which have

various applications in diverse areas of physics and mathematics (see e.g. [8]-[19]). This

system is referred to as coupled dispersionless integrable system for being not containing

the dispersion term rather resulting as a semi-classical limit in the sense mentioned above.

In this paper, we discretize the generalized coupled dispersionless system based on a

general nonabelian Lie group by writing down its Lax pair representation. A Darboux

transformation is defined on the solutions to the dGCD system. The solutions are then
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expressed in terms of quasideterminants. For the case of SU(2), we obtain explicit ex-

pressions of one- and two-soliton solutions by using properties of quasideterminants. The

results in this paper are generalizations of results obtained in [19].

2 Lax pair of dGCD system

The Lax pair of dGCD system is written as the following set of difference-difference linear

system of equations

Φn+1, m =
(
I + λ−1[Sn+1, m − Sn, m]

)
Φn, m ≡ An, mΦn, m, (2.1)

Φn, m+1 = (I + b[Sn, m+1G−GSn, m + λG]) Φn, m ≡ Bn, mΦn, m, (2.2)

where Sn, m is an N ×N matrix and G is an N ×N constant matrix taking values in some

non-abelian Lie algebra g of Lie group G and Φn, m is also an N × N spectral parameter

dependent matrix which takes value in Lie group G. The subscripts n, m of the matrices

Φn, m and Sn, m represent variables defined on a square lattice. The Lax pair (2.1)-(2.2)

of dGCD system satisfying the compatibility condition An, m+1Bn, m = Bn+1, mAn, m gives

the nonlinear dGCD system

(Sn+1, m+1 − Sn+1, m − Sn, m+1 + Sn, m) + b (Sn+1, m+1 − Sn, m+1) (Sn, m+1G−GSn, m)

= b (Sn+1, m+1G−GSn+1, m) (Sn+1, m − Sn, m) . (2.3)

From equation (2.3), we can derive the semi-discrete GCD (sdGCD) system, continuous in

t-direction by applying a continuum limit. For this, let us define the continuum limit i.e.,

limb→0
fn, m+1−fn, m

b
= d

dt
fn, then accordingly we have sdGCD system

d

dt
(Sn+1 − Sn) + (Sn+1 − Sn) (SnG−GSn) = (Sn+1G−GSn+1) (Sn+1 − Sn) . (2.4)

Similarly, by sending a (lattice parameter along x-direction) to zero, we have lima→0
fn+1, m−fn, m

a
=

d
dx
fm, so that the sdGCD system continuous in x-direction is given by

d

dx
(Sm+1 − Sm) + b

d

dx
Sm+1 (Sm+1G−GSm) = b (Sm+1G−GSm)

d

dx
Sm. (2.5)

The continuous GCD system, continuous in both x- and t-direction is obtained when both

lattice parameters approach to zero i.e. a, b → 0, we get

∂t∂xS + [[G, S], ∂xS] = 0. (2.6)
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3 Discrete Darboux transformation

Darboux transformation (DT) is widely used to obtain soliton solutions of integrable sys-

tems [20]-[23]. Let us define a Darboux transformation on the matrix solutions Φn, m of

Lax pair (2.1)-(2.2) as

Φn, m[1] = Dn, m(λ)Φn, m, (3.1)

where Dn, m(λ) is a discrete Darboux matrix. In our case, we take the Darboux matrix to

be

Dn, m(λ) = λI −Θn, m, (3.2)

where Θn, m is an N×N matrix to be determined and I is the N×N identity matrix. The

discrete Darboux matrix (3.2) gives the transformation on the matrix solutions of dGCD

system (2.3)

G[1] = G (constant matrix),

Sn+1, m[1]− Sn, m[1] = Sn+1, m − Sn, m − (Θn+1, m −Θn, m) . (3.3)

Equation (3.3) can also be written as

Sn, m[1] = Sn, m −Θn, m. (3.4)

The Lax pair (2.1)-(2.2) is covariant under the discrete DT if the following conditions on

the matrix Θn, m are satisfied at every point on the lattice, i.e.

Θn+1, m −Θn, m = Sn+1, m − Sn, m −Θn+1, m (Sn+1, m − Sn, m)Θ
−1
n, m, (3.5)

Θn, m+1 −Θn, m = b (Sn, m+1G−GSn, m)Θn, m − bΘn, m+1 (Sn, m+1G−GSn, m)

− b (Θn, m+1G−GΘn, m)Θn, m. (3.6)

Now for b → 0, the Lax pair of the sdGCD system continuous in t-direction remains

unchanged under the DT for the following conditions on the matrix Θn,

Θn+1 −Θn = Sn+1 − Sn −Θn+1 (Sn+1 − Sn)Θ
−1
n , (3.7)

d

dt
Θn = [SnG−GSn, Θn]− (ΘnG−GΘn)Θn. (3.8)

The transformed matrix solution Sn of the sdGCD system continuous in t-direction is

Sn[1] = Sn −Θn. (3.9)
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Similarly for a → 0, we have a sdGCD system continuous in x-direction

d

dx
Θm =

(
d

dx
SmΘm −Θm

d

dx
Sm

)
Θ−1

m , (3.10)

Θm+1 −Θm = b (Sm+1G−GSm)Θm − bΘm+1 (Sm+1G−GSm)

− b (Θm+1G−GΘm)Θm, (3.11)

with DT on Sm matrix

Sm[1] = Sm −Θm. (3.12)

We now construct the matrix Θn, m for the dGCD system. Let us define N constant

parameters (real or complex) λ1, λ2, ..., λN . For each value of the parameter, there exists

a unique column vector solution |mi〉n, m to the Lax pair (2.1)-(2.2), i.e.

|mi〉n+1, m =
[
1 + λ−1

i (Sn+1, m − Sn, m)
] |mi〉n, m , (3.13)

|mi〉n, m+1 = [1 + b (Sn, m+1G−GSn, m + λiG)] |mi〉n, m . (3.14)

Let us now define an N × N diagonal matrix as Λ = diag (λ1, λ2, ..., λN), so that a

particular matrix solutionMn, m with a particular eigenvalue matrix Λ satisfies the following

matrix Lax pair (2.1)-(2.2)

Mn+1, m = Mn, m + (Sn+1, m − Sn, m)Mn, mΛ
−1, (3.15)

Mn, m+1 = Mn, m + b (Sn, m+1G−GSn, m)Mn, m + bGMn, mΛ. (3.16)

If detMn, m �= 0, then we can define a matrix Θn, m in terms of particular matrix solutions

as

Θn, m = Mn, mΛM
−1
n, m, (3.17)
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Now we check that the Darboux matrix Θn, m defined in equation (3.17), satisfies the

conditions on the matrix Θn, m resulting from the Darboux covarience, i.e.

(Θn+1, m −Θn, m)Θn, m = Mn+1, mΛM
−1
n+1, mMn, mΛM

−1
n, m −Mn, mΛM

−1
n, mMn, mΛM

−1
n, m,

= Mn+1, mΛM
−1
n+1, mMn, mΛM

−1
n, m −Mn, mΛM

−1
n, mMn, mΛM

−1
n, m

+ Mn+1, mΛM
−1
n, mMn, mΛM

−1
n, m −Mn+1, mΛM

−1
n+1, mMn+1, mΛM

−1
n, m,

=
(
Mn+1, mΛM

−1
n, m −Mn, mΛM

−1
n, m

)
Mn, mΛM

−1
n, m

− Mn+1, mΛM
−1
n+1, m

(
Mn+1, mΛM

−1
n, m −Mn, mΛM

−1
n, m

)
,

= (Sn+1, m − Sn, m)Θn, m −Θn+1, m (Sn+1, m − Sn, m) , (3.18)

Θn, m+1 −Θn, m = Mn, m+1ΛM
−1
n, m+1 −Mn, mΛM

−1
n, m,

= Mn, m+1ΛM
−1
n, m+1 −Mn, mΛM

−1
n, m +Mn, m+1M

−1
n, mMn, mΛM

−1
n, m

− Mn, m+1ΛM
−1
n, m+1Mn, m+1M

−1
n, m,

=
(
Mn, m+1M

−1
n, m − I

)
Mn, mΛM

−1
n, m

− Mn, m+1ΛM
−1
n, m+1

(
Mn, m+1M

−1
n, m − I

)
,

= b (Sn, m+1G−GSn, m)Θn, m − bΘn, m+1 (Sn, m+1G−GSn, m)

− b (Θn, m+1G−GΘn, m)Θn, m. (3.19)

So the equations (3.5) and (3.6) are satisfied for the choice (3.17).

For the underlying Lie group SU(N), we require the new solutions Sn, m[1], G[1] to

take values in respective Lie algebra. For anti-Hermitian generators of the Lie algebra of

SU(N), we require Sn, m[1], G[1] be anti-Hermitian and traceless. The uniqueness of the

column solution |mi〉n, m at a particular value of λ = λi (where λi �= λj) preserves the

orthonormality condition at each lattice point, i.e.

n, m 〈mi|mj〉n, m = δi, j,

= 0 for i �= j,

= 1 for i = j. (3.20)

From the orthonormality condition (3.20) of the column solutions, we can say that the

matrix Θn must be anti-Hermitian (in case when the generators of the Lie algebra are

anti-Hermitian) i.e.

n, m 〈mi|Θ†
n, m +Θn, m |mj〉n, m =

(
λ̄i + λj

)
n, m 〈mi|mj〉n, m ,

Θ†
n, m +Θn, m = 0 for i �= j. (3.21)
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For λi = λj = λ1

n, m 〈mi|Θ†
n, m +Θn, m |mj〉n, m =n, m 〈mi| λ̄1 + λ1 |mj〉n, m , (3.22)

since the column solutions |mi〉n, m’s are all orthonormal (linearly independent), so equation

(3.22) implies

Θ†
n, m +Θn, m =

(
λ̄1 + λ1

)
I. (3.23)

Further, we also have

Θ†
n, mΘn, m = λ̄1λ1. (3.24)

Now for a particular solution |mi〉n, m at λ = λi and λi �= λj

(
λ̄i = λj

)
, we have

n+1, m 〈mi|mj〉n, m +n, m 〈mi|mj〉n+1, m = n, m 〈mi|
(
I + λ̄i

(
S†
n+1, m − S†

n, m

))
|mj〉n, m

+ n, m 〈mi| (I + λj (Sn+1, m − Sn, m)) |mj〉n, m ,

= 0, (3.25)

which implies that S†
n, m = −Sn, m.

For the invertible matrix Mn, m, we write the discrete Darboux matrix in terms of

quasideterminants3. We write the quasideterminant expression of the Darboux transformed

matrix Φn, m[1] as a solution to the Lax pair (2.1)-(2.2) as

Φn, m[1] ≡ Dn, m(λ)Φn, m = λΦn, m −Mn, mΛM
−1
n, mΦn, m,

= λΦn, m +

∣∣∣∣ Mn, m Φn, m

Mn, mΛ O

∣∣∣∣ =
∣∣∣∣∣ Mn, m Φn, m

Mn, mΛ λΦn, m

∣∣∣∣∣ , (3.27)

where I is an N×N identity matrix and Λ is an N×N invertible diagonal matrix. Similarly

the expression of one-fold matrix solution Sn, m[1] in terms of quasideterminant about an

N ×N null matrix O can be written as

Sn, m[1] = Sn, m −Mn, mΛM
−1
n, m,

= Sn, m +

∣∣∣∣ Mn, m I

Mn, mΛ O

∣∣∣∣ . (3.28)

3We will use the notion of quasideterminants. In this paper we will consider only quasideterminants
that are expanded about an m ×m matrix. The quasideterminant of J × J matrix expanded about the
m×m matrix D is defined as ∣∣∣∣A B

C D

∣∣∣∣ = D − CA−1B. (3.26)

For further (see e.g. [24]-[26])
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In order to express the matrix Sn, m[2] in terms of quasideterminants, we define particular

matrix solutions Mn, m, 1 at Λ1 and Mn, m, 2 at Λ2 to get

Sn, m[2] = Sn, m[1]−Mn, m[1]Λ2M
−1
n, m[1], (3.29)

where

Mn, m[1] = Mn, m, 2Λ2 −Mn, m, 1Λ1M
−1
n, m, 1Mn, m, 2,

=

∣∣∣∣∣ Mn, m, 1 Mn, m, 2

Mn, m, 1Λ1 Mn, m, 2Λ2

∣∣∣∣∣ . (3.30)

By substituting equation (3.30) in equation (3.29), rearranging the terms and using non-

commutative Jacobi identity and homological relation [24]-[26], we get

Sn, m[2] = Sn, m +

∣∣∣∣∣∣
Mn, m, 1 Mn, m, 2 O

Mn, m, 1Λ1 Mn, m, 2Λ2 I

Mn, m, 1Λ
2
1 Mn, m, 2Λ

2
2 O

∣∣∣∣∣∣ . (3.31)

The results in equations (3.31) can be extended to K-fold Darboux transformation on

the solutions. For this, let us define an invertible matrix solutions Mn, m, k at Λ = Λk

(k = 1, 2, ..., K) to the Lax pair (2.1)-(2.2). The matrix Sn, m[K] can now be written as

Sn, m[K] = Sn, m +

∣∣∣∣∣∣∣∣∣∣∣

Mn, m, 1 Mn, m, 2 · · · Mn, m, K O
Mn, m, 1Λ1 Mn, m, 2Λ2 · · · Mn, m, KΛK O

...
...

. . .
...

...
Mn, m, 1Λ

K−1
1 Mn, m, 2Λ

K−1
2 · · · Mn, m, KΛ

K−1
K I

Mn, m, 1Λ
K
1 Mn, m, 2Λ

K
2 · · · Mn, m, KΛ

K
K O

∣∣∣∣∣∣∣∣∣∣∣
. (3.32)

Similarly the expression for Φn, m[K] is

Φn, m[K] =

∣∣∣∣∣∣∣∣∣
Mn, m, 1 Mn, m, 2 · · · Mn, m, K Φn, m

Mn, m, 1Λ1 Mn, m, 2Λ2 · · · Mn, m, KΛK λΦn, m
...

...
. . .

...
...

Mn, m, 1Λ
K
1 Mn, m, 2Λ

K
2 · · · Mn, m, KΛ

K
K λKΦn, m

∣∣∣∣∣∣∣∣∣ . (3.33)

The results (3.32) and (3.33) can be proved by mathematical induction (see e.g. [15]). The

equation (3.32) and (3.33) can also be written in a more convenient form as

Sn, m[K] = Sn, m +Θ(K)
n, m, (3.34)

Φn, m[K] = Ω(K)
n, mΦn, m, (3.35)
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where N ×N matrices Θn, m, Ωn, m is a quasiedeterminant given by

Θ(K)
n, m =

∣∣∣∣ Mn, m E(K)

M̂n, m ON

∣∣∣∣ , Ω(K)
n, m =

∣∣∣∣∣ Mn, m Ê(K)

M̂n, m λKIN

∣∣∣∣∣ , (3.36)

where E(K), Ê(K) are NK ×N and M̂n, m, Mn, m are the N ×NK, NK ×NK matrices

respectively, i.e.

E(K) =
(
ON ON · · · IN

)T
, Ê(K) =

(
IN λIN · · · λK−1IN

)T
,

M̂n, m =
(
Mn, m, 1Λ

K
1 Mn, m, 2Λ

K
2 · · · Mn, m, KΛ

K
K

)
,

Mn, m =

⎛⎜⎜⎜⎝
Mn, m, 1 Mn, m, 2 · · · Mn, m, K

Mn, m, 1Λ1 Mn, m, 2Λ2 · · · Mn, m, KΛK
...

...
. . .

...
Mn, m, 1Λ

K−1
1 Mn, m, 2Λ

K−1
2 · · · Mn, m, KΛ

K−1
K

⎞⎟⎟⎟⎠ . (3.37)

The matrix elements of the matrices Θ
(K)
n, m and Ω

(K)
n, m are computed as

(
Θ(K)

n, m

)
ij

=

(∣∣∣∣ Mn, m E(K)

M̂n, m O

∣∣∣∣)
ij

=

∣∣∣∣∣ Mn, m E
(K)
j

(M̂n, m)i 0

∣∣∣∣∣ , i �= j,

(
Θ(K)

n, m

)
ij

=

(∣∣∣∣ Mn, m E(K)

M̂n, m O

∣∣∣∣)
ii

=

∣∣∣∣∣ Mn, m E
(K)
i

(M̂n, m)i 0

∣∣∣∣∣ , i = j. (3.38)

(
Ω(K)

n, m

)
ij

=

(∣∣∣∣∣ Mn, m E(K)

M̂n, m λKI

∣∣∣∣∣
)

ij

=

∣∣∣∣∣ Mn, m Ê
(K)
j

(M̂n, m)i 0

∣∣∣∣∣ , i �= j,

(
Θ(K)

n, m

)
ij

=

(∣∣∣∣∣ Mn, m E(K)

M̂n, m λKI

∣∣∣∣∣
)

ii

=

∣∣∣∣∣ Mn, m E
(K)
i

(M̂n, m)i λK

∣∣∣∣∣ , i = j. (3.39)

where (M̂n, m)i represents i-th row of Mn, m and (E(K))j, (Ê(K))j represent j-th column

of E(K), Ê(K) respectively. The quasideterminant expressions in the equations (3.38) and

(3.39) are used to compute explicit expressions of the Darboux transformations on the

scalar solutions to the Lax pair (2.1)-(2.2) and the scalar solutions of the dGCD system.

The K-fold solutions (3.32) and (3.33) reduce to those of continuous system when we take

a continuum limit on the lattice parameters as a, b → 0 [15].

4 Examples of simple models

In order to calculate scalar solutions for simple models, first of all we start with a more

general model of 2× 2 matrix functions and will carry out reduction to SU(2) model. We

8



start with a 2× 2 matrix Sn, m in terms of a scalar functions qn, m, rn, m and sn, m given by

Sn, m = ı̇

(
qn, m rn, m
sn, m −qn, m

)
, (4.1)

and for G = − ı̇
2
( 1 0
0 −1 ), the Lax pair (2.1)-(2.2) of dGCD system takes the form

Φn+1, m =

(
1 + ı̇λ−1 (qn+1, m − qn, m) ı̇λ−1 (rn+1, m − rn, m)
ı̇λ−1 (sn+1, m − sn, m) 1− ı̇λ−1 (qn+1, m − qn, m)

)
Φn, m, (4.2)

Φn, m+1 =

(
1 + b

2
(qn, m+1 − qn, m − ı̇λ) − b

2
(rn, m+1 + rn, m)

b
2
(sn, m+1 + sn, m) 1 + b

2
(qn, m+1 − qn, m + ı̇λ)

)
Φn, m.

(4.3)

And the compatibility condition of the Lax pair (4.2)-(4.3) gives the dCD system as follows

(qn+1, m+1 − qn+1, m − qn, m+1 + qn, m) +
b

4
[(rn+1, m+1 − rn, m) (sn, m+1 + sn+1, m)

+ (sn+1, m+1 − sn, m) (rn, m+1 + rn+1, m) + 2(rn+1, msn+1, m − rn, m+1sn, m+1)] (4.4)

=
b

2
[(qn+1, m+1 − qn+1, m) (qn+1, m − qn, m)− (qn, m+1 − qn, m) (qn+1, m+1 − qn, m+1)],

(rn+1, m+1 − rn+1, m − rn, m+1 + rn, m)− b

2
[(qn+1, m+1 − qn, m) (rn, m+1 + rn+1, m)

− (qn, m+1 − qn+1, m) (rn+1, m+1 + rn, m)] = 0, (4.5)

(sn+1, m+1 − sn+1, m − sn, m+1 + sn, m)− b

2
[(qn+1, m+1 − qn, m) (sn, m+1 + sn+1, m)

− (qn, m+1 − qn+1, m) (sn+1, m+1 + sn, m)] = 0. (4.6)

For rn, m = sn, m, we get the dCD system for SU(2) symmetry (in this case, we also need

the reduction SO(2) see e.g., [27])

(qn+1, m+1 − qn+1, m − qn, m+1 + qn, m) +
b

2
[(rn+1, m+1 − rn, m+1 + rn+1, m − rn, m)

× (rn, m+1 + rn+1, m)]− b

2
[(qn+1, m+1 − qn+1, m) (qn+1, m − qn, m)

− (qn, m+1 − qn, m) (qn+1, m+1 − qn, m+1)] = 0, (4.7)

(rn+1, m+1 − rn+1, m − rn, m+1 + rn, m)− b

2
[(qn+1, m+1 − qn, m) (rn, m+1 + rn+1, m)

− (qn, m+1 − qn+1, m) (rn+1, m+1 + rn, m)] = 0. (4.8)

which is the fully discrete version of CD system. With rn, m = sn, m, the Lax pair (4.2)-(4.3)

is written as

Φn+1, m =

(
1 + ı̇λ−1 (qn+1, m − qn, m) ı̇λ−1 (rn+1, m − rn, m)
ı̇λ−1 (rn+1, m − rn, m) 1− ı̇λ−1 (qn+1, m − qn, m)

)
Φn, m, (4.9)

Φn, m+1 =

(
1 + b

2
(qn, m+1 − qn, m − ı̇λ) − b

2
(rn, m+1 + rn, m)

b
2
(rn, m+1 + rn, m) 1 + b

2
(qn, m+1 − qn, m + ı̇λ)

)
Φn, m.

(4.10)
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For further convenience, we apply a gauge transformation to get an equivalent represen-

tation of the dCD system. Under the gauge transformation An, m → Ãn, m = F−1AnF ,

where F = 1√
2
( 1 1
−ı̇ ı̇ ), the Lax pair (4.9)-(4.10) is written as

Φ̃n+1, m =
(

1 ı̇λ−1[(qn+1, m−qn, m)+ı̇(rn+1, m−rn, m)]

ı̇λ−1[(qn+1, m−qn, m)+ı̇(rn+1, m−rn, m)] 1

)
Φ̃n, m,

(4.11)

Φ̃n, m+1 =
(

1+ b
2
[(qn, m+1−qn, m)+ı̇(rn, m+1+rn, m)] − ı̇b

2
λ

− ı̇b
2
λ 1+ b

2
[(qn, m+1−qn, m)−ı̇(rn, m+1+rn, m)]

)
Φ̃n, m.

(4.12)

Similarly for sn, m = r∗n, m, we get the complex coupled dispersionless integrable system.

The Lax pair (4.11)-(4.12) can be used to get simpler expressions of Darboux transforma-

tion on the scalar solutions of the Lax pair and the scalar functions qn, m and rn, m of the

dCD system.

4.1 sdCD system continuous in t-direction

The Lax pair of general sdCD system continuous in t-direction is the difference-differential

linear system of equations given by

Φn+1 =

(
1 + ı̇λ−1 (qn+1 − qn) ı̇λ−1 (rn+1 − rn)
ı̇λ−1 (sn+1 − sn) 1− ı̇λ−1 (qn+1 − qn)

)
Φn ≡ AnΦn, (4.13)

d

dt
Φn =

( − ı̇λ
2

−rn
sn

ı̇λ
2

)
Φn ≡ BnΦn. (4.14)

The compatibility condition d
dt
An + AnBn − Bn+1An = 0 is equivalent to the following

nonlinear set of equations

d

dt
(qn+1 − qn) + (rn+1sn+1 − rnsn) = 0, (4.15)

d

dt
(rn+1 − rn) + (qn+1 − qn)(rn+1 + rn) = 0, (4.16)

d

dt
(sn+1 − sn) + (qn+1 − qn)(sn+1 + sn) = 0. (4.17)

The set of equations (4.15)-(4.17) is the sdCD system continuous in t-direction and has

been obtained in [19].
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4.2 sdCD system continuous in x-direction

The Lax pair of general sdCD system continuous in x-direction is the differential-difference

linear system of equations given by

d

dx
Φm = ı̇λ−1

(
d
dx
qm

d
dx
rm

d
dx
sm − d

dx
qm

)
Φm ≡ AmΦm, (4.18)

Φm+1 =

(
1 + b

2
(qm+1 − qm − ı̇λ) − b

2
(rm+1 + rm)

b
2
(sm+1 + sm) 1 + b

2
(qm+1 − qm + ı̇λ)

)
Φn, m,

≡ BmΦm (4.19)

The compatibility condition d
dx
Bm + BmAm − Am+1Bm = 0 is equivalent to the following

nonlinear sdCD system continuous in x-direction

d

dx
(qm+1 − qm)[1 +

b

2
(qm+1 − qm)] +

b

4

d

dx
[(rm+1 + rm)(sm+1 + sm)] = 0, (4.20)

d

dx
(rm+1 − rm)[1 +

b

2
(qm+1 − qm)]− b

2

d

dx
(qm+1 + qm)[rm+1 + rm] = 0, (4.21)

d

dx
(sm+1 − sm)[1 +

b

2
(qm+1 − qm)]− b

2

d

dx
(qm+1 + qm)[sm+1 + sm] = 0. (4.22)

Apparently the sdCD system (4.20)-(4.22) seems to be different as obtained in [16]. This is

due to the fact that an additional t-derivative appears in the bilinearization process. The

sdCD system (4.20)-(4.22) can be related with that of [16] by an appropriate transformation

on the scalar functions qm, rm and sm. For SU(2) i.e., rm = sm, the set of nonlinear

equations for the sdCD system continuous in x-direction (4.20)-(4.22) is

d

dx
(qm+1 − qm)[1 +

b

2
(qm+1 − qm)] +

b

4

d

dx
(rm+1 + rm)

2 = 0, (4.23)

d

dx
(rm+1 − rm)[1 +

b

2
(qm+1 − qm)]− b

2

d

dx
(qm+1 + qm)[rm+1 + rm] = 0. (4.24)

In the continuum limit (b → 0, fm+1− fm → 0), we have fm+1−fm
b

= ft, fm+1+fm = 2f so

that the sdCD systems (4.20)-(4.24) reduces to their counterpart continuous CD systems.

5 Explicit soliton solutions

In what follows, we compute explicit expressions of one- and two-soliton solutions of the

dGCD system for rn, m = sn, m. To get one-soliton solution, let us take a seed solution i.e.

qn+1, m − qn, m = p �= 0, qn, m+1 − qn, m = 0, rn, m = 0, where p is a real constant, so the

11



solutions Xn, m, Yn, m of the Lax pair (4.11) and (4.12) are computed as

Xn, m =
(
1 + ı̇λ−1p

)n (
1− b

ı̇λ

2

)m

+ ı̇
(
1− ı̇λ−1p

)n (
1 + b

ı̇λ

2

)m

, (5.1)

Yn, m =
(
1 + ı̇λ−1p

)n (
1− b

ı̇λ

2

)m

− ı̇
(
1− ı̇λ−1p

)n (
1 + b

ı̇λ

2

)m

. (5.2)

For one soliton K = 1, the choice of matrices Ẽ(1), E(1), Hj, 1 and Λ1 are taken to be as

follows

Ẽ(1) = E(1) = I2 =

(
1 0
0 1

)
, Mn, m, 1 =

(
Xn, m, 1 Xn, m, 1

Yn, m, 1 −Yn, m, 1

)
,

Λ1 =

(
λ1 0
0 −λ1

)
, Mn, m, 1Λ1 =

(
λ1Xn, m, 1 −λ1Xn, m, 1

λ1Yn, m, 1 λ1Yn, m, 1

)
. (5.3)

By using equation (5.3) in the equation (3.34) with (3.38), the one-fold DT on the scalar

solutions qn, m, rn, m of the dCD system are given by

qn, m[1] = qn, m − ı̇

2

(
Θ

(1)
n, m, 12 +Θ

(1)
n, m, 21

)
, (5.4)

= qn, m − ı̇

2

⎛⎝∣∣∣∣∣∣
Xn, m, 1 Xn, m, 1 0
Yn, m, 1 −Yn, m, 1 1

λ1Xn, m, 1 −λ1Xn, m, 1 0

∣∣∣∣∣∣+
∣∣∣∣∣∣

Xn, m, 1 Xn, m, 1 1
Yn, m, 1 −Yn, m, 1 0

λ1Yn, m, 1 λ1Yn, m, 1 0

∣∣∣∣∣∣
⎞⎠ ,

rn, m[1] = rn, m − 1

2

(
Θ

(1)
n, m, 12 −Θ

(1)
n, m, 21

)
, (5.5)

= rn, m − 1

2

⎛⎝∣∣∣∣∣∣
Xn, m, 1 Xn, m, 1 0
Yn, m, 1 −Yn, m, 1 1

λ1Xn, m, 1 −λ1Xn, m, 1 0

∣∣∣∣∣∣−
∣∣∣∣∣∣

Xn, m, 1 Xn, m, 1 1
Yn, m, 1 −Yn, m, 1 0

λ1Yn, m, 1 λ1Yn, m, 1 0

∣∣∣∣∣∣
⎞⎠ .

After simplification, the expressions (5.4) and (5.5) reduce to

qn, m[1] = qn, m +
ı̇

2

(
λ1

Xn, m, 1

Yn, m, 1

+ λ1
Yn, m, 1

Xn, m, 1

)
, (5.6)

rn, m[1] = rn, m +
1

2

(
λ1

Xn, m, 1

Yn, m, 1

− λ1
Yn, m, 1

Xn, m, 1

)
. (5.7)

The results in equations (5.6) and (5.7) have also been obtained in [19] for the sdCD system.

By substituting the set of equations (5.1)-(5.2) in (5.6) and (5.7), explicit calculations for

one-soliton with (λ = ı̇μ) yield

qn, m[1] = qn, m − μ1
Cn, m −Dn, m

Cn, m +Dn, m

, (5.8)

rn, m[1] = −2μ1
En, m

Cn, m +Dn, m

, (5.9)

qn+1, m[1]− qn, m[1] = p− 2μ1
Cn+1, mDn, m − Cn, mDn+1, m

(Cn+1, m +Dn+1, m) (Cn, m +Dn, m)
, (5.10)
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with

Cn, m =
(
1 + μ−1

1 p
)2n (

1 +
μ1

2
b
)2m

, Dn, m =
(
1− μ−1

1 p
)2n (

1− μ1

2
b
)2m

,

En, m =
(
1 + μ−1

1 p
)n (

1− μ−1
1 p

)n (
1 +

μ1

2
b
)m (

1− μ1

2
b
)m

. (5.11)

The plots of equations (5.9), (5.10) have been sketched in Figure 1
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(a) plot of solution (5.9)
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(b) plot of solution (5.10)

Figure 1

In the continuum limit, i.e., when both the lattice parameters approach to zero, the

solutions obtained in (5.8)-(5.10), can be reduced to those obtained in [8], [13] given by

q[1] = q − μ1 tanh z, r[1] = −μ1sechz, (5.12)

∂xq[1] = p
(
1− 2sech2z

)
, z =

2p

μ1

x+ μ1t. (5.13)

Similarly, after a tedious calculation, explicit expressions of two-soliton solutions of the

dGCD system are given by

qn, m[2] = qn, m − (
μ2
2 − μ2

1

) ξn, m
χn, m

, (5.14)

rn, m[2] = −2
(
μ2
2 − μ2

1

) ζn, m
χn, m

, (5.15)

qn+1, m[2]− qn, m[2] = p− (
μ2
2 − μ2

1

) ξn+1, mχn, m − ξn, mχn+1, m

χn+1, mχn, m

, (5.16)

where

ξn, m = μ2 (Cn, m, 2 −Dn, m, 2) (Cn, m, 1 +Dn, m, 1)− μ1 (Cn, m, 1 −Dn, m, 1) (Cn, m, 2 +Dn, m, 2) ,

ζn, m = μ2 (Cn, m, 1 +Dn, m, 1) En, m, 2 − μ1 (Cn, m, 2 +Dn, m, 2) En, m, 1,

χn, m =
(
μ2
1 + μ2

2

)
(Cn, m, 1 +Dn, m, 1) (Cn, m, 2 +Dn, m, 2)

−2μ1μ2 [(Cn, m, 1 −Dn, m, 1) (Cn, m, 2 −Dn, m, 2) + 4En, m, 1En, m, 2] .
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where Cn, m, 1, Dn, m, 1 and Cn, m, 2, Dn, m, 2 are the solutions at μ1 and μ2 respectively.

Similarly by calculating explicit expressions of matrix elements from the matrix Sn, m, we

get the multi-soliton solutions of dCD system.
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n

r n,
 m

(a) plot of solution (5.15)
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n
q n+

1,
 m

 −
 q

n,
 m

(b) plot of solution (5.16)

Figure 2

By performing a continuous limit along the x-direction (a → 0), we get the one- and

two-soliton solutions of the sdCD continuous in x-direction i.e.

qm[1] = qm − μ1
Cm −Dm

Cm +Dm

, (5.17)

rm[1] = −2μ1
Em

Cm +Dm

, (5.18)

d

dx
qm[1] = p− 8

CmDm

(Cm +Dm)
2 , (5.19)

and

qm[2] = qm − (
μ2
2 − μ2

1

) ξm
χm

, (5.20)

rm[2] = −2
(
μ2
2 − μ2

1

) ζm
χm

, (5.21)

d

dx
qm[2] = p− 32

(
μ2
2 − μ2

1

) ϕm

χ2
m

, (5.22)
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where

ξm = μ2 (Cm, 2 −Dm, 2) (Cm, 1 +Dm, 1)− μ1 (Cm, 1 −Dm, 1) (Cm, 2 +Dm, 2) ,

ζm = μ2 (Cm, 1 +Dm, 1) Em, 2 − μ1 (Cm, 2 +Dm, 2) Em, 1,

ϕm = [(Cm, 1 −Dm, 1)
2Cm, 2Dm, 2 + (Cm, 2 −Dm, 2)

2Cm, 1Dm, 1

− 2(Cm, 1 −Dm, 1)(Cm, 2 −Dm, 2)Em, 1Em, 2],

χm =
(
μ2
1 + μ2

2

)
(Cm, 1 +Dm, 1) (Cm, 2 +Dm, 2)

− 2μ1μ2 [(Cm, 1 −Dm, 1) (Cm, 2 −Dm, 2) + 4Em, 1Em, 2] ,

and

Cm, 1, 2 =
(
1 +

μ1, 2

2
b
)2m

e2μ
−1
1, 2px, Dm, 1, 2 =

(
1− μ1, 2

2
b
)2m

e−2μ−1
1, 2px,

Em, 1, 2 =
(
1 +

μ1, 2

2
b
)m (

1− μ1, 2

2
b
)m

. (5.23)
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Similarly, explicit expressions of one- and two-soliton solutions of sdCD system con-

tinuous in t-direction are obtained by performing the continuum limit as b → 0. When

we apply the continuum limit along x- and t-direction simultaneously, we obtain soliton

solutions of a continuous CD system.

Equations (5.9) and (5.10) represent respectively, the discrete bright- and dark-type one

soliton solution of the dGCD system for the SU(2). Similarly bright- and dark-type two

soliton solution are also obtained and have been plotted in Figure 2. In the same way, we

can also get the multi-soliton of the dGCD system.

6 Concluding remarks

In this paper, we have used Lax pair representation to get an integrable discretization of

the generalized coupled dispersionless (dGCD) system. From the fully dGCD, two semi-

discrete versions of GCD along x-direction and t-direction, respectively, are obtained. We

have also obtained the continuous GCD system from discrete GCD system by reducing

discrete variables n and m to continuous variables x and t by taking a continuum limit on

the lattice parameters. Multi-soliton solutions are obtained by the action of discrete DT

and the solutions are expressed in terms of quasideterminants. Explicit expressions of one-

and two-soliton solutions are derived by using properties of quasideterminants.
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