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Abstract

We use the notion of stochastic two-scale convergence introduced
in [ZP06] to solve the problem of stochastic homogenization of the
elastic plate in the bending regime.
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1 Introduction

The problem of rigorously deriving a two-dimensional model approximating a
three-dimensional (nonlinear) elastic plate with very small thickness was long
outstanding. It was finally solved in [FJMO02] in terms of I'-convergence after
establishing the geometric rigidity estimate. With this estimate they further
managed in [FJMO06] to derive a multitude of related models. Their results



have since been generalized in various directions, e.g., different dimensions
involved (e.g., [MMO04]), convergence of equilibria instead of convergence of
minimizer as I'-convergence yields (e.g., [MP08, MMO04]), or an inhomoge-
neous plate (e.g., [HNV14, NO15, Vell5]). This paper falls into the last
category.

We consider a thin plate with a fine microstructure on the midplane, ex-
tended constantly in normal direction. A very similar problem was studied
in [HNV14], where the microstructure was assumed to be periodic, while we
consider more general random materials and recover their main results as
a special case. Another interesting generalization of the periodic case was
given in [BDF15], where the microstructure was allowed to oscillate on two
different scales €;(h) and e5(h), where the ‘coarser’ structure dominates the
homogenization effect.

Already in the periodic case it was seen that the homogenization and the
dimension reduction interact non-trivially with each other. To be more pre-
cise let h > 0 denote the thickness of the plate, and e(h) the ‘fineness’ of the
microstructure, e.g., in the periodic case the length of a periodic cell, at thick-
ness h with e(h) — 0if h — 0 and assume v = limy, o he "' (h) € [0, 00| exists.
One might imagine the case v = oo corresponds to the situation, where we
apply purely dimension reduction to an already homogeneous plate, while
one could expect v = 0 to be the case where a 2D plate is homogenized;
the latter, however, is wrong at least in the plate scaling as comparing the
results obtained in [Vell5] and [NO15] shows. This intuition, however, holds
true for the von Karman plate [NV13]. The intermediate case 0 < v < oo
corresponds to the case, where both effects strongly interact; in some sense
thus the most interesting case.

With a periodic microstructure in [HNV14] the range v € (0, 00] was cov-
ered, excluding the 0 entirely. The methods developed in [Vell5] allows the
treatment, at least partially, of the case v = 0. Only partially, since we have
to assume the microstructure is still sufficiently strong ‘homogenizing’, i.e.
h > (e(h))® In [CC15] the authors use a different approach (smoothening
and unfolding operator) to deal with the homogenization of plate. Firstly,
they recover the result of [Vell5] in the simpler case, when the energy density
does not additionally depend on z3 variable and then they conclude that in
the regime when h < (£(h))? the limit model is the same as the one obtained
in [NO15]. The regime h ~ (¢(h))? remains uncovered.

The stochastic homogenization incorporates periodic setting, almost periodic
setting, but also some completely non-periodic examples (see the Example 4.2
below). Since it is possible to have the situation where periodicity is com-
pletely destroyed and since we are not able to treat all cases of the periodic
homogenization, we find that it is important to establish the result on the



stochastic homogenization of the bending plate.

As in [HNV14] we make heavy use of two-scale convergence. The first
generalization to the stochastic setting of two-scale convergence was done
in [BMWO94], which is too crude to recover the information on the limit ma-
terial. An alternative was introduced by [ZP06], which is more flexible, and
which we will use. Recently the notion of an unfolding operator for the
stochastic homogenization was introduced in [Neul7]. However, since this
notion also averages over the probability space and thus is an analogue of
the notion of stochastic two-scale convergence introduced in [BMW94], it is
also too crude to recover the results obtained here.

Compared to the periodic setting the identification of the two-scale limits is
more involved and subtle. In fact we are not able to recover all the limits
derived in [HNV14]. This is due to the lack of the notion of oscillatory conver-
gence in the stochastic setting. Namely, the notion of oscillatory convergence,
introduced in [HNV14] and later developed in [BDF15], for the multiscale ho-
mogenization, has useful consequences only in the periodic setting. In the
stochastic setting one has to completely rely on duality arguments, which
can be used by stochastic two-scale convergence.

To cope with this, we use methods developed in [Vell5] and make use of
further cancellation effects (see Lemma 3.9 and Lemma 3.10, see also Re-
mark 3.11). Furthermore, the precise relationship between solenoids and
potential fields were not proven, in the case where the differential operators
div and V were not either purely classical, or purely stochastic derivatives,
but mixtures between them. For this we introduce in section A.4.2 the cor-
rect notion of mixed potentials and solenoids. In contrast to the purely
stochastic case we have to take into account the boundary condition in the
physical space. On one hand they have to be chosen restrictive enough to
allow the orthogonality property to hold, proved in Lemma A.5, on the other
hand they have to complement each other to L? in the sense, that Theo-
rem A.4 (i) holds. In the appendix we first recall previous results for the
purely stochastic case, and then prove the Helmholtz-decomposition for the
mixed one. This decomposition allows us to reveal a gradient structure in
the two-scale limits by testing with solenoids, a subclass of functions used in
the oscillatory convergence, introduced in [HNV14].

For simplicity, we will state and prove the case v € (0,00), but the other
cases covered in [HNV14, Vell5] can be proved analogously. This includes
the case v = oo as well as v = 0, under the additional assumption that
e(h)? < h < e(h). The regime h ~ (£(h))* and h < (g(h))? remains
uncovered.

Without the notion of stochastic two-scale convergence we are not able to
solve the problem; the usual approach for stochastic homogenization in the



context of calculus of variation however does not necessarily need stochastic
two-scale convergence, cf. [DMM86a, DMMS86b] for the convex case and [DG16]
for the non-convex case. The main claims of the paper are given in Theo-
rem 3.6 and Theorem 3.8.

Notation

The inner product of the Hilbert space H for the vectors a,b € H is denoted
by (a,b),. If H=R" it is also denoted by a-b. By ¢ : R*? — R¥*® we
denote the natural inclusion

L(G) = Z Gopea ® es.

a,$=1,2

For a matrix M € R™" we denote its transpose by M? and by cof M
its cofactor matrix. By [,«, we denote the identity matrix in R"*". By
V' = (01,02) we denote the gradient with respect to the first two variables
and similarly ' = (z1,25) € R? for x € R3. For h > 0 we furthermore
denote by V, = (V', ;:05) the scaled gradient. By R we denote the space
of symmetric matrices, while by R[\" we denote the space of antisymmetric
matrices. For a normed space X and S C X we denote by adhx S the closure
of the set S in the norm defined on the space X. By C§°(S) we denote the

smooth functions with compact support on S.

2 Stochastic two-scale convergence

2.1 Probability framework

Let (2, F, P) be a complete probability space. We will assume that F is

countably generated which implies that the spaces LP(€2), for p € [1,00), are

separable. By S we will denote the domain in R™. With I we denote the
11

interval I = [—3, 5].

Definition 2.1. A family (T,).er~ of measurable bijective mappings T, :
Q — Q on a probability space (2, F, P) is called a dynamical system on
with respect to P if

a. Tyoly="Tyry;
b. P(T,F)=P(F),VxeR", F € F;

c. T: QxR = Q, (wx) = Ty(w) is measurable (for the standard
o-algebra on the product space, where on R™ we take the Lebesque o-
algebra).



We define the notion of ergodicity for the dynamical system.

Definition 2.2. A dynamical system is called ergodic if one of the following
equivalent conditions is fulfilled

a. f measurable, f(w) = f(Tyw), Yo € R", ae. w € @ = f(w) =
const. for P-a.e. w € Q).

b. [vx e R", P(T,BUB\(T,BNB)) = 0] = P(B) € {0,1}.

Remark 2.3. Note that for the condition b the implication P(B) € {0,1}
has to hold, if the symmetric difference between T,B and B is a null set.
It can be shown (e.g., [CFS82]), that ergodicity is also equivalent if a priori
only the weaker tmplication

Ve eRY, T,B= B} — P(B) € {0,1}

holds. This formulation will however only be used in the appendix to show
that the product of an ergodic system with a periodic one is once more ergodic.

On L*(Q) we can define the unitary action
Ul)f =foT,, VfeL*Q).

It can be shown that a, b, ¢ of Definition 2.1 imply that this is a strongly con-
tinuous group (see [ZK094]). We define the operator D; as the infinitesimal
generator of the unitary group U,,. This means that

Dif(w) = tim LT) = fl@)

z;—0 X;

where the limit is taken in L? sense. Also we have that iD,,...,iD, are
commuting, self-adjoint, closed, and densely defined linear operators on the
separable Hilbert space L?*(€2). The domain D;(f2) of such an operator is
given by the set of L? functions for which the limit exists. We denote by
Wh2(Q2) the set

W2(Q) :==Di(Q)N---NDL(N)

and similarly
WE2(Q) = {f € L*(Q): D ...Df € L*(Q), oy + -+ + o, = k};
W2 (Q) = () Wh2(Q).

keEN



On W*? we define the norm in the usual way. By the standard semigroup
property it can be shown that W>%(Q) is dense in L?(2). We also define
the space

Cx(Q) = {f e W>*Q) :V(,...,a,) ENG, Df*...Dsnf e L2(Q)}.

By the smoothening procedure explained below it can be shown that C*(()
is dense in LP(Q2) for any p € [1,00), as well as in W*2(Q) for any k. Notice
that D;f, due to the closedness property of the infinitesimal generator, can
be equivalently defined as the function that satisfies the property

/QDifg:—/QfDig, Vg € C*(Q).

We can identify f: Q2 — R with f : Q x R™ — R, its realization, given by
flw,z) == f(T,w). After identifying f € W1?(Q) with its realization, one
can show that

Wh2(Q) = {f e WAR", L*(Q) : flx +y,w) = f(x,Tw), Va,y,forae w}

loc

={f e C'R", L*(): f(z +y,w) = f(z,T,w), Vz,y,forae. w}.

(1)
A proof of this fact can be found in [DG16|[Lemma A.7].
As in [ZKO94] we define a stochastic mollifier. For ¢ € L*(Q) and K €
CP(R™) even, ie., K(z) = K(—a) for all z € R", we set

(p* K)(w) == / o(Tyw)K (z)dz, w e
It is easily seen that ¢ +— ¢ * K is well defined and continuous from L?()
to L*(£2). By using this mollifier one can show that there exists a countable
dense subset of L2(2) and W2(Q) (see [BMW94]). Following [SW11] we
denote by ||+, the seminorm on C>(£2) given by

2 2
HUH#,k,Q = Z | D%l

€N |a|=k

By WFE2(Q) we denote the completion of C*(£2) with respect to the seminorm
HH#k2 The gradient operator V,, = (Dy,...,D,) and div,, = V- opera-
tor extend by continuity uniquely to mappings from W'2(Q) to L*(2, R"),
respectively WH2(Q, R") to L*(Q). By the density argument it is easily seen
that W'?(Q) is also the completion of W*(Q) in ||-[| ., , seminorm. We
also define W72 (Q,R") as the completion of C*(€2, R") with respect to the

seminorm |[+[|, o, 5, defined by

6]l #.5ym 20 = I sym V|2, ¥b € C=(©, R").
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2.2 Definition and basic properties

The key property of ergodic systems is the ergodic theorem, due to Birkhoff:

Theorem 2.4 (Ergodic theorem). Let (2, F, P) be a probability space with
an ergodic dynamical system (Ty)zern on 2. Let f € LY(Q) be a function
and A C R™ be a bounded open set. Then for P-a.e. w € £ we have

lim / AT u3)de = |A / F(@)dP(w). 2)
e—=0 J 4 Q

Furthermore, for every f € LP(Q), 1 < p < oo, and a.e. w € Q, the
function f(w,x) = f(T,W) satisfies f(w,-) € L} (R™). For p < co we have
f(@,-/e) = f(T)&) = [, fAP weakly in L}, (R") as e — 0.

Note that the exception set, where (2) doesn’t hold, will in general depend
on f. The elements @ such that (2) holds for every f € L'(2) are called
typical elements, the corresponding trajectories (7,w),cr~ are called typical
trajectories. Note that the separability of L'(2) implies that almost every
w € Q) is typical.

In the following we denote by S C R"™ a bounded domain, if not otherwise
stated. For vector spaces V1, V5 we denote by V; ® V5 the usual tensor product
of the spaces V;, V5. We define the following notion of stochastic two-scale
convergence, a slight variation of the definition given in [ZP06]. We will stay
in the L? setting, since it suffices for our analysis.

Definition 2.5. Let (T,0)zern be a typical trajectory and (v°) a bounded
sequence in L*(S). We say that (v°) stochastically weakly two-scale converges

tov € L*(Q x S) w.r.it. @ and we write v° 2vif
lim [ v°(2)g(To-1,0, x)dx = / / v(w, z)g(w, r)dr dP(w)
0 Js QJs

for all g € C*(Q) @ C°(9).
If additionally
1] L2y = vl z2axs)

holds, then we say (v°) strongly two-scale converges to v and write v° 2 0.
For vector-valued functions we define the convergence componentwise.

Remark 2.6. The convergence of the sequence (v°) is defined along a typical
trajectory and thus the limit can also be wW-dependent. We don’t write this
dependence, since we will always look at the problem on a typical trajectory
(which can be imagined to be fized).



Remark 2.7. Note that the two-scale limit is defined on the whole space
Q x S. Furthermore by density we can extend the space of test functions g
to L= () ® L*(9).

Remark 2.8. Since we will assume that the material oscillates only in the
in-plane direction on the domain S x I we will often use the notion of in-
plane two-scale convergence. A uniformly bounded sequence (v°) in L*(S x I)
stochastically weakly two-scale converges tov € L*(QxSxI) w.r.t. @, denoted

by v° 2 v, if
lim v (2)g(Te-1p@, )dx = // v(w, x)g(w, r)dx dP(w)
0 Jsxr QJsx1

for all g € C(Q) @ C§°(S x I). All the properties of the previous stochastic
two-scale convergence remain valid for this variation as well.

Sometimes we will make the decomposition for the two-scale limit v

(@, z) :/Qv(w,a:)dP(w)+ (U(@,x)—/Qv(w,x)dP(w)>,

separating the weak limit from the oscillatory part. We will then write
v By = / v(w, )dP(w).
Q

Proposition 2.9 (Compactness). Let (v°) be a bounded sequence in L*(S).
Then there exists a subsequence (not relabeled) and v € L*(Q2 x S) such that

2
vt =0,
A proof can be found in [ZP06][Lemma 5.1].

The following proposition states the compatibility of strongly convergent
sequences with weakly two-scale convergent sequences.

Proposition 2.10.  a. If (u®) C L*(S) is a bounded sequence with u® — u
in L*(S) for some u € L*(S), then, after extending u trivially to Q x S,

it holds u® 2 .

b. If (v¢) C L*=(S) is uniformly bounded by a constant and v — v strongly
in LY(S) for some v € L®(S), and if (u) is bounded in L*(S) with
w2 u for some u € L*(Q x S), then we have that v:u® 2 pu.

The proof is straightforward. The next lemma is useful to prove the follow-

ing Lemma 2.12, which gives us the form of stochastic two-scale limits of
gradients.



Lemma 2.11. Let f € (L*(Q2))" be such that
/ f-9g=0, VYgeC=(Q,R") satisfying div,g = 0.
Q

Then there exists 1 € WY(Q) such that f = V1.
Proof. Tt is an immediate consequence of Theorem A.1. O]

Lemma 2.12. Let (uf) be a bounded sequence in WY2(S). Then there exist
u® € Wh2(S) and u' € L*(S,W"(Q)), such that on a subsequence we have

ut —u in WH(S)  and Ve 2V 4+ Vout

Proof. The statement follows immediately from the previous lemma in the
same way as in the periodic case (see [All02]). O

Similar results hold for second gradients. We will prove it for the case n = 2
in the next two lemmas (for the proof of the slightly more general claim in
the periodic setting by the duality arguments, see [Vell3, Lemma 3.8]).

Lemma 2.13. Let f € L*(Q2, R2%2) be such that

Sym
/ f-cofV,g=0, VgeCQ,R?).
Q

Then there exists 1 € W*%(Q) such that f = V2.
Proof. It is an immediate consequence of Theorem A.2. Ol

Lemma 2.14. Let S C R? be a bounded domain and let (u®) be a bounded se-
quence in W22(S). Then there exists u® € W*2(S) and u' € L*(S, W*?(Q2))
such that on a subsequence we have

ut = u’ in W(S)  and V*© 2Vl 4+ Viul.

Proof. The existence of such an u" follows by classical compactness. By
Prop. 2.9 there exists f € L?(2 x S,R**?) and a subsequence with

VTN Ve

Since VZuf — V2 € R2X2 almost everywhere on S, we get f € R2X2 almost

Sym sym
everywhere on 2 x S. Thus by Lemma 2.13 it suffices to show that for almost
every x € S we have

/ f(z,w) - cof Vyg(w) =0, VgeC®(Q,R?).
Q

9



For this fix some g € C*(Q,R?) and ¢ € C5°(S). Then by definition of
two-scale convergence we have

/S/Qf(w’x)'COfvwg(w)SO(x)dP(w)dx

= lsiﬁ)l S(VQUE(.’I}) — V2u(z)) - (cof Viug) (Te-1,0)p(z)dx

=lim [ cof (V*u*(z) — V*u'(2)) - eV <g(T571xc~u)<p(x)>dx

8¢0 S

- liigls/ cof (V2uf(z) — V*u'(z)) - [g(TE—leNJ) ® Vgo(x)] dz.
€ s

The first term vanishes identically, since div cof Vo = 0 distributionally for
all v € WH2(S,R?), while the second one vanishes by the uniform bound on
the integral. Since ¢ and g were arbitrary, the claim follows. 0J

In the periodic case the purely oscillatory two-scale convergence turns out to
be a good concept (see e.g., [HNV14]). The test functions considered there
were fast oscillating periodic functions with vanishing mean value. Since
in the periodic case this implies a predictable rate of convergence, strong
results have been obtained. We have to rely on Birkhoft’s Ergodic Theorem
(Theorem 2.4), which cannot provide such information. Instead we focus
on derivatives of test functions, which naturally have vanishing mean value.
The following lemma states that we do not lose information by restricting
ourselves to this smaller class of functions.

Lemma 2.15. The set {div,v: v € C®(Q,R")} is dense in

{b € LQ(Q)‘ /Qb(w)dP(w) - o},

with respect to the strong L*()) topology.
Proof. See [ZP06][Lemma 2.5]. O

The following lemma is needed for proving Lemma 3.9, which in turn is
essential for proving Theorem 3.6.

Lemma 2.16. Let (f°) ¢ W(S), (¢°) € WH(S) uniformly bounded in
these spaces, and converging weakly in W12(S) to f9, respectively g°. Assume
further that

1
limsup —|[f*¢°(| ;1 < o0,
10 £

10



and that there exist ¢7, ¢9 € L?(S, W2(Q)) with
VAV P+V Vg SV 4+ Ve
Then for every v € C*(Q,R"™) and ¢ € C§°(S) we have
/g‘]wi@)(divwv)(Tg1x&)w(x)dx — (3)
| (#/m)@)+ £oa) - 7)) div o) plo)dod o).
x
Proof. The proof consists in an integration by parts:

/ fgg;(x) (div ,v)(Te-1,0)p(z)dx

S

—— [ V) e) o(TnBhele)ds - (DT () - o(T,B)da
K S
- /s(vlfe(l") (@) + [ (@) - Vg () ) - o( T B)p()da
— g/ (F;f)(m)vlw(:p) (Temr,00)da
S
— —/S/Q(wa(w,x) ~g(x) + f () - ngbg(w,x)) v(w)p(z)ded P(w).

The claim now follows after integrating by parts once more, this time in
w. 0l

Remark 2.17. The right-hand side in (3) actually makes sense only via an
integration by parts since we do not have that ¢'(z,-)g(x) + f(x)¢9(x,-) €
L3(2), for a.e. x € S. However, if we knew that there exists h € L*(Q x S)
such that for all v € C*(Q,R"™) and ¢ € C§°(S) we have

—/ (Vud! - g+ f-Viug?) - vpdadP(w) = / h(div,, v)p dzdP(w),
QxS

QxS

then we would be able to conclude, by the closedness property of the operator
Vo, that ¢/ - g+ f-¢? € L*(Q x S). This will be used in the proof of
Lemma 3.9.

We now introduce the ‘mixed’ spaces. The integral of L*(Q2)-valued functions
will be in the sense of Bochner. For A C R™ measurable we can define the
space W12(A, L?(Q)) in the usual way. Notice that, since L*(€) is a separable

11



Hilbert space, the analysis has many analogies with the analysis in R" (see,
e.g., [Krel5] when the target space is a general Banach space).

For the main part of the paper we only need A = I, the one-dimensional
interval [—%, %] In the appendix we will however make use of this more
general notion.

In the case A = I we denote by D,, the derivative of f : @ x I — R in
the I-component, i.e., the differential operator mapping W'3(I, L*(Q)) to

L*(Q2 x I). We define the space W12(Q2 x I) as the space

Wh2(Q x I) = WY(I1, L*(Q)) N L*(I, W2(Q)). (4)
On the space W'2(Qx I') we again define the seminorm ||-||4 2 in the following
way

2 2 2 2

||UH#,2 = ||D1UHL2(Q><I) + HD2UHL2(QxI) + HDJZSUHLQ(QXI)'

By W'2(Q x I) we denote the completion of the space Wh?(Q x I) with
respect to the seminorm [[-[|, ,. By a density argument it can also be seen as
the completion of the space C*(Q)®C* (/) with the same norm. We can also

naturally define the operators V and div on Wh?(Qx I) resp. WH2(Qx I, R3).

For v > 0 we also define Wsly’fnﬁ(Q x I,R3?) as the completion of the space

(C>(Q2) ® C°°(I))? with respect to the seminorm [l 4 gm0 SiVen by
16l] . ayn 2 = [l SYm(D1d, Db, £ Dy b)| 2, Wb € (C(Q) @ C(1))°.

The following lemma is useful for proving Lemma 2.19.

Lemma 2.18. Let v > 0 and f € L*(2 x I,R?) be such that

f-9g=0, Vge(C®Q)aC(I))? that satisfy
Qx1I

Dig1 + D2gs + 2 Dyyg3 = 0.
Then there exists 1 € WH*(Q x I) such that
f - (D11/}> DQQ/}a %Dmsw)

Proof. This follows immediately from the decomposition and density result
in Theorem A 4. O

We will now assume ¢ = ¢(h) depends additionally on h > 0 and satisfies
e(h) $ 0if A | 0. The definition of two-scale convergence extends naturally
to sequences (v");~0. We assume further that

) h
= lﬁ&l% € (0,00) (5)

12



is well-defined. In the sequel we will often suppress the dependence of £(h)
on h.

Similar to Lemma 2.11 implying Lemma 2.12, we can prove the following
lemma, using Lemma 2.18.

Lemma 2.19. Let v > 0 be given by (5) and let S C R? a bounded domain.
Let (uh) be a bounded sequence in L?(S x I), such that the sequence of scaled
gradients (Vyu') is bounded in L*(S x I,R?®). Assume further there exists
u’ € WH2(S x I) such that u" — u® strongly in L*(S x I). Then there exists
a subsequence hy, — 0, and u' € L*(S,W'(Q x I)) such that

Vi, u' 2 (V'u’,0) + (Dyu', Dou', %Dmul).

Proof. The proof relies on the previous lemma and works in the same way
as in periodic case (see [Neul0] for details). O

The following Lemma 2.21 shows that convex functionals are compatible with
the concept of stochastic two-scale convergence. In the stochastic setting we
cannot rely on the unfolding operator (see e.g., [Vis07] for the periodic case)
and thus we require more to obtain the continuity of integral functionals with
respect to strong stochastic two-scale convergence (see Remark 2.22). Before
stating and proving the lemma we give the following definition:

Definition 2.20. Consider a measurable map @ : 2 x R" x R™ — [0, 4-00].
We say that Q is T-stationary if for a.e. (w,z,y,v) € 2 x R" x R" x R™
we have

QTyw,z,v) = Q(w,z+y,v).

By Q° : Q@ x R™ — [0,00) we denote the mapping Q°(w,v) = Q(w,0,v).
Without loss of generality we can assume that for a.e. = € R", for all
v € R™ we have Q(w,z,v) = Q°(T,w,v).

Lemma 2.21. Let (u¥) be a bounded sequence in L*(S,R™), such that u* 2
uw’ € L2(QAx S,R™). Let Q°: 2 x R" x R™ — [0,00) be a T-stationary map
such that Q°(w, x,) is a convex function for a.e. (w,x) € Q x R™. Assume
additionally that there exists a constant C' > 0 such that Q°(w,x,v) < C(1+
[v]?), for a.e. (w,x) € QxR", for allv € R™. Then for a.e. @ € Q we have

liniénf/Qo(&,x/s,us(x))dx = liminf/QO(TE1z&,us(x))dx
€ S S

el0

/S/QQO (w, v’ (w, z))dP(w)dz.

v
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If additionally w¢ 2 u°, then

lim/QO(UJ,x/e,ua(:p))dx = lim/QO(TE—lxﬁ,ua(:p))dx
s

l0

holds for almost every w € €.

Proof. We start with the lower semicontinuity: Let (u®) C L?(S,R™) be

uniformly bounded with u¢ 2 u°, where u° € L*(Q x S,R™). Then take a
subsequence such that

liminf/Q (Te-1,0,u"(x))de = lim /QO 1w, u (2 ))da:
€0 k—o0

Denote these limits by M € [0, 00]. If M = oo, then there is nothing to show.
Else we have

(@18, () CLXS),

keN

with a uniform bound. Thus we may extract another subsequence (not rela-
beled) such that the sequence converges weakly-* in measure to some p. By
the lower semicontinuity we have u(S) < M. We will show that

| @E@atea)are) < Jhw).

for almost every x € S, where the right-hand side represents the Radon-
Nikodym derivative in x, i.e.,

du (2) = lim (B (z))
acr w0 Ln(B,(z))

Let 2* be a Lebesgue point of 2 — [, u’(w, z)dP(w) such that the limit

Lo (B)
I (B, (2"))

exists and such that v°(-,z*) € L*(Q,R™). Let a: Q@ — R™,b: Q@ — R be
measurable, bounded functions with

h(z") =

a(w) - v+ bw) < Q%w,v), for all v € R™ and almost every w € Q. (6)

14



For a.e. r > 0 we have p(9(B,(z*))) = 0 and for these r we get

u(B,(a") = Jim [ T B @)

k—o00

> lim ( (To-1,0) - u™ () + b(T )> dz

k—o00 B (;l?*

A;@ /1 u’(w, z) + b(w)) dP(w)dz,

where we used that u¢ = 0. Therefore for a suitable sequence r | 0 we have
h(x*) > 17%1 |B 5 /7 . / (w,z) + b(w)) dP(w)dz
= / (a(w) - u’(w, z*) + b(w)) dP(w).
Q

By taking the supremum over the functions a, b satisfying (6) we obtain

> /Q Q° (w, uo(w, x*))dP(w).

Integrating both sides w.r.t. * yields the first claim.

For the continuity assume that u® 2, 40 and assume that u® € (L*(Q) ®
L*(S))™. Then from the strong two-scale convergence follows

||u(x) — uO(TE—lx@,I)HLz(S) — 0.

From the convexity and the uniform bound of @) follows the existence of a
constant C' > 0 such that for almost every w € €2 it holds

|Q°(w,v1) = Q%w,v2)| < C(1+ |v1] + |va])|vr — val, Yor,v9 € R™.  (7)

Using (7) and the Ergodic theorem we conclude

hm/Q (Te-1,w, u(x )d:c—hm/Q 11,0, u’ (T, ))da

€0 el0

_Aéwww@@mmmm

For general v’ € L*(Q x S,R™) the claim follows by approximation and
using (7). O
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Remark 2.22. Notice that in the proof of the second claim we only use the
relation (7), but not the convexity. Notice also that for u® € L*(Q x S,R™)
the function x +— u®(T.-1,0,x) does not need to be measurable (see [BMW94]
for details). This is why we proved it first for u® € (L*(Q) @ L*(S))™ and
then argued by density.

Remark 2.23. Lemma 2.21 also holds for bounded sequences in L?(S x
I,R™) which stochastically two-scale converge in the sense of Remark 2.8.

3 Homogenization of the plate model

3.1 General framework and main result

In this chapter S C R? is a bounded domain and the interval I = [—1,1].
Let v be as in (5). The main results are Theorem 3.6 (lower bound) and
Theorem 3.8 (upper bound). To prove the I'-limit result we will need some
additional assumption on the domain S. We will assume that the domain
S is piecewise C. This assumption is necessary only for the proof of upper
bound, and can be weakened (see Theorem 3.8 for a precise definition). For
the lower bound we only require S to be a Lipschitz domain.

Consider a measurable map W : Q x R% x R**3 — [0, +0c], representing the

stored energy density function, satisfying the following:

Assumption 3.1. We assume that W is T-stationary as in Definition 2.20
and that W (w,’,-) is continuous on R3*3 for a.e. (w,2’) € Q x R?. This
will ensure the measurability of all composition mappings that appear (see,
e.g., the expression (10)) We also assume that the following properties are
satisfied:

a. Objectivity property
W(w,2',RF) = W (w,2', F)
for a.e. (w,2') € Qx R?, for all F € R¥?, R € SO(3).

b. There exist constants cy,co, p > 0 such that
W(,-, F) > ¢ dist>(F,SO(3)), a.e. on Q x R? and for all F € R¥3
W (., F) < cydist?(F,SO(3)), a.e. on Q x R? and for all F € R¥3
with dist?(F,SO(3)) < p.
(8)
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c. There exists a monotone function r : [0,00) — [0, 00] with r(t) | 0 as
t 1 0 such that, for a.e. (w,z') € Q x R?, there exists a quadratic form
Q(w, 2’,+) on R¥3 with

W (w, 2, Isxs + G) — Q(w, ', G)| < r(|G)|G|? for all G € R*. (9)

For w €  we define the energy functionals I" : W12(S x I, R3) — [0, o0] by

1
I"(u) = h2/$ ) W (w, 2’ /e, Viu(a', z3))da’des;. (10)
X

As a consequence of relations (8)-(9) we have the following lemma.

Lemma 3.2. Let W be as in Assumption 3.1 and let () be the quadratic form
associated with W wvia (9). Then

(Q1) Q is T-stationary,
(Q2) for a.e. (w,z') € Q x R* we have that

alsym G < Q(w, 7', Q) = Q(w, 2, sym G) < ¢alsym GJ?, VG € R¥3,

As before by Q% : © x R¥3 — [0,00) we denote the mapping Q%(w,G) =
Q(w,0,G). Again without loss of generality we can assume that for a.e.
7' € R?, for all G € R**3 we have Q(w, 7/, G) = Q" (Tyw, G).

Definition 3.3 (The relaxation formula). Let v > 0 and define the map
Q7 : R¥2 — [0,00) as follows

Q'(G) = nf/Q ) Q" (w, (B + 23G) + sym(D1¢, D¢, %Dmgzﬁ))dP(w)da:g,

¢,B
(11)
where the infimum is taken over B € R**? and ¢ € WL2 _(Q x I,R3).

sym,7y

It can be shown that Q7 is a quadratic form which is coercive on symmetric
matrices. Namely the expression on the right-hand side of (11) can be viewed
as the projection of 253G onto the closed subspace of L*(€2 x I, R2x?) defined

by ((RE2) DWE2 _(Qx I, R?) (the orthogonal decomposition) in the norm

Sym sym,7y

induced by the quadratic form Q°, where

sym,y sym,y

DWgn (2 x I,R?) = {sym(D16, Dagp, 2Dy $) : ¢ € Wyin, L (2 x [, R)}.

The coercivity property follows easily from the coercivity property of Q°.
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In the bending regime we assume that the sequence of minimizers (u") sat-
isfies
limsup 1" (u") < oo.
hl0

By the compactness result (see Lemma 3.4), it can be concluded that the
limit deformations are Sobolev isometries. By W(S) we denote the set

iso

W22(S) = {u € W?2(S,R®) : Du - Dgu = dop for a, f = 1,2},

where § denotes the Kronecker delta symbol. For u € W2?(S) we define its
normal n* € W'2(S,R?) as n* = d1uAdyu and the second fundamental form
II* as

o5 = Oatu - Opn" = —Oupu-n", o, =1,2.
We define the limit functional 1° : W22(S) — [0, 00) in the following way

1°(u) = /5 Q7 (IT(2/)) -

The following compactness result is the consequence of the compactness re-
sult given in [FJMO02] and is explained in [Vell5][Lemma 3.3, Remark 4, proof
of Proposition 3.2].

Lemma 3.4. There exists a constant C > 0, depending only on S, such that
for every u € WH(S x I,R?) there exists: a map R : S — SO(3), which
is piecewise constants on squares x' + h[0,1)%, 2’ € hZ?, as well as R €
W2(S,R**3) such that for every & € R* with |€] = max{|{-eq], | ea|} < h
and for each S" C S with dist(S’,0S) > h w.r.t. the |-| norm, we have

IVht = Rl Zasrr) + IR = Bll2gsn + P2IIR = Rll7 s

P2V R 2oy + 1R+ €) = Rll72(s < Clldist(Vau, SOB3) 72051

If additionally S" is open with S’ of class CY1, then there exists u € W?2(S")
such that

h2||a||124/2,2(5/) + [V — (Re, R€2)||i2(5/) + [V — V%H;(s')

< C||dist(Vau, SO(3)) 725y

where U = [, u(ws)dws.

Remark 3.5. The existence of the function R follows from the geometric
rigidity, proved in [FJM02], whﬁe R is the mollification of R on scale h. The
function u is the projection of R onto gradient fields.
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The following two theorems are the main result of this paper. They corre-
spond to the statement of lower and upper bound for the I'-limit.

Theorem 3.6. Let S C R? be a bounded domain with Lipschitz boundary.
Let (u") € W12(S x I,R?) be a family with finite elastic energy, i.e.

limsup 1" (u") < oo.
hi0

a. There exists u € W22(S) such that (up to a subsequence) we have

ulh — / u = strongly in Wl’z(S X I,R3), (12)
s
Vi — (V'u,n") strongly in L*(S x I,R**?). (13)

b. For a.e. w € Q and any sequence (u") satisfying (12), (13) for some
u € W22(S) we have that

iso

lim inf 1" (u") > IS(u).

h—0

Remark 3.7. The claim a is the standard compactness result for the bending
regime, whose proof can be found in [FIMO02).

Theorem 3.8. Let S C R? be a bounded domain with Lipschitz boundary,
such that its normal is continuous away from a subset of S with length zero
(e.g., the boundary is piecewise C'). Let u € W22(S). Then for a.e. every

iso

w € Q there exists a sequence (u") C WL2(S x I, R3) such that we have
a. u" — u strongly in W42(S x I, R?);
b. I"(uM) — I9(u).

3.2 Identifications of two-scale limits and proof of The-
orem 3.6

3.2.1 Two-scale limits of the most important terms

In this section we explicitly compute the two-scale limits, which will be
needed to prove the lower bound stated by Theorem 3.6.

Lemma 3.9. Let S' C R2~be a bounded domain. Let (u") C W22(S),
(RM) € L>=(S,SO(3)) and (R") C WH2(S", R**3) with

~h 12 ~ D D 2 Shi2
h2||uhHW2~2(S’) + VA" = (Rley, Rh€2)HL2(S/) +||R" — RhHLZ(S')
+B| R — B[y + 12|V R 251y < OB,
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Then there exist a (not relabeled) subsequence and functions wy, € L*(S'),
o' € L2(S", W*2(Q,R?)), ¢f € L*(S',W"2(Q,R?)) such that for a = 1,2
we have

Rle,, Rtes) + (Rles, 0,1i" 1
< o) £ {Ies, 0ult]) 2, “ul+ = (Res. Dao™) + ~ (07, Rea),
v?ah AN viqsu’

V(RMe;) 25 V¢,

and (Res, Dad™) + (97, Re,) € L*(S' x Q,R?).
Proof. Notice that
(R'eq, R'es) + (Rles, 0,u") = (R'es — Rles, 040" — R, + (Rles, 0,0").

The left-hand side is of order h, while the first term on the right-hand side is
of order h%. Thus the second term on the right-hand side is of order h. After
dividing by h the first term on the right-hand side converges strongly to 0 as
h — 0 and thus does not contribute to the two-scale limit. We define

= ﬁheg, ghi=0u" a=1,2,

and notice that, after extracting a subsequence, the components f/, (¢"),,
i = 1,2, 3 satisfy the assumptions of Lemma 2.16 (see also Remark 2.17).
Thus

1 el 2 1 1
RO = £ (200a)) 2 T+ 2o+ 20l ),
for some w® € L%(S") and ¢/, p% € L*(S", WL2(Q, R?)) such that (f, %) +
(¢, g0) € L3S x Q,R3). From Lemma 2.14 we additionally deduce that

there exists @9 € L?(S", W*?(Q,R?)) with D,¢? = ¢% for a = 1,2. This
yields

(Rheq, Res) + (Rhes, 0,u") 2

1
L ; + <R63, a¢ >+ ¢R63 Reoz>

for some w? € L2(S"), ¢fes € L2(Q x §',R3) and ¢¥ € L2(S', W?*2(Q,R3)).
0l

The following lemma identifies the most sensitive term in our analysis.
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Lemma 3.10. Let S’ C R2 be a bounded domain. Let (R") € W12(S", R3%3),
and let (R") C L>(S’,SO(3)) be such that for each h > 0 the map R" is piece-
wise constant on each square '+ h|0,1)* with 2’ € hZ?. Assume further that
for each & € R? with || < h we have

|R" — Rh”i?(sq +h?|R" — RhHQLoc(Sf) + thV/RhH2L2(S/)
+H R + &) = R*[|72 g0y < CH?

for each sequence of subdomains S™ C S' which satisfy dist(S",S") > h
w.r.t. the |-|  norm.

Finally assume that RM is the mollification of R" on scale h.
Then there exist R € WY2(S',S0(3)), w3 € L*(S') and ¢™* € L*(S", WH2(Q, R?))
such that on a subsequence we have R" — R in L*(S",R*>®) and

<]%h€37 §h63> —1 i
h
V(Res) 2 v ¢,

1 41 Fe.
—wy + —(Reg, ¢"),
- s 7( )

with (Res, ¢F°) € L(S' x Q).
Proof. From

<Rh€3, Eh63> —1 N 1
h ~h

fh = <Rh€3, éheg — Rh€3>

we easily see that (f") is uniformly bounded in L?(S’). Thus up to a subse-
quence we have

1 1
fhégwg and fhigwg‘Hb

for some w) € L*(S") and ¢ € L*(Q x S’). To further identify ¢ we test the
sequence against derivatives. For this fix some b € C*(Q2) and ¢ € C§°(5").
Let A > 0 be small enough and such that there is a subdomain S C S’ with
dist(S",98’) > h and the compact support K of ¢ is contained in S™.

First note that

‘/K fh(Il)(Dab)(Taflw/a)(p(x”dx/ = 5/K fh(x/)aa{b(Tsflz/aj)@(x/)]dx/
—E/th(x’)b(Ts1I/c~u)8a<p(x')dx/.

The last term converges to 0, and so we focus on the first. For this we define
q. = (2 + h[0,1)*) N K and compute
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N [<Rh(2)63, ]?iheg,)b(Taﬂx/cNu)(p] dz’

€ Z / Dy, Ou R e3>b(Tsf1x/c~u)g0} da’.

thZ2
For the last term we use Lemma 2.12 to conclude there exists ¢Fe: € L3S, W2 (Q,R?))
with ~ -
V' Rles 2 V' Res + V01,
Together with R"* — R strongly in L?(S’), we obtain

lim (_Z 22 /q z [(Rh(z)eg,aazfzhegb(n,lw@)(p] dx’)
_1}%( 5/ [(R e3, 0 Re)b(To-1,,5) }df)
_ _// Reg,a Res + Do) b(w )@}daz’dP(w)

1 [ [ [ires Dagppire]an'are)

Assume that

3

Y, / 0. [<Rh(z)eg,§h63>b(T5_lz,a)¢}dx'ﬂm. (14)
holds. Then
i / P (Dab) (Toor @) ep(2 )
——Véﬂ;m%Dw%%wwwa@>

By compactness we obtained f" e L*(Q x S"). By Remark 2.17 we
obtain (Res, ¢) € L*(Q x S'). After integrating by parts, this implies
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fh 2 o= %(Reg, pfies) — %fQ<R€3, ¢fes) and thus, after absorbing the last

term into wg, also the claim. It remains to prove (14). If ¢, # 0 then let

['Pos T'2°¢ be the boundary of ¢, perpendicular to e, with normals e, resp.
—€q, €lse TP T2 .= (). The Gauss’s theorem yields

= Z [ (2)es, Ehe;;)b(Tg—lz@)go da’

=— Z (R"(2)es, RMe3)b(Te-1,@)pda’

h G e
- = Z/ (R"(2)es, RMes)b(To-1,@)pda’,
h e e

where the integral is taken in the sense of traces. We rearrange the sum and
obtain

— Z (R"(2)es, R'es)b(To-1,0)pda’

thZ2 ree

- = Z/ (R"(2)es, Rles)b(Ti-1,@)pda’

thZ2
= % Z <Rh(z)63 — Rz + hea)eg,/ Ehegb(Tg_lx@)gpdx’>.
z€hZ? e

By assumption
RM2) — RM(2 + hey)
h

is uniformly bounded in z and h, which implies

hmsup Z |Rh — RM( z—l—hea)‘ 0.

2€hZ?

Denote by Z C hZ? the z-values such that I'P* has positive H2-measure
Yy z

|TPs|. Using the trace inequality and Poincaré’s inequality afterwards, we
get for z € Z that
~ 1

~ |2 ~
/ jr— Rh‘ gCh/yVRhFdx’.
Fgos ‘Fz | F};OS q-

Combining both previous statements we see that

. € h h Sh ~ /
illll)l(l) 7 Z <R (z)es — R"(z + hey)es, /rgos R"esb(T.-1pw)pdx >

1. 1 ~ ~
= ; ;ILIL%Z<R}L(Z)€3 — Rh(z + he,)es, W - Rhe3> /Fgos O(T.-1w)pda’.
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Noticing the uniform bound

[, WTo®)da| < bl el
FZOS

we only need to show that

lim sup Z

hi0 z2EZ

1 ~
<Rh ez — Rh(z + hey)es, oo 0% e Rhe3>’ < o0

to conclude the vanishing of the product. For this bound note that R" is the
mollification of R" on scale h. Therefore there exist z-independent constants
0 <m,me,ns <1 with

1 ~
W s Rh =M <Rh(2«') -+ Rh(z + hea)>
(B (2 + hel) + B (= + hlea + ¢1)
5 (B (= = hed) + Bz + hlea — €2))).

We compute

[:=m ZKR (2 + heg)es, R"(2)es + R'"(z + hea)e3>‘
z2EZ
=my [|Rh<z>e3|2 — R (= + hew)es ?
z€EZ

With this result we easily obtain

I1 —nQZKR RMz + heg)es, R"(z + hel)es + R" (2 + h(eq + et ))es) |
2€Z
< ZKRh(z)eg — R"(z + hey)es, R"(z 4 hel)es — Rh(Z>€3>‘
2€Z
+i12 ) _[(R(2)es — R (2 + hea)es, R (2 + h(ea + €3))es — R"(2 + hea)es)| < 0o
2€Z

and analogously also that

III := 3 ZKR R"(z — hey)es, R"(z 4 hel)es + R"(z + h(eq L))63>’

z2€EZ

is uniformly bounded. Obviously

>

z2€EZ

1 ~
<Rh(z)63 — R"(z + hey)es, i Rhe3>‘ < TH1I1+110,
z F];OS

24



and we conclude that

%<<Rh€3, Rles) — 1) 2 }ng + ’])-/<R€3, ). O
Remark 3.11. In the case when £(h)*> < h < £(h), one would not need
to obtain the additional compactness given in Lemma 3.9 and Lemma 3.10.
Namely, in that case, the corrector in the cell formula (11) allows in the
third column and row arbitrary functions in L*( x S x I) (see [Vell5] for
the periodic case). As already shown in [Vell5], due to this fact, the regime
e(h)? < h < e(h) does not need the notion of oscillatory convergence, intro-
duced in [HNV1}], for the regimes h ~ (h) and h > e(h).
Lemma 3.9 and Lemma 3.10, together with Lemma 3.12 below (already es-
tablished in the periodic setting in [Vell5]), completely avoid the notion of
oscillatory convergence and rely completely on the duality arguments. The
idea of Lemma 3.10 is to join the members (3, ) and («,3), for a € {1,2}
(since only their sum is visible in the limit; see the proof of the lower bound)
and to use further cancellation effects; and for the proof of Lemma 3.10 one
has to do the additional computations.

Lemma 3.12. Let S C R? be a bounded Lipschitz domain and let (a") C
W22(S R3), (RM) € Wh2(S', R3*3) and (R") € L=(S',S0(3)) be such that
for each h > 0 the map R" is piecewise constant on each square x' + h[0,1)?
with ' € hZ?, and for each & € R* with || < h we have

~h (2 ~ = ~ 2 Shi2
h2||uh”w2,2(5/) + [ V'@" — (R, Rh€2)HL2(5/) + R — RhHL?(S’)
Shi2 Shi2 2
+h?|| R — RhHLoo(s/) + hQHVIRhHH(s/) +R"(-+¢) — RhHL2(5h) < Ch?,
for some C' > 0 and for each sequence of subdomains S"* C S' which sat-

isfy dist(S",05") > h. Then there exists My € L*(S,RZ%2) and ¢ €
L2(S', W12 (0, R?)) with

sym

Rh Rh Tv/"’h -1
(R"eq, 62)h 2%2 ng—i—symVMC.

Proof. Using Theorem A.2 the proof is identical to [Vell5][Lemma 3.7]. [

sym

3.2.2 Proof of Theorem 3.6

Proof. Let (u") be as in the claim, and let S’ C S be open with C1! boundary.
For every h we apply Lemma 3.4 to u" and obtain (R"), (R") and (u") as
stated in the lemma. Define 2" by the decomposition of u" into

w2 xs) = W' (2') + hasR (2 )es + ha" (2!, x3),
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where once more @ (2') = [, u"(2/, 23)dxs. Clearly we have 2" € Wh2(S" x
I,R?) with [, z(x3)dws = 0.
We define the approximate strain

Rh)Tthh — ngg

ho_ |
G" = N

and split it into

L((R"er, R'e)TV'u" — Iyyo)

h_
¢ = h

1 ~
+ 7 a;2<Rh63, DatiMes @ eq

1 (15)

_ 1 ~
+ E(Rh)T(V/Eh —V'a",0) + N ((Rh)TRheg Res —e3® eg)
+ 25(RMT (V' Rles, 0) + (RN, 2"

Since G" is uniformly bounded in L?, we may take a subsequence such that

G" 2 G for some G € L2(Q x S x I, R¥3). We study sym G by computing
the possible two-scale limits of the terms in sym G". For this we will readily
take further subsequences if needed, without denoting them explicitly.

By applying Lemma 3.12 we obtain

L((Rhel, RhGQ)TVINh — IQXQ)
h

for some My € L*(S", R253) and ¢ € L*(S', W57 (2, R?)). From Lemma 2.12
and Prop. 2.10 we get

2 t(My + sym V()

sym

23(RME (V' Rles) 2 25(I1%, 0)7 + 23 RTV, 65,
as well as

%(Rh)T(V’uh — V) 2 RT (9 + ku)

for some 0 € L2(S', R3*2) and v, ¢Fes € L2(S, WH2(, R?)).
For

1 ~ 1 .
7 <(Rh)TRh63 Re; —eg® 63) + 7 a;2<Rheg, Oati")es @ eq
. 0 0 (Rey, Rhes)
= 0 0 (Rhe,, Rles)

(Rhes, O1T")  (Rhey, 0ot")  (RPes, Res) — 1
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we obtain from Lemma 3.9 and Lemma 3.10 that

1 ~ 1 -
— ((Rh)TRheg Re3—e3® €3> + 7 Z (Rles, 0,u")es @ eq

sym
h
a=1,2

1 1 5 1 -
2 5 sym(w’ ® e3) + 5 sym(RT¢"es3 @ e3) + 5 sym(RTV, ¢"e3 @ e3)

for some w® € L2(S",R?), ¢% € L2(S", W*2(Q, R?)). For the last term (V;,2")
notice that (15) yields an uniform L? bound. By Lemma 2.19 we thus get

1
(RMT'V,2" 2 RT (qubz, vagqbz)
for some ¢* € L*(S", W'2(Q2 x I,R?)). We conclude that
1 1 =
sym G" iL(Mo +sym V() + 5 sym(w’ ® ez) + S sym(RT¢T%es @ e3)
1 _
+ S sym(RTV,¢"es ® e3) + sym (RTG + RTVMU>
U T Re T z 1 z
+ x3 sym<L(II )+ (R (Voo 3),0)) —i—sym(R (quﬁ ,aDmgb ))

We rewrite this as

- 1
symG = L(sym(B + 3 II“)) + sym (ngb, 7Dmgb) ,
where E == MO + [RTeij]lgi,jSQ as well as

¢z, w) = R (") g(z,w) + ¢(a',w) + 73 (bi(2'), bo(a’), 0)",

with

5(3:, w) = ¢*(z,w) +v(z',w) + x3¢1§63 (', w) + z3wo(x') + i(ﬁa(a:’, w),
bi ¥ [RTO(.ZE'I)]& for i = 1, 2.

Notice that ¢ € Wiz (2 x I,R?).

After exhausting S by S’ C S open with C'*! boundary, using Lemma 3.4 and
Remark 3.7 as well as the quadraticity of the form Q7, the lower bound follows
by using ¢ from Assumption 3.1 and lower semicontinuity of the quadratic
form Q° with respect to the stochastic two-scale convergence, see Lemma 2.21

and Remark 2.23 (see also [HNV14] for the details in the periodic case). [
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3.3 Proof of upper bound

In this section we prove the upper bound statement. We recall some issues
from the periodic homogenization (see [HNV14]). As in [Sch07] and other
related results, the key ingredient here is the density result for W22(S) iso-
metric immersions established in [Horlla, Horllb] (cf. also [Pak04] for an
earlier result in this direction). It is the need for the results in [Horlla] that
forces us to restrict ourselves to domains S which are not only Lipschitz but
also piecewise C''. More precisely, we only need that the outer unit normal
be continuous away from a subset of 05 with length zero.

For a given u € W22(S) and for a displacement V € W?2(S, R?) we denote

by ¢, the quadratic form
gy = sym ((Vu)T(VV)) .

We denote by A(S) the set of all u € W22(S,R?) N C=(S,R?) with the
property that

S = {B € C™(S, Rfyxnrf) : B =0 in a neighborhood of {z' € S : I1"(z2') = 0}}
C gy : Ve C(S;R)}.

In other words, if u € A(S) and B € C*(S,R%:?) is a matrix field which
vanishes in a neighborhood of {II* = 0}, then there exists a displacement
V e C*(S;R?) such that ¢} = B. The necessary lemma for the proof of

upper bound is the following lemma, whose proof is given in [Sch07, HNV14].

Lemma 3.13. The set A(S) is dense in W22(S) with respect to the strong
W22(S,R?) topology.

Proof of Theorem 3.8. Fix some typical w € 2. By Lemma 3.13 it suffices to
show the claim for u € A(S). Fix B € S and V € C*(S, R?) such that ¢}, =
B, and define the unit normal n* = 0;u A Osu. Next we divide the domain S
into small squares (D), D} C S of size n such that |S\ U, D}| — 0 as
n — 0. On each square we define A}, B! € R2%? as the averages

7 Sym

1 1
Al = — I*(2")ds!, B] = B(a2")dx'.
= o, . B = o [ s

For each 7 =1,...,n and § <  we define

D} = {a' € D] : dist(«', OD]) > 3},
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For each i = 1,...,n let (") C (C®() ® C*(I))® be a minimizing se-
quence of @7, in the sense that

1
/Q Q(w, L(Bf + ,1'314?) + Sym(Dlgi 7k7 DQ.gz . lDzsg?’k))dedP“u) - E
x 1

Ty

1 Ui n 1
< ¢ewlv%?£xI,R3) /Q XIQ(W,L(Bi + 23A7) + sym(D1¢p, Dy, ;Dmggb))dxgdP(w)_

We start with the Kirchhoff-Love ansatz, augmented by its linearization in-
duced by the displacement V:

"2, 23) == u(2’) + hazn'(2') + h(V(2') + hazu(a')),
where p is given by
o= (]3><3 —n & n“)((?lV VAN 8211 + Blu A GQV)

We set R(z') = (V'u(z’), n"(z)). A straightforward computation shows
that

Vieh = R+ h((V'V, )+ 23(V', 0)) + h2as(V's,0). (16)

The actual recovery sequence u” is obtained by adding to v" the oscillating
correction of order € = ¢(h):

uPEOM (3! xg) = oM (2, z5) + he Z X (@ R(a) g (T, 3). (17)

i=1

Here y"° € C''(S) are smooth cut-off functions that satisfy
C
X" =1on DM, X" =0on (DN and [V’ < 5 for some C' > 0.

Equations (16) and (17) imply together with n* - o = 0 that

RV ut0 = Ings + b (V'u) " (V'V) + 23 11") + h(es ® (u- V'u),0)"
+ h(es® (n-V'V),0)

+h Y XP(Digl", Dagl™, 5 Dy gi")
=1
s B (V' 0) + he Y (IR R)gi* 0)

=1
n

+he) (V’X?‘Sg?”“, 0) :
i=1

(18)
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the arguments of g/"* and of (Dyg!"", Dog*, ZDmg?’k) are (T.-1,@, x3). From (17)
and (18) we conclude that

n,k,8,h h—0
[ - u||W172(S><I,R3) > 0.
Defining
1
Gkt — (BT Vurtst — 1)

and using the fact that n- VV + p - V'u = 0, we deduce from (18) that

sym G™FOh = (qb + 25 TT%)

+ Z X" sym(Dy g, Dyg*, 8Dmg?’k) + hsym (z3R"(V'11,0))

i=1

—i-EZsym( S(RTV'R)g! o)

—I—sZsym (V' mo "k 0) :
using the objectivity property we obtain
W (@, ' /e, Vi) = W (@, 22, Inxs + hG™").

It is also easy to see from (9) that

1 - ~
ﬁW(C% JE'I/& thn,k,é,h) o Q(w7 l’l/& Gn,k,é,h) N O7

uniformly in 2’ for h — 0. It is not difficult to conclude

Y 4V ! -
lim lim lim lim — Q(@, 2’ /e, GMFOMYda' das
1—=0 k=00 60 h—=0 h? [g,;

= / i%f Q(w, «(B + z311") + sym(D1¢, D2, %quﬁ))dxgdP(w)dx’
S QxI

where we minimize over ¢ € W2 (Q x I,R?). By choosing appropriate B

sym,7y
we get

1
lim lim lim lim — Q(@, ' /e, GO da' dwg = / QV(I1*("))da’
s

10 k=00 50 h—0 h2 J¢. ;

The claim now follows by the lemma of Attouch and by a classical diagonal
argument for I'-convergence. [
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4 Examples for the probability space

The first example is the standard one and is already given in [PV81]. It
covers the case of periodic homogenization.

Ezample 4.1. We take W : R* x R¥*® — [0, oo| that is 1-periodic in the first
component and that satisfies the property a, b, ¢ from Assumption 3.1. Next
we take 0 = T2 the 2-dimensional unit torus with the Lebesgue measurable
sets as the o-algebra and the probability P as Lebesgue measure on 772
The measure is invariant under translations, e.g., from the dynamical system
T,w = w+ z (mod 1). The infinitesimal generators are the usual partial
derivatives, for i = 1,2

0

Di -
&ui

(w = (w1, ws)).

In the end we define W(w,2’, F) = W(w + 2/, F). In this case we obtain for
Q7 the following formula

é,B

Q’Y<G> - lnf/ Q(xlv L(B + ISG) + Synl(Dlgbv D2¢7 %Dm3¢))d$,d$3,
T2xI

where the infimum is taken over ¢ € W'?(T? x I, R?), B € R**2.

In [PV81] it is also shown how almost periodic case can be covered with
the abstract approach of stochastic homogenization. Periodic (or almost
periodic) homogenization naturally destroys the isotropic character of the
energy density, even if the constituents are isotropic. In the next example we
want to show how we can obtain the isotropic energy density out of isotropic
constituents by stochastic homogenization.

Example 4.2. We would like to construct the probability space that consists
of some subset of functions on R? (taking values in some finite or countable
set) that is invariant under rotations of the coordinate system and moreover
that the probability measure is invariant under these rotations. One pos-
sible construction can be made using Poisson processes. We construct the
probability space that consists of piecewise constant functions. Namely, the
construction of the probability space goes as follows: we take the Poisson
point process in R? with the Lebesgue measure and the sequence of indepen-
dent and identically distributed random variables (.J,,) (independent of the
Poisson process), taking values in the set N. We then construct the marked
Poisson point process, i.e., to every point (of some realization) we give a mark
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according to the realization of the sequence (J,,) !. For i € N we take energy
density functions W : R? x R¥*® — [0, oo| that satisfies the properties a, b, ¢
from the Assumption 3.1 and that is isotropic, i.e., it satisfies

Wiw, ', FR) = Wi(w,2', F), for all F € R** R € SO(3),
for a.e. (w,2’) € 2 x R* and all i € N.

This implies that the same property is valid for the appropriate quadratic
forms Q. Out of each realization of the marked Poisson point process we
malke the material mixture in the following way: the point 2/ € R? is occupied
by the material ¢ if the point 2z’ is in the Voronoi cell of the point that is
marked with the number ¢. In that way we obtain the probability space
where

Q2 = {piecewise constant functions that take values in the set N and

that is constructed using the marked Poisson process}.
For the o-algebra we take the one generated by the sets
{f €Q| f(z) =i e Qi €N, for | = 1,...,n}.

For the probability measure we take the pushforward of the measure given
by the marked Poisson processes. The action T, is simply given by the
translation Tpw(y') = w(x’ +9'). It is easily seen that this action is measure
preserving (since the distribution of the marked Poisson process is translation
invariant) and ergodic. The ergodicity follows from the facts that the marked
Poisson process (with independent marks) is ergodic and that the probability
measure is just a pushforward. The energy density we define in the following
way:
W(w, o', F) = W'w, 2, F), if w(z') =i.

IThe definition of the marked Poisson process can be given as follows: it is a point
process that takes values in the metric space R? x N and that satisfies:

o for every A C R?, M C N the random variable N(A x M) that denotes the
number of points that belong to the set A x M has the Poisson distribution with
the parameter AA|P(J; € M), for some fixed A > 0 (called the intensity of the
Poisson process);

o for Ay,..., A, C RZxN, the random variables N (4;),..., N(4,,) that denote the
number of points that belong to the sets Ai, ..., A,, respectively are independent.

Thus, each realization of such a process can be seen as a collection of points in R? that
additionally have a mark (a natural number). For the general theory of point processes,
see , e.g., [DV03].
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For R € SO(2) we define the rotational transformation R; : 2 — € in the
following way

Ri(w)(2") = w(Ra'), for all 2’ € R?.
Notice that R is measure preserving. By R we denote the matrix in SO(3)

given by R = ¢(R)+e3®es. From the properties of the infinitesimal generator
we easily conclude for f € C>(Q) that

(Dy(f o R,), Dy(f o R,)) = (Dy1f o Ry, Dof o R)R.

From the cell formula (11) and the isotropy property of Q° we conclude

Q' (GR) nf/ Q" (w, u(B + z3GR) + (D1¢, D2, %quﬁ))dP(w)dxg
QxI

=i
6.B
= ;anlg/ Q" (w, (BR" + 23G) + (D1¢, D19, %Dxfgqb)ﬁT)dP(w)d:rg
’ QxI
— inf / Q"(w, 1B + 25G) + (D16, D3, 1D,,6))dP(w)das
’ QxI
= Q7(G).
The infima are taken for ¢ € WH2(Q x I,R?), B € R**2. This proves the
isotropy.

Remark 4.3. Notice that in the first ezample we can write the cell formula
in the following way

Q(G) =inf [ QB+ 0,G)+ (D16, Das D) da'ds,
) ~NT2x1

where the infimum is taken over ¢ € WH3(yT? x I,R?), B € R*2. In the
second example we can write the cell formula in the following way

¢ﬂB

QW(G) = lnf/ QO (wa [’(B + xSG) + (D1¢7 D2¢)7 Dz3¢))dp<w)dx37
QdxTI

where the infimum is taken for ¢ € WH2(Q4 x I, R?), B € R**?. Here, Q¢
is the transformed set of functions, where the transformation is given by

wh(z') = w(y™'2'), for every w € Q.

This transformation changes the intensity of the Poisson in the background.
This explains the meaning of the parameter v. Namely, although it seems
that e(h) has not a clear physical meaning, its meaning is incorporated in the
probability space in the background. In the first case it is the size of the cell
of the periodicity, while in the second it is connected to the intensity of the
Poisson process in the background.
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A Appendix

A.1 Decompositions of L?

The decomposition of L? into a ‘gradient’ part and a ‘divergence-free’ part,
known as Helmholtz-decomposition, is a classical result in real space, and
has since been generalized in various aspects.

The aim in this section is to present possible decompositions of L?, once
a probability space is involved. From now on let (€2, F, P) be a probability
space and an N-dimensional ergodic system (77,) :  — € (see Definitions 2.1
and 2.2) as well as D;, i = 1,... N the infinitesimal generators of T' (see the
discussion after Remark 2.3.) We first recall a known result for L?(2, RY),
we state a similar decomposition of L*(Q, R2:?) into second gradients parts
and a remainder, and finally we derive the decomposition for the ‘mixed’

space L*(Q x S,RN*M) where S ¢ RM.

A.2 Decomposition of purely random spaces (first or-
der)

The Helmholtz-decomposition for stochastic L2-spaces were already known.
These results can be also easily proved by using the spectral decomposi-
tion and the methods in [BMW94]. We recall the results given in [ZKO94]
and [DG16] (the definitions of potential and solenoidal fields given in [ZKO94]
are given by using realizations, however these definitions can be equivalently
defined on the probability space; see [DG16, Rel (3.4), Rel. (3.5)]):

Let

12,(Q) == {f € LAQRY) / (f:Dsg— f;Dsg) = O,
Q
for all g € W'(Q),i,5=1,..., N},

Lgol(ﬂ) ={fe LQ(Q,RN) : / f(Vyg)=0, forallge Wl’z(ﬂ)},
Q
as well as
F2,(Q) = {f e 12, [ 1= o}, F2,() = {f e @) [ 1= o}.
Q Q

Theorem A.l. Let (2, F, P) be a probability space and an N -dimensional
ergodic system (1) : Q — Q. Then

LX(Q,RY) = Fpo, () @ F5 () @ R,

34



Furthermore we can characterize the spaces by

F2.(Q) =adh2{V,g: geW"Q)},

pot
and for N = 2,3 we get respectively
F2(Q) = adh2{(=Ds,Dy)g: g€ W"(Q,R)},

sol
F2(Q) =adh2{V, xg: gecW"¥Q,R?}.

sol

A.3 Decomposition of purely stochastic spaces (second
order)

For the second order decomposition we define the spaces

Lgpot(ﬂ) = {A € LZ(Q,RSQ,;HQI) / A:cof V,h =0 forall h e Wl’Z(Q,RQ)},
Q

and

L2,(Q) = {B € L*(Q, R / B:V2h=0 forallhe W”(Q,R)}.
Q

Denote further
F§p0t<Q> = {A € L?)pot(Q) ‘ /K;A = 0}’ FSQSOI(Q> = {B € Lgsol(Q) ‘ /QB - 0}

We obtain the following decomposition and density result:

Theorem A.2. Let (2, F,P) be a probability space and a 2-dimensional
ergodic system (1) : Q — Q. Then
LQ(Q7 RQXZ) = Fp?pot(gn D Fszsol(Q) 2 Rz;;a

Sym
as well as
F2

ppot

F2

ssol

(Q) = adh2{V2b | b e C®(Q)},
() = adh2{cof sym Vb | b € C (9, R?)}.
The theorem can be proved by the same methods as in [ZKO94, Lemma 7.3].

A.4 Decomposition of mixed spaces

Let S € RM be a bounded Lipschitz domain, and let L = M + N. By V we
will denote the operator (91, ..., d.), for maps with the domain RY x S, and
for maps with the domain © x S the operator (Dy,...,Dy,Ony1,---,0L);
since from the context the definition that is used is clear, we will not distin-
guish them in notation. Additionally we define in both cases div = V-.
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A.4.1 Trace Theorems

In this section we briefly discuss a generalization of the trace operator for
functions with the domain Q2 x S. The statements and proofs are analogous
results to the classical results for Sobolev functions (see [GR12]). First we
define W12(Q x ), analogously to (4), by

Wh3(Q x S) = W'2(S, L*(Q)) N L*(S, WH2(Q)).
On this space we define the extended trace.

v W (Q x S) — L*(Q x 9S),
V(W) (w,y) =7 (w, ) (),
where
5 Wh2(S) — L*(09)
is the classical trace. By definition W12(Q x S) ¢ Wh2(S,L?(2)) and so
by Fubini’'s Theorem we obtain ¢(w, ) € WH2(S) for a.e. w € Q, if ¥ €
Wh2(Q x S). Tt is easily seen that the map v is linear and continuous.

Furthermore the space v(WH2(Q2 x S9)) is a closed subspace of L*(Q2 x 95),
which we will denote by

WY2(Q x 98) := v(WH2(Q x S)).
Together with the norm

HMHWl/z(Qan) - :H||¢||W1v2(ﬂ><5)

inf
PEWL2(QxS) ()
the space is complete. To extend the trace, we define on (C*(Q) @ C>=(S))r
the norm
2 2 2
HgHWi{f(QXS) = H9HL2(Qx5) + ||d1V9||L2(Q><S)

and denote the completion of the space as
Wi2(Qx S) = adhy1z (C*(92) © O%(5))*,

analogously to the real-variant Wdli’f (RN x S).

Furthermore we split g = (g%, ¢") into ¢° = (g1, ..., 9n) and ¢" = (gn+1,- -+, 9L)-
Let I' =  x 0S be the boundary of 2 x S, and let v be the outward-normal
of S.

Lemma A.3 (Normal Trace Theorem). The mapping~y, : g — gr}r-u defined
for g € (C>(Q) ® C(S))* eatends uniquely to a continuous, linear mapping
Y, W2 (Q x ) — (WH2(Q2 x 0S))'.
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Proof. Using integration by parts for smooth functions ¢ € C*(Q)®C>(S), g €
(C>(Q)) ® C=(S))* we have

/ g(w,z) - Vo(w, z)dP(w)dx + / (div g)(w, z)p(w, z)d P(w)dz
QxS

QxS

- [ [ v@)-g et n)deare).

Applying the Cauchy-Schwarz inequality we thus obtain

g (w, x)p(w, z)dx dP(w)

o s < HgHW;i’f(st) : HSDHWM(st)v
for all p € C*°(Q) ® C*°(S), and by density for all ¢ € W12(Q x S).

Now fix some 1 € W'/2(Q x 95). For any such 1 there exists by definition
¢ € WH2(Q2 x S) such that v(p) = ¥ and |||z < 2[|¢)]ly12. Thus we
obtain

(w, 2)Y(w, r)dz dP(w)| < 2”9“W§;j(ﬂx5) ) |W||W1/2(Qx35)-

QJos

By definition of the (W2(Q x 9S))" norm we finally obtain

y sup o(w,z)dz dP(w
HW1/2(Q><8S) ¢6W1/2(9X05)//E)S ) ( ) ( )

el 2 <1

< 2lgllwrz qxs)-
Thus 7, can be continuously extended to a map Wy2 (2 x S) — (W2(Q x
S)), and by density the extension is unique. O

To simplify the notation we will write w‘QX og for v(¥) and g" - v for 7, (g).

A.4.2 Mixed differential equations

We define the spaces of test functions D = C°(RY x §) and X := C*(RV)®
C*(S), and introduce for f,g € L} (RN, L*(S,RF)) the notation

VX f=0inD <= (fjﬁicp—fi(?jgo) =0 foralli jand p €D,

RN xS

divg=0inD" <= <g,Vnp> =0 for all p € D.
RN xS
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If additionally g € L2 (R", W;i’f (5)), then ¢" - v is almost everywhere well-

loc

defined on 05 and we set
divg=0in X' <= <g,Vg0>:/ / (pg",v) for all p € X.
RN xRM RN Jos
Since D C X the conditions immediately split into
divg=0in X' < divg=0inD and ¢ -vr=0 ae onRY x9S.

Similar to before we define

D =C®Q)®CP(S)  and )?:{¢e€°°(9)®0°°(§): j Sw:o},

and for f,g € L?(2 x S,R¥) we denote

Vx f=0inD <= ) S(fjai¢—fiaj¢) —0 foralli,jand o €D,
divg=0inD = QS<g,v¢>=o for all ¥ € D.

Next we define for g € W2(Q x S):
divg=0 inX <divginD andg -v=0 ae. onxaS.

Note that V x f =0 in D’ holds, iff. almost all realization satisfy V.x f =0
in D', and similarly for div g.
Finally define the sets

L2, (QxS)={fe’(QxSRY): Vxf=0inD},
L2 (QxS)={ge L’ xS, RY): divg=0in X'},
and
Faul@x8) = {f e 13,@x5): [ floaplope =0},
QxS

F2(Q % §) = {g €2 (QxS): /stg(w,:c)dP(w)da: _ 0}.

We are now able to state the decomposition theorem for the mixed-spaces:

Theorem A.4. Let (2, F, P) be a probability space with F countably gener-
ated and a N-dimensional ergodic system (T,) : Q — Q and let S € RM be
a bounded Lipschitz domain. Then:
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(i) L2(Q x S,RF) = F?

pot

(Qx8)® F2,(Q2x S)®RE

sol

(ZZ) F[?Ot

(Q X S) = adhLz(st’RL){Vg 1 gc WLQ(Q X S)}
(i) If L =3, i.e. M =1,N=2or M =2, N =1 then

2
F, sol

(2 x 5) = adhzqusrr){V x g g € WH(Q,R)}.

A.4.3 Orthogonality of div and V

The decomposition will follow easily, once we have proved the following
lemma:

Lemma A.5. Let f € L2, (2 x S) and g € L2,(Q x S). Then

pot sol

g Sf(w,y) 9w, y)dP(w)dy

= ;( QXSf(w,y)dP(W)dy> : (/Mg(w,y)dP(W)dy)

Especially if additionally [ f =0 or [ g =0, then (f, 9 12(0xs) = 0-

Before proving the lemma, we first show that ‘multiplying’ an ergodic system
with a periodic system yields once more an ergodic system.

Lemma A.6. Let (2, F,P) be a Brobability space with an N -dimensional
ergodic system (Ty) : Q@ — Q. Let T : RM x [0, 1)™ — [0, 1)™ be defined by
T,(w") =wM +y (mod 1). Define the product dynamical system

TxT:RY xRY) x (Qx[0,)M) = Qx[0,1)M

by
(T X T)(%y) (("')N7WM) = (waN’ Twa)'

If T is ergodic, then T X T is ergodic as well.

Here we use the weaker formulation of ergodicity, explained in Remark 2.3.

Proof. Let B C © x [0,1)™ be measurable and invariant under 7" x T, ie.
(T'X T)(syy(B) = B forall (z,y) € RY x RM.

Choosing x = 0 we get

U (@ x T) oy (B) = B.

yeRM
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Thus B can be written as B’ x [0,1)™ with B’ C { measurable. We have
(P& £LY)(B) = P(B).

By ergodicity of T' we have P(B’) € {0,1} and thus (P ® £M)(B) € {0,1}.
O]

Proof of Lemma A.5. By translating and scaling it suffices to show it for
domains S C Q := 3(—1,1)™. Fix some f,g € L*(2 x S) and extend them
to f,g € L*(Q2 x Q) with their corresponding mean-value on Q x S. Finally
extend both function Q-periodically onto R™. Assuming V x f = 0 in
D'(Qx S)and V-g =0in X'(Q x 9), the extended functions satisfy the
PDE clearly on Q2 x (ZM +5). For some @ € € typical we define the sequence
of functions

fs(x7 y) = f(TE—leNJ, 5_1y)7 gg(xv y) = Q(Tg—lx&, g_ly)' (19)
We prove this lemma by showing that
ffre2fg mDRYxQ), (20)

where f, g are the corresponding weak limits for ¢, g° as defined in (19). By
Birkhoft’s Theorem we have
1 1
— fw,2)dP(w)dz, §=—= g(w, z)dP(w)dz,
‘S‘ QxS

f=

|S| QxS

as well as

ffeg 2 fg i L (RY x Q) (21)
by Lemma A.6. By uniqueness of the limit both have to agree, which is the
claim of the lemma.
From (21) we deduce, that convergence holds for every e — 0, and to identify
the limit in terms of f,7 it suffices to choose the specific sequence ¢, = n~"',
where we suppress the index n and still write ¢ — 0 instead of n — oco.
The proof of (20) is motivated by the proof of the classical div-curl lemma
(see e.g., [All02, Lemma 1.3.1]). By locality of the statement we can reduce
ourselves to the case K CC RY x Q and define K% = K N (RY x S). We
can assume that K° has Lipschitz boundary. Furthermore we may assume
that the weak limits of f¢, g° are zero.
Define ¢ to be the primitive of f on the domain RY x S with the property
[yes (z,y) = 0. Extend ¢ onto RN x (Z 4 S) periodically. Furthermore
define vy

Vi(r,y) = (2, D)+ on RV x (2 +9),
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with the constant
T
¢ = _/ 5¢(*vy)d($:y)
KS 19

By construction we have

Vi = feon RN x £(ZM +5)  as well as Ve (z,ey)d(x,y) = 0.
KS

We define the finite set Z. := ZM N (=1, &)™ and partition @ (up to a
null set) into

Q= Je@+k)

keZ.

Fix some ¢ € Ci°(R" x @) and we compute

3 / oz, 9)d(z,y)
kez. /R X (eQ+ek)

= x, ek
/RMEQ)[Z)@( y+ek)

kcZ.

/ p(z,y)d(z,y) =
R™"xQ

d(z,y).

Using additionally the periodicity of f¢, g%, we thus get
[ ) e ey
RV xQ

d(z,y)

= (x,y) - g (x, x, ek
/wa(a@f( y) g ( y)[ZsO( Y+ ek)

keZ.

d(z,y)

= - . )
ANX[E(Q\S)]f (z,y) - 9°(2,y) [Z o(x,y + ek)

keZ.

d(z,y)

g /RNx(sS) Fleay e [Z A

keZ.

/RN><[€(Q\5)] Z

keZ.

d(z,y)

" /RNxa(ES)«gr)e(x’ v)v) [1/’5(95’ Y) Z o(z,y +¢ek)|d(z,y)

keZ.

_ /RN s 1/15($,y) - div [98(33,@/) Z gp(x7y_|_€]{;) d(l‘,y).

keZ.
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The first term vanishes by the assumption on the weak limits of f¢, g%, while
the second one vanishes by the boundary condition on ¢. In the last term we
apply the product rule: the term, where the divergence falls on ¢° vanishes,
by using the PDE and density.

We are left with

/RN Qfs(x,y) g (2, y)e(z, y)d(z, y)

= _ /RN - Ve (z,y) - <g5($,y)7 Z Vo(x,y+ 5]{;)>d(x’y)

keZ.

=— [ ¥(zey)- <g€(w,€y),€M Y Velrey+ 6k)>d(fﬂ7y)-

S
K keZ.

We note that (z,y) — 1(x,y) is uniformly bounded in L?(K®). Indeed,
using Poincaré’s inequality, recalling [,.s ¢ (z,y)d(z,y) = 0, yields

10° (2, ey)ll p2ies) < Cres (@5 e)ll o icsy = Cres 1 (Te-12@0, Y) L2 (i)
Furthermore the sequence
(SC, y) = fs(x’gy) = f(Ts—lx@ﬁU)

is uniformly bounded in L?(K*®) for almost all @ € Q. To see this define for
every x € R the cross sections

Ky :={yeR":(z,y) € K°} C S,

and thus

J Tzl = [ [ 150 Py

{zeRN:K5#0} S

By the Ergodic Theorem the integrand converges for almost every w to
CHinZ(styfor some constant C' > 0 depending only on K°. Thus for
almost every w € {2 we have

limsup/ ]f(Teflx@,yﬂzd(l"a?/) < 00,
€l0 KS

and therefore the left-hand side is uniformly bounded for almost every w.
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Noticing also that

V((z,y) = Y(x,ey) = (f1,- -, [ efnen, -1,

we have a uniform bound on (z,y) — ¢¢(x,ey) in WH2(K®) and thus a sub-
sequence converging weakly to some U € WH2(K9). By Rellich’s Theorem
we have also strong convergence in L*(K*®). Additionally ¥ does not depend
on y: to see this, we apply Poincaré’s inequality once more and obtain

19yl p2(ges) < L inf[0y (2, y) = 47 (2, €y))ll agres)
< 111111Hf€||(1‘7y) = fs(xa‘gy)HLQ(KS) =0.
el0
The sequence of functions (z,y) — ¢°(z,ey) = g(T.-1,W,y) converges weakly

o (z,y) = ([,9(w,y)dw) in L*(Q), a function independent of x. Finally
observe that

[(:ry MZVgpxey—i-ek:)

k€eZ.

xH/V@(x,gj)dg}]
Q

uniformly in . We thus have

/RNxS<g (z,ey), V% (x, ey ( M Z Vo(x €y+€k)>>d(x,y)

keZe

. was</n (w, y)dP(w) /Vw x y)dy>d( JY),

since the first factor converges weakly and the second strongly. Rearranging
the integrals yields

[ {fowmare). v [ Veteiai i)

=<wwgh/ @@»V¢@@mmu>=a
RV xQ

since g = 0. This finishes the proof. 0]

A.4.4 The decomposition

We will prove Theorem A.4 (i) similar to [ZKO94][Lemma 7.3]. For this
we introduce a mollifier in the mixed setting. Let K; € C*(RM), K, €
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Cs°(RM) be standard mollifier, i.e., K, Ky are even functions in the sense
that K;(x) = K;(—x) for all x and ¢ = 1,2, and

K, Ky >0, Ki=] K-=1.

RN RM

Define for § > 0 the sequences
Ki(s) = — (57" Ki(y) = — Ky
1) = e Ki(071s), K3(y) = 5 K5 )
and further the mollification-operators J° for g € L*(Q x RM) by
o)) = [ [ KK~ gl p)dyds.
RN JRM

It is easily seen that J°g is a continuous, linear, symmetric operator L2(£2 x
RM) — L*(Q x RM) with

lgg]l J%g =g strongly in L*(Q x RM).

Furthermore J°g € W2(Q x S, RM) for g € L?(2 x RM) and
V(J°9) = J°Vg forall g € WH(Q x RM).

Proof of Theorem A.4 (i). The orthogonality between F7., (2xS) and L2

sol(Q><
S) follows from Lemma A.5. Therefore

L2

sol

(2 x 8) C [FZ(Qx S)]".

For the reverse inclusion let g € [F72 (€ x 9, e

(9. f)r2=0 forall feF (Qx05).

Fix some ¢ € D, and note that Vi € F2, (2 x S). Extend both ¢ and g by
0 to functions defined on Q x RM

Fix some 6 > 0. By using the elementary properties of the mollification
operator J % we have

0= (9, VI’0) 2 = (9. T’ (V) 12 = (T°9, V)2 = —{div T°g, ¢} 2.
By the density of D C X C L*(Q x S) we get div (J°g) = 0 a.e., thus
div7g=0 inD.
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By the strong convergence J°%g — g in L*(Q x S, RF) we get
divg=0 in D

Furthermore for any ¢ € X we have Vi) € Fg . as well and thus

(&)

— 6 = v J .
O/MU g,w/wd (T%(g) - v)

_/QL

Note that J°g — ¢ in L*(Q x S) together with divg = div J%g = 0 implies
that J%g — g in W32(Q x S). Together with the equality

/ /a T =0

following from Lemma A.3, the strong convergence J°g — g in Wji’f (Qx9)
is enough to conclude that divg = 0 in X', thus g € L2(2 x 5). O

sol
For the proof of Theorem A.4 (ii) we follow [DG16]:

(T (@) - ) = / /8 T,

XS p=N+1

Proof of Theorem A.J (ii). From classical Hilbert space theory follows
L

L2(Q % S,RY) = adh2{Vy: y € X} @ [adhLz{VX X € 5(}}
By the previous orthogonal decompositions it is enough to show that

. 1+ _ 72
[adhLz{VX x € X}} -y

sol

(€2 % 5),

since then N
adh:{Vy:x € X} = F (2% S)

follows trivially from

L*(Qx S, RY) = F2 (2 x S) & L2,(2 x S).

sol

But N
[adhLz{VX tX € )?} =17

sol

(Qx9)

was just the definition of the space LZ,(Q2 x S). O

sol

The claim of Theorem A.4 (iii) can be proven almost identically.
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