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Abstract

We use the notion of stochastic two-scale convergence introduced
in [ZP06] to solve the problem of stochastic homogenization of the
elastic plate in the bending regime.
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1 Introduction

The problem of rigorously deriving a two-dimensional model approximating a
three-dimensional (nonlinear) elastic plate with very small thickness was long
outstanding. It was finally solved in [FJM02] in terms of Γ-convergence after
establishing the geometric rigidity estimate. With this estimate they further
managed in [FJM06] to derive a multitude of related models. Their results
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have since been generalized in various directions, e.g., different dimensions
involved (e.g., [MM04]), convergence of equilibria instead of convergence of
minimizer as Γ-convergence yields (e.g., [MP08, MM04]), or an inhomoge-
neous plate (e.g., [HNV14, NO15, Vel15]). This paper falls into the last
category.
We consider a thin plate with a fine microstructure on the midplane, ex-
tended constantly in normal direction. A very similar problem was studied
in [HNV14], where the microstructure was assumed to be periodic, while we
consider more general random materials and recover their main results as
a special case. Another interesting generalization of the periodic case was
given in [BDF15], where the microstructure was allowed to oscillate on two
different scales ε1(h) and ε2(h), where the ‘coarser’ structure dominates the
homogenization effect.
Already in the periodic case it was seen that the homogenization and the
dimension reduction interact non-trivially with each other. To be more pre-
cise let h > 0 denote the thickness of the plate, and ε(h) the ‘fineness’ of the
microstructure, e.g., in the periodic case the length of a periodic cell, at thick-
ness h with ε(h) → 0 if h → 0 and assume γ = limh→0 hε

−1(h) ∈ [0,∞] exists.
One might imagine the case γ = ∞ corresponds to the situation, where we
apply purely dimension reduction to an already homogeneous plate, while
one could expect γ = 0 to be the case where a 2D plate is homogenized;
the latter, however, is wrong at least in the plate scaling as comparing the
results obtained in [Vel15] and [NO15] shows. This intuition, however, holds
true for the von Kármán plate [NV13]. The intermediate case 0 < γ < ∞
corresponds to the case, where both effects strongly interact; in some sense
thus the most interesting case.
With a periodic microstructure in [HNV14] the range γ ∈ (0,∞] was cov-
ered, excluding the 0 entirely. The methods developed in [Vel15] allows the
treatment, at least partially, of the case γ = 0. Only partially, since we have
to assume the microstructure is still sufficiently strong ‘homogenizing’, i.e.
h � (ε(h))2. In [CC15] the authors use a different approach (smoothening
and unfolding operator) to deal with the homogenization of plate. Firstly,
they recover the result of [Vel15] in the simpler case, when the energy density
does not additionally depend on x3 variable and then they conclude that in
the regime when h � (ε(h))2 the limit model is the same as the one obtained
in [NO15]. The regime h ∼ (ε(h))2 remains uncovered.
The stochastic homogenization incorporates periodic setting, almost periodic
setting, but also some completely non-periodic examples (see the Example 4.2
below). Since it is possible to have the situation where periodicity is com-
pletely destroyed and since we are not able to treat all cases of the periodic
homogenization, we find that it is important to establish the result on the
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stochastic homogenization of the bending plate.
As in [HNV14] we make heavy use of two-scale convergence. The first
generalization to the stochastic setting of two-scale convergence was done
in [BMW94], which is too crude to recover the information on the limit ma-
terial. An alternative was introduced by [ZP06], which is more flexible, and
which we will use. Recently the notion of an unfolding operator for the
stochastic homogenization was introduced in [Neu17]. However, since this
notion also averages over the probability space and thus is an analogue of
the notion of stochastic two-scale convergence introduced in [BMW94], it is
also too crude to recover the results obtained here.
Compared to the periodic setting the identification of the two-scale limits is
more involved and subtle. In fact we are not able to recover all the limits
derived in [HNV14]. This is due to the lack of the notion of oscillatory conver-
gence in the stochastic setting. Namely, the notion of oscillatory convergence,
introduced in [HNV14] and later developed in [BDF15], for the multiscale ho-
mogenization, has useful consequences only in the periodic setting. In the
stochastic setting one has to completely rely on duality arguments, which
can be used by stochastic two-scale convergence.
To cope with this, we use methods developed in [Vel15] and make use of
further cancellation effects (see Lemma 3.9 and Lemma 3.10, see also Re-
mark 3.11). Furthermore, the precise relationship between solenoids and
potential fields were not proven, in the case where the differential operators
div and ∇ were not either purely classical, or purely stochastic derivatives,
but mixtures between them. For this we introduce in section A.4.2 the cor-
rect notion of mixed potentials and solenoids. In contrast to the purely
stochastic case we have to take into account the boundary condition in the
physical space. On one hand they have to be chosen restrictive enough to
allow the orthogonality property to hold, proved in Lemma A.5, on the other
hand they have to complement each other to L2 in the sense, that Theo-
rem A.4 (i) holds. In the appendix we first recall previous results for the
purely stochastic case, and then prove the Helmholtz-decomposition for the
mixed one. This decomposition allows us to reveal a gradient structure in
the two-scale limits by testing with solenoids, a subclass of functions used in
the oscillatory convergence, introduced in [HNV14].
For simplicity, we will state and prove the case γ ∈ (0,∞), but the other
cases covered in [HNV14, Vel15] can be proved analogously. This includes
the case γ = ∞ as well as γ = 0, under the additional assumption that
ε(h)2 � h � ε(h). The regime h ∼ (ε(h))2 and h � (ε(h))2 remains
uncovered.
Without the notion of stochastic two-scale convergence we are not able to
solve the problem; the usual approach for stochastic homogenization in the
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context of calculus of variation however does not necessarily need stochastic
two-scale convergence, cf. [DMM86a, DMM86b] for the convex case and [DG16]
for the non-convex case. The main claims of the paper are given in Theo-
rem 3.6 and Theorem 3.8.

Notation

The inner product of the Hilbert space H for the vectors a, b ∈ H is denoted
by 〈a, b〉H . If H = Rn it is also denoted by a · b. By ι : R2×2 → R3×3 we
denote the natural inclusion

ι(G) =
∑

α,β=1,2

Gαβeα ⊗ eβ.

For a matrix M ∈ Rn×n we denote its transpose by MT and by cofM
its cofactor matrix. By In×n we denote the identity matrix in Rn×n. By
∇′ = (∂1, ∂2) we denote the gradient with respect to the first two variables
and similarly x′ = (x1, x2) ∈ R2 for x ∈ R3. For h > 0 we furthermore
denote by ∇h = (∇′, 1

h
∂3) the scaled gradient. By Rn×n

sym we denote the space
of symmetric matrices, while by Rn×n

skw we denote the space of antisymmetric
matrices. For a normed space X and S ⊂ X we denote by adhXS the closure
of the set S in the norm defined on the space X. By C∞0 (S) we denote the
smooth functions with compact support on S.

2 Stochastic two-scale convergence

2.1 Probability framework

Let (Ω,F , P ) be a complete probability space. We will assume that F is
countably generated which implies that the spaces Lp(Ω), for p ∈ [1,∞), are
separable. By S we will denote the domain in Rn. With I we denote the
interval I = [−1

2
, 1
2
].

Definition 2.1. A family (Tx)x∈Rn of measurable bijective mappings Tx :
Ω → Ω on a probability space (Ω,F , P ) is called a dynamical system on Ω
with respect to P if

a. Tx ◦ Ty = Tx+y;

b. P (TxF ) = P (F ), ∀x ∈ Rn, F ∈ F ;

c. T : Ω × Rn → Ω, (ω, x) → Tx(ω) is measurable (for the standard
σ-algebra on the product space, where on Rn we take the Lebesgue σ-
algebra).
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We define the notion of ergodicity for the dynamical system.

Definition 2.2. A dynamical system is called ergodic if one of the following
equivalent conditions is fulfilled

a. f measurable, f(ω) = f(Txω), ∀x ∈ Rn, a.e. ω ∈ Ω =⇒ f(ω) =
const. for P -a.e. ω ∈ Ω.

b.
[
∀x ∈ Rn, P ((TxB ∪ B)\(TxB ∩ B)) = 0

]
=⇒ P (B) ∈ {0, 1}.

Remark 2.3. Note that for the condition b the implication P (B) ∈ {0, 1}
has to hold, if the symmetric difference between TxB and B is a null set.
It can be shown (e.g., [CFS82]), that ergodicity is also equivalent if a priori
only the weaker implication[

∀x ∈ RN , TxB = B
]
=⇒ P (B) ∈ {0, 1}

holds. This formulation will however only be used in the appendix to show
that the product of an ergodic system with a periodic one is once more ergodic.

On L2(Ω) we can define the unitary action

U(x)f = f ◦ Tx, ∀f ∈ L2(Ω).

It can be shown that a, b, c of Definition 2.1 imply that this is a strongly con-
tinuous group (see [ZKO94]). We define the operator Di as the infinitesimal
generator of the unitary group Uxi

. This means that

Dif(ω) = lim
xi→0

f(Txi
ω)− f(ω)

xi

,

where the limit is taken in L2 sense. Also we have that iD1, . . . , iDn are
commuting, self-adjoint, closed, and densely defined linear operators on the
separable Hilbert space L2(Ω). The domain Di(Ω) of such an operator is
given by the set of L2 functions for which the limit exists. We denote by
W 1,2(Ω) the set

W 1,2(Ω) := D1(Ω) ∩ · · · ∩ Dn(Ω)

and similarly

W k,2(Ω) = {f ∈ L2(Ω) : Dα1
1 . . . Dαn

n f ∈ L2(Ω), α1 + · · ·+ αn = k};
W∞,2(Ω) =

⋂
k∈N

W k,2(Ω).
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On W k,2 we define the norm in the usual way. By the standard semigroup
property it can be shown that W∞,2(Ω) is dense in L2(Ω). We also define
the space

C∞(Ω) = {
f ∈ W∞,2(Ω) : ∀(α1, . . . , αn) ∈ Nn

0 , Dα1
1 . . . Dαn

n f ∈ L∞(Ω)
}
.

By the smoothening procedure explained below it can be shown that C∞(Ω)
is dense in Lp(Ω) for any p ∈ [1,∞), as well as in W k,2(Ω) for any k. Notice
that Dif , due to the closedness property of the infinitesimal generator, can
be equivalently defined as the function that satisfies the propertyˆ

Ω

Difg = −
ˆ
Ω

fDig, ∀g ∈ C∞(Ω).

We can identify f : Ω → R with f : Ω ×Rn → R, its realization, given by
f(ω, x) := f(Txω). After identifying f ∈ W 1,2(Ω) with its realization, one
can show that

W 1,2(Ω) = {f ∈ W 1,2
loc (R

n, L2(Ω)) : f(x+ y, ω) = f(x, Tyω), ∀x, y, for a.e. ω}
= {f ∈ C1(Rn, L2(Ω)) : f(x+ y, ω) = f(x, Tyω), ∀x, y, for a.e. ω}.

(1)
A proof of this fact can be found in [DG16][Lemma A.7].
As in [ZKO94] we define a stochastic mollifier. For ϕ ∈ L∞(Ω) and K ∈
C∞0 (R

n) even, i.e., K(x) = K(−x) for all x ∈ Rn, we set

(ϕ ∗K)(ω) :=

ˆ
Rn

ϕ(Txω)K(x)dx, ω ∈ Ω.

It is easily seen that ϕ �→ ϕ ∗K is well defined and continuous from L2(Ω)
to L2(Ω). By using this mollifier one can show that there exists a countable
dense subset of L2(Ω) and W 1,2(Ω) (see [BMW94]). Following [SW11] we
denote by ‖·‖#,k,2 the seminorm on C∞(Ω) given by

‖u‖2#,k,2 =
∑

α∈Nn,|α|=k

‖Dαu‖2L2 .

ByWk,2(Ω) we denote the completion of C∞(Ω) with respect to the seminorm
‖·‖#,k,2. The gradient operator ∇ω = (D1, . . . , Dn) and div ω = ∇ω· opera-
tor extend by continuity uniquely to mappings from W1,2(Ω) to L2(Ω,Rn),
respectively W1,2(Ω,Rn) to L2(Ω). By the density argument it is easily seen
that W1,2(Ω) is also the completion of W 1,2(Ω) in ‖·‖#,1,2 seminorm. We

also define W1,2
sym(Ω,R

n) as the completion of C∞(Ω,Rn) with respect to the
seminorm ‖·‖#,sym,2,n defined by

‖b‖#,sym,2,n = ‖ sym∇b‖L2 , ∀b ∈ C∞(Ω,Rn).
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2.2 Definition and basic properties

The key property of ergodic systems is the ergodic theorem, due to Birkhoff:

Theorem 2.4 (Ergodic theorem). Let (Ω,F , P ) be a probability space with
an ergodic dynamical system (Tx)x∈Rn on Ω. Let f ∈ L1(Ω) be a function
and A ⊂ Rn be a bounded open set. Then for P -a.e. ω̃ ∈ Ω we have

lim
ε→0

ˆ
A

f(Tε−1xω̃)dx = |A|
ˆ
Ω

f(ω)dP (ω). (2)

Furthermore, for every f ∈ Lp(Ω), 1 ≤ p ≤ ∞, and a.e. ω̃ ∈ Ω, the
function f(ω̃, x) = f(Txω̃) satisfies f(ω̃, ·) ∈ Lp

loc(R
n). For p < ∞ we have

f(ω̃, ·/ε) = f(T·/εω̃) ⇀
´
Ω
fdP weakly in Lp

loc(R
n) as ε → 0.

Note that the exception set, where (2) doesn’t hold, will in general depend
on f . The elements ω̃ such that (2) holds for every f ∈ L1(Ω) are called
typical elements, the corresponding trajectories (Txω̃)x∈RN are called typical
trajectories. Note that the separability of L1(Ω) implies that almost every
ω̃ ∈ Ω is typical.

In the following we denote by S ⊂ Rn a bounded domain, if not otherwise
stated. For vector spaces V1, V2 we denote by V1⊗V2 the usual tensor product
of the spaces V1, V2. We define the following notion of stochastic two-scale
convergence, a slight variation of the definition given in [ZP06]. We will stay
in the L2 setting, since it suffices for our analysis.

Definition 2.5. Let (Txω̃)x∈Rn be a typical trajectory and (vε) a bounded
sequence in L2(S). We say that (vε) stochastically weakly two-scale converges

to v ∈ L2(Ω× S) w.r.t. ω̃ and we write vε
2−⇀ v if

lim
ε↓0

ˆ
S

vε(x)g(Tε−1xω̃, x)dx =

ˆ
Ω

ˆ
S

v(ω, x)g(ω, x)dx dP (ω)

for all g ∈ C∞(Ω)⊗ C∞0 (S).
If additionally

‖vε‖L2(S) → ‖v‖L2(Ω×S)

holds, then we say (vε) strongly two-scale converges to v and write vε
2−→ v.

For vector-valued functions we define the convergence componentwise.

Remark 2.6. The convergence of the sequence (vε) is defined along a typical
trajectory and thus the limit can also be ω̃-dependent. We don’t write this
dependence, since we will always look at the problem on a typical trajectory
(which can be imagined to be fixed).

7



Remark 2.7. Note that the two-scale limit is defined on the whole space
Ω × S. Furthermore by density we can extend the space of test functions g
to L∞(Ω)⊗ L2(S).

Remark 2.8. Since we will assume that the material oscillates only in the
in-plane direction on the domain S × I we will often use the notion of in-
plane two-scale convergence. A uniformly bounded sequence (vε) in L2(S×I)
stochastically weakly two-scale converges to v ∈ L2(Ω×S×I) w.r.t. ω̃, denoted

by vε
2−⇀ v, if

lim
ε↓0

ˆ
S×I

vε(x)g(Tε−1x′ω̃, x)dx =

ˆ
Ω

ˆ
S×I

v(ω, x)g(ω, x)dx dP (ω)

for all g ∈ C∞(Ω)⊗ C∞0 (S × I). All the properties of the previous stochastic
two-scale convergence remain valid for this variation as well.

Sometimes we will make the decomposition for the two-scale limit v

v(ω̃, x) =

ˆ
Ω

v(ω, x)dP (ω) +

(
v(ω̃, x)−

ˆ
Ω

v(ω, x)dP (ω)

)
,

separating the weak limit from the oscillatory part. We will then write

vε
2c−⇀ v −

ˆ
Ω

v(ω, ·)dP (ω).

Proposition 2.9 (Compactness). Let (vε) be a bounded sequence in L2(S).
Then there exists a subsequence (not relabeled) and v ∈ L2(Ω× S) such that

vε
2−⇀ v.

A proof can be found in [ZP06][Lemma 5.1].
The following proposition states the compatibility of strongly convergent
sequences with weakly two-scale convergent sequences.

Proposition 2.10. a. If (uε) ⊂ L2(S) is a bounded sequence with uε → u
in L2(S) for some u ∈ L2(S), then, after extending u trivially to Ω×S,

it holds uε 2−⇀ u.

b. If (vε) ⊂ L∞(S) is uniformly bounded by a constant and vε → v strongly
in L1(S) for some v ∈ L∞(S), and if (uε) is bounded in L2(S) with

uε 2−⇀ u for some u ∈ L2(Ω× S), then we have that vεuε 2−⇀ vu.

The proof is straightforward. The next lemma is useful to prove the follow-
ing Lemma 2.12, which gives us the form of stochastic two-scale limits of
gradients.
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Lemma 2.11. Let f ∈ (L2(Ω))n be such that
ˆ
Ω

f · g = 0, ∀g ∈ C∞(Ω,Rn) satisfying div ωg = 0.

Then there exists ψ ∈ W1,2(Ω) such that f = ∇ωψ.

Proof. It is an immediate consequence of Theorem A.1.

Lemma 2.12. Let (uε) be a bounded sequence in W 1,2(S). Then there exist
u0 ∈ W 1,2(S) and u1 ∈ L2(S,W1,2(Ω)), such that on a subsequence we have

uε ⇀ u0 in W 1,2(S) and ∇uε 2−⇀ ∇u0 +∇ωu
1 .

Proof. The statement follows immediately from the previous lemma in the
same way as in the periodic case (see [All02]).

Similar results hold for second gradients. We will prove it for the case n = 2
in the next two lemmas (for the proof of the slightly more general claim in
the periodic setting by the duality arguments, see [Vel13, Lemma 3.8]).

Lemma 2.13. Let f ∈ L2(Ω,R2×2
sym) be such that

ˆ
Ω

f · cof∇ωg = 0, ∀g ∈ C∞(Ω,R2).

Then there exists ψ ∈ W2,2(Ω) such that f = ∇2
ωψ.

Proof. It is an immediate consequence of Theorem A.2.

Lemma 2.14. Let S ⊂ R2 be a bounded domain and let (uε) be a bounded se-
quence in W 2,2(S). Then there exists u0 ∈ W 2,2(S) and u1 ∈ L2(S,W2,2(Ω))
such that on a subsequence we have

uε ⇀ u0 in W 2,2(S) and ∇2uε 2−⇀ ∇2u0 +∇2
ωu

1 .

Proof. The existence of such an u0 follows by classical compactness. By
Prop. 2.9 there exists f ∈ L2(Ω× S,R2×2) and a subsequence with

∇2uε 2−⇀ ∇2u0 + f.

Since ∇2uε−∇2u0 ∈ R2×2
sym almost everywhere on S, we get f ∈ R2×2

sym almost
everywhere on Ω×S. Thus by Lemma 2.13 it suffices to show that for almost
every x ∈ S we haveˆ

Ω

f(x, ω) · cof∇ωg(ω) = 0, ∀g ∈ C∞(Ω,R2).
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For this fix some g ∈ C∞(Ω,R2) and ϕ ∈ C∞0 (S). Then by definition of
two-scale convergence we have

ˆ
S

ˆ
Ω

f(ω, x) · cof∇ωg(ω)ϕ(x)dP (ω)dx

= lim
ε↓0

ˆ
S

(∇2uε(x)−∇2u0(x)
) · (cof∇ωg)(Tε−1xω̃)ϕ(x)dx

= lim
ε↓0

ˆ
S

cof
(∇2uε(x)−∇2u0(x)

) · ε∇(g(Tε−1xω̃)ϕ(x)
)
dx

− lim
ε↓0

ε

ˆ
S

cof
(∇2uε(x)−∇2u0(x)

) · [g(Tε−1xω̃)⊗∇ϕ(x)
]
dx.

The first term vanishes identically, since div cof∇v = 0 distributionally for
all v ∈ W 1,2(S,R2), while the second one vanishes by the uniform bound on
the integral. Since ϕ and g were arbitrary, the claim follows.

In the periodic case the purely oscillatory two-scale convergence turns out to
be a good concept (see e.g., [HNV14]). The test functions considered there
were fast oscillating periodic functions with vanishing mean value. Since
in the periodic case this implies a predictable rate of convergence, strong
results have been obtained. We have to rely on Birkhoff’s Ergodic Theorem
(Theorem 2.4), which cannot provide such information. Instead we focus
on derivatives of test functions, which naturally have vanishing mean value.
The following lemma states that we do not lose information by restricting
ourselves to this smaller class of functions.

Lemma 2.15. The set {divω v : v ∈ C∞(Ω,Rn)} is dense in{
b ∈ L2(Ω)

∣∣∣ ˆ
Ω

b(ω)dP (ω) = 0

}
,

with respect to the strong L2(Ω) topology.

Proof. See [ZP06][Lemma 2.5].

The following lemma is needed for proving Lemma 3.9, which in turn is
essential for proving Theorem 3.6.

Lemma 2.16. Let (f ε) ⊂ W 1,2(S), (gε) ⊂ W 1,2(S) uniformly bounded in
these spaces, and converging weakly in W 1,2(S) to f 0, respectively g0. Assume
further that

lim sup
ε↓0

1

ε
‖f εgε‖L1 < ∞,
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and that there exist φf , φg ∈ L2(S,W1,2(Ω)) with

∇′f ε 2−⇀ ∇′f 0 +∇ωφ
f , ∇′gε 2−⇀ ∇′g0 +∇ωφ

g.

Then for every v ∈ C∞(Ω,Rn) and ϕ ∈ C∞0 (S) we have

ˆ
S

f εgε(x)

ε
(div ωv)(Tε−1xω̃)ϕ(x)dx → (3)
ˆ
Ω×S

(
φf (ω, x) · g0(x) + f 0(x) · φg(ω, x)

)
div ωv(ω)ϕ(x)dxdP (ω).

Proof. The proof consists in an integration by parts:

ˆ
S

f εgε(x)

ε
(div ωv)(Tε−1xω̃)ϕ(x)dx

= −
ˆ
S

∇′(f εgε)(x) · v(Tε−1xω̃)ϕ(x)dx−
ˆ
S

(f εgε)(x)∇′ϕ(x) · v(Tε−1xω̃)dx

= −
ˆ
S

(
∇′f ε(x) · gε(x) + f ε(x) · ∇′gε(x)

)
· v(Tε−1xω̃)ϕ(x)dx

− ε

ˆ
S

(f εgε)

ε
(x)∇′ϕ(x) · v(Tε−1xω̃)dx

→ −
ˆ
S

ˆ
Ω

(
∇ωφ

f (ω, x) · g(x) + f(x) · ∇ωφ
g(ω, x)

)
· v(ω)ϕ(x)dxdP (ω).

The claim now follows after integrating by parts once more, this time in
ω.

Remark 2.17. The right-hand side in (3) actually makes sense only via an
integration by parts since we do not have that φf (x, ·)g(x) + f(x)φg(x, ·) ∈
L2(Ω), for a.e. x ∈ S. However, if we knew that there exists h ∈ L2(Ω× S)
such that for all v ∈ C∞(Ω,Rn) and ϕ ∈ C∞0 (S) we have

−
ˆ
Ω×S

(∇ωφ
f · g + f · ∇ωφ

g
) · vϕ dx dP (ω) = ˆ

Ω×S
h(divω v)ϕ dx dP (ω),

then we would be able to conclude, by the closedness property of the operator
∇ω, that φf · g + f · φg ∈ L2(Ω × S). This will be used in the proof of
Lemma 3.9.

We now introduce the ‘mixed’ spaces. The integral of L2(Ω)-valued functions
will be in the sense of Bochner. For A ⊂ Rn measurable we can define the
spaceW 1,2(A,L2(Ω)) in the usual way. Notice that, since L2(Ω) is a separable
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Hilbert space, the analysis has many analogies with the analysis in Rn (see,
e.g., [Kre15] when the target space is a general Banach space).
For the main part of the paper we only need A = I, the one-dimensional
interval

[−1
2
, 1
2

]
. In the appendix we will however make use of this more

general notion.
In the case A = I we denote by Dx3 the derivative of f : Ω × I → R in
the I-component, i.e., the differential operator mapping W 1,2(I, L2(Ω)) to
L2(Ω× I). We define the space W 1,2(Ω× I) as the space

W 1,2(Ω× I) = W 1,2(I, L2(Ω)) ∩ L2(I,W 1,2(Ω)). (4)

On the spaceW 1,2(Ω×I) we again define the seminorm ‖·‖#,2 in the following
way

‖u‖2#,2 = ‖D1u‖2L2(Ω×I) + ‖D2u‖2L2(Ω×I) + ‖Dx3u‖2L2(Ω×I).

By W1,2(Ω × I) we denote the completion of the space W 1,2(Ω × I) with
respect to the seminorm ‖·‖#,2. By a density argument it can also be seen as
the completion of the space C∞(Ω)⊗C∞(I) with the same norm. We can also
naturally define the operators∇ and div onW1,2(Ω×I) resp. W1,2(Ω×I,R3).
For γ > 0 we also define W1,2

sym,γ(Ω × I,R3) as the completion of the space
(C∞(Ω)⊗ C∞(I))3 with respect to the seminorm ‖·‖#,sym,γ,2 given by

‖b‖#,sym,γ,2 = ‖ sym(D1b,D2b,
1
γ
Dx3b)‖L2 , ∀b ∈ (C∞(Ω)⊗ C∞(I))3.

The following lemma is useful for proving Lemma 2.19.

Lemma 2.18. Let γ > 0 and f ∈ L2(Ω× I,R3) be such that
ˆ
Ω×I

f · g = 0, ∀g ∈ (C∞(Ω)⊗ C∞0 (I))
3 that satisfy

D1g1 +D2g2 +
1
γ
Dx3g3 = 0.

Then there exists ψ ∈ W1,2(Ω× I) such that

f = (D1ψ,D2ψ,
1
γ
Dx3ψ).

Proof. This follows immediately from the decomposition and density result
in Theorem A.4.

We will now assume ε = ε(h) depends additionally on h > 0 and satisfies
ε(h) ↓ 0 if h ↓ 0. The definition of two-scale convergence extends naturally
to sequences (vh)h>0. We assume further that

γ := lim
h↓0

h

ε(h)
∈ (0,∞) (5)
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is well-defined. In the sequel we will often suppress the dependence of ε(h)
on h.
Similar to Lemma 2.11 implying Lemma 2.12, we can prove the following
lemma, using Lemma 2.18.

Lemma 2.19. Let γ > 0 be given by (5) and let S ⊂ R2 a bounded domain.
Let (uh) be a bounded sequence in L2(S× I), such that the sequence of scaled
gradients (∇hu

h) is bounded in L2(S × I,R3). Assume further there exists
u0 ∈ W 1,2(S× I) such that uh → u0 strongly in L2(S× I). Then there exists
a subsequence hk → 0, and u1 ∈ L2(S,W1,2(Ω× I)) such that

∇hk
uhk

2−⇀ (∇′u0, 0) +
(
D1u

1, D2u
1, 1

γ
Dx3u

1
)
.

Proof. The proof relies on the previous lemma and works in the same way
as in periodic case (see [Neu10] for details).

The following Lemma 2.21 shows that convex functionals are compatible with
the concept of stochastic two-scale convergence. In the stochastic setting we
cannot rely on the unfolding operator (see e.g., [Vis07] for the periodic case)
and thus we require more to obtain the continuity of integral functionals with
respect to strong stochastic two-scale convergence (see Remark 2.22). Before
stating and proving the lemma we give the following definition:

Definition 2.20. Consider a measurable map Q : Ω×Rn ×Rm → [0,+∞].
We say that Q is T -stationary if for a.e. (ω, x, y, v) ∈ Ω ×Rn ×Rn ×Rm

we have
Q(Tyω, x, v) = Q(ω, x+ y, v).

By Q0 : Ω × Rm → [0,∞) we denote the mapping Q0(ω, v) = Q(ω, 0, v).
Without loss of generality we can assume that for a.e. x ∈ Rn, for all
v ∈ Rm we have Q(ω, x, v) = Q0(Txω, v).

Lemma 2.21. Let (uε) be a bounded sequence in L2(S,Rm), such that uε 2−⇀
u0 ∈ L2(Ω×S,Rm). Let Q0 : Ω×Rn ×Rm → [0,∞) be a T -stationary map
such that Q0(ω, x, ·) is a convex function for a.e. (ω, x) ∈ Ω ×Rn. Assume
additionally that there exists a constant C > 0 such that Q0(ω, x, v) ≤ C(1+
|v|2), for a.e. (ω, x) ∈ Ω×Rn, for all v ∈ Rm. Then for a.e. ω̃ ∈ Ω we have

lim inf
ε↓0

ˆ
S

Q0(ω̃, x/ε, uε(x))dx = lim inf
ε↓0

ˆ
S

Q0(Tε−1xω̃, u
ε(x))dx

≥
ˆ
S

ˆ
Ω

Q0
(
ω, u0(ω, x)

)
dP (ω)dx.
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If additionally uε 2−→ u0, then

lim
ε↓0

ˆ
S

Q0(ω̃, x/ε, uε(x))dx = lim
ε↓0

ˆ
S

Q0(Tε−1xω̃, u
ε(x))dx

=

ˆ
S

ˆ
Ω

Q0
(
ω, u0(ω, x)

)
dP (ω)dx

holds for almost every ω̃ ∈ Ω.

Proof. We start with the lower semicontinuity: Let (uε) ⊂ L2(S,Rm) be

uniformly bounded with uε 2−⇀ u0, where u0 ∈ L2(Ω × S,Rm). Then take a
subsequence such that

lim inf
ε↓0

ˆ
S

Q0(Tε−1xω̃, u
ε(x))dx = lim

k→∞

ˆ
S

Q0
(
Tε−1

k xω̃, u
εk(x)

)
dx.

Denote these limits byM ∈ [0,∞]. IfM = ∞, then there is nothing to show.
Else we have (

Q0
(
Tε−1

k xω̃, u
εk(x)

))
k∈N

⊂ L1(S),

with a uniform bound. Thus we may extract another subsequence (not rela-
beled) such that the sequence converges weakly-∗ in measure to some μ. By
the lower semicontinuity we have μ(S) ≤ M . We will show that

ˆ
Ω

Q0
(
ω, u0(ω, x)

)
dP (ω) ≤ dμ

dLn
(x),

for almost every x ∈ S, where the right-hand side represents the Radon-
Nikodym derivative in x, i.e.,

dμ

dLn
(x) := lim

r↓0
μ(Br(x))

Ln(Br(x))
.

Let x∗ be a Lebesgue point of x �→ ´
Ω
u0(ω, x)dP (ω) such that the limit

h(x∗) = lim
r↓0

μ(Br(x
∗))

Ln(Br(x∗))

exists and such that u0(·, x∗) ∈ L2(Ω,Rm). Let a : Ω → Rm, b : Ω → R be
measurable, bounded functions with

a(ω) · v + b(ω) ≤ Q0(ω, v), for all v ∈ Rm and almost every ω ∈ Ω. (6)

14



For a.e. r > 0 we have μ(∂(Br(x
∗))) = 0 and for these r we get

μ(Br(x
∗)) = lim

k→∞

ˆ
Br(x∗)

Q0(Tε−1
k xω̃, u

εk(x))dx

≥ lim
k→∞

ˆ
Br(x∗)

(
a(Tε−1

k xω̃) · uεk(x) + b(Tε−1
k xω̃)

)
dx

=

ˆ
Br(x∗)

ˆ
Ω

(
a(ω) · u0(ω, x) + b(ω)

)
dP (ω)dx,

where we used that uε 2−⇀ u0. Therefore for a suitable sequence r ↓ 0 we have

h(x∗) ≥ lim
r↓0

1

|Br(x∗)|
ˆ
Br(x∗)

ˆ
Ω

(
a(ω) · u0(ω, x) + b(ω)

)
dP (ω)dx

=

ˆ
Ω

(
a(ω) · u0(ω, x∗) + b(ω)

)
dP (ω).

By taking the supremum over the functions a, b satisfying (6) we obtain

h(x∗) ≥
ˆ
Ω

Q0
(
ω, u0(ω, x∗)

)
dP (ω).

Integrating both sides w.r.t. x∗ yields the first claim.
For the continuity assume that uε 2−→ u0 and assume that u0 ∈ (L2(Ω) ⊗
L2(S))m. Then from the strong two-scale convergence follows

‖uε(x)− u0(Tε−1xω̃, x)‖L2(S) → 0.

From the convexity and the uniform bound of Q follows the existence of a
constant C > 0 such that for almost every ω ∈ Ω it holds

|Q0(ω, v1)−Q0(ω, v2)| ≤ C(1 + |v1|+ |v2|)|v1 − v2|, ∀v1, v2 ∈ Rn. (7)

Using (7) and the Ergodic theorem we conclude

lim
ε↓0

ˆ
S

Q0(Tε−1xω̃, u
ε(x))dx = lim

ε↓0

ˆ
S

Q0(Tε−1xω̃, u
0(Tε−1x′ω̃, x))dx

=

ˆ
Ω

ˆ
S

Q0(ω, u0(ω, x))dxdP (ω).

For general u0 ∈ L2(Ω × S,Rm) the claim follows by approximation and
using (7).
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Remark 2.22. Notice that in the proof of the second claim we only use the
relation (7), but not the convexity. Notice also that for u0 ∈ L2(Ω× S,Rm)
the function x �→ u0(Tε−1xω̃, x) does not need to be measurable (see [BMW94]
for details). This is why we proved it first for u0 ∈ (L2(Ω) ⊗ L2(S))m and
then argued by density.

Remark 2.23. Lemma 2.21 also holds for bounded sequences in L2(S ×
I,Rm) which stochastically two-scale converge in the sense of Remark 2.8.

3 Homogenization of the plate model

3.1 General framework and main result

In this chapter S ⊂ R2 is a bounded domain and the interval I = [−1
2
, 1
2
].

Let γ be as in (5). The main results are Theorem 3.6 (lower bound) and
Theorem 3.8 (upper bound). To prove the Γ-limit result we will need some
additional assumption on the domain S. We will assume that the domain
S is piecewise C1. This assumption is necessary only for the proof of upper
bound, and can be weakened (see Theorem 3.8 for a precise definition). For
the lower bound we only require S to be a Lipschitz domain.
Consider a measurable map W : Ω×R2×R3×3 → [0,+∞], representing the
stored energy density function, satisfying the following:

Assumption 3.1. We assume that W is T -stationary as in Definition 2.20
and that W (ω, x′, ·) is continuous on R3×3 for a.e. (ω, x′) ∈ Ω × R2. This
will ensure the measurability of all composition mappings that appear (see,
e.g., the expression (10)) We also assume that the following properties are
satisfied:

a. Objectivity property

W (ω, x′, RF ) = W (ω, x′, F )

for a.e. (ω, x′) ∈ Ω×R2, for all F ∈ R3×3, R ∈ SO(3).

b. There exist constants c1, c2, ρ > 0 such that

W (·, ·, F ) ≥ c1 dist
2(F, SO(3)), a.e. on Ω×R2 and for all F ∈ R3×3

W (·, ·, F ) ≤ c2 dist
2(F, SO(3)), a.e. on Ω×R2 and for all F ∈ R3×3

with dist2(F, SO(3)) ≤ ρ.

(8)
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c. There exists a monotone function r : [0,∞) → [0,∞] with r(t) ↓ 0 as
t ↓ 0 such that, for a.e. (ω, x′) ∈ Ω×R2, there exists a quadratic form
Q(ω, x′, ·) on R3×3 with

|W (ω, x′, I3×3 +G)−Q(ω, x′, G)| ≤ r(|G|)|G|2 for all G ∈ R33. (9)

For ω ∈ Ω we define the energy functionals Ih : W 1,2(S × I,R3) → [0,∞] by

Ih(u) =
1

h2

ˆ
S×I

W
(
ω, x′/ε,∇hu(x

′, x3)
)
dx′dx3. (10)

As a consequence of relations (8)-(9) we have the following lemma.

Lemma 3.2. Let W be as in Assumption 3.1 and let Q be the quadratic form
associated with W via (9). Then

(Q1) Q is T -stationary,

(Q2) for a.e. (ω, x′) ∈ Ω×R2 we have that

c1|symG|2 ≤ Q(ω, x′, G) = Q(ω, x′, symG) ≤ c2|symG|2, ∀G ∈ R3×3.

As before by Q0 : Ω × R3×3 → [0,∞) we denote the mapping Q0(ω,G) =
Q(ω, 0, G). Again without loss of generality we can assume that for a.e.
x′ ∈ R2, for all G ∈ R3×3 we have Q(ω, x′, G) = Q0(Tx′ω,G).

Definition 3.3 (The relaxation formula). Let γ > 0 and define the map
Qγ : R2×2 → [0,∞) as follows

Qγ(G) = inf
φ,B

ˆ
Ω×I

Q0
(
ω, ι(B + x3G) + sym(D1φ,D2φ,

1
γ
Dx3φ)

)
dP (ω)dx3,

(11)
where the infimum is taken over B ∈ R2×2 and φ ∈ W1,2

sym,γ(Ω× I,R3).

It can be shown that Qγ is a quadratic form which is coercive on symmetric
matrices. Namely the expression on the right-hand side of (11) can be viewed
as the projection of x3G onto the closed subspace of L2(Ω× I,R3×3

sym) defined
by ι(R2×2

sym)⊕DW1,2
sym,γ(Ω×I,R3) (the orthogonal decomposition) in the norm

induced by the quadratic form Q0, where

DW1,2
sym,γ(Ω× I,R3) = {sym(D1φ,D2φ,

1
γ
Dx3φ) : φ ∈ W1,2

sym,γ(Ω× I,R3)}.

The coercivity property follows easily from the coercivity property of Q0.
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In the bending regime we assume that the sequence of minimizers (uh) sat-
isfies

lim sup
h↓0

Ih(uh) < ∞.

By the compactness result (see Lemma 3.4), it can be concluded that the
limit deformations are Sobolev isometries. By W 2,2

iso (S) we denote the set

W 2,2
iso (S) = {u ∈ W 2,2(S,R3) : ∂αu · ∂βu = δαβ for α, β = 1, 2},

where δ denotes the Kronecker delta symbol. For u ∈ W 2,2
iso (S) we define its

normal nu ∈ W 1,2(S,R3) as nu = ∂1u∧∂2u and the second fundamental form
IIu as

IIuαβ = ∂αu · ∂βnu = −∂αβu · nu, α, β = 1, 2.

We define the limit functional I0 : W 2,2
iso (S) → [0,∞) in the following way

I0γ(u) =

ˆ
S

Qγ(IIu(x′))dx′.

The following compactness result is the consequence of the compactness re-
sult given in [FJM02] and is explained in [Vel15][Lemma 3.3, Remark 4, proof
of Proposition 3.2].

Lemma 3.4. There exists a constant C > 0, depending only on S, such that
for every u ∈ W 1,2(S × I,R3) there exists: a map R : S → SO(3), which

is piecewise constants on squares x′ + h[0, 1)2, x′ ∈ hZ2, as well as R̃ ∈
W 1,2(S,R3×3) such that for every ξ ∈ R2 with |ξ|∞ = max{|ξ ·e1|, |ξ ·e2|} ≤ h
and for each S ′ ⊂ S with dist(S ′, ∂S) ≥ h w.r.t. the |·|∞ norm, we have

‖∇hu−R‖2L2(S′×I) + ‖R− R̃‖2L2(S′) + h2‖R− R̃‖2L∞(S′)

+h2‖∇′R̃‖2L2(S′) + ‖R(·+ ξ)−R‖2L2(S′) ≤ C‖dist(∇hu, SO(3))‖2L2(S×I).

If additionally S ′ is open with ∂S ′ of class C1,1, then there exists ũ ∈ W 2,2(S ′)
such that

h2‖ũ‖2W 2,2(S′) + ‖∇′ũ− (R̃e1, R̃e2)‖2L2(S′) + ‖∇′ũ−∇′u‖2L2(S′)

≤ C‖dist(∇hu, SO(3))‖2L2(S×I),

where u =
´
I
u(x3)dx3.

Remark 3.5. The existence of the function R follows from the geometric
rigidity, proved in [FJM02], while R̃ is the mollification of R on scale h. The

function ũ is the projection of R̃ onto gradient fields.
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The following two theorems are the main result of this paper. They corre-
spond to the statement of lower and upper bound for the Γ-limit.

Theorem 3.6. Let S ⊂ R2 be a bounded domain with Lipschitz boundary.
Let (uh) ⊂ W 1,2(S × I,R3) be a family with finite elastic energy, i.e.

lim sup
h↓0

Ih(uh) < ∞.

a. There exists u ∈ W 2,2
iso (S) such that (up to a subsequence) we have

uh −
ˆ
S

uh → u strongly in W 1,2(S × I,R3), (12)

∇hu
h → (∇′u, nu) strongly in L2(S × I,R3×3). (13)

b. For a.e. ω ∈ Ω and any sequence (uh) satisfying (12), (13) for some
u ∈ W 2,2

iso (S) we have that

lim inf
h→0

Ih(uh) ≥ I0γ(u).

Remark 3.7. The claim a is the standard compactness result for the bending
regime, whose proof can be found in [FJM02].

Theorem 3.8. Let S ⊂ R2 be a bounded domain with Lipschitz boundary,
such that its normal is continuous away from a subset of ∂S with length zero
(e.g., the boundary is piecewise C1). Let u ∈ W 2,2

iso (S). Then for a.e. every
ω ∈ Ω there exists a sequence (uh) ⊂ W 1,2(S × I,R3) such that we have

a. uh → u strongly in W 1,2(S × I,R3);

b. Ih(uh) → I0γ(u).

3.2 Identifications of two-scale limits and proof of The-
orem 3.6

3.2.1 Two-scale limits of the most important terms

In this section we explicitly compute the two-scale limits, which will be
needed to prove the lower bound stated by Theorem 3.6.

Lemma 3.9. Let S ′ ⊂ R2 be a bounded domain. Let (ũh) ⊂ W 2,2(S ′),
(Rh) ⊂ L∞(S ′, SO(3)) and (R̃h) ⊂ W 1,2(S ′,R3×3) with

h2‖ũh‖2W 2,2(S′) + ‖∇′ũh − (R̃he1, R̃
he2)‖2L2(S′) + ‖Rh − R̃h‖2L2(S′)

+h2‖Rh − R̃h‖2L∞(S′) + h2‖∇′R̃h‖2L2(S′) ≤ Ch2.
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Then there exist a (not relabeled) subsequence and functions w0
α ∈ L2(S ′),

φũ ∈ L2(S ′,W2,2(Ω,R3)), φ
˜R ∈ L2(S ′,W1,2(Ω,R3)) such that for α = 1, 2

we have

〈Rheα, R̃
he3〉+ 〈Rhe3, ∂αũ

h〉
h

2−⇀ 1

γ
w0

α +
1

γ

〈
Re3, Dαφ

ũ
〉
+
1

γ
〈φ ˜Re3 , Reα〉,

∇2ũh 2c−⇀ ∇2
ωφ

ũ,

∇(R̃he3)
2c−⇀ ∇ωφ

˜Re3 ,

and 〈Re3, Dαφ
ũ〉+ 〈φ ˜Re3 , Reα〉 ∈ L2(S ′ × Ω,R3).

Proof. Notice that

〈Rheα, R̃
he3〉+ 〈Rhe3, ∂αũ

h〉 = 〈Rhe3 − R̃he3, ∂αũ
h −Rheα〉+ 〈R̃he3, ∂αũ

h〉.

The left-hand side is of order h, while the first term on the right-hand side is
of order h2. Thus the second term on the right-hand side is of order h. After
dividing by h the first term on the right-hand side converges strongly to 0 as
h → 0 and thus does not contribute to the two-scale limit. We define

fh := R̃he3, ghα := ∂αũ
h α = 1, 2,

and notice that, after extracting a subsequence, the components fh
i , (g

h
α)i,

i = 1, 2, 3 satisfy the assumptions of Lemma 2.16 (see also Remark 2.17).
Thus

1

h

〈
fh, ghα

〉
=

ε

h

(
1

ε

〈
fh, ghα

〉) 2−⇀ 1

γ
w0

α +
1

γ
〈f, φgα〉+ 1

γ
〈φf , gα〉,

for some w0
α ∈ L2(S ′) and φf , φgα ∈ L2(S ′,W1,2(Ω,R3)) such that 〈f, φgα〉+

〈φf , gα〉 ∈ L2(S ′ × Ω,R3). From Lemma 2.14 we additionally deduce that
there exists φg ∈ L2(S ′,W2,2(Ω,R3)) with Dαφ

g = φgα for α = 1, 2. This
yields

〈Rheα, R̃
he3〉+ 〈Rhe3, ∂αũ

h〉
h

2−⇀ 1

γ
w0

α +
1

γ

〈
Re3, Dαφ

ũ
〉
+
1

γ
〈φ ˜Re3 , Reα〉

for some w0
α ∈ L2(S ′), φ

˜Re3 ∈ L2(Ω× S ′,R3) and φũ ∈ L2(S ′,W2,2(Ω,R3)).

The following lemma identifies the most sensitive term in our analysis.
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Lemma 3.10. Let S ′ ⊂ R2 be a bounded domain. Let (R̃h) ⊂ W 1,2(S ′,R3×3),
and let (Rh) ⊂ L∞(S ′, SO(3)) be such that for each h > 0 the map Rh is piece-
wise constant on each square x′+h[0, 1)2 with x′ ∈ hZ2. Assume further that
for each ξ ∈ R2 with |ξ|∞ ≤ h we have

‖Rh − R̃h‖2L2(S′) + h2‖Rh − R̃h‖2L∞(S′) + h2‖∇′R̃h‖2L2(S′)

+‖Rh(·+ ξ)−Rh‖2L2(Sh) ≤ Ch2

for each sequence of subdomains Sh ⊂ S ′ which satisfy dist(Sh, ∂S ′) ≥ h
w.r.t. the |·|∞ norm.

Finally assume that R̃h is the mollification of Rh on scale h.
Then there exist R ∈ W 1,2(S ′, SO(3)), w0

3 ∈ L2(S ′) and φ ˜Re3 ∈ L2(S ′,W1,2(Ω,R3))
such that on a subsequence we have Rh → R in L2(S ′,R3×3) and

〈Rhe3, R̃
he3〉 − 1

h
2−⇀ 1

γ
w0

3 +
1

γ
〈Re3, φ

˜Re3〉,

∇(R̃he3)
2c−⇀ ∇ωφ

˜Re3 ,

with 〈Re3, φ
˜Re3〉 ∈ L2(S ′ × Ω).

Proof. From

fh :=
〈Rhe3, R̃

he3〉 − 1

h
=
1

h
〈Rhe3, R̃

he3 −Rhe3〉

we easily see that (fh) is uniformly bounded in L2(S ′). Thus up to a subse-
quence we have

fh ⇀
1

γ
w0

3 and fh 2−⇀ 1

γ
w0

3 + φ

for some w0
3 ∈ L2(S ′) and φ ∈ L2(Ω× S ′). To further identify φ we test the

sequence against derivatives. For this fix some b ∈ C∞(Ω) and ϕ ∈ C∞0 (S
′).

Let h > 0 be small enough and such that there is a subdomain Sh ⊂ S ′ with
dist(Sh, ∂S ′) ≥ h and the compact support K of ϕ is contained in Sh.
First note thatˆ

K

fh(x′)(Dαb)(Tε−1x′ω̃)ϕ(x
′)dx′ = ε

ˆ
K

fh(x′)∂α[b(Tε−1x′ω̃)ϕ(x
′)]dx′

− ε

ˆ
K

fh(x′)b(Tε−1x′ω̃)∂αϕ(x
′)dx′.

The last term converges to 0, and so we focus on the first. For this we define
qz := (z + h[0, 1)2) ∩K and compute
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ε

ˆ
K

fh∂α[b(Tε−1x′ω̃)ϕ]dx
′ =

ε

h

ˆ
K

〈Rhe3, R̃
he3〉∂α[b(Tε−1x′ω̃)ϕ]dx

′

=
ε

h

∑
z∈hZ2

ˆ
qz

〈Rh(z)e3, R̃
he3〉∂α[b(Tε−1x′ω̃)ϕ]dx

′

=
ε

h

∑
z∈hZ2

ˆ
qz

∂α

[
〈Rh(z)e3, R̃

he3〉b(Tε−1x′ω̃)ϕ
]
dx′

− ε

h

∑
z∈hZ2

ˆ
qz

[
〈Rh(z)e3, ∂αR̃

he3〉b(Tε−1x′ω̃)ϕ
]
dx′.

For the last term we use Lemma 2.12 to conclude there exists φ
˜Re3 ∈ L2(S ′,W1,2(Ω,R3))

with
∇′R̃he3

2−⇀ ∇′Re3 +∇ωφ
˜Re3 .

Together with Rh → R strongly in L2(S ′), we obtain

lim
h↓0

(
− ε

h

∑
z∈hZ2

ˆ
qz

[
〈Rh(z)e3, ∂αR̃

he3〉b(Tε−1x′ω̃)ϕ
]
dx′

)

= lim
h↓0

(
− ε

h

ˆ
K

[
〈Rhe3, ∂αR̃

he3〉b(Tε−1x′ω̃)ϕ
]
dx′

)
= −1

γ

ˆ
Ω

ˆ
K

[
〈Re3, ∂αRe3 +Dαφ

˜Re3〉b(ω)ϕ
]
dx′dP (ω)

= −1

γ

ˆ
Ω

ˆ
K

[
〈Re3, Dαφ

˜Re3〉b(ω)ϕ
]
dx′dP (ω)

Assume that

ε

h

∑
z∈hZ2

ˆ
qz

∂α

[
〈Rh(z)e3, R̃

he3〉b(Tε−1x′ω̃)ϕ
]
dx′ h→0−−→ 0. (14)

holds. Then

lim
h↓0

ˆ
K

fh(x′)(Dαb)(Tε−1x′ω̃)ϕ(x
′)dx′

= −1

γ

ˆ
Ω

ˆ
K

[
〈Re3, Dαφ

˜Re3〉b(ω)ϕ
]
dx′dP (ω)

By compactness we obtained fh 2c−⇀ φ ∈ L2(Ω × S ′). By Remark 2.17 we

obtain 〈Re3, φ
˜Re3〉 ∈ L2(Ω × S ′). After integrating by parts, this implies
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fh 2c−⇀ φ = 1
γ
〈Re3, φ

˜Re3〉 − 1
γ

´
Ω
〈Re3, φ

˜Re3〉 and thus, after absorbing the last
term into w3

0, also the claim. It remains to prove (14). If qz �= ∅ then let
Γpos
z ,Γneg

z be the boundary of qz perpendicular to eα with normals eα resp.
−eα, else Γ

pos
z ,Γneg

z := ∅. The Gauss’s theorem yields

ε

h

∑
z∈hZ2

ˆ
qz

∂α

[
〈Rh(z)e3, R̃

he3〉b(Tε−1x′ω̃)ϕ
]
dx′

=
ε

h

∑
z∈hZ2

ˆ
Γpos
z

〈Rh(z)e3, R̃
he3〉b(Tε−1x′ω̃)ϕdx

′

− ε

h

∑
z∈hZ2

ˆ
Γneg
z

〈Rh(z)e3, R̃
he3〉b(Tε−1x′ω̃)ϕdx

′,

where the integral is taken in the sense of traces. We rearrange the sum and
obtain

ε

h

∑
z∈hZ2

ˆ
Γpos
z

〈Rh(z)e3, R̃
he3〉b(Tε−1x′ω̃)ϕdx

′

− ε

h

∑
z∈hZ2

ˆ
Γneg
z

〈Rh(z)e3, R̃
he3〉b(Tε−1x′ω̃)ϕdx

′

=
ε

h

∑
z∈hZ2

〈
Rh(z)e3 −Rh(z + heα)e3,

ˆ
Γpos
z

R̃he3b(Tε−1x′ω̃)ϕdx
′
〉
.

By assumption
Rh(z)−Rh(z + heα)

h
is uniformly bounded in z and h, which implies

lim sup
h↓0

∑
z∈hZ2

∣∣Rh(z)−Rh(z + heα)
∣∣2 < ∞.

Denote by Z ⊂ hZ2 the z-values such that Γpos
z has positive H2-measure

|Γpos
z |. Using the trace inequality and Poincaré’s inequality afterwards, we

get for z ∈ Z thatˆ
Γpos
z

∣∣∣R̃h − 1

|Γpos
z |
ˆ
Γpos
z

R̃h
∣∣∣2 ≤ Ch

ˆ
qz

|∇R̃h|2dx′.

Combining both previous statements we see that

lim
h→0

ε

h

∑
z∈hZ2

〈
Rh(z)e3 −Rh(z + heα)e3,

ˆ
Γpos
z

R̃he3b(Tε−1x′ω̃)ϕdx
′
〉

=
1

γ
lim
h→0

∑
z∈Z

〈
Rh(z)e3 −Rh(z + heα)e3,

1

|Γpos
z |
ˆ
Γpos
z

R̃he3

〉 ˆ
Γpos
z

b(Tε−1x′ω̃)ϕdx
′.
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Noticing the uniform bound∣∣∣∣ˆ
Γpos
z

b(Tε−1x′ω̃)ϕdx
′
∣∣∣∣ ≤ h‖b‖L∞(Ω)‖ϕ‖L∞(S′)

we only need to show that

lim sup
h↓0

∑
z∈Z

∣∣∣∣〈Rh(z)e3 −Rh(z + heα)e3,
1

|Γpos
z |
ˆ
Γpos
z

R̃he3

〉∣∣∣∣ < ∞

to conclude the vanishing of the product. For this bound note that R̃h is the
mollification of Rh on scale h. Therefore there exist z-independent constants
0 ≤ η1, η2, η3 ≤ 1 with

1

|Γpos
z |
ˆ
Γpos
z

R̃h =η1

(
Rh(z) +Rh(z + heα)

)
+ η2

(
Rh(z + he⊥α ) +Rh(z + h(eα + e⊥α ))

)
+ η3

(
Rh(z − he⊥α ) +Rh(z + h(eα − e⊥α ))

)
.

We compute

I := η1
∑
z∈Z

∣∣〈Rh(z)e3 −Rh(z + heα)e3, R
h(z)e3 +Rh(z + heα)e3

〉∣∣
= η1

∑
z∈Z

[
|Rh(z)e3|2 − |Rh(z + heα)e3|2

]
= 0.

With this result we easily obtain

II := η2
∑
z∈Z

∣∣〈Rh(z)e3 −Rh(z + heα)e3, R
h(z + he⊥α )e3 +Rh(z + h(eα + e⊥α ))e3

〉∣∣
≤ η2

∑
z∈Z

∣∣〈Rh(z)e3 −Rh(z + heα)e3, R
h(z + he⊥α )e3 −Rh(z)e3

〉∣∣
+ η2

∑
z∈Z

∣∣〈Rh(z)e3 −Rh(z + heα)e3, R
h(z + h(eα + e⊥α ))e3 −Rh(z + heα)e3

〉∣∣ < ∞

and analogously also that

III := η3
∑
z∈Z

∣∣〈Rh(z)e3 −Rh(z − heα)e3, R
h(z + he⊥α )e3 +Rh(z + h(eα − e⊥α ))e3

〉∣∣
is uniformly bounded. Obviously∑

z∈Z

∣∣∣∣〈Rh(z)e3 −Rh(z + heα)e3,
1

|Γpos
z |
ˆ
Γpos
z

R̃he3

〉∣∣∣∣ ≤ I + II + III,
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and we conclude that

1

h

(
〈Rhe3, R̃

he3〉 − 1
)

2−⇀ 1

γ
w0

3 +
1

γ
〈Re3, φ

˜Re3〉.

Remark 3.11. In the case when ε(h)2 � h � ε(h), one would not need
to obtain the additional compactness given in Lemma 3.9 and Lemma 3.10.
Namely, in that case, the corrector in the cell formula (11) allows in the
third column and row arbitrary functions in L2(Ω × S × I) (see [Vel15] for
the periodic case). As already shown in [Vel15], due to this fact, the regime
ε(h)2 � h � ε(h) does not need the notion of oscillatory convergence, intro-
duced in [HNV14], for the regimes h ∼ ε(h) and h � ε(h).
Lemma 3.9 and Lemma 3.10, together with Lemma 3.12 below (already es-
tablished in the periodic setting in [Vel15]), completely avoid the notion of
oscillatory convergence and rely completely on the duality arguments. The
idea of Lemma 3.10 is to join the members (3, α) and (α, 3), for α ∈ {1, 2}
(since only their sum is visible in the limit; see the proof of the lower bound)
and to use further cancellation effects; and for the proof of Lemma 3.10 one
has to do the additional computations.

Lemma 3.12. Let S′ ⊂ R2 be a bounded Lipschitz domain and let (ũh) ⊂
W 2,2(S ′,R3), (R̃h) ⊂ W 1,2(S ′,R3×3) and (Rh) ⊂ L∞(S ′, SO(3)) be such that
for each h > 0 the map Rh is piecewise constant on each square x′ + h[0, 1)2

with x′ ∈ hZ2, and for each ξ ∈ R2 with |ξ|∞ ≤ h we have

h2‖ũh‖2W 2,2(S′) + ‖∇′ũh − (R̃he1, R̃
he2)‖2L2(S′) + ‖Rh − R̃h‖2L2(S′)

+h2‖Rh − R̃h‖2L∞(S′) + h2‖∇′R̃h‖2L2(S′) + ‖Rh(·+ ξ)−Rh‖2L2(Sh) ≤ Ch2,

for some C > 0 and for each sequence of subdomains Sh ⊂ S ′ which sat-
isfy dist(Sh, ∂S ′) ≥ h. Then there exists M0 ∈ L2(S ′,R2×2

sym) and ζ ∈
L2(S ′,W1,2

sym(Ω,R
2)) with

sym
(Rhe1, R

he2)
T∇′ũh − I2×2
h

2−⇀ M0 + sym∇ωζ.

Proof. Using Theorem A.2 the proof is identical to [Vel15][Lemma 3.7].

3.2.2 Proof of Theorem 3.6

Proof. Let (uh) be as in the claim, and let S ′ ⊂ S be open with C1,1 boundary.

For every h we apply Lemma 3.4 to uh and obtain (Rh), (R̃h) and (ũh) as
stated in the lemma. Define zh by the decomposition of uh into

uh(x′, x3) = uh(x′) + hx3R̃
h(x′)e3 + hzh(x′, x3),
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where once more uh(x′) =
´
I
uh(x′, x3)dx3. Clearly we have zh ∈ W 1,2(S ′ ×

I,R3) with
´
I
z(x3)dx3 = 0.

We define the approximate strain

Gh :=
(Rh)T∇hu

h − I3×3
h

and split it into

Gh =
ι
(
(Rhe1, R

he2)
T∇′ũh − I2×2

)
h

+
1

h

∑
α=1,2

〈Rhe3, ∂αũ
h〉e3 ⊗ eα

+
1

h
(Rh)T (∇′uh −∇′ũh, 0) +

1

h

(
(Rh)T R̃he3 ⊗ e3 − e3 ⊗ e3

)
+ x3(R

h)T (∇′R̃he3, 0) + (Rh)T∇hz
h.

(15)

Since Gh is uniformly bounded in L2, we may take a subsequence such that

Gh 2−⇀ G for some G ∈ L2(Ω× S × I,R3×3). We study symG by computing
the possible two-scale limits of the terms in symGh. For this we will readily
take further subsequences if needed, without denoting them explicitly.
By applying Lemma 3.12 we obtain

sym
ι
(
(Rhe1, R

he2)
T∇′ũh − I2×2

)
h

2−⇀ ι(M0 + sym∇ωζ)

for someM0 ∈ L2(S ′,R2×2
sym) and ζ ∈ L2(S ′,W1,2

sym(Ω,R
2)). From Lemma 2.12

and Prop. 2.10 we get

x3(R
h)T (∇′R̃he3)

2−⇀ x3(II
u, 0)T + x3R

T∇ωφ
˜Re3 ,

as well as
1

h
(Rh)T (∇′uh −∇′ũh)

2−⇀ RT
(
θ +∇ωv

)
for some θ ∈ L2(S ′,R3×2) and v, φ

˜Re3 ∈ L2(S ′,W1,2(Ω,R3)).
For

1

h

(
(Rh)T R̃he3 ⊗ e3 − e3 ⊗ e3

)
+
1

h

∑
α=1,2

〈Rhe3, ∂αũ
h〉e3 ⊗ eα

=
1

h

⎛⎜⎝ 0 0 〈Rhe1, R̃
he3〉

0 0 〈Rhe2, R̃
he3〉

〈Rhe3, ∂1ũ
h〉 〈Rhe3, ∂2ũ

h〉 〈Rhe3, R̃
he3〉 − 1

⎞⎟⎠
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we obtain from Lemma 3.9 and Lemma 3.10 that

sym

[
1

h

(
(Rh)T R̃he3 ⊗ e3 − e3 ⊗ e3

)
+
1

h

∑
α=1,2

〈Rhe3, ∂αũ
h〉e3 ⊗ eα

]
2−⇀ 1

γ
sym(w0 ⊗ e3) +

1

γ
sym(RTφ

˜Re3e3 ⊗ e3) +
1

γ
sym(RT∇ωφ

ũe3 ⊗ e3)

for some w0 ∈ L2(S ′,R3), φũ ∈ L2(S ′,W2,2(Ω,R3)). For the last term (∇hz
h)

notice that (15) yields an uniform L2 bound. By Lemma 2.19 we thus get

(Rh)T∇hz
h 2−⇀ RT

(
∇ωφ

z,
1

γ
Dx3φ

z

)
for some φz ∈ L2(S ′,W1,2(Ω× I,R3)). We conclude that

symGh 2−⇀ι(M0 + sym∇ωζ) +
1

γ
sym(w0 ⊗ e3) +

1

γ
sym(RTφ

˜Re3e3 ⊗ e3)

+
1

γ
sym(RT∇ωφ

ũe3 ⊗ e3) + sym
(
RT θ +RT∇ωv

)
+ x3 sym

(
ι(IIu) +

(
RT (∇ωφ

˜Re3), 0
))

+ sym
(
RT

(∇ωφ
z,
1

γ
Dx3φ

z
))

.

We rewrite this as

symG = ι
(
sym(B̃ + x3 II

u)
)
+ sym

(
∇ωφ,

1

γ
Dx3φ

)
,

where B̃ = M0 + [RT θij]1≤i,j≤2 as well as

φ(x, ω) := RT (x′)φ̃(x, ω) + ζ(x′, ω) + γx3

(
b1(x

′), b2(x
′), 0

)T
,

with

φ̃(x, ω) = φz(x, ω) + v(x′, ω) + x3φ
˜Re3(x′, ω) + x3w0(x

′) +
1

γ
φũ(x′, ω),

bi = [RT θ(x′)]3i for i = 1, 2.

Notice that φ ∈ W1,2
sym,γ(Ω× I,R3).

After exhausting S by S ′ ⊂ S open with C1,1 boundary, using Lemma 3.4 and
Remark 3.7 as well as the quadraticity of the formQγ, the lower bound follows
by using c from Assumption 3.1 and lower semicontinuity of the quadratic
form Q0 with respect to the stochastic two-scale convergence, see Lemma 2.21
and Remark 2.23 (see also [HNV14] for the details in the periodic case).
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3.3 Proof of upper bound

In this section we prove the upper bound statement. We recall some issues
from the periodic homogenization (see [HNV14]). As in [Sch07] and other
related results, the key ingredient here is the density result for W 2,2(S) iso-
metric immersions established in [Hor11a, Hor11b] (cf. also [Pak04] for an
earlier result in this direction). It is the need for the results in [Hor11a] that
forces us to restrict ourselves to domains S which are not only Lipschitz but
also piecewise C1. More precisely, we only need that the outer unit normal
be continuous away from a subset of ∂S with length zero.
For a given u ∈ W 2,2

iso (S) and for a displacement V ∈ W 2,2(S,R3) we denote
by quV the quadratic form

quV = sym
(
(∇u)T (∇V )

)
.

We denote by A(S) the set of all u ∈ W 2,2
iso (S,R

3) ∩ C∞(S,R3) with the
property that

S :=
{
B ∈ C∞(S,R2×2

sym) : B = 0 in a neighborhood of {x′ ∈ S : IIu(x′) = 0}
}

⊂ {quV : V ∈ C∞(S;R3)}.

In other words, if u ∈ A(S) and B ∈ C∞(S,R2×2
sym) is a matrix field which

vanishes in a neighborhood of {IIu = 0}, then there exists a displacement
V ∈ C∞(S;R3) such that quV = B. The necessary lemma for the proof of
upper bound is the following lemma, whose proof is given in [Sch07, HNV14].

Lemma 3.13. The set A(S) is dense in W 2,2
iso (S) with respect to the strong

W 2,2(S,R2) topology.

Proof of Theorem 3.8. Fix some typical ω̃ ∈ Ω. By Lemma 3.13 it suffices to
show the claim for u ∈ A(S). Fix B ∈ S and V ∈ C∞(S,R3) such that qyV =
B, and define the unit normal nu = ∂1u∧ ∂2u. Next we divide the domain S
into small squares (Dη

i )
n
i=1, D

η
i ⊂ S of size η such that |S\ ∪n

i=1 D
η
i | → 0 as

η → 0. On each square we define Aη
i , B

η
i ∈ R2×2

sym as the averages

Aη
i =

1

|Dη
i |
ˆ
Dη

i

IIu(x′)dx′, Bη
i =

1

|Dη
i |
ˆ
Dη

i

B(x′)dx′.

For each i = 1, . . . , n and δ < η
2
we define

Dη,δ
i = {x′ ∈ Dη

i : dist(x
′, ∂Dη

i ) > δ}.
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For each i = 1, . . . , n let (gη,ki ) ⊂ (C∞(Ω)⊗ C∞(I))3 be a minimizing se-
quence of Qγ, in the sense thatˆ

Ω×I
Q
(
ω, ι(Bη

i + x3A
η
i ) + sym(D1g

η,k
i , D2g

η,k
i , 1

γ
Dx3g

η,k
i )

)
dx3dP (ω)−

1

k

≤ inf
φ∈W 1,2(Ω×I,R3)

ˆ
Ω×I

Q
(
ω, ι(Bη

i + x3A
η
i ) + sym(D1φ,D2φ,

1
γ
Dx3φ)

)
dx3dP (ω).

We start with the Kirchhoff-Love ansatz, augmented by its linearization in-
duced by the displacement V :

vh(x′, x3) := u(x′) + hx3n
u(x′) + h

(
V (x′) + hx3μ(x

′)
)
,

where μ is given by

μ = (I3×3 − nu ⊗ nu)(∂1V ∧ ∂2u+ ∂1u ∧ ∂2V ).

We set R(x′) =
(∇′u(x′), nu(x′)

)
. A straightforward computation shows

that
∇hv

h = R + h
(
(∇′V, μ) + x3(∇′n, 0)

)
+ h2x3(∇′μ, 0). (16)

The actual recovery sequence uh is obtained by adding to vh the oscillating
correction of order ε = ε(h):

uη,k,δ,h(x′, x3) := vh(x′, x3) + hε

n∑
i=1

χη,δ
i (x′)R(x′)gη,ki (Tε−1x′ω̃, x3). (17)

Here χη,δ
i ∈ C1(S) are smooth cut-off functions that satisfy

χη,δ
i = 1 on Dη,δ

i , χη,δ
i = 0 on (Dη

i )
c and |∇χη,δ

i | ≤ C

δ
for some C > 0.

Equations (16) and (17) imply together with nu · μ = 0 that

RT∇hu
η,k,δ,h = I3×3 + hι

(
(∇′u)T (∇′V ) + x3 II

u
)
+ h(e3 ⊗ (μ · ∇′u), 0)T

+ h(e3 ⊗ (n · ∇′V ), 0)

+ h

n∑
i=1

χη,δ
i (D1g

η,k
i , D2g

η,k
i , ε

h
Dx3g

η,k
i )

+ h2x3R
T (∇′μ, 0) + hε

n∑
i=1

(
χη,δ
i (RT∇′R)gη,ki , 0

)
+ hε

n∑
i=1

(
∇′χη,δ

i gη,ki , 0
)
;

(18)
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the arguments of gη,ki and of (D1g
η,k
i , D2g

η,k
i , ε

h
Dx3g

η,k
i ) are (Tε−1x′ω̃, x3). From (17)

and (18) we conclude that

‖uη,k,δ,h − u‖W 1,2(S×I,R3)

h→0−−→ 0.

Defining

Gη,k,δ,h =
1

h

(
RT∇hu

η,k,δ,h − I3×3
)

and using the fact that n · ∇V + μ · ∇′u = 0, we deduce from (18) that

symGη,k,δ,h = ι (quV + x3 II
u)

+
n∑

i=1

χη,δ
i sym(D1g

η,k
i , D2g

η,k
i , ε

h
Dx3g

η,k
i ) + h sym

(
x3R

T (∇′μ, 0)
)

+ ε

n∑
i=1

sym
(
χη,δ
i (RT∇′R)gη,ki , 0

)
+ ε

n∑
i=1

sym
(
∇′χη,δ

i gη,ki , 0
)
;

using the objectivity property we obtain

W (ω̃, x′/ε,∇hu
η,k,δ,h) = W (ω̃, x′/ε, I3×3 + hGη,k,δ,h).

It is also easy to see from (9) that∣∣∣∣ 1h2
W (ω̃, x′/ε,∇hu

η,k,δ,h)−Q(ω̃, x′/ε,Gη,k,δ,h)

∣∣∣∣ → 0,

uniformly in x′ for h → 0. It is not difficult to conclude

lim
η→0

lim
k→∞

lim
δ→0

lim
h→0

1

h2

ˆ
S×I

Q(ω̃, x′/ε,Gη,k,δ,h)dx′dx3

=

ˆ
S

inf
φ

ˆ
Ω×I

Q
(
ω, ι(B + x3 II

u) + sym(D1φ,D2φ,
1
γ
Dx3φ)

)
dx3dP (ω)dx

′,

where we minimize over φ ∈ W1,2
sym,γ(Ω× I,R3). By choosing appropriate B

we get

lim
η→0

lim
k→∞

lim
δ→0

lim
h→0

1

h2

ˆ
S×I

Q(ω̃, x′/ε,Gη,k,δ,h)dx′dx3 =

ˆ
S

Qγ(IIu(x′))dx′.

The claim now follows by the lemma of Attouch and by a classical diagonal
argument for Γ-convergence.

30



4 Examples for the probability space

The first example is the standard one and is already given in [PV81]. It
covers the case of periodic homogenization.

Example 4.1. We take W : R2 ×R3×3 → [0,∞] that is 1-periodic in the first
component and that satisfies the property a, b, c from Assumption 3.1. Next
we take Ω = T 2 the 2-dimensional unit torus with the Lebesgue measurable
sets as the σ-algebra and the probability P as Lebesgue measure on T 2.
The measure is invariant under translations, e.g., from the dynamical system
Txω = ω + x (mod 1). The infinitesimal generators are the usual partial
derivatives, for i = 1, 2

Di =
∂

∂ωi

(ω = (ω1, ω2)).

In the end we define W (ω, x′, F ) = W (ω + x′, F ). In this case we obtain for
Qγ the following formula

Qγ(G) = inf
φ,B

ˆ
T 2×I

Q
(
x′, ι(B + x3G) + sym(D1φ,D2φ,

1
γ
Dx3φ)

)
dx′dx3,

where the infimum is taken over φ ∈ W 1,2(T 2 × I,R3), B ∈ R2×2.

In [PV81] it is also shown how almost periodic case can be covered with
the abstract approach of stochastic homogenization. Periodic (or almost
periodic) homogenization naturally destroys the isotropic character of the
energy density, even if the constituents are isotropic. In the next example we
want to show how we can obtain the isotropic energy density out of isotropic
constituents by stochastic homogenization.

Example 4.2. We would like to construct the probability space that consists
of some subset of functions on R2 (taking values in some finite or countable
set) that is invariant under rotations of the coordinate system and moreover
that the probability measure is invariant under these rotations. One pos-
sible construction can be made using Poisson processes. We construct the
probability space that consists of piecewise constant functions. Namely, the
construction of the probability space goes as follows: we take the Poisson
point process in R2 with the Lebesgue measure and the sequence of indepen-
dent and identically distributed random variables (Jn) (independent of the
Poisson process), taking values in the set N. We then construct the marked
Poisson point process, i.e., to every point (of some realization) we give a mark
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according to the realization of the sequence (Jn)
1. For i ∈ N we take energy

density functions W i : R2×R3×3 → [0,∞] that satisfies the properties a, b, c
from the Assumption 3.1 and that is isotropic, i.e., it satisfies

W i(ω, x′, FR) = W i(ω, x′, F ), for all F ∈ R3×3, R ∈ SO(3),

for a.e. (ω, x′) ∈ Ω×R2 and all i ∈ N.

This implies that the same property is valid for the appropriate quadratic
forms Qi. Out of each realization of the marked Poisson point process we
make the material mixture in the following way: the point x′ ∈ R2 is occupied
by the material i if the point x′ is in the Voronoi cell of the point that is
marked with the number i. In that way we obtain the probability space
where

Ω = {piecewise constant functions that take values in the set N and

that is constructed using the marked Poisson process}.

For the σ-algebra we take the one generated by the sets{
f ∈ Ω | f(xl) = il; xl ∈ Q2, il ∈ N, for l = 1, . . . , n

}
.

For the probability measure we take the pushforward of the measure given
by the marked Poisson processes. The action Tx′ is simply given by the
translation Tx′ω(y

′) = ω(x′+ y′). It is easily seen that this action is measure
preserving (since the distribution of the marked Poisson process is translation
invariant) and ergodic. The ergodicity follows from the facts that the marked
Poisson process (with independent marks) is ergodic and that the probability
measure is just a pushforward. The energy density we define in the following
way:

W (ω, x′, F ) = W i(ω, x′, F ), if ω(x′) = i.

1The definition of the marked Poisson process can be given as follows: it is a point
process that takes values in the metric space R2 × N and that satisfies:

• for every A ⊂ R2, M ⊂ N the random variable N(A × M) that denotes the
number of points that belong to the set A ×M has the Poisson distribution with
the parameter λ|A|P (J1 ∈ M), for some fixed λ > 0 (called the intensity of the
Poisson process);

• for A1, . . . , Am ⊂ R2×N, the random variables N(A1), . . . , N(Am) that denote the
number of points that belong to the sets A1, . . . , Am respectively are independent.

Thus, each realization of such a process can be seen as a collection of points in R2 that
additionally have a mark (a natural number). For the general theory of point processes,
see , e.g., [DV03].
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For R ∈ SO(2) we define the rotational transformation Rt : Ω → Ω in the
following way

Rt(ω)(x
′) = ω(Rx′), for all x′ ∈ R2.

Notice that Rt is measure preserving. By R̃ we denote the matrix in SO(3)

given by R̃ = ι(R)+e3⊗e3. From the properties of the infinitesimal generator
we easily conclude for f ∈ C∞(Ω) that

(D1(f ◦Rt), D2(f ◦Rt)) = (D1f ◦Rt, D2f ◦Rt)R.

From the cell formula (11) and the isotropy property of Q0 we conclude

Qγ(GR) = inf
φ,B

ˆ
Ω×I

Q0
(
ω, ι(B + x3GR) + (D1φ,D2φ,

1
γ
Dx3φ)

)
dP (ω)dx3

= inf
φ,B

ˆ
Ω×I

Q0
(
ω, ι(BRT + x3G) + (D1φ,D2φ,

1
γ
Dx3φ)R̃

T
)
dP (ω)dx3

= inf
φ,B

ˆ
Ω×I

Q0
(
ω, ι(B + x3G) + (D1φ,D2φ,

1
γ
Dx3φ)

)
dP (ω)dx3

= Qγ(G).

The infima are taken for φ ∈ W 1,2(Ω × I,R3), B ∈ R2×2. This proves the
isotropy.

Remark 4.3. Notice that in the first example we can write the cell formula
in the following way

Qγ(G) = inf
φ,B

ˆ
γT 2×I

Q0
(
x′, ι(B + x3G) + sym(D1φ,D2φ,Dx3φ)

)
dx′dx3,

where the infimum is taken over φ ∈ W 1,2(γT 2 × I,R3), B ∈ R2×2. In the
second example we can write the cell formula in the following way

Qγ(G) = inf
φ,B

ˆ
Ωd×I

Q0
(
ω, ι(B + x3G) + (D1φ,D2φ,Dx3φ)

)
dP (ω)dx3,

where the infimum is taken for φ ∈ W 1,2(Ωd × I,R3), B ∈ R2×2. Here, Ωd

is the transformed set of functions, where the transformation is given by

ωd(x′) = ω(γ−1x′), for every ω ∈ Ω.

This transformation changes the intensity of the Poisson in the background.
This explains the meaning of the parameter γ. Namely, although it seems
that ε(h) has not a clear physical meaning, its meaning is incorporated in the
probability space in the background. In the first case it is the size of the cell
of the periodicity, while in the second it is connected to the intensity of the
Poisson process in the background.
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A Appendix

A.1 Decompositions of L2

The decomposition of L2 into a ‘gradient’ part and a ‘divergence-free’ part,
known as Helmholtz-decomposition, is a classical result in real space, and
has since been generalized in various aspects.
The aim in this section is to present possible decompositions of L2, once
a probability space is involved. From now on let (Ω,F , P ) be a probability
space and an N -dimensional ergodic system (Tx) : Ω→ Ω (see Definitions 2.1
and 2.2) as well as Di, i = 1, . . . N the infinitesimal generators of T (see the
discussion after Remark 2.3.) We first recall a known result for L2(Ω,RN),
we state a similar decomposition of L2(Ω,R2×2

sym) into second gradients parts
and a remainder, and finally we derive the decomposition for the ‘mixed’
space L2(Ω× S,RN+M), where S ⊂ RM .

A.2 Decomposition of purely random spaces (first or-
der)

The Helmholtz-decomposition for stochastic L2-spaces were already known.
These results can be also easily proved by using the spectral decomposi-
tion and the methods in [BMW94]. We recall the results given in [ZKO94]
and [DG16] (the definitions of potential and solenoidal fields given in [ZKO94]
are given by using realizations, however these definitions can be equivalently
defined on the probability space; see [DG16, Rel (3.4), Rel. (3.5)]):
Let

L2
pot(Ω) := {f ∈ L2(Ω,RN) :

ˆ
Ω

(fiDjg − fjDig) = 0,

for all g ∈ W 1,2(Ω), i, j = 1, . . . , N},
L2
sol(Ω) := {f ∈ L2(Ω,RN) :

ˆ
Ω

f · (∇ωg) = 0, for all g ∈ W 1,2(Ω)},

as well as

F 2
pot(Ω) :=

{
f ∈ L2

pot(Ω) :

ˆ
Ω

f = 0

}
, F 2

sol(Ω) :=

{
f ∈ L2

sol(Ω) :

ˆ
Ω

f = 0

}
.

Theorem A.1. Let (Ω,F , P ) be a probability space and an N-dimensional
ergodic system (Tx) : Ω→ Ω. Then

L2(Ω,RN) = F 2
pot(Ω)⊕ F 2

sol(Ω)⊕RN .
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Furthermore we can characterize the spaces by

F 2
pot(Ω) = adhL2{∇ωg : g ∈ W 1,2(Ω)},

and for N = 2, 3 we get respectively

F 2
sol(Ω) = adhL2{(−D2, D1)g : g ∈ W 1,2(Ω,R)},

F 2
sol(Ω) = adhL2{∇ω × g : g ∈ W 1,2(Ω,R3)}.

A.3 Decomposition of purely stochastic spaces (second
order)

For the second order decomposition we define the spaces

L2
ppot(Ω) :=

{
A ∈ L2(Ω,R2×2

sym)
∣∣∣ ˆ

Ω

A : cof∇ωh = 0 for all h ∈ W 1,2(Ω,R2)

}
,

and

L2
ssol(Ω) :=

{
B ∈ L2(Ω,R2×2

sym)
∣∣∣ ˆ

Ω

B : ∇2
ωh = 0 for all h ∈ W 2,2(Ω,R)

}
.

Denote further

F 2
ppot(Ω) =

{
A ∈ L2

ppot(Ω)
∣∣∣ ˆ

Ω

A = 0

}
; F 2

ssol(Ω) =

{
B ∈ L2

ssol(Ω)
∣∣∣ ˆ

Ω

B = 0

}
.

We obtain the following decomposition and density result:

Theorem A.2. Let (Ω,F , P ) be a probability space and a 2-dimensional
ergodic system (Tx) : Ω→ Ω. Then

L2(Ω,R2×2
sym) = F 2

ppot(Ω)⊕ F 2
ssol(Ω)⊕R2×2

sym,

as well as

F 2
ppot(Ω) = adhL2{∇2

ωb | b ∈ C∞(Ω)},
F 2
ssol(Ω) = adhL2{cof sym∇ωb | b ∈ C∞(Ω,R2)}.

The theorem can be proved by the same methods as in [ZKO94, Lemma 7.3].

A.4 Decomposition of mixed spaces

Let S ⊂ RM be a bounded Lipschitz domain, and let L = M +N . By ∇ we
will denote the operator (∂1, . . . , ∂L), for maps with the domain RN ×S, and
for maps with the domain Ω × S the operator (D1, . . . , DN , ∂N+1, . . . , ∂L);
since from the context the definition that is used is clear, we will not distin-
guish them in notation. Additionally we define in both cases div = ∇·.
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A.4.1 Trace Theorems

In this section we briefly discuss a generalization of the trace operator for
functions with the domain Ω× S. The statements and proofs are analogous
results to the classical results for Sobolev functions (see [GR12]). First we
define W 1,2(Ω× S), analogously to (4), by

W 1,2(Ω× S) = W 1,2(S, L2(Ω)) ∩ L2(S,W 1,2(Ω)).

On this space we define the extended trace.

γ : W 1,2(Ω× S) → L2(Ω× ∂S),

γ(ψ)(ω, y) = γ̃(ψ(ω, ·))(y),
where

γ̃ : W 1,2(S) → L2(∂S)

is the classical trace. By definition W 1,2(Ω × S) ⊂ W 1,2(S, L2(Ω)) and so
by Fubini’s Theorem we obtain ψ(ω, ·) ∈ W 1,2(S) for a.e. ω ∈ Ω, if ψ ∈
W 1,2(Ω × S). It is easily seen that the map γ is linear and continuous.
Furthermore the space γ(W 1,2(Ω × S)) is a closed subspace of L2(Ω × ∂S),
which we will denote by

W 1/2(Ω× ∂S) := γ(W 1,2(Ω× S)).

Together with the norm

‖μ‖W 1/2(Ω×∂S) = inf
ψ∈W 1,2(Ω×S),γ(ψ)=μ

‖ψ‖W 1,2(Ω×S)

the space is complete. To extend the trace, we define on (C∞(Ω)⊗C∞(S))L

the norm
‖g‖2W 1,2

div (Ω×S) = ‖g‖2L2(Ω×S) + ‖div g‖2L2(Ω×S)

and denote the completion of the space as

W 1,2
div (Ω× S) := adhW 1,2

div
(C∞(Ω)⊗ C∞(S))L,

analogously to the real-variant W 1,2
div (R

N × S).
Furthermore we split g = (gs, gr) into gs = (g1, . . . , gN) and g

r = (gN+1, . . . , gL).
Let Γ = Ω× ∂S be the boundary of Ω× S, and let ν be the outward-normal
of S.

Lemma A.3 (Normal Trace Theorem). The mapping γν : g �→ gr
∣∣
Γ
·ν defined

for g ∈ (C∞(Ω)⊗C∞(S))L extends uniquely to a continuous, linear mapping
γν : W

1,2
div (Ω× S) → (W 1/2(Ω× ∂S))′.
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Proof. Using integration by parts for smooth functions ϕ ∈ C∞(Ω)⊗C∞(S), g ∈
(C∞(Ω)⊗ C∞(S))L we have

ˆ
Ω×S

g(ω, x) · ∇ϕ(ω, x)dP (ω)dx+

ˆ
Ω×S

(div g)(ω, x)ϕ(ω, x)dP (ω)dx

=

ˆ
Ω

ˆ
∂S

ν(x) · gr(ω, x)ϕ(ω, x)dx dP (ω).

Applying the Cauchy-Schwarz inequality we thus obtain∣∣∣∣ˆ
Ω

ˆ
∂S

ν(x) · gr(ω, x)ϕ(ω, x)dx dP (ω)
∣∣∣∣ ≤ ‖g‖W 1,2

div (Ω×S) · ‖ϕ‖W 1,2(Ω×S),

for all ϕ ∈ C∞(Ω)⊗ C∞(S), and by density for all ϕ ∈ W 1,2(Ω× S).
Now fix some ψ ∈ W 1/2(Ω × ∂S). For any such ψ there exists by definition
ϕ ∈ W 1,2(Ω × S) such that γ(ϕ) = ψ and ‖ϕ‖W 1,2 ≤ 2‖ψ‖W 1/2 . Thus we
obtain∣∣∣∣ˆ

Ω

ˆ
∂S

ν(x) · gr(ω, x)ψ(ω, x)dx dP (ω)
∣∣∣∣ ≤ 2‖g‖W 1,2

div (Ω×S) · ‖ψ‖W 1/2(Ω×∂S).

By definition of the (W 1/2(Ω× ∂S))′ norm we finally obtain∥∥∥gr∣∣
Γ
· ν
∥∥∥
W 1/2(Ω×∂S)′

= sup
ϕ∈W 1/2(Ω×∂S),
‖ϕ‖

W1/2≤1

ˆ
Ω

ˆ
∂S

ν(x) · gr(ω, x)ϕ(ω, x)dx dP (ω)

≤ 2‖g‖W 1,2
div (Ω×S).

Thus γν can be continuously extended to a map W 1,2
div (Ω× S) → (W 1/2(Ω×

S))′, and by density the extension is unique.

To simplify the notation we will write ψ
∣∣
Ω×∂S for γ(ψ) and gr · ν for γν(g).

A.4.2 Mixed differential equations

We define the spaces of test functions D = C∞0 (R
N×S) and X := C∞0 (R

N)⊗
C∞(S), and introduce for f, g ∈ L2

loc(R
N , L2(S,RL)) the notation

∇× f = 0 in D′ :⇐⇒
ˆ
RN×S

(
fj∂iϕ− fi∂jϕ

)
= 0 for all i, j and ϕ ∈ D,

div g = 0 in D′ :⇐⇒
ˆ
RN×S

〈
g,∇ϕ

〉
= 0 for all ϕ ∈ D.
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If additionally g ∈ L2
loc(R

N ,W 1,2
div (S)), then gr · ν is almost everywhere well-

defined on ∂S and we set

div g = 0 in X ′ :⇐⇒
ˆ
RN×RM

〈
g,∇ϕ

〉
=

ˆ
RN

ˆ
∂S

〈ϕgr, ν〉 for all ϕ ∈ X.

Since D ⊂ X the conditions immediately split into

div g = 0 in X ′ ⇐⇒ div g = 0 in D′ and gr · ν = 0 a.e. on RN × ∂S.

Similar to before we define

D̃ = C∞(Ω)⊗C∞0 (S) and X̃ =

{
ψ ∈ C∞(Ω)⊗ C∞(S) :

ˆ
Ω×S

∇ψ = 0

}
,

and for f, g ∈ L2(Ω× S,RL) we denote

∇× f = 0 in D̃′ :⇐⇒
ˆ
Ω×S

(
fj∂iψ − fi∂jψ

)
= 0 for all i, j and ψ ∈ D̃,

div g = 0 in D̃′ :⇐⇒
ˆ
Ω×S

〈g,∇ψ〉 = 0 for all ψ ∈ D̃.

Next we define for g ∈ W 1,2
div (Ω× S):

div g = 0 in X̃ ′ :⇐⇒ div g in D̃′ and gr · ν = 0 a.e. on Ω× ∂S.

Note that ∇× f = 0 in D̃′ holds, iff. almost all realization satisfy ∇× f = 0
in D′, and similarly for div g.
Finally define the sets

L2
pot(Ω× S) = {f ∈ L2(Ω× S,RL) : ∇× f = 0 in D̃′},
L2
sol(Ω× S) = {g ∈ L2(Ω× S,RL) : div g = 0 in X̃ ′},

and

F 2
pot(Ω× S) =

{
f ∈ L2

pot(Ω× S) :

ˆ
Ω×S

f(ω, x)dP (ω)dx = 0

}
,

F 2
sol(Ω× S) =

{
g ∈ L2

sol(Ω× S) :

ˆ
Ω×S

g(ω, x)dP (ω)dx = 0

}
.

We are now able to state the decomposition theorem for the mixed-spaces:

Theorem A.4. Let (Ω,F , P ) be a probability space with F countably gener-
ated and a N-dimensional ergodic system (Tx) : Ω → Ω and let S ⊂ RM be
a bounded Lipschitz domain. Then:
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(i) L2(Ω× S,RL) = F 2
pot(Ω× S)⊕ F 2

sol(Ω× S)⊕RL.

(ii) F 2
pot(Ω× S) = adhL2(Ω×S,RL){∇g : g ∈ W 1,2(Ω× S)}.

(iii) If L = 3, i.e. M = 1, N = 2 or M = 2, N = 1 then

F 2
sol(Ω× S) = adhL2(Ω×S,RL){∇ × g : g ∈ W 1,2(Ω,RL)}.

A.4.3 Orthogonality of div and ∇
The decomposition will follow easily, once we have proved the following
lemma:

Lemma A.5. Let f ∈ L2
pot(Ω× S) and g ∈ L2

sol(Ω× S). Then

ˆ
Ω×S

f(ω, y) · g(ω, y)dP (ω)dy

=
1

|S|

(ˆ
Ω×S

f(ω, y)dP (ω)dy

)
·
(ˆ

Ω×S
g(ω, y)dP (ω)dy

)
.

Especially if additionally
´
f = 0 or

´
g = 0, then 〈f, g〉L2(Ω×S) = 0.

Before proving the lemma, we first show that ‘multiplying’ an ergodic system
with a periodic system yields once more an ergodic system.

Lemma A.6. Let (Ω,F , P ) be a probability space with an N-dimensional

ergodic system (Tx) : Ω → Ω. Let T̃ : RM × [0, 1)M → [0, 1)M be defined by

T̃y(ω
M) = ωM + y (mod 1). Define the product dynamical system

T × T̃ : (RN ×RM)× (Ω× [0, 1)M) → Ω× [0, 1)M

by
(T × T̃ )(x,y)(ω

N , ωM) = (Txω
N , Tyω

M).

If T is ergodic, then T × T̃ is ergodic as well.

Here we use the weaker formulation of ergodicity, explained in Remark 2.3.

Proof. Let B ⊂ Ω× [0, 1)M be measurable and invariant under T × T̃ , i.e.

(T × T̃ )(x,y)(B) = B for all (x, y) ∈ RN ×RM .

Choosing x = 0 we get ⋃
y∈RM

(T × T̃ )(0,y)(B) = B.
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Thus B can be written as B′ × [0, 1)M with B′ ⊂ Ω measurable. We have

(P ⊗ L M)(B) = P (B′).

By ergodicity of T we have P (B′) ∈ {0, 1} and thus (P ⊗ L M)(B) ∈ {0, 1}.

Proof of Lemma A.5. By translating and scaling it suffices to show it for
domains S ⊂ Q := 1

2
(−1, 1)M . Fix some f, g ∈ L2(Ω × S) and extend them

to f, g ∈ L2(Ω×Q) with their corresponding mean-value on Ω× S. Finally
extend both function Q-periodically onto RM . Assuming ∇ × f = 0 in
D′(Ω × S) and ∇ · g = 0 in X̃ ′(Ω × S), the extended functions satisfy the
PDE clearly on Ω×(ZM+S). For some ω̃ ∈ Ω typical we define the sequence
of functions

f ε(x, y) = f(Tε−1xω̃, ε
−1y), gε(x, y) = g(Tε−1xω̃, ε

−1y). (19)

We prove this lemma by showing that

f ε · gε �
⇀ f · g in D′(RN ×Q), (20)

where f, g are the corresponding weak limits for f ε, gε as defined in (19). By
Birkhoff’s Theorem we have

f =
1

|S|
ˆ
Ω×S

f(ω, z)dP (ω)dz, g =
1

|S|
ˆ
Ω×S

g(ω, z)dP (ω)dz,

as well as

f ε · gε �
⇀ fg in L1

loc(R
N ×Q) (21)

by Lemma A.6. By uniqueness of the limit both have to agree, which is the
claim of the lemma.
From (21) we deduce, that convergence holds for every ε → 0, and to identify
the limit in terms of f, g it suffices to choose the specific sequence εn = n−1,
where we suppress the index n and still write ε → 0 instead of n → ∞.
The proof of (20) is motivated by the proof of the classical div-curl lemma
(see e.g., [All02, Lemma 1.3.1]). By locality of the statement we can reduce
ourselves to the case K ⊂⊂ RN × Q and define KS = K ∩ (RN × S). We
can assume that KS has Lipschitz boundary. Furthermore we may assume
that the weak limits of f ε, gε are zero.
Define ψ to be the primitive of f on the domain RN × S with the property´
KS ψ(x, y) = 0. Extend ψ onto RN × (ZM + S) periodically. Furthermore
define

ψε(x, y) = εψ(
x

ε
,
y

ε
) + cε on RN × ε(ZM + S),
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with the constant

cε = −
ˆ
KS

εψ(
x

ε
, y)d(x, y).

By construction we have

∇ψε = f ε on RN × ε(ZM + S) as well as

ˆ
KS

ψε(x, εy)d(x, y) = 0.

We define the finite set Zε := ZM ∩ (−ε−1, ε−1)M and partition Q (up to a
null set) into

Q =
⋃
k∈Zε

ε(Q+ k).

Fix some ϕ ∈ C∞0 (R
n ×Q) and we compute

ˆ
Rn×Q

ϕ(x, y)d(x, y) =
∑
k∈Zε

ˆ
Rn×(εQ+εk)

ϕ(x, y)d(x, y)

=

ˆ
Rn×(εQ)

[∑
k∈Zε

ϕ(x, y + εk)

]
d(x, y).

Using additionally the periodicity of f ε, gε, we thus get

ˆ
RN×Q

f ε(x, y) · gε(x, y)ϕ(x, y)d(x, y)

=

ˆ
RN×(εQ)

f ε(x, y) · gε(x, y)
[∑
k∈Zε

ϕ(x, y + εk)

]
d(x, y)

=

ˆ
RN×[ε(Q\S)]

f ε(x, y) · gε(x, y)
[∑
k∈Zε

ϕ(x, y + εk)

]
d(x, y)

+

ˆ
RN×(εS)

f ε(x, y) · gε(x, y)
[∑
k∈Zε

ϕ(x, y + εk)

]
d(x, y)

=

ˆ
RN×[ε(Q\S)]

f · g ·
[∑
k∈Zε

ϕ(x, y + εk)

]
d(x, y)

+

ˆ
RN×∂(εS)

〈(gr)ε(x, y), ν〉
[
ψε(x, y)

∑
k∈Zε

ϕ(x, y + εk)

]
d(x, y)

−
ˆ
RN×(εS)

ψε(x, y) · div
[
gε(x, y)

∑
k∈Zε

ϕ(x, y + εk)

]
d(x, y).
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The first term vanishes by the assumption on the weak limits of f ε, gε, while
the second one vanishes by the boundary condition on g. In the last term we
apply the product rule: the term, where the divergence falls on gε vanishes,
by using the PDE and density.
We are left withˆ

RN×Q
f ε(x, y) · gε(x, y)ϕ(x, y)d(x, y)

= −
ˆ
RN×(εS)

ψε(x, y) ·
〈
gε(x, y),

∑
k∈Zε

∇ϕ(x, y + εk)

〉
d(x, y)

= −
ˆ
KS

ψε(x, εy) ·
〈
gε(x, εy), εM

∑
k∈Zε

∇ϕ(x, εy + εk)

〉
d(x, y).

We note that (x, y) �→ ψε(x, εy) is uniformly bounded in L2(KS). Indeed,
using Poincaré’s inequality, recalling

´
KS ψ

ε(x, εy)d(x, y) = 0, yields

‖ψε(x, εy)‖L2(KS) ≤ CKS‖f ε(x, εy)‖L2(KS) = CKS‖f(Tε−1xω̃, y)‖L2(KS).

Furthermore the sequence

(x, y) �→ f ε(x, εy) = f(Tε−1xω̃, y)

is uniformly bounded in L2(KS) for almost all ω̃ ∈ Ω. To see this define for
every x ∈ RN the cross sections

KS
x :=

{
y ∈ RM : (x, y) ∈ KS

} ⊂ S,

and thusˆ
KS

|f(Tε−1xω̃, y)|2d(x, y) =
ˆ
RN

ˆ
KS

x

|f(Tε−1xω̃, y)|2dydx

≤
ˆ
{x∈RN :KS

x �=∅}

(ˆ
S

|f(·, y)|2dy
)
(Tε−1xω̃)dx.

By the Ergodic Theorem the integrand converges for almost every ω̃ to
C‖f‖2L2(Ω×S), for some constant C > 0 depending only on KS. Thus for
almost every ω̃ ∈ Ω we have

lim sup
ε↓0

ˆ
KS

|f(Tε−1xω̃, y)|2d(x, y) < ∞,

and therefore the left-hand side is uniformly bounded for almost every ω̃.
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Noticing also that

∇((x, y) �→ ψ(x, εy)) = (f1, . . . , fN , εfN+1, . . . , εfL),

we have a uniform bound on (x, y) �→ ψε(x, εy) in W 1,2(KS) and thus a sub-
sequence converging weakly to some Ψ ∈ W 1,2(KS). By Rellich’s Theorem
we have also strong convergence in L2(KS). Additionally Ψ does not depend
on y: to see this, we apply Poincaré’s inequality once more and obtain

‖∂yΨ‖L2(KS) ≤ lim inf
ε↓0

‖∂y((x, y) �→ ψε(x, εy))‖L2(KS)

≤ lim inf
ε↓0

ε‖(x, y) �→ f ε(x, εy)‖L2(KS) = 0.

The sequence of functions (x, y) �→ gε(x, εy) = g(Tε−1xω̃, y) converges weakly
to (x, y) �→ (

´
Ω
g(ω, y)dω) in L2(Q), a function independent of x. Finally

observe that[
(x, y) �→ εM

∑
k∈Zε

∇ϕ(x, εy + εk)

]
→

[
x �→

ˆ
Q

∇ϕ(x, ŷ)dŷ
]

uniformly in x. We thus have

ˆ
RN×S

〈
gε(x, εy), ψε(x, εy)

(
εM

∑
k∈Zε

∇ϕ(x, εy + εk)
)〉

d(x, y)

→
ˆ
RN×S

〈ˆ
Ω

g(ω, y)dP (ω) , Ψ(x)

ˆ
Q

∇ϕ(x, ŷ)dŷ

〉
d(x, y),

since the first factor converges weakly and the second strongly. Rearranging
the integrals yields

ˆ
RN×S

〈ˆ
Ω

g(ω, y)dP (ω) , Ψ(x)

ˆ
Q

∇ϕ(x, ŷ)dŷ

〉
d(x, y)

=

〈
|S| · g ,

ˆ
RN×Q

Ψ(x) · ∇ϕ(x, ŷ)dŷdx

〉
= 0,

since g = 0. This finishes the proof.

A.4.4 The decomposition

We will prove Theorem A.4 (i) similar to [ZKO94][Lemma 7.3]. For this
we introduce a mollifier in the mixed setting. Let K1 ∈ C∞0 (R

N), K2 ∈

43



C∞0 (R
M) be standard mollifier, i.e., K1, K2 are even functions in the sense

that Ki(x) = Ki(−x) for all x and i = 1, 2, and

K1, K2 ≥ 0,

ˆ
RN

K1 =

ˆ
RM

K2 = 1.

Define for δ > 0 the sequences

Kδ
1(s) =

1

δN
K1(δ

−1s), Kδ
2(y) =

1

δM
K2(δ

−1y),

and further the mollification-operators J δ for g ∈ L2(Ω×RM) by

(J δg)(ω, x) =

ˆ
RN

ˆ
RM

Kδ
1(s)K

δ
2(x− y)g(Tsω, y)dyds.

It is easily seen that J δg is a continuous, linear, symmetric operator L2(Ω×
RM) → L2(Ω×RM) with

lim
δ↓0

J δg = g strongly in L2(Ω×RM).

Furthermore J δg ∈ W 1,2(Ω× S,RM) for g ∈ L2(Ω×RM) and

∇(J δg) = J δ∇g for all g ∈ W 1,2(Ω×RM).

Proof of Theorem A.4 (i). The orthogonality between F 2
pot(Ω×S) and L2

sol(Ω×
S) follows from Lemma A.5. Therefore

L2
sol(Ω× S) ⊂ [F 2

pot(Ω× S)]⊥.

For the reverse inclusion let g ∈ [F 2
pot(Ω× S)]⊥, i.e.

〈g, f〉L2 = 0 for all f ∈ F 2
pot(Ω× S).

Fix some ϕ ∈ D̃, and note that ∇ϕ ∈ F 2
pot(Ω× S). Extend both ϕ and g by

0 to functions defined on Ω×RM

Fix some δ > 0. By using the elementary properties of the mollification
operator J δ we have

0 = 〈g,∇J δϕ〉L2 = 〈g,J δ(∇ϕ)〉L2 = 〈J δg,∇ϕ〉L2 = −〈divJ δg, ϕ〉L2 .

By the density of D̃ ⊂ X̃ ⊂ L2(Ω× S) we get div (J δg) = 0 a.e., thus

divJ δg = 0 in D̃′.
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By the strong convergence J δg → g in L2(Ω× S,RL) we get

div g = 0 in D̃′.
Furthermore for any ψ ∈ X̃ we have ∇ψ ∈ F 2

pot as well and thus

0 =

ˆ
Ω×S

〈J δg,∇ψ〉 =
ˆ
Ω×S

div (J δ(g) · ψ)

=

ˆ
Ω×S

L∑
k=N+1

∂k(J δ(g)k · ψ) =
ˆ
Ω

ˆ
∂S

〈ψJ δ(gr), ν〉.

Note that J δg → g in L2(Ω× S) together with div g = divJ δg = 0 implies
that J δg → g in W 1,2

div (Ω× S). Together with the equalityˆ
Ω

ˆ
∂S

〈ψJ δ(g′′), ν〉 = 0,

following from Lemma A.3, the strong convergence J δg → g in W 1,2
div (Ω×S)

is enough to conclude that div g = 0 in X̃ ′, thus g ∈ L2
sol(Ω× S).

For the proof of Theorem A.4 (ii) we follow [DG16]:

Proof of Theorem A.4 (ii). From classical Hilbert space theory follows

L2(Ω× S,RL) = adhL2{∇χ : χ ∈ X̃} ⊕
[
adhL2{∇χ : χ ∈ X̃}

]⊥
.

By the previous orthogonal decompositions it is enough to show that[
adhL2{∇χ : χ ∈ X̃}

]⊥
= L2

sol(Ω× S),

since then
adhL2{∇χ : χ ∈ X̃} = F 2

pot(Ω× S)

follows trivially from

L2(Ω× S,RL) = F 2
pot(Ω× S)⊕ L2

sol(Ω× S).

But [
adhL2{∇χ : χ ∈ X̃}

]⊥
= L2

sol(Ω× S)

was just the definition of the space L2
sol(Ω× S).

The claim of Theorem A.4 (iii) can be proven almost identically.
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[Vel] Igor Velčić. On the general homogenization of von Kármán
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