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Abstract

We study the two layers shallow water equations on a bounded domain M ⊂ R
2

driven by a multiplicative white noise, and obtain the existence and uniqueness of
a maximal pathwise solution for a limited period of time, the time of existence
being strictly positive almost surely. The proof makes use of anisotropic estimates
and stopping time arguments, of the Skorohod representation theorem, and the
Gyöngy-Krylov theorem which is an infinite dimensional analogue of the Yamada-
Watanabe theorem.
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1 Introduction

In this article, we study the two layer shallow water equations in space dimensions two,
on a bounded domain M, forced by multiplicative noise:

dv1 − ν1Δv1dt + (v1 · ∇)v1dt + g∇h1dt+g
ρ2

ρ1
∇h2dt + fk × v1dt = Fdt+ (1.1a)

σ1(v1, v2, h1, h2)dW1 in M × (0, T ),

dv2 − ν2Δv2dt + (v2 · ∇)v2dt + g∇h2dt+g∇h1 + fk × v2dt = Gdt+ (1.1b)
σ2(v1, v2, h1, h2)dW2 in M × (0, T ),

dh1 + ∇ · (h1v1)dt − δ1Δh1dt = σ3(v1, v2, h1, h2)dW3 in M × (0, T ), (1.1c)

dh2 + ∇ · (h2v2)dt − δ2Δh2dt = σ4(v1, v2, h1, h2)dW4 in M × (0, T ), (1.1d)

supplemented with the following initial conditions and Dirichlet boundary conditions
vi(t = 0) = v0

i (x, y) in M, i = 1, 2, (1.1e)

hi(t = 0) = hi
0(x, y) > 0 in M, i = 1, 2, (1.1f)

vi = 0 on ∂M × (0, T ), i = 1, 2, (1.1g)
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hi = 0 on ∂M × (0, T ), i = 1, 2. (1.1h)
Here, v1 = (u1, v1) where u1 := u1(x, y, ω, t) and v1 := v1(x, y, ω, t) denote the velocity
in the x direction and y direction of the upper layer, respectively. Similarly, v2 = (u2, v2)
where u2 := u2(x, y, ω, t) and v2 := v2(x, y, ω, t) corresponds to the lower layer. We will
assume that h1 = H1 + h̊1, where H1 > 0 is the average depth of the upper layer, a
constant, and h̊1 is the deviation from this average height. Similarly, h2 = H2 + h̊2,
where H2 > 0 is the average depth of the lower layer, a constant, and h̊2 is the deviation
from this average height. Also, ν1 and ν2 are the viscosities, δ1, and δ2 are given positive
constants, g is the gravitational constant, f is the Coriolis parameter assumed to be con-
stant, ρ1 and ρ2 are the densities of the top fluid and bottom fluid respectively, and both
of them are assumed to be constants as well. Finally, F := F (x, y, t), G := G(x, y, t),
v0

1(x, y), v0
2(x, y), h0

1(x, y) and h0
2(x, y) are given. Typically, F represents a wind force

at the surface, G represents an interfacial surfacic Force.

The system (1.1) describes the motion of the two superposed layers of fluids with dif-
ferent densities so that no mixing occurs. A typical example is the superposition in
an estuary of the fresh water coming from a river and of the heavier salted water from
the sea. More generally, the stratified salted water in a deep ocean is often modeled as
the superposition of a number of layers of fluid, see e.g [26]. In an earlier article [21]
we investigated the case of a single layer shallow water. In the present article we will
emphasize the aspects of the study which are different from [21].

The addition of white noise driven terms to the basic governing equations for a physi-
cal system is natural for both practical and theoretical applications. For examples, the
stochastically forced terms can be used to account for numerical and empirical uncer-
tainties and thus provide a mean to study the robustness of a basic model. Particularly,
in the context of fluids, complex phenomena related to turbulence may also be modeled
by stochastic perturbations.

Although the mathematical literature for the deterministic shallow water equations is
extensive, to the best of our knowledge, no one has addressed yet the stochastic shallow
water equations before [21]. In the deterministic context, one must assume that the
initial data is small or, otherwise, the solution is only known to exist for a short period
of time. In the stochastic context we consider the shallow water equations forced by a
multiplicative white noise representing e.g. random wind perturbations at the surface
and we opt to focus on the latter situation that is we will look for a solution up to a
small stopping time. The preceding paper [21] addressed the single layer model proposed
by Orenga et al in [11] and [25]. Orenga’s model omits the Coriolis term and assumes
the external force is zero in the momentum equation. In the deterministic context see
e.g. [11] and [25], who omit the Coriolis term and assume the external force to be zero
in the momentum equation. In [8] and [37] the model is similar to that of Orenga et
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al., but it has an additional term with 1
h
in the momentum equation. The model most

closely related to the present article can be found in [31]. It does include a Coriolis term,
but it still assumes no external forcing and it contains the 1

h
term. For convenience, we

choose a model which omits the 1
h
term (which amounts to a linearization hi ∼ Hi ) and

adds the term −δΔh to the continuity equation in order to absorb some of the terms
involving the gradient of the height of the water. Due to this extra viscous term, we
require boundary conditions on h, that are specified below. We also choose to include
an external force that is independent of the solution. A realistic formulation of the
external force can be found in e.g. [35], but this adds more unnecessary difficulties to
the problem. For more about the physical derivation of these equations, see e.g. [34].
For the two layer model we are investigating in this article, we began with the models
proposed in [22] and [27] but ultimately decided on a model similar to [30]. As in the
single layer problem, the momentum equations lack any external force. We choose to
include the external forces F and G which are both independent of the solution.
When we consider the stochastic two-layer system, several difficulties arise. First, we do
not have the cancellation property for the nonlinear term, as is the case in e.g. [1], [17],
[18], and [19]. We also do not have the assumption that v1 or v2 is divergence free, as
in the Navier-Stokes system (see e.g. [2]). In the deterministic case, this implies that, in
general, one can only obtain local in time a priori estimates for the solution, and hence
local in time existence of solutions. As we will see below, the same holds in the stochas-
tic context. Few results are known regarding of local in time existence of solutions of
stochastic partial differential equations. Local in time solutions of the Navier-Stokes
equations have been obtained in [1]. In this article, the mapping defining the solutions
is “randomized” to account for a white noise forcing. In partly related directions, we
would like to mention the lecture notes [15] in which the author studies the role that
white noises may have in preventing blow up. See also [6], [7] in which the author derives
results of blow-up in finite time for solutions of stochastic pdes. See also [4] in which
the authors study the two layer quasi-geostrophic equation; these equations have some
similarity with the shallow water equations but, unlike the shallow water equations that
we consider, well-posedness is granted for all time in the deterministic context and then
in the stochastic context.

Let us emphasize again the general motivation for studying the present system. Multi-
layered shallow water equations are commonly used in oceanography, to model the mo-
tion of the highly stratified flow in the earth’s ocean. Also stochastic perturbations of
geophysical equations are commonly used nowadays to parametrize the many uncertain-
ties in the models. In the present case one can think at the topography of the bottom, at
the height of the upper surface (mini waves), at wind forces, as well as biological factors
and /or salinity.
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As we are working in the intersection of two fields, we note that some confusion may
arise due to the terminology. In the literature for stochastic differential equations the
term" weak solution" is referred to " martingale solution" while the designation " strong
solution " may be used for a" pathwise solution". In the former notion, one constructs
a probabilistic basis as part of the solution while in the latter case, the existence of
solutions can be established on a preordained probability space. For more details about
the two types of solutions, we refer the reader to e.g. [12], [14], [13], and [24]. Un-
like the study of deterministic nonlinear evolutionary partial differential equations, the
study of well-posedness in the stochastic setting gives new difficulties due to the addition
of the probabilistic parameter. We will overcome the difficulty by utilizing a different
compactness result based on fractional Sobolev spaces that allows us to treat nonlinear
stochastic equations in a way similar to the deterministic case; see [13], [32]. Proofs of
other compactness embedding theorems can be found in [3], [5], [29], and [33].

In this work, we will use the same approach introduced in [9] and [21] to establish
the existence of both martingale and pathwise solutions. We derive the estimates for
the nonlinear terms closer to those currently available for the three dimensional Navier
Stokes equations. Due to the lack of cancellation property for the nonlinear terms, the
results are obtained up to a finite stopping time only.

The structure of this article is organized as follows: In Section 2, we review the basic
setting, defining the relevant function spaces and introducing various notions of solutions.
In Section 3, we provide some a priori estimates on the moment of solutions of any order
up to a stopping time, whereas in our previous one [21], a priori estimates of solutions
are only available up to order two. Furthermore, in this section, we deduce the local
bound of pathwise solutions in L∞(0, T, H2) if the initial datum belong to the same
space. As discussed in the aforementioned paper, the positiveness of random stopping
times are not granted. The absence of a lower bound on the stopping times leads to
further difficulties later on when deriving the compactness result and passing to the
limit. In order to conquer these difficulties, we will construct a modified system which
truncates the nonlinear terms in order to obtain the existence of global solutions for this
system and obtain the existence of local solutions of the original system by introducing
an appropriate positive stopping time which we show to be strictly positive almost surely
afterward.
Therefore, Sections 4 and 5 are aimed to establish the existence of both global martingale
and pathwise solutions of the modified system. In Section 6, we establish the existence of
local martingale solutions, pathwise solutions and maximal pathwise solution by defining
an appropriate stopping time. Finally, the Appendices collects some useful lemmas and
theorems, among the other existing results which are used throughout the article. We
believe that these results are very widely applicable for the study of well posedness of
other nonlinear stochastic partial differential equations and therefore hold independent
interest.
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Remark 1.1. Different boundary conditions on vi and hi for i = 1, 2 appear also in the
literature, such as:

vi · n = 0 and curl(vi) = 0 on ∂M × (0, T ), (1.2)

∇h̊i · n = 0 on ∂M × (0, T ). (1.3)

This set of boundary conditions yields the same type of results but it requires more
technical work.

Remark 1.2. Physically the depths of each layer of water are necessarily positive. For
a proof of the positivity of hi, see Appendix B in [21].

2 Analytic tools

2.1 The abstract functional analytic setting

We begin by reviewing some basic function spaces associated with (1.1). We will work
with the spaces H = H1 × H1 × H2 × H2, V = V1 × V1 × V2 × V2 where

H1 := L2(M)2, V1 := (H1
0 (M))2, H2 := L2(M), V2 := H1

0 (M). (2.1)

the spaces H1 and H2 are endowed with the usual inner product and norm denoted by
(·, ·) and | · |, respectively, while on V1 and V2, we will use 〈·, ·〉 and ‖·‖, which are the
usual inner product and norm of the gradients.
We also consider fractional powers of the (−Δ) operator with the boundary conditions
(1.1g) and (1.1h). By the classical spectral theory, there is an orthonormal basis {ψk}k≥1

of H and an unbounded increasing sequence of eigenvalues {λk}k≥1, λk → ∞ as k → ∞,
such that −Δψk = λkψk. We define D(−Δ) = V ∩ (H2(M))6 and for α ≥ 0 we take:

D((−Δ)α) =
{

u ∈ H1 :
∞∑

k=1
λ2α

k |uk|2 < ∞
}

, (2.2)

endowed with the Hilbertian norm

|u|α := |(−Δ)αu| =
( ∞∑

k=1
λ2α

k |uk|2
)1/2

. (2.3)

Here, u = ∑∞
k=1 ukψk with |u|2 = ∑∞

k=1 |uk|2 < ∞.
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For the Galerkin scheme below, we introduce the finite dimensional spaces
Hn = span{ψ1, . . . , ψn} and let Pn, Qn = I −Pn be the projection operators onto Hn and
onto its orthogonal complement. By abuse of notation we will also use the operator Pn

to denote Pnvi = Pn(vi, 0) and Pnhi = Pn(0, hi). We have the generalized and reverse
Poincaré inequalities which hold for any α1 < α2:

|Pnu|α2 ≤ λα2−α1
n |Pnu|α1 and |Qnu|α1 ≤ 1

λα2−α1
n

|Qnu|α2 . (2.4)

2.2 Stochastic preliminaries

In this section, we discuss the stochastic framework on which much of the subsequent
analysis relies. For an extended treatment of this topic, we refer the reader to [12].
To begin with, we define a stochastic basis S :=

(
Ω, F , {Ft}t≥0,P, {W k

i }k≥1
)
that is a

filtered probability space and (Ω, F ,P) is the underlying probability space, {Ft}t≥0 is
a complete right continuous filtration, and for i = 1, 2, 3, 4, {W k

i }k≥1 is a sequence of
independent one-dimensional Brownian motions adapted to Ft. Expectation is taken
with respect to P and is denoted by E.
Let U be an auxiliary separable real Hilbert space endowed with a Hilbert basis {ej}j≥1.
We then consider the stochastically driven terms in (1.1) Wi(t, ·, ω), the U−valued
stochastic processes, formally represented for the moment, by the following series:

Wi(t, ·, ω) =
∞∑

�=1
W �

i (t, ω)e�(·). (2.5)

This expression makes each Wi a cylindrical Brownian motion evolving over a separable
space U with orthogonal basis ek.
We next recall some basic definitions and properties of spaces of Hilbert-Schmidt oper-
ators. To this end, we suppose that X and Y are two separable Hilbert spaces with the
associated norms and inner products given by |·|X , |·|Y and 〈·, ·〉X , 〈·, ·〉Y , respectively.

We denote by L2(U, H) := {R ∈ L(U, H) :
∞∑

k=1
|Rek|2X < ∞} the collection of Hilbert-

Schmidt operators mapping from U into X. This space L2(U, H) is a Hilbert space
equipped with the following inner product and norm

〈R, S〉L2(U,H) =
∞∑

k=1
〈Rek, Sek〉H and ‖R‖2

L2(U,H) =
∞∑

k=1
|Rek|2H .

We also define another auxiliary space U0 ⊃ U as
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U0 :=
{

u =
∞∑

k=1
akek :

∞∑
k=1

a2
k

k2 < ∞
}

,

endowed with the norm

|v|2U0
:=

∞∑
k=1

a2
k

k2 , for v =
∞∑

k=1
akek.

Note that the embedding of U ⊂ U0 is Hilbert-Schmidt.
Next, given an X−valued predictable process G ∈ L2(Ω; L2

loc([0, ∞); L2(U, X))) one may
define the (Itô) stochastic integral

Mt :=
∫ t

0
GdW, (2.6)

which belongs to M2
X , the space of all X−valued square integrable martingales (see

e.g.[28]).
For a.e. t and a.s., G ∈ L2(U, H) so that Gk = G · ek ∈ H, where {ek} is the basis of U.
Then (2.6) can be represented as

Mt =
∑

k

∫ t

0
GkdW k.

The martingale {Mt}t≥0 has many desirable properties. Most notably for the analysis
here, the Burkholder-Davis-Gundy inequality holds which in the present context takes
the form,

E

(
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
GdW

∣∣∣∣
r

X

)
≤ C1E

(∫ T

0
‖G‖2

L2(U0,X)dt

) r
2

, (2.7)

valid for r ≥ 1. With Gk = G · ek, (2.7) can be rewritten as

E

⎛
⎝ sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0

∞∑
k=1

G · ekdW k

∣∣∣∣∣
r

X

⎞
⎠ ≤ C1E

(∫ T

0

∞∑
k=1

‖G · ek‖2
Xdt

) r
2

. (2.8)

Here C1 is an absolute constant depending on r. We shall also make use of a variation of
inequality (2.7), which applies to fractional derivatives of Mt. For p ≥ 2 and α ∈ [0, 1/2)
we have

E

(
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
GdW

∣∣∣∣
p

W α,p([0,T ];X)

)
≤ C E

(∫ T

0
‖G‖p

L2(U0,X)dt

)
, (2.9)

which holds for all X−valued predictable G ∈ L2(Ω; Lp
loc([0, ∞); L2(U0, X))).

For the convenience of the reader, we shall recall the definition of the spaces W α,p([0, T ]; X)
in Section 7 below.
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We can express (2.9) in a similar form as in (2.8) as

E

⎛
⎝ sup

t∈[0,T ]

∣∣∣∣∣
∑

k

∫ t

0
GekdW k

∣∣∣∣∣
p

W α,p([0,T ];X)

⎞
⎠ ≤ C E

(∫ T

0

∑
k

|Gek|pX dt

)
. (2.10)

We will also make use of the decomposition u =
∞∑

j=1
ξjφj where ξj = ξj(t, ω) and the φj

are the eigenfunctions of A = −Δ in D(A) ⊂ H so that Au becomes
∞∑

j=1
ξjλjφj; and if

b ∈ H, b =
∞∑

j=1
bjφj with bj = (b, φj).

In what follows, in our estimates made henceforth C is a generic constant that can
change in its value from line to line, and sometimes within same line, if so required. We
will frequently use the notation � to mean multiplicative up to a constant.

Next, our standing assumptions on the external forcing and the noise are that F, G ∈
L∞(Ω × [0, T ]; H1) and L∞(Ω × [0, T ]; H2) respectively.1

σi : Vi × [0, T ] × Ω → L2(U0, Vi)

are measurable, essentially bounded in time and L2 in Ω, adapted to {Ft}t≥0, and
satisfies

‖σi(v1, v2, h1, h2, t, ω)‖2
L2(U0,Vi) ≤ KV (1 + ‖v1‖2 + ‖v2‖2 + ‖h1‖2 + ‖h2‖2) (2.11)

sup
t∈[0,T ]

‖σi(v1, v2, h1, h2, t, ω)−σi(v̄1, v̄2, h̄1, h̄2, t, ω)‖2
L2(U0,V ) (2.12)

≤ KV

(
‖v1 − v̄1‖2 + ‖v2 − v̄2‖2 + ‖h1 − h̄1‖2 + ‖h2 − h̄2‖2

)

∀v1, v2, v̄1, v̄2, h1, h2, h̄1, h̄2 ∈ V, P- a.s.

We will also need regularity of σi in D(−Δ), in the sense that
σi : D(−Δ) × [0, T ] × Ω → L2(U0, D(−Δ))

is measurable, adapted to {Ft}t≥0, and satisfies

‖σi(v1, v2, h1, h2, t, ω)‖2
L2(U0,D(−Δ)) ≤ K1

(
|Δv1|2 + |Δv2|2 + |Δh1|2 + |Δh2|2

)
(2.13)

1One can also assume F and G to be random,but we choose F and G to be deterministic here, or
else it will be unnecessarily tricky for the proof of the existence of the martingale solutions later on.
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Remark 2.1 (Notation). For i = 1, 2, 3, 4, for the sake of simplicity, we set σi(U) =
σi(v1, v2, h1, h2, t, ω), Wi = ∑∞

k=1 ekW k
i , and we then have:

σi(U)dWi =
∞∑

k=1
σk

i (U) · ekdW k
i =

∞∑
k,�=1

〈σi(U)ek, φ�〉φ�dW k
i

=
∞∑

k,�=1
σk�

i φ�dW k
i , (2.14)

where
σi(U) · ek =

∑
�

σk�
i φ�, σk�

i = 〈σi(U) · ek, φ�〉,

which makes sense since σi(U) · ek ∈ H and {φ�} is a Hilbert basis of H.

We shall assume furthermore that if ṽ : [0, T ] × Ω → H1 is predictable, then so is σi(U).
Given a H1−valued predictable process ṽ ∈ L2(Ω; L2(0, T ; H1)), the series expansions
(2.14) can be shown to be well defined as stochastic integrals, e.g., for i = 1, 2, 3, 4

〈∫ τ

0
σi(U)dW1, ṽ

〉
=
〈∑

k

∫ τ

0
σk

i (U)dW k
i , ṽ

〉
=
∑

k

∫ τ

0
〈σk

i (U), ṽ〉dW k
i , (2.15)

for all ṽ ∈ H1, and stopping time τ . In this context, the four equations from (1.1a)
to (1.1d) fully make sense as Itô integrals with values in the spaces V ′

1 , V ′
2 after (Itô)

integration from 0 to t, for a.e. t ∈ [0, T ].

2.3 Definitions of solutions

Here we define the notion of strong and weak solutions to problem (1.1) from the prob-
abilistic view. First, we recall what it means for a stochastic process to be predictable:
Definition 2.1. For a given stochastic basis S, let Φ = Ω × [0, ∞) and take G to be the
σ-algebra generated by sets of the form

(s, t] × F, 0 ≤ s < t < ∞, F ∈ Fs; {0} × F, F ∈ F0. (2.16)

An X-valued process U is called predictable w.r.t. S if it is measurable from (Φ, G) into
(X, B(X)) where B(X) is the family of Borel sets of X.

We next give the definitions of local and global solutions of (1.1) for both martingale
and pathwise solutions. Before that, we make some assumptions for the initial con-
dition (v1(0), v2(0), h1(0), h2(0)), which may be random in general. For the case of
martingale solutions, since the stochastic basis is unknown, we are only able to specify
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(v1(0), v2(0), h1(0), h2(0)) as an initial probability measure μ0 on V1 × V1 × V2 × V2. For
the case of pathwise solutions where the stochastic basis S is fixed in advance, we assume
that relative to this basis (v0, h0) is a V1 × V1 × V2 × V2 valued random variable such
that (v1(0), v2(0), h1(0), h2(0)) ∈ L2(Ω, V1 × V1 × V2 × V2) and is F0-measurable and in
addition we assume that

vi(0) ∈ Lp(Ω, F0, V1), hi(0) ∈ Lp(Ω, F0, V2) for i = 1, 2. (2.17)

Definition 2.2 (Local and global martingale solutions). Suppose that μ0 is a probability
measure on V1 ×V2 and for i = 1, 2, 3, 4, σi(U) satisfies the Lipschitz conditions in (2.11)
and (2.12), is predictable, and Ft-adapted. Then we say that

(
S̃, ṽ1, ṽ2, h̃1, h̃2, τ̃

)
is a

local Martingale solution of problem (1.1) if
S̃ :=

(
Ω̃, F̃ ,

{
F̃t

}
t≥0

, P̃, W̃1, W̃2, W̃3, W̃4

)
is a stochastic basis, τ̃ is a strictly positive

stopping time (i.e. τ̃ > 0 almost surely) relative to F̃t, and for i = 1, 2 ṽi(· ∧ τ̃), h̃i(· ∧ τ̃)
are F̃t-adapted processes in V1, V2, respectively, so that

ṽi(· ∧ τ̃) ∈ L2(Ω̃; L∞([0, T ]; V1)), (2.18a)
h̃i(· ∧ τ̃) ∈ L2(Ω̃; L∞([0, T ]; V2)), (2.18b)
ṽi(t)�t≤τ̃ ∈ L2(Ω̃; L2(0, T ; D(−Δ)), (2.18c)
h̃i(t)�t≤τ̃ ∈ L2(Ω̃; L2(0, T ; D(−Δ)). (2.18d)

Furthermore, the law of
(
ṽ1(0), ṽ2(0), h̃1(0), h̃2(0)

)
is μ0, i.e.

μ0(E) = P̃

((
ṽ1(0), ṽ2(0), h̃1(0), h̃2(0)

)
∈ E

)
for all Borel subsets E ⊂ V1 ×V1 ×V2 ×V2,

and
(
ṽ, h̃

)
must satisfy almost surely for every t ≥ 0, every v ∈ V1, every η ∈ V2 and

for i = 1, 2

(ṽ1(t ∧ τ̃), v) +
∫ t∧τ̃

0

(
−ν1Δṽ1 + (ṽ1 · ∇)ṽ1 + g∇h̃1 + g

ρ2

ρ1
∇h̃2 + fk × ṽ1 − F, v

)
ds

= (ṽ1(0), v) +
∫ t∧τ̃

0

∞∑
k=1

(σ1(U)ek, v)dW̃ k
1 ,

(2.19)
(ṽ2(t ∧ τ̃), v) +

∫ t∧τ̃

0

(
−ν2Δṽ2 + (ṽ2 · ∇)ṽ2 + g∇h̃1 + g∇h̃2 + fk × ṽ2 − G, v

)
ds

= (ṽ2(0), v) +
∫ t∧τ̃

0

∞∑
k=1

(σ2(U)ek, v)dW̃ k
2 ,

(2.20)(
h̃1(t ∧ τ̃), η

)
+
∫ t∧τ̃

0

(
∇ ·

(
h̃1ṽ1

)
− δΔh̃1, η

)
ds =

(
h̃1(0), η

)
+
∫ t∧τ̃

0

∞∑
k=1

(σ3(U)ek, η)dW̃ k
3 ,

(2.21)
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(
h̃2(t ∧ τ̃), η

)
+
∫ t∧τ̃

0

(
∇ ·

(
h̃2ṽ2

)
− δΔh̃2, η

)
ds =

(
h̃2(0), η

)
+
∫ t∧τ̃

0

∞∑
k=1

(σ4(U)ek, η)dW̃ k
4 .

(2.22)
We say that the martingale solution

(
S̃, ṽ, h̃, τ̃

)
is global if τ̃ = ∞ a.s.

Definition 2.3 (Local, maximal and global pathwise solutions). Suppose that
S = (Ω, F , (Ft)t≥0,P, W1, W2) is a fixed stochastic basis and that (v1(0),v2(0), h1(0), h2(0))
is a (V1)2 × (V2)2 valued random variable (relative to S) satisfying (2.18) and the same
conditions hold for F, G and σi, i = 1, 2.

(i) A quintuplets (v1, v2, h1, h2, τ) is a local pathwise solution to (1.1) if τ is a strictly
positive stopping time, v1(· ∧ τ) ,v2(· ∧ τ) Ft-adapted processes in V1, and h1(· ∧
τ),h2(· ∧ τ) Ft-adapted processes in V2 (relative to the fixed basis S) such that
(2.18)–(2.20) hold.

(ii) Pathwise solutions of (1.1) are said to be unique up to a stopping time τ > 0 if
given any pair of pathwise solutions (v1, v2, h1, h2, τ) and (ṽ1, ṽ2, h̃1, h̃2, τ) which
coincide at t = 0 on a subset Ω0 of Ω:

Ω0 :=
{
v1(0) = ṽ1(0), v1(0) = ṽ1(0), h1(0) = h̃1(0), h2(0) = h̃2(0)

}
⊂ Ω, (2.23)

then
P (�Ω0(v1(t ∧ τ) − ṽ1(t ∧ τ)) = 0, ∀t ≥ 0) = 1, (2.24)
P (�Ω0(v2(t ∧ τ) − ṽ2(t ∧ τ)) = 0, ∀t ≥ 0) = 1, (2.25)
P

(
�Ω0

(
h1(t ∧ τ) − h̃1(t ∧ τ)

)
= 0, ∀t ≥ 0

)
= 1, (2.26)

P

(
�Ω0

(
h2(t ∧ τ) − h̃2(t ∧ τ)

)
= 0, ∀t ≥ 0

)
= 1. (2.27)

(iii) Suppose we have {τn}n≥1, a strictly increasing sequence of stopping times that
converge to a stopping time ξ, and assume that v1,v2, h1 and h2 are predictable
continuous Ft-adapted processes in H1 and H2, respectively. We say that
(v1, v2, h1, h2, ξ) := (v1, v2, h1, h2, ξ, {τn}n≥1) is a maximal pathwise solution if
(v, v2, h1, h2, τn) is a local pathwise solution for each n and

sup
t∈[0,ξ]

||v1||2 + sup
t∈[0,ξ]

||v2||2 +
∫ ξ

0
|Δv1|2ds +

∫ ξ

0
|Δv2|2ds+

sup
t∈[0,ξ]

||h1||2 + sup
t∈[0,ξ]

||h2||2 +
∫ ξ

0
|Δh|2ds +

∫ ξ

0
|Δh2|2ds = ∞,

(2.28)

a.s. on the set {ξ < ∞}. If we have

sup
t∈[0,ξ]

||v1||2 + sup
t∈[0,ξ]

||v2||2 +
∫ ξ

0
|Δv1|2ds +

∫ ξ

0
|Δv2|2ds+

sup
t∈[0,ξ]

||h1||2 + sup
t∈[0,ξ]

||h2||2 +
∫ ξ

0
|Δh|2ds +

∫ ξ

0
|Δh2|2ds = n,

(2.29)
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for almost every ω ∈ {ξ < ∞}, then the sequence τn announces a finite blow-up
time.

(iv) If (v1, v2, h1, h2, ξ) is a maximal pathwise solution and ξ = ∞ almost surely, then
we say that the solution is global.

We now state the main results in this work:
Theorem 2.1. We are given μ0 as a probability measure on V , F, G ∈ L∞(0, T ; H1) and
σi(U), i = 1, 2, 3, 4 satisfying the Lipschitz conditions (2.11) and (2.12), predictable, and
Ft-adapted. Then there exists a local martingale solution (S̃, ṽ1, ṽ2, h̃1, h̃2, τ) to (1.1).
Theorem 2.2. Assume we are working relative to a given fixed stochastic basis and let
F ∈ L∞(0, T ; H1), G ∈ L∞(0, T ; H2) and σi(U), i = 1, 2, 3, 4 satisfying the Lipschitz
conditions (2.11) and (2.12), predictable, and Ft-adapted. Suppose furthermore that
(2.17) also holds. Then there exists a unique, maximal pathwise solution
(v1, v2, h1, h2, ξ, (τn)n≥1) to (1.1).

We begin by establishing a priori estimates on the moments of solutions of (1.1). Below
we show how regular such a solution must be depending on the space from where the
initial data is taken.

3 Formal a priori estimates

We now state a lemma that enables us to derive a Lp− norm on ∇U for all p ≥ 2 and
L2-norm on ΔU .
Lemma 3.1. (Local a priori estimates)

We fix a stochastic basis S := (Ω, F , {Ft}t≥0,P, W1, W2) and let U = (v1, v2, h1, h2) is a
pathwise solution of (1.1) and let F, G ∈ Lp(0, T, H) for some p ≥ 2. Then

1) For U0 ∈ Lp(0, T, F0, V )

E

(
sup

0≤t≤t∗<T
(‖v1‖p + ‖v2‖p + ‖h1‖p + ‖h2‖p) + 2ν1

∫ t∗

0
|Δv1|2 ‖v1‖p−2dt+

2ν2

∫ t∗

0
|Δv2|2 ‖v2‖p−2dt + 2δ1

∫ t∗

0
|Δh1|2 ‖h1‖p−2dt + 2δ2

∫ t∗

0
|Δh2|2 ‖h2‖p−2dt

)

� E(‖v1(0)‖p + ‖v1(0)‖p + ‖v1(0)‖p + ‖v1(0)‖p) +
∫ T

0
|F |p dt + |G|p dt. (3.1)
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2) For U0 ∈ L2(0, T, F0, D(−Δ)) and we further assume that F, G ∈ L2(0, T, H1
0 (M2))

E

(
sup

0≤t≤t̂<T

(|Δv1|2 + |Δv2|2 + |Δh1|2 + |Δh2|2) + 2ν1

∫ t̂

0
‖Δv1‖2dt

+ 2ν2

∫ t̂

0
‖Δv2‖2dt + 2δ1

∫ t̂

0
‖Δh1‖2dt + 2δ2

∫ t̂

0
‖Δh2‖2dt

)

� E(|Δv1(0)|2 + |Δv2(0)|2 + |Δh1(0)|2 + |Δh2(0)|2) +
∫ T

0
|ΔF |2 dt + |ΔG|2 dt.

(3.2)

In all cases, the implicit constants depend only on the initial datum and both t∗ and t̂
will be specified later.

Proof. 1. We apply the Itô lemma to the map U �→ |∇U |p in (1.1) and this yields

d‖v1‖p+pν1|Δv1|2‖v1‖p−2dt+d‖v2‖p+pν2|Δv2|2‖v2‖p−2dt+d‖h1‖p+pδ1 |Δh1|2 ‖h1‖p−2dt+
d‖h2‖p + pδ2 |Δh2|2 ‖h2‖p−2dt = p〈F, Δv1〉‖v1‖p−2dt + p〈G, Δv2〉‖v2‖p−2dt

− pg〈∇h1, Δv1〉‖v1‖p−2dt − pg〈∇h2, Δv2〉‖v2‖p−2dt − pg〈∇h1, Δv2〉‖v2‖p−2dt

− pg
ρ1

ρ2
〈∇h2, Δv1〉‖v1‖p−2dt − p〈fk × v1, Δv1〉‖v1‖p−2dt − p〈fk × v2, Δv2〉‖v2‖p−2dt

− p〈(v1 · ∇)v1, Δv1〉‖v1‖p−2dt − 〈(v2 · ∇)v2, Δv2〉‖v2‖p−2dt

− p〈∇ · (h1v1), Δh1〉‖h1‖p−2dt − p〈∇ · (h2v2), Δh2〉‖h2‖p−2dt

+ p

2

∞∑
k=1

||σ1(U)ek||2‖v1‖p−2dt + p

2

∞∑
k=1

||σ2(U)ek||2‖v2‖p−2dt

+ p

2

∞∑
k=1

||σ3(U)ek||2‖h1‖p−2dt + p

2

∞∑
k=1

||σ4(U)ek||2‖h2‖p−2dt

+ p(p − 2)
2

∞∑
k=1

〈σ1(U)ek, Δv1〉2||v1||p−4dt + p(p − 2)
2

∞∑
k=1

〈σ2(U)ek, Δv2〉2||v2||p−4dt

+ p(p − 2)
2

∞∑
k=1

〈σ3(U)ek, Δh1〉2||h1||p−4dt + p(p − 2)
2

∞∑
k=1

〈σ4(U)ek, Δh2〉2||h2||p−4dt

+ p
∞∑

k=1
〈σ1(U)ek, Δv1〉‖v1‖p−2dW k

1 + p
∞∑

k=1
〈σ2(U)ek, Δv2〉‖v2‖p−2dW k

2

+ p
∞∑

k=1
〈σ3(U)ek, Δh1〉‖h1‖p−2dW k

3 + p
∞∑

k=1
〈σ4(U)ek, Δh2〉‖h2‖p−2dW k

4 . (3.3)

We integrate (3.28) in time over [0, r] for 0 ≤ r ≤ s ≤ T , take the supremum in r over
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[0, s]; we deduce that:

sup
0≤t≤s

[
‖v1‖p+‖v2‖p+‖h1‖p+‖h2‖p

]
+pν1

∫ s

0
|Δv1|2‖v1‖p−2dt+pν2

∫ s

0
|Δv2|2‖v2‖p−2dt

≤ 8(‖v1(0)‖p + ‖v2(0)‖p + ‖h1(0)‖p + ‖h2(0)‖p) +
20∑

i=1
Mi+

+8p sup
0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ1(U)ek, Δv1〉‖v1‖p−2dW k
1

∣∣∣∣∣+8p sup
0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ2(U)ek, Δv2〉‖v2‖p−2dW k
2

∣∣∣∣∣
+8p sup

0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ3(U)ek, Δh1〉‖h1‖p−2dW k
3

∣∣∣∣∣+8p sup
0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ4(U)ek, Δh2〉‖h2‖p−2dW k
4

∣∣∣∣∣
We will now estimate each of the quantities on the right hand side of the above inequality.
We proceed with the terms M1 through M6. By using the Cauchy Schwarz inequality,
the Young inequality and the Poincaré inequality, we obtain:

M1 :=8p
∫ s

0
|〈F, Δv1〉| ‖v1‖p−2dt ≤ C

∫ s

0
(|F |pdt + ‖v1‖p)dt + pν1

10

∫ s

0
|Δv1|2 ‖v1‖p−2dt.

(3.4)
In the same manner, we obtain the following bounds:

M2 :=8p
∫ s

0
|〈G, Δv2〉| ‖v2‖p−2dt ≤ C(

∫ s

0
|G|pdt + ‖v2‖p)dt + pν2

10

∫ s

0
|Δv2|2 ‖v2‖p−2dt.

(3.5)
For α = 3, 4, 5, 6, i = 1, 2, j = 1, 2, we find:

Mα :=�
∫ s

0
|〈∇hi, Δvj〉| ‖vj‖p−2dt ≤ C(

∫ s

0
‖hi‖p + ‖vj‖p)dt + pνj

10

∫ s

0
|Δvj|2 ‖vj‖p−2dt.

(3.6)
where � either equals 8pg or 8pg ρ2

ρ1
. For β = 7, 8, i = 1, 2, we obtain:

Mβ := 8p
∫ s

0
|〈fk × vi, Δvi〉| ‖vi‖p−2dt ≤ C

∫ s

0
‖v1‖pdt + pν1

10

∫ s

0
|Δvi|2 ‖vi‖p−2dt.

(3.7)
The nonlinear terms are bounded by utilizing Hölder’s, Agmon’s, the Young and the

Poincaré inequalities

M9 := 8p
∫ s

0
|〈(v1 · ∇)v1, Δv1〉| ‖v1‖p−2dt ≤ C

∫ s

0
|v1|L∞ |∇v1| |Δv1| ‖v1‖p−2dt

≤ C
∫ s

0
|v1|

1
2 |Δv1|

1
2 |∇v1| |Δv1| ‖v1‖p−2dt ≤ C

∫ s

0
|∇v1|

3
2 |Δv1|

3
2 ‖v1‖p−2dt

≤ C
∫ s

0
|∇v1|6 ‖v1‖p−2dt + pν1

10

∫ s

0
|Δv1|2 ‖v1‖p−2dt

≤ C
∫ s

0
‖v1‖p+4dt + pν1

10

∫ s

0
|Δv1|2 ‖v1‖p−2dt. (3.8)
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Similarly,

M10 := 8p
∫ s

0
|〈(v2 · ∇)v2, Δv2〉| ‖v2‖p−2dt ≤ C

∫ s

0
‖v2‖p+4dt+pν2

10

∫ s

0
|Δv2|2 ‖v2‖p−2dt.

(3.9)

We estimate the term M11 by first splitting it as follows:

M11 := 8p
∫ s

0
|〈∇ · (h1v1), Δh1〉| ‖h1‖p−2dt (3.10)

≤ 8p
∫ s

0
|〈∇ · v1h1, Δh1〉|‖h1‖p−2dt + 8p

∫ s

0
|〈∇h1v1, Δh1〉|‖h1‖p−2dt

:= M1
11 + M2

11.

M1
11 is treated by first using Hölder’s inequality:

M1
11 :=

∫ s

0
|〈∇ · v1h1, Δh1〉|‖h1‖p−2dt ≤ C

∫ s

0
|∇v1| |h1|L∞ |Δh1| ‖h1‖p−2dt.

By utilizing Agmon’s inequality in space dimension two for the second term, we obtain:

M1
11 ≤ C

∫ s

0
‖v1‖ |h1|

1
2 |Δh1|

3
2 ‖h1‖p−2dt.

By applying the Poincaré inequality and the Young inequality to the first three terms,

with p = 6, q = 12, r = 4
3, we obtain:

M1
11 ≤

∫ s

0
(C‖v1‖6 + C‖h1‖6 + pδ1

4 |Δh1|2)‖h1‖p−2dt

= pδ1

4

∫ s

0
|Δh1|2 ‖h1‖p−2dt + C

∫ s

0
(‖h1‖p+4 + ‖v1‖6‖h1‖p−2)dt. (3.11)

We derive the estimate for M2
11 as follows:

M2
11 :=

∫ s

0
|〈∇h1v1, Δh1〉|‖h1‖p−2dt ≤ C

∫ s

0
|∇h1|L4 |v1|L4 |Δh1| ‖h1‖p−2dt.

By using Ladyzhenskya’s inequality which is |u|L4 ≤ C |u| 1
2 |∇u| 1

2 in space dimension two
for the first term and the embedding H1

0 ↪→ L4 in space dimension two for the second term,
the next line follows

M2
11 ≤ C

∫ s

0
|∇h1|

1
2 |Δh1|

3
2 |∇v1| ‖h1‖p−2dt.

By utilizing the Young inequality for the first three terms of the RHS, we obtain:

M2
11 ≤ C

∫ s

0
‖h1‖p+4 + pδ1

4

∫ s

0
|Δh1|2 ‖h1‖p−2dt + C

∫ s

0
‖v1‖6‖h1‖p−2)dt. (3.12)

By combining (3.11) and (3.12), the bound for M11 results as follows

M11 ≤ C
∫ s

0
‖h1‖p+4 + pδ1

2

∫ s

0
|Δh1|2 ‖h1‖p−2dt + C

∫ s

0
‖v1‖6‖h1‖p−2)dt. (3.13)
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Analogously, we obtain:

M12 : =
∫ s

0
|〈∇ · (h2v2), Δh2〉| dt (3.14)

≤C
∫ s

0

(
‖v2‖6‖h2‖p−2dt + ‖h2‖p+4dt

)
+ pδ2

2

∫ s

0
|Δh2|2 ‖h2‖p−2dt.

Again, by simply using the Lipschitz assumptions (2.11) and the Young inequality, we
obtain:

M13+M14+M15+M16 := 8p

[ ∫ s

0

∞∑
k=1

‖σ1(U)ek‖2‖v1‖p−2dt+
∫ s

0

∞∑
k=1

‖σ2(U)ek‖2‖v2‖p−2dt

+
∫ s

0

∞∑
k=1

‖σ3(U)ek‖2‖h1‖p−2dt +
∫ s

0

∞∑
k=1

‖σ4(U)ek‖2‖h2‖p−2dt

]

≤ 8KV p
∫ s

0
(1+‖v1‖2+‖v2‖2+‖h1‖2+‖h2‖2)(‖v1‖p−2+‖v1‖p−2+‖v2‖p−2+‖h1‖p−2+‖h2‖p−2)

≤ C
∫ s

0
(‖v1‖p + ‖v2‖p + ‖h1‖p + ‖h2‖p)dt + CT. (3.15)

We observe that since V = H1
0 (M)6, we have for σi(v, h)ek ∈ H, i = 1, 2, Δu ∈ H,

〈σi(v, h)ek, Δu〉 =
∫

M
σi(v, h)ek · ΔudM.

By integrating by parts, this is equal to

−
∫

M
∇σi(U)ek · ∇udM +

∫
∂M

σi(U)ek(∇u · n)dS = −
∫

M
∇σi(U)ek · ∇udM. (3.16)

The next estimate is obtained via Lipschitz assumptions (2.11) along with the above
expression,

M17 + M18 + M19 + M20 :=

4p(p − 2)
[ ∫ s

0

∞∑
k=1

〈σ1(U)ek, Δv1〉2||v1||p−4dt +
∫ s

0

∞∑
k=1

〈σ2(U)ek, Δv2〉2||v2||p−4dt

+
∫ s

0

∞∑
k=1

〈σ3(U)ek, Δh1〉2||h1||p−4dt +
∫ s

0

∞∑
k=1

〈σ4(U)ek, Δh2〉2||h2||p−4dt

]

= 4p(p − 2)
[ ∫ s

0

∞∑
k=1

〈∇σ1(U)ek, ∇v1〉2||v1||p−4dt +
∫ s

0

∞∑
k=1

〈∇σ2(U)ek, ∇v2〉2||v2||p−4dt

+
∫ s

0

∞∑
k=1

〈∇σ3(U)ek, ∇h1〉2||h1||p−4dt +
∫ s

0

∞∑
k=1

〈∇σ4(U)ek, ∇h2〉2||h2||p−4dt

]

≤ C
∫ s

0
(1 + ‖v1‖2 + ‖v2‖2 + ‖h1‖2 + ‖h1‖2)(‖v1‖p−2 + ‖v2‖p−2 + ‖h1‖p−2 + ‖h2‖p−2)dt

≤ C
∫ s

0
(‖v1‖p + ‖v2‖p + ‖h1‖p + ‖h2‖p) + CT. (3.17)

The last line follows thanks to the Young inequality.
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Combining (3.4)–(3.17), multiplying by 2, and finally taking the mathematical expecta-
tion on both sides and this yields:

E

⎛
⎝ sup

0≤r≤s
(‖v1(r)‖p + ‖v2(r)‖p + ‖h1(s)‖p + ‖h2(s)‖p) + pν1

∫ s

0
|Δv1(t)|2 ‖v1(t)‖p−2dt

+ pν2

∫ s

0
|Δv2(t)|2 ‖v2‖p−2dt + pδ1

∫ s

0
|Δh1(t)|2 ‖h1‖p−2dt + pδ2

∫ s

0
|Δh2(t)|2 ‖h2‖p−2dt

⎞
⎠

≤ 8E (‖v1(0)‖p + ‖v2(0)‖p + ‖h1(0)‖p + ‖h2(0)‖p) + C

(∫ s

0
|F |p + |G|p dt

)
+ CT

+ E

(∫ s

0
(‖v1‖p + ‖v2‖p + ‖h1‖p + ‖h2‖p)(‖v1‖2 + ‖v2‖2 + ‖h1‖2 + ‖h2‖2)2

)
+

E

(
sup

r∈[0,s]

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ1(U)ek, Δv1〉‖v1‖p−2dW k
1

∣∣∣∣∣
)

+ E

(
sup

r∈[0,s]

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ2(U)ek, Δv2〉‖v2‖p−2dW k
2

∣∣∣∣∣
)

+ E

(
sup

r∈[0,s]

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ3(U)ek, Δh1〉‖h1‖p−2dW k
3

∣∣∣∣∣
)

+ E

(
sup

r∈[0,s]

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ4(U)ek, Δh2〉‖h2‖p−2dW k
4

∣∣∣∣∣
)

.

(3.18)

For i = 1, 2, by making use of (3.16), the BDG inequality, and the Young inequality, the
two stochastically forced terms are addressed as follows:

E

(
sup

r∈[0,s]

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σi(U)ek, Δvi〉‖vi‖p−2dW k
i

∣∣∣∣∣
)

≤ (with Gek = Gk = 〈σi(U)ek, Δvi〉‖vi‖p−2)

≤ C1E

(∫ s

0

∞∑
k=1

〈σi(U)ek, Δvi〉2‖vi‖2(p−2)dt

) 1
2

= C1E

(∫ s

0

∞∑
k=1

〈∇σi(U)ek, ∇vi〉2‖vi‖2(p−2)dt

) 1
2

≤ C1E

(∫ s

0

∞∑
k=1

|∇σi(U)ek|2 |∇vi|2 ‖vi‖2(p−2)dt

) 1
2

≤ C1E

(∫ s

0

∞∑
k=1

|∇σi(U)ek|2 ‖vi‖2(p−1)dt

) 1
2

≤ CE

⎡
⎣( sup

r∈[0,s]
‖vi‖p−1

)(∫ s

0

∞∑
k=1

|∇σi(U)ek|2 dt

) 1
2
⎤
⎦

≤ 1
2E
(

sup
r∈[0,s]

‖vi‖p

)
+ CE

(∫ s

0

∞∑
k=1

|∇σi(U)ek|2 dt

) p
2

≤ 1
2E
(

sup
r∈[0,s]

‖vi(r)‖p

)
+ CE

(∫ s

0
(1 + ‖v1‖p + ‖v2‖p + ‖h1‖p + ‖h2‖p)dt

)
, (3.19)

The last line holds true due to the Lipschitz assumptions (2.11) and Hölder’s inequality.
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Analogously, for i = 3, 4, j = 1, 2 the following estimates hold

E

(
sup

r∈[0,s]

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σi(U)ek, Δhj〉‖hj‖p−2dW k
i

∣∣∣∣∣
)

≤ 1
2E
(

sup
r∈[0,s]

‖hj(r)‖p

)
+ CE

(∫ s

0
(1 + ‖v1‖p + ‖v2‖p + ‖h1‖p + ‖h2‖p)dt

)
. (3.20)

Collecting all the estimates in (3.18)–(3.20) and multiplying by 2, we obtain:

E

⎛
⎝ sup

0≤r≤s
(

2∑
i=1

‖vi(r)‖p +
2∑

i=1
‖hi(s)‖p) + pν1

∫ s

0
|Δv1(t)|2 ‖v1(t)‖p−2dt

+ pν2

∫ s

0
|Δv2(t)|2 ‖v2(t)‖p−2dt + pδ1

∫ s

0
|Δh1(t)|2 ‖h1‖p−2dt + pδ2

∫ s

0
|Δh2(t)|2 ‖h2(t)‖p−2dt

⎞
⎠

≤ E (16‖v1(0)‖p + ‖v2(0)‖p + ‖h1(0)‖p + ‖h2(0)‖p) + CE

(∫ s

0
(|F |p + |G|p)dt

)
+ C

≤ E (16‖v1(0)‖p + ‖v2(0)‖p + ‖h1(0)‖p + ‖h2(0)‖p) + CE

(∫ s

0
(|F |p + |G|p)dt

)

+ E

(∫ s

0
(

2∑
i=1

‖vi‖p +
2∑

i=1
‖hi‖p)(‖v1‖2 + ‖v2‖2 + ‖h1‖2 + ‖h2‖2)2dt

)
. (3.21)

Now, we assume that M > 1 and define the stopping time

τ = τM := inf
r≥0

{(
‖v1(r)‖2 + ‖h2(r)‖2 + ‖v2(r))‖2 + ‖h2(r))‖2

)
> M

}
(3.22)

Replacing s by s ∧ τ in (3.21) yields

E

⎛
⎝ sup

r∈[0,s∧τ ]
(‖v1(r)‖p + ‖h1(r)‖p + ‖v2(r)‖p + ‖h2(r)‖p) + pν1

∫ s∧τ

0
|Δv1|2 ‖v1‖p−2dr+

+ pδ1

∫ s∧τ

0
|Δh1|2 ‖h1‖p−2dr + pν2

∫ s∧τ

0
|Δv2|2 ‖v2‖p−2dr + pδ2

∫ s∧τ

0
|Δh2|2 ‖h2‖p−2dr

⎞
⎠

≤ 16E
⎛
⎝(‖v1(0)‖p + ‖v2(0)‖p + ‖h1(0)‖p + ‖h2(0)‖p) +

∫ T

0
(|F |p + |G|p)dt + C

⎞
⎠

+ CM2
E

⎛
⎝∫ s∧τ

0
sup

0≤r≤t
(‖v1(r)‖p + ‖h1(r)‖p + ‖v2(r)‖p + ‖h2(r)‖p)dt

⎞
⎠+ C. (3.23)

Now, we define

Y(t) := E

⎛
⎝∫ t∧τ

0
sup

0≤r≤s
(‖v1(r)‖p + ‖h1(r)‖p + ‖v2(r)‖p + ‖h2(r)‖p)ds

⎞
⎠, (3.24)
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and

K0 := E

⎛
⎝16(‖v1(0)‖p+‖h1(0)‖p+‖v2(0)‖p+‖h2(0)‖p)

⎞
⎠+

∫ T

0
(|F |p+|G|p)dt+C. (3.25)

From (3.23) and (3.25), we obtain:

Y ′(s) ≤ K0 + CM2Y(s).

This gives
Y(s) ≤ K0

CM2

(
eCM2s − 1

)
. (3.26)

Along with (3.23) and (3.26), we deduce that

E

⎛
⎝ sup

r∈[0,s∧τ ]
(‖v1(r)‖p + ‖h1(r)‖p + ‖v2(r)‖p + ‖h2(r)‖p) + pν1

∫ s∧τ

0
|Δv1|2 ‖v1‖p−2dr+

pν2

∫ s∧τ

0
|Δv2|2 ‖v2‖p−2dr + pδ1

∫ s∧τ

0
|Δh1|2 ‖h1‖p−2dr + pδ2

∫ s∧τ

0
|Δh2|2 ‖h2‖p−2dr

⎞
⎠

≤ K0 + K0

CM2 eCM2sCM2 ≤ K0 + K0e
CM2s (3.27)

The right hand side of (3.27) is bounded by M if

s ≤ 1
CM2 log M − K0

K0
:= sM .

As long as M is large enough such that M − K0 > K0 or M > 2K0, the local existence
in time of solution is granted on [0, sM ∧ τM ].
In other words,

E

⎛
⎝ sup

r∈[0,s∧τ ]
‖v1(r)‖p + sup

r∈[0,s∧τ ]
‖v2(r)‖p + sup

r∈[0,s∧τ ]
‖h(r)‖p + sup

r∈[0,s∧τ ]
‖h(r)‖p

+ pν1

∫ s∧τ

0
|Δv1|2 ‖v1‖p−2dr + pν2

∫ s∧τ

0
|Δv2|2 ‖v2‖p−2dr + pδ1

∫ s∧τ

0
|Δh1|2 ‖h1‖p−2dr+

pδ2

∫ s∧τ

0
|Δh2|2 ‖h2‖p−2dt

⎞
⎠ ≤ M

for 0 < s <
1

CM2 log M − K0

K0
, with M > 2K0.

2. Applying the Itô lemma to the map U �→ |ΔU |2 in (1.1) and noting that due to the
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Poincaré inequality, both of norms |∇ · (∇2u)| and ‖Δu‖ are equivalent, we obtain
d |Δv1|2 +2ν1‖Δv1‖2dt+d |Δv2|2 +2ν2‖Δv2‖2dt+d |Δh1|2 +2δ1‖Δh1‖2dt+d |Δh2|2 +
2δ2‖Δh2‖2dt = 2〈F, Δ2v1〉dt + 2〈G, Δ2v2〉dt − 2g〈∇h1, Δ2v1〉dt − 2g〈∇h1, Δ2v2〉dt

− 2g〈∇h2, Δ2v2〉dt − 2g
ρ2

ρ1
〈∇h2, Δ2v1〉dt − 2〈fk × v1, Δ2v1〉dt − 2〈fk × v2, Δ2v2〉dt

−2〈(v1·∇)v1, Δ2v1〉dt−2〈(v2·∇)v2, Δ2v2〉dt−2〈∇·(h1v1), Δ2h1〉dt−2〈∇·(h2v2), Δ2h2〉dt

+
∞∑

k=1
|Δσ1(U)ek|2dt +

∞∑
k=1

|Δσ2(U)ek|2dt +
∞∑

k=1
|Δσ3(U)ek|2dt +

∞∑
k=1

|Δσ4(U)ek|2dt

2
∞∑

k=1
〈σ1(U)ek, Δ2v1〉dW k

1 + 2
∞∑

k=1
〈σ2(U)ek, Δ2v2〉dW k

2

+ 2
∞∑

k=1
〈σ3(U)ek, Δ2h1〉dW k

3 + 2
∞∑

k=1
〈σ4(U)ek, Δ2h2〉dW k

4 . (3.28)

Integrating (3.28) in time over [0, r] and taking the supremum over [0, s] for 0 ≤ r ≤
s ≤ T yield:

sup
0≤r≤s

|Δv1(r)|2 dr + sup
0≤r≤s

|Δv2(r)|2 + sup
0≤r≤s

|Δh1(r)|2 + sup
0≤r≤s

|Δh2(r)|2

+ 2ν1

∫ s

0
‖Δv1(r)‖2dr + 2ν2

∫ s

0
‖Δv2(t)‖2dt + 2δ1

∫ s

0
‖Δh1(t)‖2dt + 2δ2

∫ s

0
‖Δh2(t)‖2dt

≤ 8(|Δv1(0)|2 + |Δv2(0)|2 + |Δh1(0)|2 + |Δh2(0)|2) +
16∑

i=1
Ki

+ 16 sup
0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ1(U)ek, Δ2v1〉dW k
1

∣∣∣∣∣+ 16 sup
0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ2(U)ek, Δ2v2〉dW k
2

∣∣∣∣∣
+ 16 sup

0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ3(U)ek, Δ2h1〉dW k
3

∣∣∣∣∣+ 16 sup
0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ4(U)ek, Δ2h2〉dW k
4

∣∣∣∣∣ . (3.29)

By utilizing integration by parts, the Cauchy-Schwarz inequality and the Poincaré
inequality, the estimates for all linear terms follow

K1 := 16
∫ s

0

∣∣∣〈F, Δ2v1〉
∣∣∣ dt ≤ 24

ν1

∫ s

0
|∇F |2 dt + ν1

5

∫ s

0
‖Δv1‖2dt. (3.30)

K2 := 16
∫ s

0

∣∣∣〈G, Δ2v2〉
∣∣∣ dt ≤ 24

ν2

∫ s

0
|∇G|2 dt + ν2

5

∫ s

0
‖Δv2‖2dt. (3.31)

For α = 3, 4, 5, 6, i = 1, 2, j = 1, 2, the following estimates hold
Kα := η

∫ s

0

∣∣∣〈∇hi, Δ2vj〉
∣∣∣ dt ≤ 3η

νj

∫ s

0
|Δhi(t)|2 dt + νj

5

∫ s

0
‖Δvj‖2dt, (3.32)

where η either equals 16g or 16g ρ2
ρ1
.

For β = 7, 8, i = 1, 2, we have:

Kβ := 16
∫ s

0

∣∣∣〈fk × vi, Δ2vi〉
∣∣∣ dt ≤ 32λ1g

2

νi

∫ s

0
|Δvi(t)|2 dt + νj

5

∫ s

0
‖Δvj‖2dt. (3.33)
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By integration by parts and product rule, we split K9 as follows:
K9 := 16

∫ s

0

∣∣∣〈(v1 · ∇)v1, Δ2v1〉
∣∣∣ dt ≤ 16

∫ s

0

∣∣∣〈∇ · [(v1 · ∇)v1], ∇ · (∇2)v1〉
∣∣∣ dt (3.34)

≤ C
∫ s

0

∣∣∣〈∇ · v1 · ∇v1, ∇ · (∇2)v1〉
∣∣∣+ C

∫ s

0

∣∣∣〈v1Δv1, ∇ · (∇2v1)〉
∣∣∣ dt

:= K1
9 + K2

9 .

We evaluate K1
9 by first using Hölder’s inequality and the Poincaré inequality,

K1
9 :=

∫ s

0

∣∣∣〈∇ · v1 · ∇v1, ∇ · (∇2)v1〉
∣∣∣ ≤ C

∫ s

0
|∇v1|2L4 ‖Δv1‖dt

≤ C
∫ s

0
|v1| |Δv1| ‖Δv1‖dt ≤ C

∫ s

0
|∇v1| |∇v1|

1
2 ‖Δv1‖ 1

2 ‖Δv1‖dt

= C
∫ s

0
|∇v1|

3
2 ‖Δv1‖ 3

2 dt, (3.35)
where we have used Ladyzhenskya’s inequality to obtain the LHS and
interpolation inequality (Lemma 7.4) to achieve the RHS on the second line.
Finally, by applying the Young inequality with p = 4, q = 4

3 to the last relation,
we obtain:
K1

9 ≤ ν1

10

∫ s

0
‖Δv1‖2dt + C

∫ s

0
‖v1‖6dt. (3.36)

The term K2
9 is estimated as follows:

K2
9 :=

∫ s

0

∣∣∣〈v1Δv1, ∇ · (∇2v1)〉
∣∣∣ dt ≤ C

∫ s

0
|v1|L∞ |Δv1| ‖Δv1‖dt

≤ C
∫ s

0
|v1|

1
2 |Δv1|

3
2 ‖Δv1‖dt ≤ C

∫ s

0
|v1|

1
2 |∇v1|

3
4 ‖Δv1‖ 3

4 ‖Δv1‖dt = C
∫ s

0
|∇v1|

5
4 ‖Δv1‖ 7

4 dt,

where Agmon’s inequality is used to obtain the first relation and the interpolation inequality
(Lemma 7.4) is used to accomplish the second inequality. Then, in virtue of the Young
inequality with p = 8, q = 8

7 , we finally find:
K2

9 ≤ ν1

10

∫ s

0
‖Δv1‖2dt + C

∫ s

0
‖v1‖10dt. (3.37)

Hence, by (3.35) and (3.37),

K9 ≤ ν1

5

∫ s

0
‖Δv1‖2dt + C

∫ s

0
(‖v1‖6 + ‖v1‖10)dt. (3.38)

Similarly,

K10 := 16
∫ s

0
|〈(v2 · ∇)v2, Δv2〉| dt

≤ ν2

3

∫ s

0
‖Δv2‖2dt + C

(∫ s

0
‖v2‖6dt +

∫ s

0
‖v2‖10dt

)
. (3.39)
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We estimate K11 by first splitting the term as follows

K11 :=16
∫ s

0

∣∣∣〈∇ · (h1v1), Δ2v1〉
∣∣∣ dt = 16

∫ s

0

∣∣∣〈∇ · (∇ · (h1v1)), ∇ · ∇2h1〉
∣∣∣ dt (3.40)

≤ C
∫ s

0

∣∣∣〈Δh1v1 + Δv1h1 + 2∇ · v1∇h1, ∇ · (∇2h1〉
∣∣∣ := K1

11 + K2
11 + K3

11.

K1
11 is estimated by the Hölder’s, Agmon’s inequalities as follows:

K1
11 := C

∫ s

0

∣∣∣〈Δh1v1, ∇ · (∇2h1〉
∣∣∣ dt ≤ C

∫ s

0
|Δh1|L4 |v1|L4 ‖Δh1‖dt

By applying the interpolation inequality (Lemma 7.4) to the first term and the embedding
H1

0 ↪→ L4 in space dimension 2, we obtain:
K1

11 ≤ C
∫ s

0
|∇h1|

1
2 ‖Δh1‖ 1

2 ‖v1‖‖Δh1‖dt = C
∫ s

0
|∇h1|

1
2 ‖Δh1‖ 3

2 ‖v1‖dt

≤ C
∫ s

0
|∇h1|4 dt + C

∫ s

0
‖v1‖8dt + δ1

3

∫ s

0
‖Δh1‖2dt (3.41)

The last line holds due to the Young inequality with p = 8, q = 8, r = 4
3 .

K2
11 is evaluated by using Hölder’s inequality:

K2
11 :=

∫ s

0

∣∣∣〈Δv1h1, ∇ · (∇2h1〉
∣∣∣ ≤ C

∫ s

0
|Δv1| |h1|L∞ ‖Δh1‖dt.

By using Agmon’s inequality to control the second term of the RHS, we obtain:
K2

11 ≤ C
∫ s

0
|Δv1| |h1|

1
2 |Δh1|

1
2 ‖Δh1‖dt

By applying the interpolation inequality (Lemma 7.4) to the third term, along with
the Poincaré inequality to the second term of the RHS, we obtain:
K2

11 ≤ C
∫ s

0
|Δv1| ‖h1‖ 1

2 ‖h1‖ 1
4 ‖Δh1‖ 1

4 ‖Δh1‖dt = C
∫ s

0
|Δv1| ‖h1‖ 3

4 ‖Δh1‖ 5
4 dt

≤ C
∫ s

0
|Δv1|4 dt +

∫ s

0
‖h1‖6dt + δ1

3

∫ s

0
‖Δh1‖2dt,

The last line follows thanks to the Young inequality with p = 4, q = 8, r = 8
5 . (3.42)

In the same manner, the treatment for the term K3
11 is proceeded as follows:

K3
11 :=

∫ s

0

∣∣∣〈∇ · v1∇h1, ∇ · (∇2h1〉
∣∣∣ ≤ C

∫ s

0
|∇ · v1|L4 |∇h1|L4 ‖Δh1‖dt

≤ C
∫ s

0
|∇h1|

1
2 |Δh1|

1
2 |Δv1| ‖Δv1‖dt

≤ C
∫ s

0
‖h1‖ 1

2 ‖h1‖ 1
4 ‖Δh1‖ 1

4 |Δv1| ‖Δh1‖dt

where both Agmon’s inequality and the interpolation inequality (Lemma 7.4) are applied
to accomplish the second line. We then use the Young inequality with p = 8, q = 4, r = 8

5
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to derive:

K3
11 ≤ δ1

3

∫ s

0
‖Δh1‖2dt + C

∫ s

0
‖h1‖6dt + C

∫ s

0
|Δv1|4 dt. (3.43)

Gathering all the estimates (3.41), (3.42) and (3.43), we find

K11 := 16
∫ s

0

∣∣∣〈∇ · (v1h1), ∇ · (∇2h1〉
∣∣∣ (3.44)

≤ C

(∫ s

0
‖h1‖4 + ‖h1‖6 + ‖v1‖8 + |Δv1|4 dt

)
+ δ1

∫ s

0
‖Δh1‖2dt.

We obtain the similar bound for the term K12 as follows

K12 := 16
∫ s

0

∣∣∣〈∇ · (v2h2), ∇ · (∇2h2〉
∣∣∣ (3.45)

≤ C

(∫ s

0
‖h2‖4 + ‖h2‖6 + ‖v2‖8 + |Δv2|4 dt

)
+ δ2

∫ s

0
‖Δh2‖2dt.

By utilizing the Lipschitz assumptions (2.13), we find

K13 + K14 + K15 + K16 :=

32
∫ s

0

∞∑
k=1

⎛
⎝ |Δσ1(U)ek|2 + |Δσ2(U)ek|2 + |Δσ3(U)ek|2 + |Δσ4(U)ek|2 dt

⎞
⎠

≤ 32K1

∫ s

0
(1 + |Δv1|2 + |Δh1|2 + |Δv2|2 + |Δh2|2)dt. (3.46)

Accumulating all the estimates from (3.30) to (3.46) and taking the mathematical ex-
pectation on both sides yield

E

(
sup

0≤r≤s
(|Δv1|2 + |Δv2|2 + |Δh1|2 + |Δh2|2) + ν1

∫ s

0
‖Δv1(r)‖2dr + ν2

∫ s

0
‖Δv2(t)‖2dt

+ δ1

∫ s

0
‖Δh1(t)‖2dt + δ2

∫ s

0
‖Δh2(t)‖2dt

)
≤ 8E

(
|Δv1(0)|2 + |Δv2(0)|2 + |Δh1(0)|2 + |Δh2(0)|2

)

+ EK0

(
|∇F |2 + |∇G|2

)
+ 32TK1 + K1E

∫ s

0

(
|Δv1|2 + |Δv2|2 + |Δh1|2 + |Δh2|2

)
dt

+ C
∫ s

0
(‖v1‖8 + ‖v2‖8)dt + C

∫ s

0
(‖h1‖4 + ‖h2‖4 + ‖h1‖6 + ‖h2‖6 + |Δv1|4 + |Δv2|4)dt

+ E

⎛
⎝ sup

0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ1(U)ek, Δ2v1〉dW k
1

∣∣∣∣∣
⎞
⎠+ E

⎛
⎝ sup

0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ2(U)ek, Δ2v2〉dW k
2

∣∣∣∣∣
⎞
⎠

+ E

⎛
⎝ sup

0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ3(U)ek, Δ2h1〉dW k
3

∣∣∣∣∣
⎞
⎠+ E

⎛
⎝ sup

0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σ1(U)ek, Δ2h2〉dW k
4

∣∣∣∣∣
⎞
⎠,

(3.47)

24



where
K0 = max

(
32
ν1

,
32
ν2

)
, K1 = 32 max

(
g2

ν1
,
g2

ν2
,
ρ2

2g
2

ν1ρ1
,
g2λ1

ν1
,
g2λ1

ν1

)
. (3.48)

The stochastic terms are estimated by using integration by parts, the BDG inequality,
and the Lipschitz assumptions (2.12):

E

⎛
⎝ sup

0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σi(U)ek, Δ2vi〉dW k
i

∣∣∣∣∣
⎞
⎠ ≤ (with Gek = Gk = 〈σi(U)ek, Δvi〉, i = 1, 2)

≤ C1E

⎛
⎝∫ s

0

∞∑
k=1

〈∇σi(U)ek, ∇ · (∇)2vi〉2dt

⎞
⎠

1
2

≤ C1E

⎛
⎝∫ s

0

∞∑
k=1

〈Δσi(U)ek, (∇)2vi〉2dt

⎞
⎠

1
2

≤ C1E

⎛
⎝∫ s

0

∞∑
k=1

|Δσi(U)ek| |Δv1|2 dt

⎞
⎠

1
2

≤ C1E

⎛
⎝ sup

0≤r≤s
|Δvi(r)|2

∫ s

0

∞∑
k=1

|Δσi(U)ek|2 dt

⎞
⎠

1
2

≤ 1
2E
⎛
⎝ sup

0≤r≤s
|Δvi(r)|2

⎞
⎠+ C2

1
2 E

⎛
⎝∫ s

0

∞∑
k=1

|Δσi(U)ek|2 dt

⎞
⎠

≤ 1
2E
⎛
⎝ sup

0≤r≤s
|Δvi(r)|2

⎞
⎠

+ K1C
2
1

2 E

⎛
⎝∫ s

0
(1 + |Δv1(t)|2 + |Δv2(t)|2 + |Δh1(t)|2 + |Δh2(t)|2)dt

⎞
⎠. (3.49)

Similarly, for i = 3, 4, j = 1, 2, we obtain:

E

⎛
⎝ sup

0≤r≤s

∣∣∣∣∣
∫ r

0

∞∑
k=1

〈σi(U)ek, Δ2hj〉dW k
i

∣∣∣∣∣
⎞
⎠ ≤ 1

2E
⎛
⎝ sup

0≤r≤s
|Δhj(r)|2

⎞
⎠ (3.50)

+ K1C
2
1

2 E

⎛
⎝∫ s

0
(1 + |Δv1(t)|2 + |Δv2(t)|2 + |Δh1(t)|2 + |Δh2(t)|2)dt

⎞
⎠.

Combining (3.47) to (3.50) and multiplying by 2, we find

E

(
sup

0≤r≤s
(|Δv1|2 + |Δv2|2 + |Δh1|2 + |Δh2|2

)
+ E

(
ν1

∫ s

0
‖Δv1(r)‖2dr + ν2

∫ s

0
‖Δv2(t)‖2dt

+ δ1

∫ s

0
‖Δh1(t)‖2dt + δ2

∫ s

0
‖Δh2(t)‖2dt

)

≤ 8E
(

|Δv1(0)|2 + |Δv2(0)|2 + |Δh1(0)|2 + |Δh2(0)|2
)

+ 32TK1

+ EK0

∫ s

0

(
|∇F |2 + |∇G|2

)
dt + K2E

∫ s

0

(
|Δv1|2 + |Δv2|2 + |Δh1|2 + |Δh2|2

)
dt

+ C
∫ s

0
(‖h1‖4 + ‖h2‖4 + ‖h1‖6 + ‖h2‖6)dt + C

∫ s

0
(‖v1‖8 + ‖v2‖8 + |Δv1|4 + |Δv2|4)dt,

(3.51)
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where
K2 := K1 + 4C1K1.

Now, we assume that N > 1 and consider the stopping time
τ = τN := inf

s≥0

{(
|Δv1(s)|2 + |Δv2(s))|2 + |Δh1(s)|2 + |Δh2(s)|2

)
> N

}
(3.52)

Finally, we consider the stopping time
τM,N = τN ∧ τM (3.53)

where τM is defined at (3.22).
Replacing s by s ∧ τM,N in (3.51) gives

E

(
sup

0≤r≤s
(|Δv1|2 + |Δv2|2 + |Δh1|2 + |Δh2|2

)
+ E

(
ν1

∫ s

0
‖Δv1(r)‖2dr+

ν2

∫ s

0
‖Δv2(t)‖2dt

)
+ E

(
δ1

∫ s∧τM,N

0
‖Δh1(t)‖2dt + δ2

∫ s

0
‖Δh2(t)‖2dt

)

≤ 16E
(

|Δv1(0)|2 + |Δv2(0)|2 + |Δh1(0)|2 + |Δh2(0)|2
)

+EK0

∫ s

0

(
|∇F |2 + |∇G|2

)
dt+32TK1 +K2E

∫ s

0

(
|Δv1|2 + |Δv2|2 + |Δh1|2 + |Δh2|2

)
dt

+ CNE

∫ s

0
(|Δv1|2 + |Δv2|2 + |Δh1|2 + |Δh2|2)dt + C

∫ s

0
(M2 + M3 + M4)dt. (3.54)

We define

Y(s) =
∫ s∧τM∧N

0

(
|Δv1(t)|2 + |Δv2(t)|2 + |Δh1(t)|2 + |Δh2(t)|2

)
dt (3.55)

K3 = 16E(|Δv1(0)|2 + |Δv1(0)|2 + |Δh1(0)|2 + |Δh2(0)|2)+ (3.56)
K0

∫ T

0
(‖F‖2 + ‖G‖2)dt + CT (M2 + M3 + M4) + 32TK1.

From (3.54), (3.55) and (3.56), we obtain

Y ′(s) ≤ K3 + (CN + K2)Y(s) (3.57)

This gives
Y(s) ≤ K3

CN + K2

(
e(CN+K2)s − 1

)
. (3.58)
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In conjugation with (3.54), we obtain

E

(
sup

0≤r≤s∧τM,N

(
|Δv1|2 + |Δv2|2 + |Δh1|2 + |Δh2|2

)
+ 2ν1

∫ s∧τM,N

0
‖Δv1(t)‖2dt+

2ν1

∫ s∧τM,N

0
‖Δv1(t)‖2dt + 2δ1

∫ s∧τM,N

0
‖Δh1(t)‖2dt + 2δ2

∫ s∧τM,N

0
‖Δh2(t)‖2dt

)

≤ K3 + K3

CN + K2
e(CN+K2)s.(CN + K2) (3.59)

The right hand side of (3.59) is bounded by N if

K3 + e(CN+K2)sK3 ≤ N

or
0 ≤ s ≤ 1

CN + K2
log N − K3

K3
:= sN for N ≥ 2K3 (3.60)

As long as we can choose N > 2K3, the local existence of the solution is obtained on
[0, sN ∧ τM,N ].

4 The modified system with a cut-off function

This section is focused on the study of the martingale solutions of the following modified
system

dv1 +
(

−ν1Δv1 + θ(‖v1‖ + ‖h1‖ + ‖v2‖ + ‖h2‖)g∇h1 + g
ρ2

ρ1
∇h2 + fk × v1

)
dt

= F +
∞∑

k=1
σ1(U)ekdW k

1 ,

(4.1a)
dv2 + (−ν2Δv2 + θ(‖v1‖ + ‖h1‖ + ‖v2‖ + ‖h2‖)g∇h2 + g∇h2 + fk × v2)

= G +
∞∑

k=1
σ2(U)ekdW k

2 , (4.1b)

dh1 + (−δ1Δh1 + θ(‖v1‖ + ‖h1‖ + ‖v2‖ + ‖h2‖)∇ · (h1v1)) dt =
∞∑

k=1
σ3(U)ekdW k

3 ,

(4.1c)

dh2 + (−δ2Δh2 + θ(‖v1‖ + ‖h1‖ + ‖v2‖ + ‖h2‖)∇ · (h2v2)) dt =
∞∑

k=1
σ4(U)ekdW k

4 .

(4.1d)

For simplicity, we denote θ(‖v1‖ + ‖h1‖ + ‖v2‖ + ‖h2‖) by θ(‖U‖) for ‖U‖ = ‖v1‖ +
‖h1‖ + ‖v2‖ + ‖h2‖.
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Here θ : R → [0, 1] is a C∞ cut-off function satisfies

θ(ε) =
⎧⎨
⎩ 1 if |ε| ≤ K,

0 if |ε| ≥ 2K.

where K is any positive number and is independent of n. The specific choice for K will
be made more evidently in the next section.
Theorem 4.1 (Global existence of martingale solutions to the modified system). With
the same assumptions as in Theorem 2.1, there exists a global martingale solution to
(4.1).
Theorem 4.2 (Global existence of pathwise solutions to the modified system). Under
the same assumptions as in Theorem 2.2, there exists a global pathwise solution to (4.1)
relative to given probability space S = (Ω, F ,P).

4.1 The Galerkin scheme

Considering the projection Pn defined as in (2.4), we introduce the Galerkin approxima-
tion Un := (vn

1 , vn
2 , hn

1 , hn
2 ) associated to the modified system (4.1), with vn

1 , vn
2 , hn

1 and
hn

2 functions from some interval (0, τn) into Pn(V1 × V1 × V2 × V2), namely,

dvn
1 − ν1Δvn

1 dt + Pn

[
θ (‖Un‖) (vn

1 · ∇)vn
1 + g∇hn

1 + g
ρ2

ρ1
∇hn

2 + f kn × vn
1

]
dt

= PnFdt +
∞∑

k=1
Pnσ1(Un)ekdW k

1 ,

(4.2a)

dvn
2 − ν2Δvn

2 dt + Pn

[
θ (‖Un‖) (vn

2 · ∇)vn
2 + g∇hn

2 + g∇hn

1 + f kn × vn
2

]
dt

= PnGdt +
∞∑

k=1
Pnσ2(Un)ekdW k

2 ,

(4.2b)

dhn

1 + Pn

[
− δ1Δhn

1 + θ (‖Un‖) ∇ · (hn

1 vn
1 )
]
dt =

∞∑
k=1

Pnσ3(Un)ekdW k
3 , (4.2c)

dhn

2 + Pn

[
− δ2Δhn

2 + θ (‖Un‖) ∇ · (hn

2 vn
2 )
]
dt =

∞∑
k=1

Pnσ4(Un)ekdW k
4 ,

(4.2d)
vn

i (0) = vn
i0 = Pnvi(0), hn

i (0) = hn
i0 = Pnhi(0), for i = 1, 2. (4.2e)
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4.2 Uniform estimates for the Galerkin system

The essential estimate for our study below is the following:
Lemma 4.1. Let vn

1 , vn
2 , hn

1 and hn
2 be the solutions of (4.2) and assume that v1(0), v2(0) ∈

Lp(Ω, F0, H1), h1(0), h2(0) ∈ Lp(Ω, F0, H2), F, G ∈ Lp(Ω × [0, T ], H) for some p ≥ 2.
Then we have the following estimates

E

(
sup

0≤r≤T
‖vn

1 (r)‖p + sup
0≤r≤T

‖hn
1 (r)‖p + sup

0≤r≤T
‖vn

2 (r)‖p + sup
0≤r≤T

‖hn
2 (r)‖p

)
≤ K4, (4.3a)

and

E

(∫ T

0
|Δvn

1 |2 dt +
∫ T

0
|Δhn

1 |2 dt +
∫ T

0
|Δvn

2 |2 dt +
∫ T

0
|Δhn

2 |2 dt

)
≤ K5, (4.3b)

where K3 and K4 depend only on the data and are independent of n.

Proof. Since Pn and A commute with each other and Hn ⊂ A, the same proof of Lemma
3.1 carries over to (4.2) with a slightly modification on the nonlinear terms. Thanks
to the presence of the cut off in front of the nonlinear terms, we can derive the global
bounds instead of local bounds as in Lemma 3.1. We only provide the details for the
estimates of the non-linear terms. The bounds for those terms are derived as follows:

Ĩ9 :=
∫ s

0
|〈θ(‖Un‖)(vn

1 · ∇)vn
1 , Δvn

1 〉| ‖vn
1 ‖p−2dt

≤ C
∫ s

0
|vn

1 |L∞ |θ(‖Un‖)∇ · vn
1 |L2 |Δvn

1 |L2 ‖vn
1 ‖p−2dt

≤ C
∫ s

0
|vn

1 | 1
2 |Δvn

1 | 1
2 |Δvn

1 |L2 ‖vn
1 ‖p−2dt

≤ C
∫ s

0
‖vn

1 ‖2‖vn
1 ‖p−2dt + pν1

10

∫ s

0
|Δvn

1 |2 ‖vn
1 ‖p−2dt

≤ C
∫ s

0
‖vn

1 ‖pdt + pν1

10

∫ s

0
|Δvn

1 |2 ‖vn
1 ‖p−2dt, (4.4)

where the third and the fourth lines hold true due to the Agmon’s inequality, the defi-
nition of the cut-off function in (4) and the Young inequality.

Similarly,

Ĩ10 :=
∫ s

0
|〈θ(‖Un‖)(vn

2 · ∇)vn
2 , Δvn

2 〉| ‖vn
2 ‖p−2dt ≤ C

∫ s

0
‖vn

2 ‖pdt + pν2

10

∫ s

0
|Δvn

2 |2 ‖vn
2 ‖p−2dt.

(4.5)

Ĩ11 :=
∫ s

0
|〈θ(‖Un‖)∇ · (vn

1 hn
1 ), Δhn

1 〉|‖hn
1 ‖p−2dt ≤

∫ s

0
|〈θ(Un)∇ · vn

1 hn
1 , Δhn

1 〉|‖hn
1 ‖p−2dt

+
∫ s

0
|〈θ(Un)∇hn

1 vn
1 , Δhn

1 〉|‖hn
1 ‖p−2dt := Ĩ1

11 + Ĩ2
11.
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We estimate the first term by making use of Hölder’s inequality:

Ĩ1
11 :=

∫ s

0
|〈θ(Un)∇ · vn

1 hn
1 , Δhn

1 〉|‖hn
1 ‖p−2dt ≤ C

∫ t

0
|hn

1 |L∞ |θ(‖Un‖)∇vn
1 | |Δhn

1 | ‖hn
1 ‖p−2dt.

Using Agmon’s inequality to control the first term and the definition of the cut-off
function to control the second term of the RHS, the next line follows

Ĩ1
11 ≤ C

∫ s

0
|hn

1 | 1
2 |Δhn

1 | 1
2 |Δhn

1 | ‖hn
1 ‖p−2dt = C

∫ s

0
|hn

1 | 1
2 |Δhn

1 | 3
2 ‖hn

1 ‖p−2dt

≤ C
∫ s

0
‖hn

1 ‖pdt + pδ1

4

∫ s

0
|Δhn

1 |2 ‖hn
1 ‖p−2dt, (4.6)

The last line holds true thanks to the Young inequality.
We obtain the similar bound for Ĩ2

11 as follows:

Ĩ2
11 ≤ C

∫ s

0
‖hn

1 ‖pdt + pδ1

4

∫ s

0
|Δhn

1 | ‖hn
1 ‖p−2dt. (4.7)

Combining (4.6) and (4.7), we obtain:

Ĩ11 :=
∫ s

0
|〈θ(‖Un‖)∇ · (hn

1 vn
2 ), Δhn

1 〉| dt ≤ C
∫ s

0
‖hn

1 ‖p + pδ1

2

∫ s

0
|Δhn

1 |2 ‖hn
1 ‖p−2dt. (4.8)

Almost identically, we obtain:

Ĩ12 :=
∫ s

0
|〈θ(‖Un‖)∇ · (hn

2 vn
2 ), Δhn

2 〉| dt ≤ C
∫ s

0
‖hn

2 ‖p + pδ2

2

∫ s

0
|Δhn

2 |2 ‖hn
2 ‖p−2dt. (4.9)

All the estimates for the linear terms and stochastic terms are carried out in the same
way as in the previous section. Combining those estimates with slightly changes on the
constants and all of the relations from (4.4) through (4.9), we deduce that:

E

⎛
⎝ sup

0≤r≤s
(‖vn

1 (r)‖p + ‖vn
2 (r)‖p + ‖hn

1 (s)‖p + ‖hn
2 (s)‖p) + pν1

∫ s

0
|Δvn

1 (t)|2 ‖vn
1 (t)‖p−2dt

+pν2

∫ s

0
|Δvn

2 (t)|2 ‖vn
2 (t)‖p−2dt+δ1

∫ s

0
|Δhn

1 (t)|2 ‖hn
1 ‖p−2dt+pδ2

∫ s

0
|Δhn

2 (t)|2 ‖hn
2 (t)‖p−2dt

⎞
⎠

� E (‖vn
1 (0)‖p + ‖vn

2 (0)‖p + ‖hn
1 (0)‖p + ‖hn

2 (0)‖p) + E

(∫ s

0
(|F |p + |G|p)dt

)

+ E

(∫ s

0
(‖vn

1 ‖p + ‖vn
2 ‖p + ‖hn

1 ‖p + ‖hn
2 ‖p)dt

)

� E (‖vn
1 (0)‖p + ‖vn

2 (0)‖p + ‖hn
1 (0)‖p + ‖hn

2 (0)‖p) + E

(∫ s

0
(|F |p + |G|p)dt

)
+ C

+ E

(∫ s

0

[
sup

0≤r≤t
‖vn

1 (r)‖p + sup
0≤r≤t

‖vn
2 (r)‖p + sup

0≤r≤t
‖hn

1 (r)‖p + sup
0≤r≤t

‖hn
2 (r)‖p

]
dt

)
+ C.

(4.10)
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By applying the deterministic Gronwall inequality to

Y (s) = E

(
sup

r∈[0,s]
‖vn

1 (r)‖p + sup
r∈[0,s]

‖vn
2 (r)‖p + sup

s∈[0,s]
‖hn

1 (r)‖p + sup
r∈[0,s]

‖hn
2 (r)‖p

)
,

we obtain:

E

(
sup

r∈[0,s]
‖vn

1 (r)‖p + sup
r∈[0,s]

‖vn
2 (r)‖p + sup

s∈[0,s]
‖hn

1 (r)‖p + sup
r∈[0,s]

‖hn
2 (r)‖p

)

� (‖vn
1 (0)‖p + ‖vn

2 (0)‖p + ‖hn
1 (0)‖p + ‖hn

2 (0)‖p) + E

(∫ s

0
|F |p + |G|p dt

)
.

� (‖v1(0)‖p + ‖v2(0)‖p + ‖h1(0)‖p + ‖h2(0)‖p) +
(∫ s

0
|F |p + |G|p dt

)
. (4.11)

From (4.10) and (4.11), the lemma is proved.

Our goal now is to derive some estimates in fractional Sobolev spaces which are crucial
for establishing the existence of both martingale and pathwise solutions.
Lemma 4.2 (Estimates in Fractional Sobolev spaces). Under the same assumptions as
in Theorem 2.1, we consider the associated sequence of solutions {(vn

1 , vn
2 , hn

1 , hn
2 )}n≥1 of

the Galerkin system (4.1). Let p > 2 and assume that E(‖v1(0)‖p +‖v2(0)‖p +‖h1(0)‖p +
‖h2(0)‖p) < ∞. Then there exists a finite number K > 0 (depending only on the data)
such that

E

⎛
⎝
∣∣∣∣∣
∫ t

0

∞∑
k=1

Pnσi(Un)ekdW k
i

∣∣∣∣∣
p

W α,p([0.T ];H1)

⎞
⎠ ≤ K, for i = 1, 2, (4.12a)

E

⎛
⎝
∣∣∣∣∣
∫ t

0

∞∑
k=1

Pnσk
i (Un)ekdW k

i

∣∣∣∣∣
p

W α,p([0.T ];H2)

⎞
⎠ ≤ K, for i = 3, 4, (4.12b)

E

⎛
⎝
∣∣∣∣∣vn

i (t) −
∫ t

0

∞∑
k=1

Pnσi(vn, hn)dW k
i

∣∣∣∣∣
2

W 1,2([0.T ];H1)

⎞
⎠ ≤ K, for i = 1, 2, (4.12c)

E

⎛
⎝
∣∣∣∣∣hn

i (t) −
∫ t

0

∞∑
k=1

Pnσk
j (vn, hn)dW k

j

∣∣∣∣∣
2

W 1,2([0.T ];H2)

⎞
⎠ ≤ K, for i = 1, 2, j = 3, 4.(4.12d)

Proof. The proofs can be followed in exact the same way as in [21] so we omit them.

4.3 Compactness arguments

We fix a stochastic basis, S = (Ω, F , (F)t≥0,P, W1, W2, W3, W4), and given (v0
1, v0

2, h0
1, h0

2)
which is F0-measurable and has distribution μ0. Then we go back to the finite dimen-
sional approximations relative to S and (v0

1, v0
2, h0

1, h0
2). We define the phase space

X = Xv1 × Xv2 × Xh1 × Xh2 ×
4∏

i=1
XWi

,
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where

Xv1 = Xv2 = L2(0, T ; V1) ∩ C([0, T ]; V ′
1),

Xh1 = Xh2 = L2(0, T ; V2) ∩ C([0, T ]; V ′
2),

XW1 = XW2 = XW3 = XW4 = C([0, T ];U0).
(4.13)

We consider the probability measures

μn
v1(·) = μn

v2(·) = P (vn ∈ ·) ∈ P(L2(0, T ; V1) ∩ C([0, T ]; V ′
1)), (4.14)

μn
h1(·) = μn

h2(·) = P (hn ∈ ·) ∈ P(L2(0, T ; V2) ∩ C([0, T ]; V ′
2)), (4.15)

and μWi
(·) = μn

Wi
(·) = P(Wi ∈ ·) ∈ P(C([0, T ];U0)), for i = 1, 2, 3, 4. (4.16)

This defines a sequence of probability measures μn = μn
v1 × μn

v2 × μn
h1 × μn

h2 ×∏4
i=1 μn

Wi

on X . Then we have the following tightness result:
Lemma 4.3. Consider the measure μn on X defined as above in (4.14)–(4.16). Then
the sequence {μn}n≥1 is tight and therefore weakly compact on the phase space X .

Proof. The reader is referred to our previous work [21] for a detailed proof.

4.4 Passage to the limit

Suppose μ0 is a probaility measure on V1 × V1 × V2 × V2 satisfying∫
V1×V1×V2×V2

‖u0‖2μ0(dμ) < ∞ (4.17)

where u0 = (v0
1, v0

2, h0
1, h0

2); in the previous lemma, we have shown that the sequence of
measures {μn}n≥1 associated with the Galerkin sequence {vn

1 , vn
2 , hn

1 , hn
2 , W1, W2, W3, W4}

is weakly compact over χ. This implies the existence of a subsequence μnj and to sim-
plify writing, we write j for nj. We now apply the Skorohod embedding theorem to infer
the following theorem.
Theorem 4.3. Let μ0 be a probability measure on V1 × V2 satisfying (4.17). Then there
exist a probability space (Ω̃, F̃ , P̃) with the associated expectation denoted by Ẽ a sequence
of X -valued random variables (ṽnj

1 , ṽnj

1 , h̃
nj

1 , h̃
nj

2 , W̃
nj

1 , W̃
nj

2 , W̃
nj

3 , W̃
nj

4 ), such that

1. (ṽj
1, ṽj

2, h̃j
1, h̃j

2, W̃ j
1 , W̃ j

2 , W̃ j
3 , W̃ j

4 ) has the same law (vn
1 , vn

2 , hn
1 , hn

2 , W1, W2, W3, W4).

2. (ṽnj

1 , ṽnj

2 , h̃
nj

1 , h̃
nj

2 , W̃
nj

1 , W̃
nj

2 , W̃
nj

3 , W̃
nj

4 ) converges almost surely in the topology of
X to an element (ṽ1, ṽ2, h̃1, h̃2, W̃1, W̃2, W̃3, W̃4) i.e.

ṽnj

i → ṽi in L2(0, T ; V1) ∩ C([0, T ]; V ′
1) P̃ − a.s for i = 1, 2, (4.18a)

h̃
nj

i → h̃i in L2(0, T ; V2) ∩ C([0, T ]; V ′
2) P̃ − a.s for i = 1, 2, (4.18b)

W̃
nj

i → W̃i in C([0, T ];U0) P̃ − a.s for i = 1, 2, 3, 4. (4.18c)
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3. Each W̃
nj

i , i = 1, 2, 3, 4 is a cylindrical Wiener process relative to the filtration F̃
nj

t

given by

F̃ j
t := σ(W̃ j

1 (s), W̃ j
2 (s), W̃ j

3 (s), W̃ j
4 (s), ṽj

1(s), ṽj
2(s), h̃

nj

1 (s), h̃
nj

2 (s), s ≤ t).

4. Each (ṽnj

1 , ṽnj

2 , h̃
nj

1 , h̃
nj

2 , W̃
nj

1 , W̃
nj

2 , W̃
nj

3 , W̃
nj

4 ) satisfies:

dṽj
1 − ν1Δṽj

1dt + Pn[θ(‖ṽ1
j‖2 + ‖ṽ2

j‖2 + ‖h̃1
j‖2 + ‖h̃2

j‖2)(ṽj
1 · ∇)ṽj

1+
g

ρ2

ρ1
∇h̃j

1 + fk × ṽj
1]dt = PjFdt + Pjσ1(Ũ j)dW̃ kj

1 , (4.19)

dṽj
2 − ν2Δṽj

2dt + Pn[θ(‖ṽ1
j‖2 + ‖ṽ2

j‖2 + ‖h̃1
j‖2 + ‖h̃2

j‖2)(ṽj
2 · ∇)ṽj

2

+ g∇h̃2
j + fk × ṽj

2]dt = PnGdt +
∞∑

k=1
Pnσ2(Ũnj )dW̃ k,j

2 , (4.20)

dh̃
nj

1 + Pn[θ(‖ṽ1
nj ‖ + ‖ṽ2

nj ‖ + ‖h̃1
nj ‖ + ‖h̃2

nj ‖)∇ · (h̃nj

1 ṽnj

1 ) − δ1Δh̃
nj

1 ]dt =
∞∑

i=1
Pnσ3(Ũnj )dW̃

nj

3 ,

dh̃
nj

2 + Pn[θ(‖ṽ1
j‖2 + ‖ṽ2

j‖2 + ‖h̃1
j‖2 + ‖h̃2

j‖2)∇ · (h̃nj

2 ṽnj

2 ) − δ2Δh̃
nj

2 ]dt =
∞∑

i=1
Pnj

σ4(Ũnj )dW̃
nj

4 ,

(4.21)

ṽnj

i (0) = Pnj
ṽi(0), h̃

nj

i (0) = Pnj
h̃

nj

i (0) > 0, i = 1, 2. (4.22)

Let S̃ = (Ω̃, F̃ , (F̃t)t≥0, W̃1, W̃2, W̃3, W̃4), where F̃t := ⋂
s>t F̃0

s , t ∈ [0, T ] and F̃0
s is

defined as follows

N := {A ∈ F̃|P̃(A) = 0}, F̄t = σ(W̃1(s), W̃2(s), W̃3(s), W̃4(s)ṽ1(s), ṽ2(s), h̃1(s), h̃2(s), s ≤ t),
(4.23)

and F̃0
t = σ(F̃t ∪ N ).

Then (S̃, ṽ1, ṽ2, h̃1, h̃2) is a global martingale solution in the sense of Definition 2.2.

Proof: The proofs from (1) through (3) are direct consequences of the Skorohod Rep-
resentation Theorem.

By utilizing the technique as in [1], the proof of (4) follows without any major modifi-
cation.
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From (4), it is easy to see that all the statistical estimates for vn
i and hn

i , i = 1, 2 are valid
for ṽnj

i and h̃
nj

i . Hence (ṽnj

i ), i = 1, 2 belong to a bounded set of L2(Ω̃; L∞(0, T ; V1) ∩
L2(Ω̃; L2(0, T ; D(−Δ)), there are ṽ1, ṽ2 in this intersection space such that

ṽnj

i ⇀ ṽi weak-star in L2(Ω̃; L∞(0, T ; V1)), (4.24)
and ṽnj

i ⇀ ṽi weakly in L2(Ω̃; L2(0, T ; D(−Δ)). (4.25)

Similarly, there exist h̃1, h̃2 in L2(Ω̃; L∞(0, T ; V2) ∩ L2(Ω̃; L2(0, T ; D(−Δ)) such that

h̃
nj

i ⇀ h̃i weak-star in L2(Ω̃; L∞(0, T ; V2)), (4.26)
and h̃

nj

i ⇀ h̃iweakly in L2(Ω̃; L2(0, T ; D(−Δ)). (4.27)

Our task now is to show that ṽi, h̃i, i = 1, 2, satisfy the system (4.1).

Due to Lemma 4.1, for i = 1, 2, we readily obtain the following estimates:

sup
j

E

(∫ T

0
‖ṽi

nj ‖2dt

)
≤ sup

j
CE

(
sup

0≤t≤T
‖ṽi

nj ‖2
)

< ∞, (4.28)

sup
j

E

(∫ T

0
‖h̃i

nj ‖2dt

)
≤ sup

j
CE

(
sup

0≤t≤T
‖h̃i

nj ‖2
)

< ∞. (4.29)

Combining (4.18a), (4.18b),(4.28) and (4.33) we infer by applying the Vitali convergence
theorem that

ṽi
nj → ṽi in L2(Ω̃; L2(0, T ; V1)) (4.30)

h̃i
nj → h̃i in L2(Ω̃; L2(0, T ; V2)) (4.31)

By thinning the sequence j, if necessary, we conclude that
‖ṽnj − ṽ‖ → 0 and ‖h̃nj − h̃‖ → 0, i = 1, 2. (4.32)

for almost every (t, ω) ∈ [0, T ] × Ω̃.

Since vj
i → vi in C([0, T ], H1) a.s., we can deduce the existence of set Ω1, i = 1, 2such

that P̃(Ωi) = 1 and on these set, the following convergence hold

lim
j→∞

〈vnj

i − ṽi(0), φ〉L2 = 0, i = 1, 2 (4.33)

Similarly, there exist two sets Ωi ⊂ Ω̃, i = 3, 4 of full measure such that
lim

j→∞
〈hnj

i (0) − h̃i(0), ψ〉L2 = 0, i = 3, 4 (4.34)
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Set Ω̄ = Ω̃ \ ⋃4
i=1 Ωi and we now show that the convergence of the other terms holds in

L2(Ω̄ × [0, T ]. Due to the strong convergence in (4.18a) and the estimates for vnj

i , i =
1, 2 by using the Vitali Convergence Theorem, we find that vnj

i converges to ṽi in
L2(Ω̄, L2(0, T, V1)) and h

nj

i converges to h̃i in L2(Ω̄, L2(0, T, V2)), for i = 1, 2. Hence,
by extracting some subsequences, we deduce that vnj

i → ṽi a.e and P̃- a.s.in V1 and
h

nj

i → h̃i a.e and P̃-a.s. in V2, that is, there exist Ωi
T ⊂ Ω̄ × [0, T ], for i = 1, 2, 3, 4 with

full measure such that ∀(ω, t) ∈ Ω1
T , Ω2

T

lim
j→∞

‖vnj

i − ṽi‖V1 = 0 (4.35)

Analogously, ∀(ω, t) ∈ Ω3
T , Ω4

T

lim
j→∞

‖h
nj

i − h̃i‖V2 = 0 (4.36)

From which, we imply that
lim

j→∞
〈vnj

i (t) − ṽi(t), ψ〉 = 0, and lim
j→∞

〈hnj

i (t) − h̃i(t), ψ〉 = 0 (4.37)

The convergence for the linear terms are straightforward. Indeed, due to (4.35) and
(4.36), there exist sets Ωi

T , i = 5, ..., 15 of full measure w.r.t dP̃ ⊗ dt and some extracted
subsequences still denoted by vnj

i , hnj such that for all (ω, t) ∈ Ωi
T , i = 5, ..., 14, the

following convergences hold as j → ∞,
∣∣∣∣
∫ t

0
νi〈Δ(ṽj

i − ṽi), ψ〉ds
∣∣∣∣ � ‖ψ‖

(∫ T

0
‖ṽj

i − ṽi‖2ds

) 1
2

→ 0, (4.38a)
∣∣∣∣
∫ t

0
g〈∇(h̃j

i − h̃i), ψ〉ds
∣∣∣∣ � ‖ψ‖

(∫ T

0
‖h̃j

i − h̃i‖2ds

) 1
2

→ 0, (4.38b)
∣∣∣∣∣
∫ t

0
〈gρ2

ρ1
∇(h̃j

2 − h̃2), v〉ds

∣∣∣∣∣ ≤ C sup
0≤r≤T

‖v(r)‖
(∫ T

0
‖h̃j

i − h̃i‖2ds

) 1
2

→ 0, (4.38c)
∣∣∣∣
∫ t

0
δi〈Δ(h̃j

i − h̃i), ψ〉ds
∣∣∣∣ � ‖ψ‖

(∫ T

0
‖h̃j

i − h̃i‖2ds

) 1
2

→ 0, (4.38d)
∣∣∣∣
∫ t

0
〈fk × (ṽj

i − ṽi), ψ〉ds
∣∣∣∣ � ‖ψ‖

(∫ T

0
‖ṽj

i − ṽi‖2ds

) 1
2

→ 0. (4.38e)

Furthermore, in virtue of Lemma 4.1, the following estimates can be easily obtained

Ẽ

∫ t

0

∣∣∣∣∣
∫ t

0
νi〈Δvnj

i , ψ〉ds

∣∣∣∣∣
2

dt � ‖ψ‖Ẽ
(

sup
0≤t≤T

‖vnj

i ‖2
)

≤ κ. (4.39a)

Ẽ

∫ T

0

∣∣∣∣∣
∫ t

0
g〈∇(h̃nj

i ), ψ〉ds

∣∣∣∣∣
2

dt � ‖ψ‖Ẽ
(

sup
0≤t≤T

‖h
nj

i ‖2
)

≤ κ. (4.39b)

35



Ẽ

∫ T

0

∣∣∣∣∣
∫ t

0
g

ρ2

ρ1
〈∇h̃

nj

i , ψ〉ds

∣∣∣∣∣
2

dt � ‖ψ‖Ẽ
(

sup
0≤t≤T

‖h
nj

2 ‖2
)

≤ κ.
(4.39c)

Ẽ

∫ T

0

∣∣∣∣∣
∫ t

0
δi〈Δh̃

nj

i , ψ〉ds

∣∣∣∣∣
2

dt � ‖ψ‖Ẽ
(

sup
0≤t≤T

‖h
nj

i ‖2
)

≤ κ.
(4.39d)

Ẽ

∫ T

0

∣∣∣∣
∫ t

0
〈fk × vnj

i , ψ〉ds

∣∣∣∣
2

dt � ‖ψ‖Ẽ
(

sup
0≤t≤T

‖vnj

i ‖2
)

≤ κ. (4.39e)

Collecting all the above estimates and by Lebesgue Dominated Convergence Theorem,
we conclude that

lim
j→∞

∣∣∣∣∣
∣∣∣∣∣μi

∫ t

0
〈Δvnj

i − Δṽi, ψ〉ds

∣∣∣∣∣
∣∣∣∣∣
L2(Ω̄×[0,T ])

= 0 (4.40a)

lim
j→∞

∣∣∣∣∣
∣∣∣∣∣g
∫ t

0

ρ2

ρ1
〈∇h

nj

2 − ∇h̃2, ψ〉ds

∣∣∣∣∣
∣∣∣∣∣
L2(Ω̄×[0,T ])

= 0 (4.40b)

lim
j→∞

∣∣∣∣∣
∣∣∣∣∣g
∫ t

0
〈∇h

nj

i − ∇h̃i, ψ〉ds

∣∣∣∣∣
∣∣∣∣∣
L2(Ω̄×[0,T ])

= 0 (4.40c)

lim
j→∞

∣∣∣∣∣
∣∣∣∣∣δi

∫ t

0
〈Δh

nj

i − Δh̃i, ψ〉ds

∣∣∣∣∣
∣∣∣∣∣
L2(Ω̄×[0,T ])

= 0 (4.40d)

lim
j→∞

∣∣∣∣∣
∣∣∣∣∣
∫ t

0
〈fk × (vnj

i − ṽi), ψ〉ds

∣∣∣∣∣
∣∣∣∣∣
L2(Ω̄×[0,T ])

= 0 (4.40e)

Par extraction of some subsequences, there exist subsets Ωi
T , i = 15, .., 23 with full

measure such that on these sets, the convergence in (4.40) hold pointwise.
Now for the nonlinear terms, we first denote θ(‖vnj

1 ‖2 + ‖vnj

2 ‖2 + ‖h
nj

1 ‖2 + ‖h
nj

2 ‖2) by
θ(‖vj‖) and θ(‖ṽ1‖2 + ‖ṽ2‖2 + ‖h̃1‖2 + ‖h̃2‖2) by θ(‖ṽ‖) to simplify the exposition.
Next, for i = 1, 2, we have:
∣∣∣∣
∫ t

0
〈Pn[θ(‖vj‖)(vnj

i · ∇)vj
i ] − θ(‖ṽ‖)(ṽi · ∇)ṽi, ψ〉ds

∣∣∣∣
≤
∫ t

0
|〈Pn[θ(‖vj‖)(vnj

i · ∇)vnj

i ] − Pn[θ(‖ṽ‖)(ṽi · ∇)ṽi, ]〉ψds| +
∫ t

0
|〈Qnθ(‖ṽ‖)(ṽi · ∇)ṽi, ]〉ψds|.

≤
∫ t

0
|〈θ(‖vj‖)(vnj

i · ∇)vnj

i − θ(‖ṽ‖)(ṽi · ∇)ṽi, ψ〉ds| +
∫ t

0
|〈Qnθ(‖ṽ‖)(ṽi · ∇)ṽi, ]〉ψds|.

=: I1 + I2.

Thanks to (4.36) and (4.37), we see for all (x, ω, t) ∈ M × Ω3
T and (x, ω, t) ∈ M × Ω4

T

lim
j→∞

θ(‖vj‖)(vnj

i · ∇)vnj

i = θ(‖ṽi‖)(ṽi · ∇)ṽi. (4.41)
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Next, because of Lemma 4.1 and Hölder’s inequality, we are able to derive the following
bounds∫ t

0
|〈θ(‖vj‖)(vnj

i · ∇)vnj , ψ〉|ds ≤ C
∫ t

0
|θ(‖vj‖) 1

2 ∇ · vnj

i |L∞|θ(‖vj‖) 1
2 vnj

i |L2‖ψ‖ � ‖ψ‖.

(4.42a)
and

Ẽ

∫ T

0

∣∣∣∣∣
∫ t

0
|〈θ(‖vj‖)(vnj

i · ∇)vnj , ψ〉ds

∣∣∣∣∣
2

dt � ‖ψ‖2
Ẽ

(
sup

0≤t≤T
‖vnj

i ‖2
)

≤ C. (4.42b)

The term I2 is estimated in the same way as I1. More precisely, we infer from Lemma
4.1 and Hölder’s inequality that

I2 := |〈Qnj
θ(‖ṽ‖)(ṽi·)ṽi, ψ〉| ≤ |Qnj

θ(‖ṽ‖) 1
2 ṽi|L2|θ(‖ṽ‖) 1

2 ∇ṽi|
1
2
L∞ds

≤ ‖ψ‖ 1
λ

1
2
nj

|Qnj
θ(‖ṽ‖) 1

2 ṽi|H1 |θ(‖ṽ‖) 1
2 ∇ṽi|

1
2
L∞ds � ‖ψ‖ 1

λ
1
2
nj

→ 0 as j → ∞.
(4.43)

We can deduce the similar estimates as in (4.42)
∫ t

0
|〈Qnj

θ(‖ṽ‖)(ṽi·)ṽi, ψ〉|ds � ‖ψ‖ (4.44a)

Ẽ

∫ T

0

∣∣∣∣∣
∫ t

0
|〈Qnj

θ(‖ṽ‖)(ṽi · ∇)ṽi, ψ〉ds

∣∣∣∣∣
2

dt � Ẽ

(
sup

0≤t≤T
‖ṽi‖2

)
≤ C. (4.44b)

From (4.41) to (4.44) and with the Lebesgue Dominated Convergence Theorem, we imply
that

lim
j→∞

∣∣∣∣∣
∣∣∣∣∣
∫ t

0
〈Pn[θ(‖vj‖)(vnj

i · ∇)vj
i ] − θ(‖ṽ‖)(ṽi · ∇)ṽi, ψ〉ds

∣∣∣∣∣
∣∣∣∣∣
L2(Ω̄×[0,T ])

= 0 (4.45)

By extracting subsequences, we infer that there exist Ω24
T and Ω25

T such that for all
(ω, t) ∈ Ω24

T , we have

lim
j→∞

∫ t

0
〈Pn[θ(‖vj‖)(vnj

1 · ∇)vj
1] − θ(‖ṽ‖)(ṽ1 · ∇)ṽ1, ψ〉ds = 0 (4.46)

And for all (ω, t) ∈ Ω25
T , the below convergence holds

lim
j→∞

∫ t

0
〈Pn[θ(‖vj‖)(vnj

2 · ∇)vj
2] − θ(‖ṽ‖)(ṽ2 · ∇)ṽ2, ψ〉ds = 0 (4.47)

It is not difficult to deduce the following convergence

lim
j→∞

∣∣∣∣∣
∣∣∣∣∣
∫ t

0
〈Pn[θ(‖ũj‖)∇(h̃j

i ṽ
nj

i )] − θ(‖ũ‖)∇(h̃iṽi), ψ〉ds

∣∣∣∣∣
∣∣∣∣∣
L2(Ω̄×[0,T ])

= 0. (4.48)
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We can extract two sets Ω26
T and Ω27

T and extracted subsequences still denoted by vnj

1 , h
nj

1
and vnj

2 , h
nj

2 such that on these sets, the following convergence hold respectively

lim
j→∞

∫ t

0
〈Pn[θ(‖ũj‖)∇(h̃j

i ṽ
nj

i )] − θ(‖ũ‖)∇(h̃iṽi), ψ〉ds = 0. (4.49a)

We address the stochastic term by using Lemma 7.5. We first simplify the expositions
by introducing Unj = (ṽnj

1 , ṽnj

2 , h̃
nj

1 , h̃
nj

2 ) and U = (ṽ1, ṽ2, h̃1, h̃2).
From (4.18c), we know that W̃

nj

i → W̃i, ∀i = 1, 2, 3, 4 in probability in C(0, T ;U0) and
thus it suffices to show that Pnj

σi(Unj ) → σi(U) in L2(0, T ; L2(U, V )) except on a set
of measure zero of Ω̄ and hence in probability. We utilize the Poincaré inequality, the
hypotheses (2.4), (2.11), (4.18a) and (4.18b), we estimate:

‖Pnj
σi(Unj ) − σi(U)‖2

L2(U,V ) ≤ ‖Pnj
σ(Unj ) − Pnj

σ(U)‖2
L2(U,V ) + ‖Qnj

σi(U)‖2
L2(U,V )

� ‖Unj − U‖2
V + 1

λnj

(1 + ‖U‖2) −→ 0 as nj → ∞. (4.50)

Thus, we conclude that ‖Pjσ1(U j) − σ1(U)‖L2(U,V1) → 0, ∀(ω, t) ∈ Ω0
T , as j → ∞.

On the other hand, noting that due to (2.11), (2.12) along with (4.1), we find

Ẽ

(∫ T

0
Pj‖σ1(ṽj)‖2

L2(U,V1)dt

)
≤ CE

(∫ T

0
(1 + ‖ṽj‖2

)
≤ C. (4.51)

With (4.50), (4.51) in hand and Vitali Convergence Theorem, we infer that

Pnj
σi(ũnj ) → σi(ũ) in L2(Ω̄; L2([0, T ], L2(U, V )). (4.52)

This implies that the following convergence holds almost surely and in particular, it
holds in probability:

Pnj
σi(ũnj ) → σi(ũ) in L2([0, T ], L2(U, V )). (4.53)

Combining with (4.18c), Lemma 7.5 is applied and we infer that
∫ t

0
Pnj

σi(ũnj )dW̃ nj →
∫ t

0
σi(ũ)dW̃ in L2([0, T ], V ). (4.54)

By making use of the Burkholder- Davis-Gundy inequality and the uniform bounds in
Lemma (4.1), we can easily obtain the following estimate:

Ẽ

(∣∣∣∣∣
∣∣∣∣∣
∫ t

0
Pnj

σi(ũnj )dW̃ nj

∣∣∣∣∣
∣∣∣∣∣
2

V

)

≤ CẼ

(∫ T

0
‖Pnj

σi(ũnj )‖2
L2(U,V )dt

)
≤ CẼ

(∫ T

0
‖σi(ũnj )‖2

L2(U,V )dt

)

≤ CẼ

(∫ T

0
(1 + ‖ũnj ‖2

)
dt ≤ C. (4.55)
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By utilizing the Lebesgue Dominated Convergence Theorem one more time, we obtain
that the convergence in (4.52) holds further in L2(Ω̄; L2([0, T ], L2(U, V )). Hence, by
the stochastic Fubini theorem, we can extract a subsequence and we find a set of full
measure Ω6

T ⊂ Ω̄ × [0, T ] such that the convergence of the stochastic term holds for all
(ω, t) ∈ Ω6

T .

4.5 Global pathwise uniqueness

Now we prove that the global martingale solution for the modified system is pathwise
unique.
Proposition 4.1. Suppose that (S, v̂1, v̂2, ĥ1, ĥ2) and (S, ṽ1, ṽ2, h̃1, h̃2) are two global
martingale solutions of (4.1) relative to the same stochastic basis
S := (Ω, F , (Ft)t≥0,P, W1, W2, W3, W4). Pathwise uniqueness means that if we define
Ω0 := {v̂1(0) = ṽ1(0), v̂2(0) = ṽ2(0), ĥ1(0) = h̃1(0), ĥ2(0) = h̃2(0)}, then (v̂1, v̂2, ĥ1, ĥ2)
and (ṽ1, ṽ2, h̃1, h̃2)) are indistinguishable on Ω0 in the sense that

P(�Ω0(v̂i(t) − ṽi(t)) = 0, ∀t ≥ 0) = 1, for i = 1, 2

P(�Ω0(ĥi(t) − h̃i(t)) = 0, ∀t ≥ 0) = 1. for i = 1, 2

Proof. For i = 1, 2 we will let vi = v̂i − ṽi, hi = ĥi − h̃i, v̄i = �Ω0vi and h̄i = �Ω0hi.

We will also need the following stopping times

τm : = inf
t≥0

{∫ t

0
|Δṽ1|2 + 3 |Δv̂1|2 + 2 |∇v̂1|6 + |∇v̂1|2 + 2 |∇ṽ1|2 |Δṽ2|2 +

3 |Δv̂2|2 + 2 |∇v̂2|6 + |∇v̂2|2 + 2 |∇ṽ2|2 + 3
∣∣∣Δĥ1

∣∣∣2 + 6
∣∣∣∇ĥ1

∣∣∣4 + 6 |∇v̂1|4 + 4 |∇ṽ1|8 +

4
∣∣∣∇ĥ1

∣∣∣4 + 3
∣∣∣Δĥ2

∣∣∣2 + 6
∣∣∣∇ĥ2

∣∣∣4 + 6 |∇v̂2|4 + 4 |∇ṽ2|8 + 4
∣∣∣∇ĥ2

∣∣∣4 ≥ m

}
. (4.56)

To simplify our notation, we also set

‖ṽ1‖2 + ‖ṽ2‖2 + ‖h̃1‖2 + ‖h̃2‖2 = ‖Ũ‖, (4.57)
‖v̂1‖2 + ‖v̂2‖2 + ‖ĥ1‖2 + ‖ĥ2‖2 = ‖Û‖,

‖v̄1‖2 + ‖v̄2‖2 + ‖h̄1‖2 + ‖h̄2‖2 = ‖Ū‖.

Substituting v1 and v2 into (4.1) and taking the difference between these equations, we
arrive at the following equations:
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dv1 − ν1Δv1dt + fk × v1dt + g∇h1dt − g
ρ2

ρ1
∇h2dt + θ(‖Û‖)(v̂1 · ∇)v̂1dt

− θ(‖Ũ‖)(ṽ1 · ∇)ṽ1dt =
∞∑

k=1
σ1(Û)ekdW k

1 −
∞∑

k=1
σ1(Ũ)ekdW k

1 ,

v1(0) = v̂1(0) − ṽ1(0) (4.58)

dv2 − ν1Δv2dt + fk × v2dt + g∇h2dt − g∇h1dt + θ(‖Û‖)(v̂2 · ∇)v̂2dt − θ(‖Ũ‖)(ṽ2 · ∇)ṽ2dt

=
∞∑

k=1
σ2(Û)ekdW k

2 −
∞∑

k=1
σ2(Ũ)ekdW k

2 ,

v2(0) = v̂2(0) − ṽ2(0) (4.59)

dh1 − δ1Δh1dt = θ(Û)∇ · (ĥ1v̂1)dt − θ(Ũ)∇ · (h̃1ṽ1)dt +
∞∑

k=1
σ3(Ũ)ekdW2 −

∞∑
k=1

σ3(Û)ekdW3.

h1(0) = ĥ1(0) − h̃1(0) (4.60)

dh2 − δ1Δh2dt = θ(Û)∇ · (ĥ2v̂2)dt − θ(Ũ)∇ · (h̃2ṽ2)dt +
∞∑

k=1
σ4(Ũ)ekdW k

4 −
∞∑

k=1
σ4(Û)ekdW k

4 .

h2(0) = ĥ2(0) − h̃2(0) (4.61)

Applying the Itô formula to the map u �→ |∇u|2 in (4.58) and (4.61) and adding the
corresponding relations together yield

d‖v1‖2 + 2ν1 |Δv1|2 dt + d‖v2‖2 + 2ν2 |Δv2|2 dt + d‖h1‖2 + 2δ1 |Δh1|2 dt + d‖h2‖2+

2δ2 |Δh2|2 dt = −2g〈∇h1, Δv1〉dt − 2g
ρ2

ρ1
〈∇h2, Δv1〉 − 2g〈∇h2, Δv2〉dt−

2g〈∇h1, Δv2〉dt−2〈θ(Û)(v̂1·∇)v̂1, Δv1〉+2〈θ(Ũ)(ṽ2·∇)ṽ2, Δv2〉+2〈θ(Ũ)(ṽ1·∇)ṽ1, Δv1〉
− 2〈θ(Û)(v̂2 · ∇)v̂2, Δv2〉 − 2〈θ(Ũ)∇ · (h̃1ṽ1), Δh1〉dt + 2〈θ(Û)∇ · (ĥ2v̂2), Δh1〉dt

+ 2〈fk × v1, Δv1〉dt + 2〈fk × v2, Δv2〉dt

+
∞∑

k=1
||σ1(Û) − σ1(Ũ)ek||2dt +

∞∑
k=1

||σ2(Û) − σ2(Ũ)ek||2dt

+
∞∑

k=1
||σ3(U) − σ3(Ũ)ek||2dt +

∞∑
k=1

||σ4(Û) − σ4(Ũ)ek||2dt

+ 2
∞∑

k=1
〈σ1(Û) − σ1(Ũ), Δv1〉dW k

1 + 2
∞∑

k=1
〈σ2(Û) − σ2(Ũ)]dW2, Δv2〉dW k

2 +

2
∞∑

k=1
〈σ3(Û)ek − σ3(Ũ)ek, Δh1〉dW k

3 + 2
∞∑

k=1
〈σ4(Û)ek − σ4(Ũ)ek, Δh2〉dW k

4 . (4.62)
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Integrating (4.62) in time over [0, t ∧ τm], 0 ≤ t ≤ T , multiplying by �Ω0 and finally
taking the expected value of the supremum in t ∈ [0, T ] yield

E�Ω0

(
sup

s∈[0,t∧τm]
‖v̄‖2 + 2ν

∫ t∧τm

0
|Δv̄|2 ds + sup

s∈[0,t∧τm]
‖h̄‖2 + 2δ

∫ t∧τm

0

∣∣∣Δh̄
∣∣∣2 ds

)

≤ 8E�Ω0

(
‖v̄(0)‖2 + ‖h̄(0)‖2

)
+

18∑
i=1

J̃i, (4.63)

where

sup
t∈[0,t∧τm]

‖v̄‖2 := sup
t∈[0,t∧τm]

‖v̄1‖2 + sup
t∈[0,t∧τm]

‖v̄2‖2.

sup
t∈[0,τ∧m]

‖h̄‖2 := sup
t∈[0,t∧τm]

‖h̄1‖2 + sup
t∈[0,t∧τm]

‖h̄2‖2. (4.64)

2ν
∫ s∧τm

0
|Δv̄|2 dt := 2ν1

∫ t∧τm

0
|Δv̄1|2 ds + 2ν2

∫ t∧τm

0
|Δv̄2|2 ds (4.65)

2δ
∫ s∧τm

0

∣∣∣Δh̄
∣∣∣2 dt := 2δ1

∫ t∧τm

0

∣∣∣Δh̄1
∣∣∣2 ds + 2δ2

∫ t∧τm

0

∣∣∣Δh̄2
∣∣∣2 ds (4.66)

For α = 1, 2, 3, 4, i = 1, 2, j = 1, 2, by simply using the Cauchy-Schwarz inequality, the
following estimates hold:

J̃α := κ0E�Ω0

(∫ t∧τm

0
|〈∇h̄i, Δv̄j〉|ds

)
≤ CE�Ω0

(∫ t∧τm

0
‖h̄i‖2ds

)
+νj

4 E�Ω0

(∫ t∧τm

0
|Δv̄j|2 ds

)
,

(4.67)
where κ0 equals either 8g or 8g ρ2

ρ1
.

For β = 5, 6; i = 1, 2, we obtain:

J̃β := 8gE�Ω0

(∫ t∧τm

0
|〈fk × vi, Δvi〉|ds

)
≤CE�Ω0

(∫ t∧τm

0
‖v̄i‖2ds

)
+ (4.68)

νi

4 E�Ω0

(∫ t∧τm

0
|Δv̄i|2 ds

)
.

Next, we estimate

J̃7 := 8E�Ω0

(∫ t∧τm

0
|〈θ(‖Û‖)(v̂1 · v̂1)v̂1 − θ(||Ũ ||)(ṽ1 · ṽ1)ṽ1, Δv̄1〉|ds

)

≤ 8E�Ω0

∫ t∧τm

0
|〈(θ(‖Û‖) − θ(‖Ũ‖))(v̂1 · ∇)v̂1, Δv̄1〉|ds+

8E�Ω0

∫ t∧τm

0
|〈(v̂1 · ∇)v̂1 − (ṽ1 · ∇)ṽ1, Δv̄1〉|ds := J̃1

7 + J̃2
7 .
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The estimate for the term J̃1
7 is proceeded by using Holdër’s inequality and the fact that

the cut-off function defined in (4) is Lipschitz

J̃1
7 ≤ CE�Ω0

(∫ t∧τm

0
(‖v̄1‖2 + ‖v̄2‖2 + ‖h̄1‖2 + ‖h̄2‖2) |v1|L∞ |∇v̂1| |Δv̄1| dt

)
(4.69)

≤ CE�Ω0

(∫ t∧τm

0
(‖U‖) |∇v1|

1
2 |∇v1|

1
2 |Δv̂1| dt

)

+ CE�Ω0

(∫ t∧τm

0
(‖U‖) |∇v1|

1
2 |∇v1|

1
2 |Δv̂1| dt

)

≤ CE�Ω0

(∫ t∧τm

0
(‖U‖)(|Δṽ1|2 + 2 |Δv̂1|2 + 2 |∇v̂1|6)dt (4.70)

The last line follows thanks to Poincaré’s inequality and the Young inequality.

The estimate for J̃2
7 is derived by utilizing Holdër’s inequality, Ladyzhenskya’s inequality

in space dimension two and the Young inequality

J̃2
7 ≤ CE�Ω0

⎛
⎝∫ t∧τm

0
|〈(v̂1 · ∇)v̂1 − (ṽ1 · ∇)ṽ1, Δv̄1〉| dt

⎞
⎠ (4.71)

≤ CE�Ω0

⎛
⎝∫ t∧τm

0
|〈[(v̂1 − ṽ1) · ∇]v̂1 − (ṽ1 · ∇)(ṽ1 − v̂1), Δv̄1〉| dt

⎞
⎠

≤ CE�Ω0

⎛
⎝∫ t∧τm

0
|〈[v̄1 · ∇]v̂1 − (ṽ1 · ∇)v̄1, Δv̄1〉| ds

⎞
⎠

≤ CE�Ω0

⎛
⎝∫ t∧τm

0
(|v̄1|L∞ |∇v̂1|L4 + |ṽ1|L4 |∇v̄1|L4) |Δv̄1|L2 dt

⎞
⎠

≤ CE�Ω0

⎛
⎝∫ t∧τm

0

(
|v̄1|

1
2 |∇v̄1|

1
2 |v̂1|

1
2 |∇v̂1|

1
2 + |ṽ1|

1
2 |∇ṽ1|

1
2 |v̄1|

1
2 |∇v̄1|

1
2
)

|Δv̄1|L2 dt

⎞
⎠

≤ CE�Ω0

∫ t∧τm

0

(
|v̄1|

1
2 |∇v̄1|

1
2 |v̂1|

1
2 |∇v̂1|

1
2 |Δv̄1|L2 + |ṽ1|

1
2 |∇ṽ1|

1
2 |v̄1|

1
2 |∇v̄1|

1
2 |Δv̄1|

3
2
L2 dt

)

By applying the Young inequality to the first term with p = 2, q = 2 and the second term,

with p = 4
3 , q = 4 to the second term, we obtain:

J̃2
7 ≤ ν1

8 E�Ω0

∫ t∧τm

0
|Δv̄1|2 dt + CE�Ω0

∫ t∧τm

0
|∇v̄1|2 |∇v̂1| |Δv̂1| dt + |∇v̄1|2 (|ṽ1|2 |∇ṽ1|2)dt

= ν1

8 E�Ω0

∫ t∧τm

0
|Δv̄1|2 dt + CE�Ω0

∫ t∧τm

0
‖v̄1‖2(|∇v̂1| |Δv̂1| + |ṽ1|2 |∇ṽ1|2)dt.
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Combining the estimates (4.69) and (4.71), we see that

J̃7 := 8CE�Ω0

(∫ t∧τm

0
|〈θ(‖Û‖)(v̂1 · v1)v̂1 − θ(‖Ũ‖)(ṽ1 · v1)ṽ1, Δv̄1〉|dt

)

≤ 8CE�Ω0

∫ t∧τm

0
|〈θ(‖Û‖) − θ(‖Ũ‖))(v̂1 · ∇)v̂1, Δv̄1〉|dt

+ 8CE�Ω0

∫ t∧τm

0
|〈(v̂1 · ∇̂)v̂1 − (ṽ1 · ∇̃)ṽ1, Δv̄1〉|dt (4.72)

CE�Ω0

(∫ t∧τm

0
(‖v̄1‖2 + ‖v̄2‖2 + ‖h̄1‖2 + ‖h̄2‖2)(|Δṽ1|2 + 2 |Δv̂1|2 + 2 |∇v̂1|6)dt

+ ν1

4 E

∫ t∧τm

0
|Δv̄1|2 dt + CE�Ω0

∫ t∧τm

0
‖v̄1‖2(|∇v̂1|2 + |Δv̂1|2 dt + |ṽ1|2 |∇ṽ1|2)dt.

Similarly,

J̃8 := 8E�Ω0

(∫ t∧τm

0
|〈θ(Û)(v̂2 · ∇)v̂2 − θ(Ũ)(ṽ2 · ∇)ṽ2, Δv̄2〉|ds

)
(4.73)

CE�Ω0

(∫ t∧τm

0
(‖v̄1‖2 + ‖v̄2‖2 + ‖h̄1‖2 + ‖h̄2‖2)(|Δṽ2|2 + 2 |Δv̂2|2 + 2 |∇v̂2|6)dt

+ ν2

4 E

∫ t∧τm

0
|Δv̄2|2 dt + CE�Ω0

∫ t∧τm

0
‖v̄2‖2(|∇v̂2|2 + |Δv̂2|2 dt + |ṽ2|2 |∇ṽ2|2)dt.

(4.74)

In the same manner, the next four deterministic terms are controlled as follows:

J̃9 := 8E�Ω0

(∫ t∧τm

0

∣∣∣〈θ(‖Û‖)∇ · (ĥ1v̂1) − θ(‖Ũ‖)∇ · (h̃1ṽ1), Δh̄1〉
∣∣∣ ds

)

≤ CE�Ω0

(∫ t∧τm

0
|θ(‖Û‖) − θ(‖Ũ‖)|〈∇ · (ĥ1v̂1), Δh̄1〉|ds+

CE�Ω0

(∫ t∧τm

0
〈∇ · (ĥ1v̂1) − ∇ · (h̃1ṽ1), Δh̄1〉|ds := J̃1

9 + J̃2
9 . (4.75)

J̃1
9 is treated by making use of the Lipschitzian property of the cut-off function (4) and

Holdër’s inequality

J̃1
9 := E�Ω0

(∫ t∧τm

0
|θ(‖Û‖) − θ(‖Ũ‖)|〈∇ · (ĥ1v̂1), Δh̄1〉|ds

≤ CE�Ω0

(∫ t∧τm

0
(‖v̄1‖2 + ‖v̄2‖2 + ‖h̄1‖2 + ‖h̄2‖2)(

∣∣∣∇ĥ1
∣∣∣
L4 |v̂1|L∞ + ‖∇v̂1‖ |v̂1|L∞)

∣∣∣Δh̄1
∣∣∣ dt
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By using Ladyzhenskya’s inequality, Agmon’s inequality and the Sobolev embedding
H1

0 ↪→ L4 in space dimension two, we obtain:

J̃1
9 ≤ CE�Ω0

(∫ t∧τm

0
‖Ū‖2(

∣∣∣ĥ1
∣∣∣ 1

2 (
∣∣∣ĥ1
∣∣∣ 1

2 |Δh1|
1
2 |∇v̂1| + |∇v̂1| |h1|

1
2 |Δh1|

1
2 )(
∣∣∣Δĥ1

∣∣∣+ ∣∣∣Δh̃1
∣∣∣)dt

≤ CE�Ω0

(∫ t∧τm

0
‖Ū‖2(3

∣∣∣Δĥ1
∣∣∣2 + 2

∣∣∣Δh̃1
∣∣∣2 + 4 |∇ṽ1|8 + 4

∣∣∣∇ĥ1
∣∣∣4)dt. (4.76)

where the last line is obtained by using the Young inequality several times and the
Poincaré inequality

The bound for J̃2
9 is deduced as follows:

J̃2
9 := E�Ω0

(∫ t∧τm

0
〈∇ · (ĥ1v̂1) − ∇ · (h̃1ṽ1), Δh̄1〉|dt (4.77)

≤ CE�Ω0

(∫ t∧τm

0
|〈∇h̄1v̂1 + ∇h̃1v̄1, Δh̄1〉|dt + CE�Ω0

(∫ t∧τm

0
|〈∇ · v̂1h̄1 + h̃1∇ · v̄1, Δh̄1〉|dt

)

:= J̃2,1
9 + J̃2,2

9 .

We estimate J̃2,1
9 by using Hölder’s inequality, Ladyzhenskya’s inequality in 2D, and the

embedding H1 ↪→ L4 and then finally use the Young inequality

E�Ω0

∫ t∧τm

0
|〈∇h̄1v̂1 + ∇h̃1v̄1, Δh̄1〉|dt (4.78)

≤ CE�Ω0

∫ t∧τm

0

( ∣∣∣∇h̄1
∣∣∣
L4 |v̂1|L4 +

∣∣∣∇h̃1
∣∣∣
L4 |v̄1|L4

) ∣∣∣Δh̄1
∣∣∣ dt

≤ CE�Ω0

∫ t∧τm

0

∣∣∣∇h̄1
∣∣∣ 1

2
∣∣∣Δh̄1

∣∣∣ 1
2 |∇v̂1| +

∣∣∣∇h̃1
∣∣∣ 1

2
∣∣∣Δh̃1

∣∣∣ 1
2 |∇v̄1|)

∣∣∣Δh̄1
∣∣∣ dt

= CE�Ω0

∫ t∧τm

0

∣∣∣∇h̄1
∣∣∣ 1

2
∣∣∣Δh̄1

∣∣∣ 3
2 |∇v̂1| +

∣∣∣∇h̃1
∣∣∣ 1

2
∣∣∣Δh̃1

∣∣∣ 1
2 |∇v̄1|

∣∣∣Δh̄1
∣∣∣ dt

≤ δ1

2 E�Ω0

∫ t∧τm

0

∣∣∣Δh̄1
∣∣∣2 dt + CE�Ω0

∫ t∧τm

0

∣∣∣∇h̄1
∣∣∣2 |∇v̂1|4 dt + |∇v̄1|2

∣∣∣∇h̃1
∣∣∣ ∣∣∣Δh̃1

∣∣∣ dt

In the same manner, we derive the bound for the term J̃2,2
9 as follows:

J̃2,2
9 = E�Ω0

(∫ t∧τm

0
|〈∇ · v̂1h̄1 + h̃1∇ · v̄1, Δh̄1〉|ds (4.79)

≤ CE�Ω0

∫ t∧τm

0
(|∇ṽ1|L4

∣∣∣h̄1
∣∣∣
L4 +

∣∣∣h̃1
∣∣∣
L∞ |∇v̄1|)

∣∣∣Δh̄1
∣∣∣ ds

≤ CE�Ω0

∫ t∧τm

0
|∇v̂1|

∣∣∣h̄1
∣∣∣ 1

2
∣∣∣Δh̄1

∣∣∣ 3
2 + CE�Ω0

∫ t∧τm

0

∣∣∣h̃1
∣∣∣ 1

2
∣∣∣Δh̃1

∣∣∣ 1
2 |∇v̄1|

∣∣∣Δh̄1
∣∣∣ dt

By using the Young inequality to the first term with p = 4q = 4
3 and to the second term

with p = 2, q = 2, we obtain:

J̃2,2
9 ≤ δ1

2 E�Ω0

∫ t∧τm

0

∣∣∣Δh̄1
∣∣∣2 dt + CE�Ω0

∫ t∧τm

0
|∇v̂1|4

∣∣∣∇h̄1
∣∣∣2 + |∇v̄1| 2(

∣∣∣h̃1
∣∣∣2 +

∣∣∣Δh̃1
∣∣∣2)dt
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Collecting all the estimates (4.76) through (4.79), we find:

J̃9 := 8E�Ω0

(∫ t∧τm

0

∣∣∣〈θ(‖Û‖)∇ · (ĥ1v̂1) − θ(‖Ũ‖)∇ · (h̃1ṽ1), Δh̄1〉
∣∣∣ ds

)
(4.80)

≤ CE�Ω0

(∫ t∧τm

0
(‖Ū‖2)(3

∣∣∣Δĥ1
∣∣∣2 + 4

∣∣∣Δh̃1
∣∣∣2 + 2

∣∣∣∇h̃1
∣∣∣2 + 6 |∇v̂1|4 + 4 |∇ṽ1|8 + 4

∣∣∣∇ĥ1
∣∣∣4)dt

+ δ1E�Ω0

∫ t∧τm

0

∣∣∣Δh̄1
∣∣∣2 dt

Analogously,

J̃10 := 8E�Ω0

(∫ t∧τm

0

∣∣∣〈θ(‖Û‖)∇ · (ĥ2v̂2) − θ(‖Ũ‖)∇ · (h̃2ṽ2), Δh̄2〉
∣∣∣ ds

)
(4.81)

≤ CE�Ω0

(∫ t∧τm

0
(‖Ū‖2)(2

∣∣∣Δĥ2
∣∣∣2 +

∣∣∣Δĥ2
∣∣∣2 +

∣∣∣∇ĥ2
∣∣∣2 |∇v̂2|4 + 4 |∇v̂2|4 +

∣∣∣∇h̃2
∣∣∣2

+ 2
∣∣∣Δh̃2

∣∣∣2 +
∣∣∣h̃2
∣∣∣2) + δ2E�Ω0

∫ t∧τm

0

∣∣∣Δh̄2
∣∣∣2 dt

For the next four terms, we simply use the Lipschitz assumption (2.12):

J̃11 + J̃12 + J̃13 + J̃14 : =
4∑

j=1
E�Ω0

(∫ t∧τm

0
�Ω0

4∑
i=1

‖σi(Û)ek − σi(Ũ)ek‖2ds+

≤ CE�Ω0

(∫ t∧τm

0
(‖v̄1‖2 + ‖h̄1‖2 + ‖v̄2‖2 + ‖h̄2‖2)ds

)
. (4.82)

The estimates for the last stochastic terms are obtained by using integration by parts,
the Lipschitz assumption (2.12) along with the Burkholder-Davis-Gundy inequality

J̃γ : = 8E�Ω0

(
sup

t∈[0,t∧τm]

∣∣∣∣∣
∫ t∧τm

0

∞∑
k=1

〈σi(Û)ek − σi(Ũ)ek, Δv̄i〉dW k
i

∣∣∣∣∣
)

(4.83)

≤ CE�Ω0

(∫ t∧τm

0
‖v̄i‖2

)
+ CE�Ω0

(∫ t∧τm

0
(

2∑
i=1

‖v̄i‖2 + ‖h̄i‖2)dt

)
,

for γ = 15, 16, i = 1, 2.

Similarly, for ζ = 17, 18, i = 1, 2; j = 3, 4, we find:

J̃ζ : = 8E�Ω0

(
sup

s∈[0,t∧τm]

∣∣∣∣∣
∫ t∧τn

0

∞∑
k=1

〈σj(Û)ek − σj(Ũ)ek, Δh̄i〉dW k
j

∣∣∣∣∣
)

(4.84)

≤ CE�Ω0

(∫ t∧τm

0
‖h̄i‖2

)
+ CE�Ω0

(∫ t∧τm

0
(

2∑
i=1

‖v̄i‖2 + ‖h̄i‖2)dt

)
.
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Collecting all the above estimates between (4.67)-(4.84) and multiplying by two, we
arrive at:

E�Ω0

(
sup

s∈[0,t∧τm]
‖v̄‖2 + 2ν

∫ t∧τm

0
|Δv̄|2 ds + sup

s∈[0,t∧τm]
‖h̄‖2 + 2δ

∫ t∧τm

0

∣∣∣Δh̄
∣∣∣2 ds

)

≤ CE�Ω0

(
‖v̄(0)‖2 + ‖h̄(0)‖2

)

+ CE�Ω0

(∫ t∧τm

0
‖U‖2(|Δṽ1|2 + 3 |Δv̂1|2 + 2 |∇v̂1|6 + |∇v̂1|2 + 2 |∇ṽ1|2 |Δṽ2|2

+ 3 |Δv̂2|2 + 2 |∇v̂2|6 + |∇v̂2|2 + 2 |∇ṽ2|2 + 3
∣∣∣Δĥ1

∣∣∣2 + 6
∣∣∣∇ĥ1

∣∣∣4 + 6 |∇v̂1|4 +

4 |∇ṽ1|8 + 4
∣∣∣∇ĥ1

∣∣∣4 + 3
∣∣∣Δĥ2

∣∣∣2 + 6
∣∣∣∇ĥ2

∣∣∣4 + 6 |∇v̂2|4 + 4 |∇ṽ2|8 + 4
∣∣∣∇ĥ2

∣∣∣4
)

. (4.85)

Now, we apply the stochastic Gronwall inequality (Lemma 7.3) with

• X = ‖v̄1‖2 + ‖v̄2‖2 + ‖h̄1‖2 + ‖h̄2‖2,

• Y=ν1 |Δv̄1|2 + ν2 |Δv̄2|2 + δ1
∣∣∣Δh̄1

∣∣∣2 + δ2
∣∣∣Δh̄2

∣∣∣2 ,

• Z = 0, R = 1+ |Δṽ1|2 +3 |Δv̂1|2 +2 |∇v̂1|6 + |∇v̂1|2 +2 |∇ṽ1|2 |Δṽ2|2 +3 |Δv̂2|2 +
2 |∇v̂2|6 + |∇v̂2|2 +2 |∇ṽ2|2 +3

∣∣∣Δĥ1
∣∣∣2 +6

∣∣∣∇ĥ1
∣∣∣4 +6 |∇v̂1|4 +4 |∇ṽ1|8 +4

∣∣∣∇ĥ1
∣∣∣4 +

3
∣∣∣Δĥ2

∣∣∣2 + 6
∣∣∣∇ĥ2

∣∣∣4 + 6 |∇v̂2|4 + 4 |∇ṽ2|8 + 4
∣∣∣∇ĥ2

∣∣∣4.
and yield

E�Ω0

(
sup

s∈[0,t∧τm]
(‖v̄1‖2 + ‖v̄2‖2) + ν1

∫ t∧τm

0
|Δv̄1|2 ds + sup

s∈[0,t∧τm]
‖h̄1‖2 + ‖h̄2‖2) (4.86)

+ ν2

∫ t∧τm

0
|Δv̄2|2 dt + ν2

∫ t∧τm

0
|Δv̄2|2 dt + δ1

∫ t∧τm

0

∣∣∣Δh̄1
∣∣∣2 ds + δ2

∫ t∧τm

0

∣∣∣Δh̄2
∣∣∣2 ds

)

≤ CE�Ω0

(
‖v̄1(0)‖2 + ‖h̄1(0)‖2 + ‖v̄2(0)‖2 + ‖h̄2(0)‖2

)
= 0.

From the definition of τm, it is easy to see that τm is an increasing sequence and by
Lemma 4.1, we see that limm→∞ τm = ∞. Thus we have shown that

E�Ω0

(
sup

t∈[0,T ]
(‖v̄1‖2 + ‖v̄2‖2 + ‖h̄1‖2 + ‖h̄2‖2)

)
= 0. (4.87)

This implies that
P(�Ω0(v1(t) − v2(t)) = 0; ∀t ≥ 0) = 1, (4.88)

and P(�Ω0(h1(t) − h2(t)) = 0; ∀t ≥ 0) = 1. (4.89)
In other words, v1 and v2 are indistinguishable on Ω0 and so are h1 and h2. This proves
global pathwise uniqueness.
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5 The existence of global pathwise solutions

Sections (4.4) and (4.5) already established the existence of martingale solutions and
pathwise uniqueness for the modified system (4.1). We may now apply the Gyöngy-
Krylov theorem (see [20]), which is an infinite dimensional extension of the Yamada-
Watanabe Theorem (see [38]), to infer the existence of a global pathwise solution
(v1, v2, h1, h2).
In pursuit of the Gyöngy-Krylov theorem, we come back to the sequence {(vn

1 , vn
2 , hn

1 , hn
2 )}

of Galerkin solutions relative to the given stochastic basis S and consider the collection
of joint distributions μm,n

U given by (Um, Un) where Um := (vm
1 , vm

2 , hm
1 , hm

2 ). We then
define the extended phase spaces as follows:

ZU,W := ZU × ZU × ZW1 × ZW2 × ZW3 × ZW4 . (5.1)

where
ZU := Zv1 × Zv2 × Zh1 × Zh2 , (5.2)
Zv1 = Zv2 = L2(0, T ; V1) ∩ C([0, T ]; V ′

1),
Zh1 = Zh2 = L2(0, T ; V2) ∩ C([0, T ]; V ′

2),
ZW1 = ZW2 = XW3 = XW4 = C([0, T ];U0).

We finally take:
μm

U (Z1) = P(Um ∈ Z1), ∀Z1 ∈ Pr (ZU),
μm

Wi
(Z2) = μWi

(Z2) = P(Wi ∈ Z3), ∀Z3 ∈ Pr (C([0, T ];U0)), for i = 1, 2, 3, 4,

μm,n
U := μm

U × μn
U ,

μm,n,W := μm,n
U × μW1 × μW2 × μW3 × μW4 .

We now state a tightness result.
Lemma 5.1. The collection μm,n,W is tight and hence weakly compact on ZU,W .

Proof. The proof is nearly identical to Lemma 4.3. Indeed, as in [21], for every ε > 0,
we can find a set

AU
ε := Av1

ε × Av2
ε × Ah1

ε × Ah2
ε

which is compact in ZU such that

μm,n
U (AU

ε ) ≥
(

1 − ε

8

)4

. (5.3)

For the constant sequences {μm
Wi

}, which are weakly compact, we see that they are also
tight by Proposition 7.1, and hence there exist compact sets Ãi

ε ⊂ C([0, T ];U0) such that
for each n, and for i = 1, 2, 3, 4,
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μm
Wi

(
Ãi

ε

)
≥ 1 − ε

4 . (5.4)
We finally take

Aε := AU
ε × AU

ε × Ã1
ε × Ã2

ε × Ã3
ε × Ã4

ε (5.5)
which is compact on ZU,W . From (5.3) and (5.4), we obtain:

μm,n,W ≥
(

1 − ε

8

)4(
1 − ε

4

)4

≥ 1 − ε, (5.6)

which holds for all 0 < ε < 1. The proof of the lemma is complete.

Proposition 5.1. There exists a unique pathwise solution of the system (4.1).

Proof. By Lemma 5.1, in virtue of the Prohorov’s Theorem, we imply that the se-
quence μm,n,W is weakly compact over the space ZU,W . Therefore, we can deduce
the existence of a subsequence μmk,nk,W which converges weakly to an element μ′.
With the help of the Skorohod Representation Theorem, we infer the existence of a
new underlying probability space (Ω̄, F̄ , P̄) and a sequence of ZU,W - random variables
(Ũmk , Ūnk , W̄ k′

1 , W̄ k′
2 , W̄ k′

3 , W̄ k′
4 ) and (Ũ , Ū , W̄1, W̄2, W̄3, W̄4) such that

•

P̄

[
(Ũmk , Ūnk , W k′

1 , W̄ k′
2 , W̄ k′

3 , W̄ k′
4 ) ∈ E

]
= μmk,nk,W (E), for E ∈ Pr (ZU,W ).

(5.7)
And

P̄

[
(Ũ , Ū , W1, W2, W3, W4) ∈ E

]
= μ′(E), for E ∈ Pr (ZU,W ). (5.8)

• (Ũmk , Ūnk , W̄ k′
1 , W̄ k′

2 , W̄ k′
3 , W̄ k′

4 ) converges with probability 1 in the topology of
ZU,W to (Ũ , Ū , W̄1, W̄2, W̄3, W̄4).

In particular, we infer the following:

• (Ũmk , W̄ k′
1 , W̄ k′

2 , W̄ k′
3 , W̄ k′

4 ) converges almost surely to (Ũ , W̄1, W̄2, W̄3, W̄4) in the
topology of ZU .

• (Ūnk , W̄ k′
1 , W̄ k′

2 , W̄ k′
3 , W̄ k′

4 ) converges almost surely to (Ū , W̄1, W̄2, W̄3, W̄4) in the
topology of ZU .

By the same argument in Section 4.4, we can establish that both (Ũ , W̄1, W̄2, W̄3, W̄4)
and (Ū , W̄1, W̄2, W̄3, W̄4) are global martingale solutions of the system (4.1). One can
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readily show that both Ũ and Ū agree with other at time t = 0 a.s. Hence, by using the
result in Section 4.5, we obtain both Ũ = Ū in ZU a.s. In other words,

μ′
(

{(x, y) ∈ ZU × ZU : x = y}
)

= P̄(Ũ = Ū in ZU) = 1. (5.9)

This implies, by Proposition 7.3, that the original sequence Un := (vn
1 , vn

2 , hn
1 , hn

2 ) de-
fined on the initial probability space (Ω, F ,P) converges in probability to an element
U := (v1, v2, h1, h2) :=

(
v̄1, v̄2, h̄1, h̄2

)
. Along the subsequence, we further infer that

convergence holds almost surely in the topology of ZU . More precisely, for i = 1, 2,

vn
i → vi a.s. in L2(0, T ; V1) ∩ C([0, T ]; H1), (5.10)

hn
i → hi a.s. in L2(0, T ; V2) ∩ C([0, T ]; H2). (5.11)

By the identical argument in Section 4.4, we obtain that (v1, v2, h1, h2) are a global
pathwise solution of the equations (4.1) in the sense of Definition 2.3. By using the
same technique used in our previous work [21], we are able to show that (v1, v2) ∈
L2(0, T ; D(−Δ)) ∩ C([0, T ]; V1) and (h1, h2) ∈ L2(0, T ; (−Δ)) ∩ C([0, T ]; V2). The proof
of the existence of global pathwise solution is complete.

6 Existence and uniqueness of solutions for the orig-
inal system

6.1 Local martingale solutions

Theorem 4.3 already shows that (S, ṽ1, ṽ2, h̃1, h̃2) is a global martingale solution for
(4.1). Now we set

τ̃ : = inf
t≥0

{
sup

0≤r≤t
(‖ṽ1(r)‖2 + ‖ṽ2(r)‖2 + ‖h̃1(r)‖2 + ‖h̃2(r)‖2) > M

}
. (6.1)

where
M = 1 + ‖ṽ1(0)‖2 + ‖ṽ2(0)‖2 + ‖h̃1(0)‖2 + ‖h̃2(0)‖2) (6.2)

By the following lemma, τ is strictly positive almost surely, and we observe that for
i = 1, 2
∫ t∧τ̃

0
θ(‖Ũ‖)∇·(h̃iṽi)ds =

∫ t∧τ̃

0
∇·(h̃iṽi)ds and

∫ t∧τ̃

0
θ(‖Ũ‖)(ṽi·∇)ṽids =

∫ t∧τ̃

0
(ṽi·∇)ṽids.

We obtain that (S, ṽ1, ṽ2, h̃1, h̃2, τ̃) is a local martingale solution.
Lemma 6.1. The stopping time τ̃ defined in (6.1) is strictly positive almost surely.
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Proof. Let ε > 0 be given. By the definition of τ , it is easy to see that:

{τ̃ < ε} ⊆
⎧⎨
⎩ sup

s∈[0,τ∧ε]
(‖ṽ1(s)‖2 + ‖ṽ2(s)‖2 + ‖h̃1(s)‖2 + ‖h̃2(s)‖2) − ‖ṽ1(0)‖2 (6.3)

− ‖h̃1(0)‖2 − ‖ṽ2(0)‖2 − ‖h̃2(0)‖2 > 1
⎫⎬
⎭

From which, using Chebyshev’s inequality, we obtain:
P(τ̃ = 0) =P(∩ε>0{τ̃ < ε}) = lim sup

ε→0
P({τ̃ < ε})

� lim sup
ε→0

E sup
s∈[0,τ̃∧ε]

(‖ṽ1(s)‖2 + ‖ṽ2(s)‖2+

‖h̃1(s)‖2 + ‖h̃2(s)‖2) − ‖ṽ1(0)‖2 − ‖h̃1(0)‖2 − ‖ṽ2(0)‖2 − ‖h̃2(0)‖2 > 1
⎞
⎠

Thus, the desired result will be obtained once we can show that

lim sup
ε→0

E

(
sup

s∈[0,τ̃∧ε]
‖ṽ1(s)‖2 + ‖ṽ2(s)‖2 + ‖h̃1(s)‖2 + ‖h̃2(s)‖2 (6.4)

− ‖ṽ1(0)‖2 − ‖h̃1(0)‖2 − ‖ṽ2(0)‖2 − ‖h̃2(0)‖2
)

= 0.

For that purpose, we let p = 2 and replace vn
1 , vn

2 by ṽ1, ṽ2, hn
1 , hn

2 by h̃1, h̃2 and corre-
spondingly s by τ ∧ ε in (4.11) yielding

E

(
sup

r∈[0,τ̃∧ε]
(‖ṽ1(r)‖2 + ‖ṽ2(r)‖2 + ‖h̃1(r)‖2 + ‖h̃2(r)‖2)

)
(6.5)

�
(
‖ṽ1(0)‖2 + ‖ṽ2(0)‖2 + ‖h̃1(0)‖2 + ‖h̃2(0)‖2

)
+
(∫ s

0
(|F |2 + |G|2)dt

)
.

Thus, we arrive at

E sup
s∈[0,τ̃∧ε]

(
‖ṽ‖2 + ‖h̃‖2

)
− E

(
‖ṽ1(0)‖2 + ‖h̃1(0)‖2 + ‖ṽ2(0)‖2 + ‖h̃2(0)‖

)

� E

(∫ τ̃∧ε

0
(|F |2 + |G|2

)
dt � lim sup

ε→0
ε(|F |2L∞ + |G|2L∞)) = 0.

(6.6)

Therefore, Theorem 2.1 is proved.

6.2 Local pathwise solutions

We let τ be as in (6.1), and use an identical argument to Section 5 to conclude that
(v, h, τ) is a local pathwise solution of (1.1). We therefore conclude the proof of Theorem
2.2.

50



6.3 Maximal pathwise solutions

We also see that the local solution can be extended in time to be a maximal solution.
Proposition 6.1. There exists a unique maximal solution (v, h, ξ) and a sequence ρR

announcing ξ.

Proof. The reader is referred to [21] for the proof of this proposition.

7 Appendices

Appendix A

Now, suppose that H̃ is a separable Hilbert space. Given p ≥ 2, α ∈ (0, 1), we define
the fractional derivative space W α,p(0, T ; H̃) as the Sobolev space of all u ∈ Lp(0, T ; H̃)
such that

∫ T

0

∫ T

0

|u(t) − u(s)|p
H̃

|t − s|1+αp
dtds < ∞, (7.1)

endowed with the norm

|u|p
W α,p(0,T ;H̃) =

∫ T

0
|u(t)|p

H̃
dt +

∫ T

0

∫ T

0

|u(t) − u(s)|p
H̃

|t − s|1+αp
dtds. (7.2)

We have applied the following lemmas, the proofs of which can be found in e.g. [13]:
Lemma 7.1. Let E0 ⊂⊂ E ⊂ E1 be Banach spaces with the injections being continuous
and E0, E1 reflexive. For p ∈ (1, ∞), α ∈ (0, 1), we have

Lp (0, T ; E0) ∩ W α,p (0, T ; E1) ⊂⊂ Lp (0, T ; E) . (7.3)

Lemma 7.2. If E ⊂⊂ Ē are Banach spaces and p ∈ (1, ∞), α ∈ (0, 1] are such that
αp > 1, then

W α,p (0, T ; E) ⊂⊂ C
(
[0, T ]; Ē

)
. (7.4)

We additionally often use the following stochastic version of the Gronwall lemma (see
e.g. [19]):
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Lemma 7.3. Fix T > 0 and assume that X, Y, Z, R : Ω × [0, T ) → R are non-negative
stochastic processes. Let τ < T be a stopping time such that

E

(∫ τ

0
(RX + Z)ds

)
< ∞ and

∫ τ

0
Rds < κ, a.s.

Suppose that for all stopping times 0 ≤ τa ≤ τb ≤ τ

E

(
sup

t∈[τa,τb]
X +

∫ τb

τa

Y ds

)
≤ C0E

(
X(τa) +

∫ τb

τa

(RX + Z)ds

)
,

where C0 is independent of τa and τb. Then

E

(
sup

t∈[0,τ ]
X +

∫ τ

0
Y ds

)
≤ CE

(
X(0) +

∫ τ

0
Zds

)
,

where C is a constant depending only on C0, T , and κ.

Finally, we require the Vitali convergence theorem (see e.g. [16]):
Theorem 7.1. Suppose that a sequence of functions {fn} are Lp integrable on a finite
measure space, where 1 ≤ p < ∞. Then this sequence converges in Lp to a measurable
function f if the following conditions are satisfied:

(i) {fn} converges to f in measure; and

(ii) the functions {|fn|p} are uniformly integrable.
Lemma 7.4. (see [17]) u ∈ W s1,p, 0 ≤ s2 ≤ s1 ≤ s ≤ ∞. Then there exists a constant
C, such that:

‖u‖s,p ≤ C‖u‖α
s1,p‖u‖1−α

s2,p (7.5)
where s = αs1 + (1 − α)s2.
Remark 7.1. One can easily prove for p > 1 and a nonempty family X of random
variables bounded in Lp that if supX∈X ||X||Lp < ∞, then X is uniformly integrable.

Appendix B

Definition 7.1. Suppose (X, d) is a complete separable metric space with B(X) its
associated Borel σ-algebra. Let Cb(X) be the set of all real-valued continuous bounded
functions on X, and Pr(X) be the set of all probability measures on (X, B(X)). A
collection Λ ⊂ Pr(X) is tight if for every ε > 0 there exists a compact set Kε ⊂ X s.t.

μ(Kε) ≥ 1 − ε ∀μ ∈ Λ. (7.6)

A sequence {μn}n≥0 ⊂ Pr(X) converges weakly to a probability measure μ if

∫
fdμn →

∫
fdμ ∀f ∈ Cb(X). (7.7)
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The proofs of the following results can be found in e.g. [12].
Proposition 7.1 (Prohorov’s Theorem). A collection Λ ⊂ Pr(X) is weakly compact if
and only if it is tight.

Proposition 7.2 (Skorohod Representation Theorem). Suppose that a sequence {μn}n≥0

converges weakly to a measure μ. Then there exists a probability space
(
Ω̃, F̃ , P̃

)
and

a sequence of X-valued random variables
{
Ỹn

}
n≥0

relative to this space such that Ỹn

converges a.s. to the random variable Ỹ and such that the laws of Ỹn and Ỹ are μn and
μ, respectively, i.e. μn(E) = P

(
Ỹn ∈ E

)
, μ(E) = P

(
Ỹ ∈ E

)
, ∀E ∈ B(X).

Finally, we suppose that {Yn}n≥0 is a sequence of X-valued random variables on a
probability space (Ω, F ,P) and let {μm,n}m,n≥0 be the collection of joint laws of {Yn}n≥0,
i.e.

μm,n(E) := P((Ym, Yn) ∈ E), ∀E ∈ B(X × X). (7.8)

We also need this result from [20]:
Proposition 7.3 (Gyöngy-Krylov Theorem). A sequence of X-valued random variables
{Yn}n≥0 converges in probability if and only if for every subsequence of joint probability
laws, {μmk,nk

}k≥0 there exists a further subsequence which converges weakly to a proba-
bility measure μ s.t.

μ({(x, y) ∈ X × X : x = y}) = 1. (7.9)
Lemma 7.5. Let (Ω, F ,P) be a fixed probability space, X a separable Hilbert space.
Consider a sequence of stochastic bases Sn = (Ω, F , {Fn

t }t≥0,P, W n
1 , W n

2 ), where each
W n

i is a cylindrical Brownian motion over U with respect to Fn
t . Assume that {Gn}n≥0

are a collection of X-valued Fn
t predictable processes such that Gn ∈ L2(0, T ; L2(U, X))

a.s. Finally, consider S = (Ω, F , {Ft}t≥0,P, W1, W2) and G ∈ L2(0, T ; L2(U0, X)) a.s.,
which is Ft predictable. If

Gn → G in probability in L2(0, T ; L2(U0, X)), (7.10)

W n → W in probability in C([0, T ];U0), (7.11)

then

∫ t

0
GndW n →

∫ t

0
GdW in probability in L2(0, T ; X). (7.12)
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