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A]:)stract

We study the two 1ayers shallow water equations on a bounded domain M c R?
driven ]oy a muitipiicative white noise, and obtain the existence and uniqueness of
a maximal pathwise solution for a limited period of time, the time of existence
being strictiy positive almost sureiy. The proof makes use of anisotropic estimates
and stopping time arguments, of the Skorohod representation theorem, and the
Gyéngy-Kryiov theorem which is an infinite dimensional anaiogue of the Yamada-
Watanabe theorem.
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1 Introduction
In this articie, we study the two iayer shallow water equations in space dimensions two,
on a bounded domain M, forced by multiplicative noise:

vy — i Avidt + (v - V)vidt + gV hndi+g2 Vhodt + fk x vidt = Fdtr (L1a)

P1
Ul(Vl,Vg,hl,hg)dwl in M x (O,T),
dvy — 13 AVadt + (v - V)Vadt 4+ gV hadt+gVhy + fk X vodt = Gdi+ (1.1b)

O'Q(Vl,Vg,hl,hg)dWQ n M X (O,T),

dhl + V- (hlvl)dt — (51Ah1dt = O'3<V1,V2, hl, hg)de in M x (0, T), (11C)

dhg + V- (thg)dt — 52Ah2dt = 0'4(V1, Vo, hl, hg)dW4 in M x (O, T), (11d)

suppiementeci with the foiiowing initial conditions and Dirichlet boundary conditions

vi(t =0) =v)(z,y) in M, i=1,2, (1.1e)
hi(t=0)=h(z,y) >0 inM, i=1,2, (l.lf)
v;i=0 on OM x (0,7T), i =1,2, (i.ig)



hi=0  ondMx (0,T), i=1,2. (1.1h)

Here, v, = (ul,vl) where u; = uy(z,y,w,t) and vy 1= vy(z,y,w,t) denote the velocity
in the x direction an(i direction of the upper iayer respectivei Simiiariy, vo = (ug, vg)

where uy = = ug(x,y,w,t) and vy 1= vo(z, Y, w 1) corresponds to the lower layer. We will
assume that hy = Hy + hl, where H; > 0 is the average depth of the upper iayer a
constant, and hy is the deviation from this average height. Simiiariy, hy = Hy + hg,
where Hy; >0is the average (ieptii of the lower iayer, a constant, and hg is the deviation
from this average iieigiit. Aiso, 2 and Uy are the viscosities, d1, and 09 are given positive
constants, g is the gravitationai constant, f is the Coriolis parameter assumed to be con-
stant, p; and po are the densities of the top fluid and bottom fluid respectively, and both
of them are assumed to be constants as well. Finally, F := F(z,y,t), G := G(z,y,t),
vO(z,y), vi(x,y), h(z,y) and hY(x,y) are given. Typically, ' represents a wind force
at the surrace, G represents an interfacial surfacic Force.

The system (ii) describes the motion of the two superposed iayers of fluids with dif-

ferent densities so that no mixing occurs. A typicai exampie is the superposition in
an estuary of the fresh water coming from a river and of the heavier salted water from
the sea. More generaiiy, the stratified salted water in a (ieep ocean is often modeled as
the superposition of a number of iayers of lqui(i, see e.g [26]. In an earlier article [21]

we investigated the case of a singie iayer shallow water. In the present article we will
empiiasize the aspects of the stu(iy which are different from [21].

The addition of white noise driven terms to the basic governing equations for a piiysi—
cal system is natural for both practicai and theoretical appiications. For exampies, the
stociiasticaiiy forced terms can be used to account for numerical and empiricai uncer-
tainties and thus provi(ie a mean to stu&y the robustness of a basic model. Particuiariy,
in the context of ﬂui(is, Compiex piienomeria related to turbulence may also be modeled
by stochastic perturbations.

Aithough the mathematical literature for the deterministic shallow water equations is
extensive, to the best of our knowie(ige, no one has addressed yet the stochastic shallow
water equations before [21]. In the deterministic context, one must assume that the

initial data is small or, otiierwise, the solution is oniy known to exist for a short period
of time. In the stochastic context we consider the shallow water equations forced ioy a
muitipiicative white noise representing e.g. random wind perturioations at the surface
and we opt to focus on the latter situation that is we will look for a solution up to a
small stopping time. The prececiing paper [21] addressed the singie iayer model proposed
ioy Orenga et al in [ii] and [25]. Orenga?s model omits the Coriolis term and assumes
the external force is zero in the momentum equation. In the deterministic context see
e.g. [ii] and [25], who omit the Coriolis term and assume the external force to be zero

in the momentum equation. In [8] and [37] the model is similar to that of Orenga et
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ai., but it has an additional term with % in the momentum equation. The model most
cioseiy related to the present article can be found in [31] It does include a Coriolis term,
but it still assumes no external iorcing and it contains the % term. For convenience, we
choose a model which omits the % term (Wiiicii amounts to a linearization h; ~ H, ) and

adds the term —6Ah to the continuity equation in order to absorb some of the terms
involving the gradient of the height of the water. Due to this extra viscous term, we
require boundary conditions on h, that are speciﬁed below. We also choose to include
an external force that is independent of the solution. A realistic formulation of the
external force can be found in e.g. [35], but this adds more unnecessary difficulties to

the probiem. For more about the piiysicai derivation of these equations, see e.g. [34]

For the two iayer model we are investigating in this articie, we began with the models
proposed in [22] and [27] but uitirnateiy decided on a model similar to [30] As in the

singie iayer probiem, the momentum equations lack any external force. We choose to
include the external forces F and G which are both independent of the solution.

When we consider the stochastic two—iayer system, several difficulties arise. First, we do
not have the cancellation property for the nonlinear term, as is the case in e.g. [1], [17],

[18], and [19] We also do not have the assumption that Vi Or Vo is divergence iree, as
in the Navier-Stokes system (see e.g. [2]) In the deterministic case, this impiies tiiat, in

generai, one can oniy obtain local in time a priori estimates for the soiution7 and hence
local in time existence of solutions. As we will see ioeiow, the same holds in the stochas-
tic context. Few results are known regarding of local in time existence of solutions of
stochastic partiai differential equations. Local in time solutions of the Navier-Stokes
equations have been obtained in [1] In this artioie, the mapping deﬁning the solutions

is “randomized” to account for a white noise forcing. In partiy related directions, we
would like to mention the lecture notes [15] in which the author studies the role that

white noises may have in preventing blow up. See also [6], i7i in which the author derives
results of biow—up in finite time for solutions of stochastic pdes. See also [4] in which

the authors study the two iayer quasi—geostrophic equation; these equations have some
siniiiarity with the shallow water equations iout, unlike the shallow water equations that
we Consider, Weii—posedness is granted for all time in the deterministic context and then
in the stochastic context.

Let us enipiiasize again the generai motivation for studying the present system. Multi-
layered shallow water equations are commonly used in oceanography, to model the mo-
tion of the iiigiiiy stratified flow in the earth’s ocean. Also stochastic perturbations of
geopiiysicai equations are commoniy used nowadays to parametrize the many uncertain-
ties in the models. In the present case one can think at the topography of the bottoni, at
the iieigiit of the upper surface (mini Waves), at wind forces, as well as bioiogicai factors

and / or saiinity.



As we are wori{ing in the intersection of two ﬁei(is, we note that some confusion may
arise due to the terminoiogy. In the literature for stochastic differential equations the
term" weak solution" is referred to " martingaie solution" while the designation ! strong
S [ . . .
solution may be used for a patiivmse solution". In the former notion, one constructs
a probabilistic basis as part of the solution while in the latter case, the existence of
solutions can be established on a preor(iained probabiiity space. For more details about
the two types of soiutions, we refer the reader to e.g. [12], [14], [13], and [24]. Un-

like the stuciy of deterministic nonlinear evoiutionary partiai differential equations, the
stu(iy of Weii—pose(iness in the stochastic setting gives new difficulties due to the addition
of the probabilistic parameter. We will overcome the (iiiqicuity i)y utiiizing a different
compactness result based on fractional Sobolev spaces that allows us to treat nonlinear
stochastic equations in a way similar to the deterministic case; see Ii?)], [32] Proofs of

other compactness emi)e(i(iing theorems can be found in [3], [5], [29], and [33].

In this wori{, we will use the same approach introduced in [9] and [21] to establish

the existence of both martingaie and pathwise solutions. We derive the estimates for
the nonlinear terms closer to those currentiy available for the three dimensional Navier
Stokes equations. Due to the lack of cancellation property for the nonlinear terms, the
results are obtained up to a finite stopping time oniy.

The structure of this article is organized as follows: In Section 2, we review the basic
setting, (ieﬁning the relevant function spaces and introciucing various notions of solutions.
[n Section 3, we provicie some a priori estimates on the moment of solutions of any order
up to a stopping time, whereas in our previous one [21], a priori estimates of solutions

are oniy available up to order two. Furtiiermore, in this section, we deduce the local
bound of pathwise solutions in L>(0,T, H?) if the initial datum belong to the same
space. As discussed in the aforementioned paper, the positiveness of random stopping
times are not grante(i. The absence of a lower bound on the stopping times leads to
further difficulties later on when (ieriving the compactness result and passing to the
limit. In order to conquer these (iiHicuities, we will construct a modified system which
truncates the nonlinear terms in order to obtain the existence of giobai solutions for this
system and obtain the existence of local solutions of the originai system by introducing
an appropriate positive stopping time which we show to be Strictiy positive almost sureiy
afterward.

Tiiereiore, Sections 4 and ) are aimed to establish the existence of both giobai martingaie
and patiiwise solutions of the modified system. In Section 6, we establish the existence of
local martingaie solutions, patiiwise solutions and maximal patiiwise solution by deﬁning
an appropriate stopping time. Finaiiy, the Appen(iices collects some useful lemmas and
tiieorems, among the other existing results which are used tiirougiiout the article. We
believe that these results are very Wi(ieiy appiicabie for the stu(iy of well pose(iness of
other nonlinear stochastic partiai differential equations and therefore hold in(iependent
interest.



Remark 1.1. Different boundary conditions on v; and h; for i = 1,2 appear also in the
literature, such as:

v,-n=>0 and curl(v;) =0 on OM x (0,7T), (12)

Vhi - n=0 on OM x (0,T). (13)

This set of boundary conditions yields the same type of results but it requires more
technical work.

Remark 1.2. Physically the depths of each layer of water are necessarily positive. For
a proof of the positivity of h;, see Appendix B in /21]

2 Analytic tools

2.1 The abstract functional analytic setting

We begin by reviewing some basic function spaces associated with (1.1). We will work
with the spaces H = Hy x Hy x Hy X Ho, V =V, x Vi x Vi x Vi where

Hy = LA(M)?, Vy i= (HEM))?, Hy = L3(M), Vy := HE(M). (2.1)

the spaces H; and H, are endowed with the usual inner product and norm denoted ]oy
(-,-) and | - |, respectively, while on V; and V3, we will use (-,-) and ||-||, which are the
usual inner product and norm of the gradients.

We also consider fractional powers of the (—A) operator with the boundary conditions
(1.1g) and (1.111). By the classical spectral theory, there is an orthonormal basis {r i1

of H and an unbounded increasing sequence of eigenvalues { Ak }e>1, \de — 00 as k — oo,
such that —Aw, = M\e. We define D(=A) = V 1 (H2(M)) and for o > 0 we take:

D((—A)*) = {u € Hy: i A ugl? < oo}7 (22)

k=1

endowed with the Hilbertian norm

0o 1/2
ulo = [(—A)%u| = (Z A§a|uk|2> . (2.3)

Here, u = 22, upaby with [ul”> = 550 |ug|? < oo.



For the Galerkin scheme beiow, we introduce the finite dimensional spaces

H, =span{¢n,...,¢¥,} and let P,, Q,, = I — P, be the projection operators onto H,, and
onto its orthogonai compiement. By abuse of notation we will also use the operator P,
to denote P,v; = P,(v;,0) and P,h; = P,(0, hy). We have the generaiized and reverse
Poincaré inequaiities which hold for any o < Qo

| Patt]a; < AR [ Pota, and |Qnttfa, < |Qntt]a- (24)

- Aocg a1

2.2 Stochastic preliminaries

In this section, we discuss the stochastic framework on which much of the subsequent
anaiysis relies. For an extended treatment of this topic, we refer the reader to [12].

To begin with, we define a stochastic basis S := (Q,]:, {Fi}t>0, P, {Wf}kzl) that is a

filtered probability space and (Q, F,P) is the underlying probability space, {Fiti>o is
a compiete right continuous i‘iitration, and for i = 1,2,3,4, {Wik}kzl is a sequence o
independent one-dimensional Brownian motions adapted to Fi. Expectation is taken
with respect to P and is denoted by E.

Let s be an auxiiiary separaioie real Hilbert space endowed with a Hilbert basis {ej}j>1.
We then consider the stochasticaiiy driven terms in (ii) Wil(t, -, w), the —valued

stochastic processes, iormaiiy represented for the moment, by the foiiowing series:

Wilt, - w) = S WE(t,w)e(). (2.5)
=1
This expression makes each Wi a cyiindricai Brownian motion evoiving over a separabie
space 4 with ortiiogonai basis k-

We next recall some basic definitions and properties of spaces of Hilbert-Schmidt oper-
ators. To this end, we suppose that X and Y are two separaiaie Hilbert spaces with the
associated norms and inner products given by ||, ||y and (-, -)x, (-,-)y, respectively.

We denote by Lo(4, H) == {R € L(U, H) : > |Rey.|5 < oo} the collection of Hilbert-
k=1

Schmidt operators mapping from $( into X. This space Lo(4, H) is a Hilbert space

equipped with the ioiiowing inner product and norm

(R, S) Loy = >_(Rey, Sex)n and HRHL2 W =2 | R}, -
k=1 k=1

We also define another auxiiiary space Uy D U as



endowed with the norm

|U|1210 = Z w2 for v = Zakek

Note that the embeclcling of &1 c 81y is Hilbert-Schmidt.
Next, given an X —valued predictable process G € L*(Q; L?

loc([o’ OO)) LQ(‘u7 X))) one may
define the (Ité) stochastic integral

M, = /0 GdW, (2.6)

which belongs to M%, the space of all X—valued square integrable martingales (see

2.
For ae. t and a.s., G € Ly(4, H) so that G, = G - e, € H, where {e,} is the basis of 4.
Then (2.6) can be represented as

t
M, = Z/O GdW*.
k

The martingale {M:}+>0 has many desirable properties. Most notably for the analysis
here, the Burkholder—Davis—Gundy inequality holds which in the present context takes

the form, r
T 2
> < CE (/0 ||G||%2(uo,x)dt> ; (2‘7)

valid for » > 1. With G = G - ey, (27) can be rewritten as

E C\E ' G 2.d : 2.8
< . t . .
e J=a (/0 > 6l ) (23)

Here (1 is an absolute constant depending on r. We shall also make use of a variation of
inequality (27), which applies to fractional derivatives of M. For p > 2 and a € 0,1/2)

we have .
E( su <CE / Gl o wdt] 2.9
<t€ OI;“] We.r([0,T];X )> - ( 0 “ ||L2(110,X) ) ( )

which holds for all X —valued predictable G € L2(Q; L? ([0, 00); Ly(8h, X))).

For the convenience of the reader, we shall recall the defiition of the spaces We»(]0, T); X)
in Section 7 below.

E(Sup

tel0,T

/0 S G e

k=1

/ Gaw!’




We can express (29) in a similar form as in (28) as

T
E (tg(i)%] ) <CE (/0 Xk: |Gel% dt) : (210)

We will also make use of the decomposition u = i §9; where & =¢&(t,w) and the ok
j=1

are the eigenfunctions of A = —A in D(A) C H so that Au becomes Y~ &;\;¢;; and if

j=1

p

t
> [ Gepaw*
0

k

Wer([0,7]:X)

be H b= fjbjgbj with b; = (b, ¢;).

j=1

In what foiiows, in our estimates made henceforth C is a generic constant that can
ciiange in its value from line to iine, and sometimes within same iine, if so require(i. We
will frequentiy use the notation < to mean multiplicative up to a constant.

Next, our stanciing assumptions on the external forcing and the noise are that F .G €
L=(Q x [0,T); Hy) and L>(Q x [0, T]; Hy) respectively.!

O'iZ‘/i X [O,T] XQ%LQ(%,%)

are measurai)ie, essentiaiiy bounded in time and L? in Q, aciapteci to {Fi}e>o, and
satisfies

103 (v1, Va, by, oyt )17, w00y < Kv (14 [Vall® + [[vall® + [|Ba]? + [[h2]]) (2~11)

S[up]”O-i(Vl) Vo, hl; h27 t’ w>—gi(‘_’1a ‘72a illa EQ) t? w)”%g(ﬂo,‘/) (212)
tel0,T

< Kv(HVl —Vil* + [[ve = Vol * + [y — ha || + [ — B2Hz>
Vv, Vo, V1, Va, by, ho, by, hy € V, P- as.
We will also need regularity of o; in D(=A), in the sense that
oi: D(—=A) x [0,T] x Q — Ly(8hg, D(—A))

is measurable, adapted to {Fi}i>0, and satisfies

||O'Z‘(V1,V27 hl, h27t7w)”%2(ug,D(—A)) S K1 ( |AV1|2 + |AV2|2 + |Ah1‘2 + |Ah2|2> (213)

1One can also assume F' and G to be random,but we choose F and G to be deterministic here, or
else it will be unnecessarily tricky for the proof of the existence of the martingale solutions later on.



Remark 2.1 (Notation). Fori = 1,2,3,4, for the sake of simplicity, we set o;(U) =
oi(vi, Vo, hi, ho t,w), Wi = 302 exWF, and we then have:

(U)W, = 3 o5 (U) - exdWE = 3 (0:(U)en, o) bediVE
k=1 k=1
= > oo, .14
k=1

where

= ng(ﬂbﬁ? O-éd = <JZ(U) : ek7¢£>7
]
which makes sense since o;(U) - e, € H and {¢¢} is a Hilbert basis of H.

We shall assume furthermore that if ¥ : [0, 7] x Q — H; is predictable, then so is o;(1).
Given a Hy—valued predictable process v € L2(Q; L2(0,T; Hy)), the series expansions
(214) can be shown to be well defined as stochastic integrals, e.g., for i = 1,2,3,4

</0T (U dW1,> <Z/ dWi’“,€r> Z/ V) dWk, (2‘15)

for all v e Hy, and stopping time 7. In this context, the four equations from (1.1&)
to (lld) quy make sense as [to integrals with values in the spaces V{, Vi after (Ité)
integration from 0 to t, for a.e. t € [0, 7.

2.3 Definitions of solutions
Here we define the notion of strong and weak solutions to problem (1.1) from the pro]o—
abilistic view. First, we recall what it means for a stochastic process to be predictable:

Definition 2.1. For a given stochastic basis S, let & = Q x [0,00) and take G to be the
o-algebra generated by sets of the form

(5,{] xF, 0<s<t<oo, FeF; {0xF Fek. (2.16)

An X -valued process U is called predictable w.r.t. S if it is measurable from (®,G) into
(X, B(X)) where B(X) is the family of Borel sets of X.

We next give the definitions of local and glo]oal solutions of (11) for both martingale

and pathwise solutions. Before that, we make some assumptions for the initial con-
dition (v1(0),v2(0), h1(0), ho(0)), which may be random in general. For the case of
martingale solutions, since the stochastic basis is unknown, we are only able to specify

10



(v1(0), v2(0), h1(0), h2(0)) as an initial probability measure 1o on Vi x V4 x V3 x V4. For
the case o pathwise solutions where the stochastic basis & is fixed in advance, we assume
that relative to this basis (vo,ho) is a Vi x Vi x Vo x V; valued random variable such
that (v1(0),v2(0), h1(0), ha(0)) € L2(Q, Vi x V4 x V3 x V3) and is Fy-measurable and in

ition we assume that
vi(0) € LP(Q, Fy, V1), hi(0) € LP(Q, Fo, Va) for i = 1,2. (2.17)
Definition 2.2 (Local and global martingale solutions). Suppose that o is a probability
measure on Vi x Vo and fori =1,2,3,4, 0;(U) satisfies the Lipschitz conditions in (2.11)
and (2.12), is predictable, and Fi-adapted. Then we say that (5,\71,\72,};1,};2,%> s a
local Martingale solution of problem (1.1) if
S = (Q,]:", {,7:",5}»0,1?’, Wl,WQ,Wg,W4> is a stochastic basis, T is a strictly positive

stopping time (i.e. T > 0 almost surely) relative to Fioand fori= 1,2 Vi(- A7), hi(- A7)
are Fi-adapted processes in Vi, Vs, respectively, so that

Vi(- A7) € LA(Q; L2([0,T]; V1)), (2.18a)
hi(- A7) € L2 L2([0, T); Va)), (2.18b)
Vi(t)Li<s € L2(9; L2(0, T; D(—=A)), (2.18¢)
hi(t) 1<z € L2(Q: L2(0,T; D(—A)). (2.18d)

Furthermore, the law of (\71(0),\72(0), hy(0), h~2(0)> is o, i.€.
wo(E) = P ((\71(0), v2(0), 51(0), h~2(0)) € E) for all Borel subsets E C Vi x Vi X Vo X Vs,

and (\7, ﬁ) must satisfy almost surely for every t > 0, every v € Vi, every n € V, and
fori=1,2

tAT ~ ~
(Vl (t VAN 7' +/ (—VlAvl + (Vl V)\71 + thl + g&VhQ + fk X \71 — F, ’U) ds

= @000+ [ S w0

(219)
(Va(t AT),v) + /MT —1pAVy + (Vo - V) Vo + gVhi + gVhy + fk X vy — G, v) ds
v) + /OM% i(ag(U)ek, v)dWE,
k=1

(220)
(it A7), +/MT (hiv) — 68k, g) ds = (1(0), +/W S 03(U)ek, n)dWE,
(221)

11



o0

+/W (hava) — 62T, ) ds = (a(0), +/W > (ea(U)er, IV
222)

We say that the martingale solution (5’, v, ﬁ,%) is global if T = 00 a.s.

Definition 2.3 (Local, maximal and global pathwise solutions). Suppose that

S = (0, F, (F)eo0, P, Wy, W) is a fized stochastic basis and that (v1(0),v4(0), h1(0), h2(0))
is a (V1)? x (Va)? valued random variable (relative to S) satisfying (218) and the same
conditions hold for F,G and o;, i = 1,2.

(i)

(i)

(ii)

A quintuplets (vy,va, hy, ha, T) is a local pathwise solution to (11) if T is a strictly
positive stopping time, vi(- AT) ,va(- A7) Fi-adapted processes in Vi, and hy(- A
7),ha(- A T) Fi-adapted processes in Va (relative to the fized basis S) such that
(2.18)~(2.20) hold.

Pathwise solutions of (1.1) are said to be unique up to a stopping time 7 > 0 if
given any pair of pathwise solutions (vVi,Va, hy, ho, ) and (V1,%, hy, ho, T) which
coincide at t =0 on a subset )y of Q-

Q= {v1(0) = 91(0), v1(0) = ¥1(0), 1a(0) = }n (0), ha(0) = Fn(0)} € ©, (223)

e P (Lo, (vi(t AT) — Vi (EAT)) =0,V >0) =1, (2.24)
P (Lo, (Va(t AT) — Vo(t AT)) =0,V > 0) = 1, (2.25)

P (1o, (hi(tAT) = ha(tAT)) =0,%>0) =1, (2.26)

P (1o, (ha(t A7) = ha(t AT)) = 0,¥¢ > 0) =1 (2.27)

Suppose we have {T,}n>1, a strictly increasing sequence of stopping times that
converge to a stopping time &, and assume that vi,va, hy and hy are predictable
continuous Fi-adapted processes in Hy and Hs, respectively. We say that
(vi,Va, hi, he, &) := (vi,Va, hy, he, &, {Tn}n>1) s a maximal pathwise solution if
(v, v, hi, ha,T,) is a local pathwise solution for each n and

€ 13
sup ||vi||* + sup ||V2||2+/0 |Av1|2ds—|—/0 |Avy|*ds+
te[0,€

te[0,€]
2 e c 2 (2.28)
sup [|hll*+ sup [[hal[*+ [ |Ahds + [ [Ahof*ds = oo
t€[0,€] t€[0,¢] 0 0
a.s. on the set { < oo}. If we have
2 ¢ 2 ¢ 2
sup [Vl + sup vl [ AP+ [ |l
el el i i (2.29)

2 2 5 2 5 2
sup (|2 + sup [|holl? + [ [AR2ds + [ |Ahafds =,
t€[0,¢] t€[0,¢] 0 0
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for almost every w € {§ < oo}, then the sequence T, announces a finite blow-up
time.

(iv) If (vi,va, h, ho, &) is a mazimal pathwise solution and & = oo almost surely, then
we say that the solution s global.

We now state the main results in this work:

Theorem 2.1. We are given g as a probability measure on'V, F,G € L*(0,T; Hy) and
oi(U), i =1,2,3,4 satisfying the Lipschitz conditions (2.11) and (2.12), predictable, and
Fi-adapted. Then there exists a local martingale solution (5,\71,\72, ha, HQ,T) to (11)

Theorem 2.2. Assume we are working relative to a given fized stochastic basis and let
F € L>0,T;Hy), G € L*(0,T; Hy) and o;(U), i = 1,2,3,4 satisfying the Lipschitz
conditions (211) and (212), predictable, and F;-adapted. Suppose furthermore that

(2.17) also holds. Then there exists a unique, mazimal pathwise solution
(V17 Vo, h17 h2; 57 (Tn>n21) to (11)

We ]oegin by establishing a priori estimates on the moments of solutions of (1.1). Below

we show how regular such a solution must be depending on the space from where the
initial data is taken.

3 Formal a priori estimates

We now state a lemma that enables us to derive a LP— norm on VU for all p>2 and
L?norm on AU.

Lemma 3.1. (Local a priori estimates)

We fix a stochastic basis S := (2, F,{Fi }i>0, P, W1, Wa) and let U = (v1, Vg, hy, hs) is a
pathwise solution of (11) and let F,G € L?(0,T,H) for some p > 2. Then

1) For Uy € LP(O,T,./—"Q,V)
t*
E( sup  ([[val[” + [|va[|” + [[2][” + [1h2]") +2V1/ AV [|v [P~ dt+
0<t<tx<T 0

tx i "
21/2/0 ’AV2|2||V2||P_2dt+251/0 |Ah1|2||h1||p—2dt+252/0 |Ah2|2||h2||p—2dt>

S E(vi (O + [[va ()" + [[va (0)[” + [lv1.(0) 1) +/OT\F\pdt+ G dt. (3.1)

13



2) ForU, € L*(0,T, Fy, D(—A)) and we further assume that F, G € L*(0,T, Hj(M?))

Eﬂ( sup (|AVI > + [Avs > + [Ah|® + |Ahs[?) +2u1/|mv1|| dt

0<t<i<T

+2y2/ |]Av2|]2dt+251/ HAh1H2dt+262/ \|Ah2n2dt>
0 0

B A O)F + [Av(0) + [Am(O)F +Am()F) + [ IAFPdr +|AGE it
32)

In all cases, the implicit constants depend only on the initial datum and both tx and t
will be specified later.

Proof. 1. We apply the Itd lemma to the map U — |VU/|” in (1.1) and this yields

d|[v1|[P+pr | Ay P ||V [P 2dt+d| Vo |[PHpra | Ava ||V [P72dt+d] n |[P+pdy | Ahy [* ||y [P 2dt+
d||hz2||” + pda |Ah2\2 ||h2|\p72dt = p(F, AV1>HV1HP72dt + p(G, AV2>HV2Hp72dt
— pg(Vhy, Avy)||[vi|[P~2dt — pg(Vhy, Ava)||va|[P~2dt — pg(Vhy, Ava)||val[P~2dt
— pgf)lwhm Avy)|[vi[[P2dt — p(fk x vi, Avi)|[vi][P72dE — p(fk x va, Ava)||vo P2 dt
2

= p{(vi - V)vi, Av) [V [[P72dt — ((va - V) va, Ava)||vo|[P~2dt
- p(V : (hlvl) Ah >||h1||p_2dt — (V . (thg) AhQ)HhQHp_th

+5 Z\Iffl Jerl Fllvillr2dt + ZH@ Jew|[*[|va||P~*dt
k 1

+5 ZIIUs Jeul PllhalP~2dt + Z\Im ew|[*l| ha|[P~*dt

—92) x>
=D S APt PP 0 st

—92) x>
+ PP DS oalt)e, APt + U)er, Aa)?| ot

k=
+p Y _(01(U)ex, Avi)||v1[[P2dW +p Z(Uz(U)% AV) || vo|[P72dWy
k=1 =1

+ Y {o3(U)er, Ahi) | ha||P2dW5 +p > {04(U)ex, Ahs) || ho|[P~2dWY . (3.3)
k=1 k=1

We integrate (328) in time over [0,7] for 0 <r < s < T, take the supremum in r over

14



0, s]; we deduce that:

s [l el el e [Pl [ lavaivalp-2a

20

< 8([v1(O)[I” + [[v2(0)[I” + [[P1 (O)I” + [[h2(0)[[7) + >_ Mi+

i=1

U)er, Ava)[[vo|["~2dWy

| torWen, Aviva 72w

k=1

| (oa(@)ew, Ann)l|a |~ 2aw
k=1

+8p sup

0<r<s

+8p sup
0<r<s |40 k=1

| S (ou(@)er, Ang) o]l 2dw:

0 p=1

+8p sup

0<r<s

+8p sup

0<r<s

We will now estimate each of the quantities on the right hand side of the above inequality.
We proceed with the terms M; through Mg. By using the Cauchy Schwarz inequality,
the Young inequality and the Poincaré inequality, we obtain:

My =8p [T, Av)l vl < € [C(FPae+ vafr)de+ 20 [ 1awif? vl
34)
In the same manner, we obtain the following bounds:

My =8p [ (G AV vl 2de < C([ [GIde + [valP)at+ 52 [7|aval |vall-2at
(35)

For « =3,4,5,6,i =1,2,5 = 1,2, we find:

S - S py S _
My =g [ 1V AV, 31772t < [l + v )t + B2 [, vy -2t
(36)

where p either equals 8pg or 8pg/’f. For g =7,8,i=1,2, we obtain:

My = 8p [k v AVl il 2t < © [ClvalPae+ B0 [ Avi? i3
0 0
(3.7

The nonlinear terms are bounded by utilizing Holder’s, Agmon’s, the Young and the
Poincaré inequalities

My = 827/ (v - Vv, Avy)] [[vy|[P2dt < O/ Vil oo [VVI AV [V |[P2at
<C [l [avifF Vvl [avi] v 7-2ae < © 19wl 1A v e
< [19nil val2de + 52 M A v -ae
gc/os||v1|yp+4dt+10/0 AP (v P-2de. (3.8)

15



Similarly,
s v
Mg i=8p [ [{(va - V)va, Ava)| [val 2t < © [valp e+ 22 [ AvaP vall-2at.
(39)
We estimate the term My by first splitting it as follows:
My, = 8p/ (V- (havi), Ah| || [P 2dt (3.10)
< 8p [ (9 - vihe, Ab)al*2dt -+ 8p [ [(Vhrvi Ao 1] 7de
= My, + M.
M}, is treated by first using Holder’s inequality:
Mlll = /0 |<V : Vlhl, Ah1>‘||h1||p72dt S C/() |VV1’ |h1’Loo |Ah1‘ thHpith.
By utilizing Agmon’s inequality in space dimension two for the second term, we obtain:
s 1 3 _
M < C [Vl 1l ® 1R -2t
By applying the Poincaré inequality and the Young inequality to the first three terms,

4
with p =6,¢=12,r = 3 we obtain:

p51

My, S/O (ClIvAll® + Cllbl® + =7 | Ak ) [y [Pt

) s
=5 ) 1A It .0 / (a7 a7t (3.11)
We derive the estimate for M7, as follows:

M121 a /0 [(Vhava, Ah1>H|h1”pi2dt < C/O |Vha|pa [Vi]pa [Ah] Hh1||p*2dt.

1 1
By using Ladyzhenskya’s inequality which is |u|;, < C'|u|? [Vu]? in space dimension two
for the first term and the embedding H} < L* in space dimension two for the second term,

the next line follows

M < O [ 19k} 18] 9w 2.

By utilizing the Young inequality for the first three terms of the RHS, we obtain:

M < [l + 20 [ 1amf lp=2d+ 0 [Tl (3.12)

By combining (311) and (312), the bound for Mj; results as follows

s ) s s
My <C [t + B0 AR P2+ C [ vl e (3.18)
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Analogously, we obtain:
M12 L= /0 |<V . (hQVQ), Ah2>| dt (314)

s ) s
<C [ (IwalP =2 4 i) 4 292 [ a2t

Again, by simply using the Lipschitz assumptions (2.11) and the Young inequality, we
obtain:

Mg Mgt Mg M= 80| 13 o @)alPsl” a3 lln(O)en el
k=1 k=1

[ Sl S el
< 8Kvp/OS(HHVlH2+HV2H2+Hh1H2+Hh2H2)(HV1Hp2+\|V1Hp*2+\|vz|\p2+Hh1Hp2+Hh2Hp2)
< c/os<1|v1|yp + [vallP + all? + helP)de + CT. (3.15)
We observe that since V = Hj(M)%, we have for o;(v,h)e, € H,i=1,2, Au € H,
(o;(v,h)ex, Au)y = /M oi(v, h)ex - AudM.
By integrating by parts, this is equal to
- /M Vou(U)e - VudM + /8M oi(U)er(Vu - n)dS = — /M Voi(U)er - VudM. (3.16)

The next estimate is obtained via Lipschitz assumptions (2.11) along with the above
expression,

M17 + M18 + M19 + M20 =

4p(p—2)[/0 Z<01(U)€kaAV1>2||V1||p_4dt+/O S (09(U) e, Av)?||vo| [Pt
k=1 k=1
Jr/ Z<03(U)€k,Ah1>2Hh1Hp*4dt+/ Z<U4(U)€k,Ah2>2Hh2Hp4dt]
0 k=1 (et

= 417(19 - 2) {/0 Z(VQ(U)ek?VV1>2HV1HP74dt —i—/o Z<VU2(U)€k, VV2>2||V2||p74dt
k=1

k=1
+/0 Z<VUS(U)€k7Vh1>2||h1||17—4dt —}-/0 Z<VU4(U)6k, Vh2>2|’h2||p_4dt1

k=1 =
<O [T IVl 4+ Ivall ol 4+ W |2 vl 72 4 vl 4 W72 + ol e
<O [l + Ivall” + | + 1holl?) + CT. (3.7)
The last line follows thanks to the Young inequality.
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Combining (3.4)7(3.17), multiplying by 2, and finally taking the mathematical expecta-
tion on both sides and this yields:

E(Oiug (N O+ v+ i (5) I+ 1ha()7) + pr [ 1AV (©F Ilva (B dt
puy [ 1AVa(®)F IvallP2dt 498y [ AR (8)F [ 7~2dt + pds | |Ah2(t)!2\|h2|!p_2dt>

< SE (v )1 + [va(O) + a0} + [1ha(0)]") + o( [ e+ dt) Lo

+ E(/O (Ve + [1vall? + [ 1 + 2 lP) (vl + vall* + 1Al + ||h2||2)2>+

e Z<01<U>ek,Avl>||vl||p-2dwf) e Z<az<U>ek,AvQ>||V2||p—2dW§)
rel0,s — r€(0,s] _
+8 (s | [ lou()en, A0t )+ (sup | [ 5 (os(0)en, A halp-2arv
rel0,s] [0 L4 ref0,s] |70 k=1

).

(3.18)

For i = 1,2, by making use of (3.16), the BDG inequality, and the Young inequality, the
two stochastically forced terms are addressed as follows:
[ S @ )er vy, =2t
0

B sw )
r€l0,s k=1

< (with Gey, = Gi = (03(U)ex, Avy) || vi][P?)

1
s @ 5
< 01E</ Z(a,-(U)ek,Avi)2||vi“2(p—2)dt>
(Rt

N

Z(Vai(U)ek, VVz‘>2||vi||2(P—2)dt>

l

1

<C

(]
< ([ X ITn(O)al (9w o)
=

/Z\vm Jewl vl **~Vd ) < CE

( sup Hvin_l) (/S Z \Vai(U)ekIQ dt)
r€[0,s] 0 =1

P
2

1
< 5 < sup ||vZ||P> +C’E</ Z Vo (U)ex)? dt>
rel0,s]
1
< 5& (s IP) + OB [t wilp + el + ol + rafyar). (319
rel0,s

The last line holds true due to the Lipschitz assumptions (2.11) and Holder’s inequality.
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Analogously, for i = 3,4, j = 1, 2 the following estimates hold

(sup [ ek,Ah,->thH“de)

rel0,s] | Y0

§2E<SL[Bp e >\|p> +OE</O (1+||V1||p+||V2||p+||h1||p+thH”)dt). (3:20)
re S

Collecting all the estimates in (3.18){3.20) and multiplying by 2, we obtain:

E(p (S llvitr H”+ZHh W) +p [ 1Avi@) (v (0]t
r< S,L' 1

+va [ 18va(O) Iva(Odt+ 981 [ IAROF IhalP T2t b || Aka(e) Hh2<t>up-2dt)

<EQ6IM O + Va(0)I + 1l O + [h2)F) + CE( [ (P +[GP)dt) +C

<EQ6IM O + Vo)1 + [l O + A1) + CE ( ["(FP +|GP)dt)

s 2 2
VE ( [l + Sl v+ el 2 + ||h2||2>2dt) | (321)
i=1 =1

Now, we assume that M > 1 and define the stopping time
T =Ty = ;gg{(llvl(T)HQ + [ (P)I* + [[va(r) I + o (r)?) > M} (3.22)

Replacing s by s A 7 in (3.21) yields

[0,sAT]

SAT
E( sup (HV1(T)H”+Hh1(T)Hp+HVz(?‘)H”+\!hz(T)\!p)+pV1/0 Ay [ [[vs [P~ 2dr+
re
SAT 9 p—2 SAT 9 -2 SAT 9 p—2
+p51 0 ‘Ahl‘ ”h1H d7'+pl/2 0 |AV2‘ HVQH dr+p52 0 ‘Ahg’ th“ dr
T
< 16E<(HV1(0)HP+ [v2(0)[I” + (A1 (0)[I” + |,h2<0)”p)+/0 (17 + |G\”)dt+0)

+ CMZE( [ sup (v )P + @) + st + th<7")|!p)dt) vo (33)

Now, we define

<r<s

V(t) = E( [ s (W) + I ()P + va(0) 7+ ||h2<r>||p>ds), (324
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and

Ko = JE(16(!\V1(0)Hp+th(O)Hp+\|v2(0)Hp+Hh2(0)H”)) + [ UFP+IGr)dC. (3.25)

From (323) and (325), we obtain:
V'(5) < Ko+ CM?Y(s).

This gives

ICO M3s
V(s) < Yol (ec = 1) . (3.26)

Along with (323) and (3.26), we deduce that

SAT
E( sup_ (V2 (r) 17+ ()P + V2] + ()P pon [ vl v 72+

rel0,sAT]

SAT 9 p—2 SAT 9 p—2 SAT 9 p—2
py2/0 A ? [|v|| dr—l—p(Sl/o INNRIA dr+p52/0 | Ao ? || o7~ 2dr

Ko

<
S ANEIVE

OME S OM2 < Iy + KpelM s (3.27)

The right hand side of (327) is bounded by M if

1 M — Ky

s < CM2 1Og ICO = SM.

As long as M is large enough such that M — Ky > Ky or M > 2K, the local existence
in time of solution is granted on [0, sy; A 7M].
In other words,

E( sup [[vi(r)[|” + sup [[vo(r)||P + sup [[A(r)[["+ sup [[A(r)[]”
re

[0,sAT] re[0,sAT] re[0,sAT] re[0,sAT]
SAT 9 p—2 SAT 9 p—2 SAT 9 p—2
+py1/0 AV [vi | dr+p1/2/0 |AV,[? [[va dr+p51/0 N

SAT
phy [ 1A nmu”dt) =
0

M-
Ko

1
for 0 < s < log 0, with M > 2/C,. O

CM?

2. Applying the It6 lemma to the map U — |AU|? in (1.1) and noting that due to the
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Poincaré inequality, both of norms |V - (V2u)| and ||Aul| are equivalent, we obtain

d| AV [ 4201 | Avy |2t +d | Avy | + 20 | Ava |2t +d | Ahy | + 261 || Ahy || 2dt+d | Ahy | +
252||Ah2||2dt = 2<F, A2V1>dt -+ 2<G, A2V2>dt - 29<Vh1, A2V1>dt - 29<Vh1, A2V2>dt

— 29(Vhy, A>vy)dt — 2972 (Vhy, A2v)dt — 2(fk x vi, A%v,)dt — 2(fk x Vo, A%vy)dt
P1
—2<(V1'V)V1, A2V1>dt—2<(V2'V)V2, A2V2>dt—2<V'(h1V1), A2h1>dt—2<V'(h2V2), A2h2>dt

+ Z Doy (U)enPdt + 3 [Aas(@elPdt + 3 |Acy(U)er2dt + 3 [Aoa(U)ex Pt

k=1 k=1 k=1
2> (o1(U)ey, A%vi)dWF + 2> (09(U)ey, A%vo)dWy
k=1 k=1

2 i(ag(U)ek, A2\ dWE + 2 i<a4(U)ek, A?hy)dWy. (3.28)
k=1

k=1
Integrating (328) in time over [0, 7] and taking the supremum over 0, 5] foro<r<
s<T yieici:
sup |Avy(r)|*dr + sup |Avy(r)]* 4+ sup |Ahy(r)]* + sup [Ahy(r)]?
0<r<s 0<r<s 0<r<s

0<r<s

+2y1/0 |]Av1(r)||2dr—|—21/2/0 ||Av2(t)||2dt+261/ 1 AR ( t)|\2dt+252/0 | Ahs ()] 2dt

< 8(|AVL(0)* + [Ava(0)* + [Ahy (0) + [Ah2(0) +ZK

+ 16 sup / > (o1 (U)ey, A%v1)dW| + 16 sup / Z oo(U)ey, A*vy)dWy
0<r<s |10 .5 0<r<s |0 .

+ 16 sup /TZ<O'3(U)€;€,A2h1>dW§ + 16 sup /TZ<04(U)ek,A2h2>de . (329)
0<r<s |10 .5 0<r<s |10 .5

By utilizing integration by parts, the Cauchy—Schwarz inequaiity and the Poincare
inequaiity, the estimates for all linear terms follow

s 24 s s
K, — 16/ (P, A% de < f/ |VF|2dt+ﬂ/ | Av|[2dt. (3.30)
0 v Jo 5 Jo

1
s 9 24 s 9 Vo S 9
Ky = 16/ (G, A%vy)|dt < f/ kel dt+—/ 1AV, |2dt. (3.31)
0 vy Jo 5 Jo
For a = 3,4,5,6,1=1,2,7=1,2, the foiiowing estimates hold

K, = 77/05 [(Vhi, A%, dt < ?;’]7/0 Ah ()] dt + lg/OSHAijth, (3.32)

where 7 either equals 16¢ or 1692—?.
For g =7,8,i=1,2, we have:

Ky =16 [ (1 vi, A% e < 3”19 / aviPar+ 2 [avya. (333)
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By integration by parts and prociuct ruie, we spiit Ky as follows:
Ky = 16/ (v1 - V)vi, A%vy) | df < 16/
0 0

< C'/:l(V-Vl VvV (V)| +C/OS (ViAv, V- (V2vy)| dt
= Ky + K;.

(V- [(vi- V)i, V- (Vv dt - (3.34)

We evaluate K} by first using Holder’s inequaiity and the Poincare inequaiity,
KL= /0 (Vvi Vv, V- (Vv < 0/05 Vv 24 [| A, | dt
< ["millavi][aviliat < € [ 19| [Vval? | | Ava fat
— 0/05 Vi |? || Avy |2t (3.3)

where we have used Ladyziiensi(ya’s inequaiity to obtain the LHS and
interpoiation inequality (Lemma 74) to achieve the RHS on the second line.

4
Finaiiy, by applying the Young inequaiity with p=4,q= 3 to the last reiation,

we obtain:

1o [t 2 Sl 116
Kl < E/0 1AV, dt+0/0 v [[0dt. (3.36)
The term K3 is estimated as follows:
K2 ::/0 (V1 AvL, V- (VA dt < c/o Vi | AV AV, [dt

s 1 3 s 1 3 s 5
<C [Tt avi avide < C [l 9wl aviavide = C [ 9]t av]

where Agmon’s inequaiity is used to obtain the first relation and the interpoiation inequaiity

(Lemma 7.4) is used to accompiish the second inequaiity. Then, in virtue of the Young
inequaiity with p=_8,q= i, we ﬁnaiiy find:
K2 < % /Os||Av1||2dt + C’/08||v1||10dt. (3.37)
Hence, i:)y (3.35) and (3.37),

Ko <0 [lavilde+ ¢ [ (vl + v )t (3.38)
Simiiariy,

Ko = 16/0 (Vs - V)va, Avy)| dt

< ”32/OsquH?dt+o(/os|yw|y6dt+/Osuwnwdt). (3.39)
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We estimate K 11 by first splitting the term as follows

Ku ;_16/\ (hva), A%y dt = V- (V- (hv)), V- V2h) de - (3.40)

< o/ (Ahyvi + Avihy 42V - V1Vh1, V- (V2h)| = K+ K+ K
0
K} is estimated by the Holder’s, Agmon’s inequalities as follows:

Kl = 0/0 (Ahavi, V- (V20| di < c/o INAP AN
By appiying the interpolation inequality (Lemma 74) to the first term and the embedding

H& — L* in space dimension 2, we obtain:
S 1 1 S 1 3
Kl < C [0 1Vhf* Ak Fvall|ARldt = € [ [Vhaf* | AR v at
s s ) s
< c/ \Vh1|4dt+0/ HleSdtJr—l/ | AR, ||2dt (3.41)
0 0 3 Jo

4
The last line holds due to the Young inequaiity with p=8,q=8,1= 3

K% is evaluated i)y using Holder’s inequaiity:

K2 = /0 [(Avih, V- (V2h)] < c/os AV | [ ARy |dt.

By using Agmon7s inequaiity to control the second term of the RHS, we obtain:
K3 < C [ 1avi] |l [Ah ] (AR at

By appiying the interpoiation inequaiity (Lemma 7.4) to the third term, aiong with
the Poincaré inequality to the second term of the RHS, we obtain:

K3 < C [ 1avi] 3 sl AR AR dt = © [ 1A ] AR |t

s s 5 s
< c/ |Av1|4dt+/ ||h1||6dt+—1/ | AR 2dt,
0 0 3 Jo

The last line follows thanks to the Young inequaiity with p=4,q=8,r= i (3.42)

In the same manner, the treatment for the term K 3 is proceeded as follows:
K3 = /0 (V- ViV, V- (V)| < c/o IV vl Vi o || ARy | dt
s 1 1
< c/o IV ha|? | AR [Avy] | Ava ||t

< C [Tl Nl ¥ A F 1A Akt

where both Agmon,s inequaiity and the interpoiation inequaiity (Lemma 7.4) are appiie(i

to accompiisii the second line. We then use the Young inequaiity with p=8,q=4,r= %
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to derive:
) s s s
K3 < §1/ ||Ah1||2dt+0/ ||h1||6dt+0/ Av, | dt. (3.43)
0 0 0

Gathering all the estimates (341), (342) and (343), we find

Vlhl (V2h1>‘ (344)

: C</o ”hl”4+ Pall® + v I + |AV1’4dt> +61/0 | ARy |2dt.

We obtain the similar bound for the term K 12 as follows

 (vVahs), V - (V2hy)| (3.45)

< C(/O Hh2H4 + Hh2”6 + “V2H8 + |AV2’4 dt) =L 52/0 HAh2”2dt.

By utﬂizing the Lipschitz assumptions (2.13), we find
Kis+ Ky + K5 + Ky :=
32/ (|Aal ek| + Ao (U )ek]2 + |A03(U)ek]2 + \A04(U)ek\2dt)
< 39K, /08(1+ AVi + Al 2+ |Avaf? + [Ahg[)dt. (3.46)

Accumulating all the estimates from (330) to (346) and taking the mathematical ex-
pectation on both sides yield

E( sup (|Av1[2 4 |Ava|® 4 | Af > + |Ahy[? +y1/ 1AV ( )\|2dr+1/2/ 1AV, ()2t

0<r<s

v [ lamolPaes o [(1arFar) < SE(aviOF + A0 + [A1OF + 100
|

2>d
)dt

+C/ (||Vl||8+II\lelg)dHC/O (e l1* + R+ 1all® + l2l® + [Ava]* + [Avel*

+EIC0<|VF|2+ |VG|2> +32TK1+IC1]E/O <|Av1|2+ |AV,[* + | ARy + |Ahy

t
(Oiligs /0 };<01(U)ek,A2v1>de) (OS<171”I<35 /0 I;<02(U)ek,A2V2>dW2k>
(Oggs /0 I;@?,(U)ek,AQthWf) (OSQ:ESA I;<al(U)ek,A2h2>de )
(347)

24



(3.48)

where
2 32 2
/Co:max<3 ; ) /C1—32max<g 9 mg g gAl)

IS %1 7/2 V1P1 %1 11

The stochastic terms are estimated ]oy using integration ]oy parts, the BDG inequahty,
and the Lipschitz assumptions (2.12):

su oi(U)ey, A%\ dwF
(0<r1<38 / Z r > !
1 1
2

< C’lE(/ Z (Vo,(U)ey, V (V)Qvi)th) < C’lE(/ Z (Ao (U)e, V)Qvi)th)

) < (with Gey = Gy = (03(U)ex, Avy),i = 1,2)

- s 00 . ) - | o [$ [e%9) | ) 2
_0111«:( /0 ;::I\Ao—l(U)ekHAvﬂ dt) _CIE<0228|AW(T)| /0 g::l\Aaz(U)ek] dt)
1 1

S| s avin)P | + B /§:|Aaz Yeu|2 dt

IN

2\ o<r<s

;1@( sup \Avi(r)|2)

0<r<s

IN

2021@(/05(1 + |AVI() ] + |Ava (O] 4 |ARy (1) + ]Ah2(t)|2)dt> : (3.49)

Similarly, for i = 3,4,7=1,2, we obtain:

<OS<171«I<)5/0 Z(ai(U)ek,AQh YAWF ) ;E(Oiligs\Ahj(r)f) (3.50)
+ Kf E(/( +|Avl(t)\2+|Av2(t)\2+!Ah1<t>r2+mh2(t)\2>dt)-

Combining (347) to (350) and multiplying by 2, we find

IE( sup (JAvy|* + |Ava)® + |Ahy | + yAh2|2) +1E<u1/0 HAvl(r)H2d'r+1/2/0 | Avy(t)|dt

0<r<s

s 2 s 2
+51/0 AR (1) dt+52/0 |ARs(1)] dt)
< 81@( AVI(O) + |Ava(0) + [ Ak (0) + |Ah2<o>|2) L BTE,

+ L, / <yVF|2 + |VG|2>dt +IGE / <|Av1|2 4 Ave? o+ |AR 2 + |Ah2|2>dt
0 0

+C/0 (||h1||4+||hz||4+||h1||6+||h2||6)dlt+0/O (vall® + 1vell® + [Ava[* + |Avy[!)dt
(3.51)
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Vvhere
k:g = Kh»+-4(jlf(y

Now, we assume that N > 1 and consider the stopping time

=Ty = gg{(mvl(s)f +[Ava(s) [P + | Aha(s)]” + [Aha(s)[*) > N} (3.52)

Finaﬂy, we consider the stopping time
N = v ATy (353)
where Ty 1S defined at (3.22).

Replacing S by s ATMN i (351) gives

E( sup (|AV1\2 + |AV2]2 + \Ah1]2 + \Ah2|2> +E<V1/O |]Av1(7“)H2d7’—|—
0<r<s

" /Os|’AV2<t>H2dt> +E<51/0

< 16E< |AV1(0)]* 4 [Avo(0)[* + |AR(0)]> + |Ah2(0)|2>

sATMN

]|Ah1(t)H2dt+<52/o HAhg(t)]|2dt>

+EK, /0 (\VF|2+]VG\2>dt+32TK1+IC2E/OS (|Av1|2+|sz|2+|Ah1|2+|Ah2|2)dt
+ CNE /S(|Av1|2 AV 4 [AR 4 [Ahs|?)dt + C/S(MQ + M3 4 My (3.54)
0 0
\N% deﬁne

v = [ <|AV1(t)|2+|AVQ(t)|2+|Ah1(t)|2+|Ah2(t)|2>dt (3.55)

K3 = 16E(|Av1(0)]” 4 [Avi(0)]* 4 |Ah1(0)]* + |Ahy(0)]*)+ (3.56)

T
Ko [ (IFIP + |GIP)dt + CT(M? + M? + M") + 32T Ky,
0

From (354), <355) and (356), we obtain

V'(s) < Ks+ (CN + K3)V(s) (3.57)
This gives
V(s) € i (el 1), (358)
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In conjugation with (3.54), we obtain

sATMN
E( sup (\AV1|2+ AV, > + [Ahy|? + |Ah2\2> —|—2y1/0 |Avy (1)||*dt+
0<r<sATM,N
SATFM.N sATMN sATM;N
2 /0 1AV, (8)|[2dt + 26, /0 | ARy ()|2dt + 26, /0 \|Ah2(t)||2dt>
Ks
< (CN+K2)s (N ‘
e (CN +K2) (3.59)
The right hand side of (359) is bounded by N if
IC3+€(CN+/C2)SIC3 S N
o 1 N-K
_ 3 Pyp—
0<s< N 1K log K SN forNZZICg (360)

As long as we can choose N > 2K, the local existence of the solution is obtained on
[0, EINAN TM’N].

4 The modified system with a cut-off function

This section is focused on the stu&y of the martingale solutions of the foHowing modified
system

dvi + (—ulAvl 00V -+ Wl vall + el gV + 672V + e vl) t
1

=F+ Z Ul(U)edef,
k=1
(4.1a)
dvy + (=2 Avy + O(||vi | + |2l + [[vall + [[h2]))gVhe + gV Ry + fk X v3)
=G+ Y oa(U)erdWy, (41b)

k=1

dhy + (=618 + O([vall + 1]l + [[vell + 1)V - (hav)) dt = 37 o5(U)erdWs,
k=1

(4.1c)
dhy + (=028hg + O([[va |l + [l + [[v2l| + [|R2]])V - (have)) dt = i ou(U)erdWy .
k=1
(4.1d)

For simplicity, we denote 8(||v1]| + |1l + ||Vl + [h2ll) by 6(|U]) for [|U]| = [|vi]| +
[Pl (vl + 2]
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Here 6 : R — [0,1] is a € cut-off function satisfies
i <
0(c) 11i le] < K,
01if |¢] > 2K.

where K is any positive number and is independent of n. The speciﬁc choice for K will
be made more evidentiy in the next section.

Theorem 4.1 (Global existence of martingale solutions to the modified system). With
the same assumptions as in Theorem 2.1, there exists a global martingale solution to

(1),

Theorem 4.2 (Global existence of pathwise solutions to the modified system). Under
the same assumptions as in Theorem 2.2, there exists a global pathwise solution to (4.1)
relative to given probability space S = (2, F,P).

4.1 The Galerkin scheme

Considering the projection P, defined as in (2.4), we introduce the Galerkin approxima-
tion U™ := (v, v}, h?, h}) associated to the modified system (4.1), with v, v, h? and

h2 functions from some interval (0,7,) into P, (V4 x Vi x V3 x V3), namely,
dv? — 1 AVdt + P, [e) (UMD (v - V)V + gVhy + g;’jvl{; +f k" x v?i dt
= p,Fat + f: Po (U™ erdWF,
- (4.24)
dv} — v AVt + P, [ (U™ (v - V)vi + gVhy + gVh] +f k" x vgi dt

= P,Gdt + Y Poo(U™)erdW,

k=1
(4.2b)
dh} + P, [ s AL +oU) v i ZP o3(U™)erdWE, (4.2¢)
dhy + P, i S ALy + 60 (U )V - (hy vy i ZP oy (UM)erdWF,
(4.2d)
v'(0) = v = Povi(0),  h(0) = bl = P,hy(0), fori=1,2. (4.2¢)
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4.2 Uniform estimates for the Galerkin system

The essential estimate for our study below is the foﬂowing:

Lemma 4.1. Let v}, vl h} and hY be the solutions of (4.2) and assume that v1(0), vo(0) €
LP(Q, Fo, H1),h1(0), he(0) € LP(Q, Fo, Ho), F,G € LP(Q2 x [0,T],H) for some p > 2.

Then we have the following estimates

JE( sup [V + sup [HHE)P + sup [V + sup ||h3<r>|rp) <Ki (43a)
0<r<T 0<r<T 0<r<T

0<r<T

and
T T T T
E(/ |Av’f|2dt+/ |Ah7f|2dt+/ yAvg|2dt+/ |Ah§|2dt> <K (4.3b)
0 0 0 0
where K3 and ICy depend only on the data and are independent of n.

Proof. Since P, and A commute with each other and H,, C A, the same proof of Lemma
3.1 carries over to (42) with a slightly modification on the nonlinear terms. Thanks
to the presence of the cut off in front of the nonlinear terms, we can derive the global
bounds instead of local bounds as in Lemma 3.1. We only provide the details for the
estimates of the non-linear terms. The bounds for those terms are derived as follows:

Iy = [ HOUT™ (v - )i, AvD)] vt

< C [ Vil 010DV Vi o 1AV e Vi -2
y 1 nl n n||p—

<C [TV 1AV AV vy -2t

<C [IviIEIveIr2ae+ B2 [ avi vy i-2ar
0 10 Jo

<C [vilrae+ 52 [ ave? vilr-2at, (44)
0 10 Jo

where the third and the fourth lines hold true due to the Agmon’s inequality, the defi-
nition of the cut-off function in (4) and the Young inequality.

Similarly,

T ® n n n n n||p— Sllon pv s n n||p—
To= [ MO D0 - 9)vs, AV V32t < € [vgiPar+ 55 [ 1AV g -de.
(45)

I = [CKOOU™ IV - (ViRD), AR A2t < [ [OU™)V - vk, ARy)|l|h]»~de

[ O VRVE AR |2t = I + I
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We estimate the first term by making use of Holder’s inequality:

- S t
Iy = [ 1OV - ving AR |IREP2de < C [ 1] 10010 VY] AR 157172t

Using Agmon’s inequality to control the first term and the definition of the cut-off

function to control the second term of the RHS, the next line follows

Th<C [ il ARy ARy I P-2de = C [ h)? AR g2
0 0
s ) s
S L e PN R A L (46)
0 4 Jo

The last line holds true thanks to the Young inequality.
We obtain the similar bound for 7 as follows:

~ s ) s
By o [imipae+ P [ ang) w2 (47)
0 4 Jo
Combining (46) and (4.7), we obtain:
T y n n,mn n X n p(s ® n n||p—
Tui= [ 16U )T - (vg), Ak de < € [Tntl+ 250 [ jans? ny|r-2ae. (48)
Almost identically, we obtain:
T § n n,mn n 3 n p(s ° n n||p—
L= [ 16U )Y - (hgvg), Ak} dt < € [ma+ 22 ["|ang P mgr-2ae. (49)

All the estimates for the linear terms and stochastic terms are carried out in the same
way as in the previous section. Combining those estimates with slightly changes on the
constants and all of the relations from (4.4) through (4.9), we deduce that:

E (Oiug VTP + VeI + AT I + ([R5 (s)17) + pra /0 AT Vi (@)1 2dt

v [C1AVHOF VSO 2dt+01 [ AR B~ 2dt+po, | |Ah3<t>|2||h3<t>||p-2dt)
<E(V O + VO + IO + [130)17) + E ([ (FP +|GP)d
FE (U7 + 1302 + 821 + 183 17)ct
(VO + VSO + B O + 11O + E ([ (FP + 6Pyt ) +

E
+B ([ s IHOI+ sup IVEOIP + sup P+ sup )] ) + .
0 |o<r<t 0<r<t 0<r<t 0<r<t
(410)
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By applying the deterministic Gronwall inequality to
Y(s) = E( sup ||V (r)|[P + sup [[v3(r)||” + sup [[AT(r)||” + sup IIhS(T)||p>,
r€[0,s] rel0,s] s€[0,s] rel0,s]
we obtain:

E( sup [[vi(r)|[” + sup [[vy(r)[|” + sup |[A7(r)|[" + sup Hh”( )Hp>

rel0,s] rel0,s] s€[0,s] rel0,s]

< (INE O + N3O + 11O + 11O +E ( [*1FF +1GP dt)
= (O + v + [P + a(0)IP) + [ 1P+ 161 at) . (4.11)

From (410) and (411), the lemma is proved. O

Our goal now is to derive some estimates in fractional Sobolev spaces which are crucial
for establishing the existence of both martingale and pathwise solutions.

Lemma 4.2 (Estimates in Fractional Sobolev spaces). Under the same assumptions as
in Theorem 2.1, we consider the associated sequence of solutions {(v], vy, kT, hY)n>1 of
the Galerkin system (4.1). Let p > 2 and assume that E(||v1(0)[|P?+ ||v2(0)[|P+ ||k (0)||” +
|h2(0)||?) < co. Then there exists a finite number I > 0 (depending only on the data)
such that

<K, fori=1,2, (4.12a)

(‘/ > Pao U )eaE|

Wep([0.T];Hy)

(‘/ ZPO— U )exdVE|
0

<K, fori=3,4, (4.12b)
We, P([O T] Hg)
2

<K, fori=1,2, (4120)

t 00
2 / S Puoi(v®, hm)dwE

0 k=1

/ZPJ ”h”dwk

W2([0.T]; Hy)

) <K, fori=1,2j=34(412d)

(o

Proof. The proofs can be followed in exact the same way as in [21] so we omit them. [J

Wh2([0.T];H2)

4.3 Compactness arguments

We fix a stochastic basis, S = (Q, F, (F)iso, P, Wy, Wa, W3, W), and given (v?, vJ, h9, h9)
which is fo—measurable and has distrlbutlon Mo Then we go back to the finite dimen-
sional approximations relative to S and (v, v, 1Y, hY). We define the phase space

4
X =Xy, X Xy X Xy X Xy, x [ X,

i=1
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Where

Xy, = Xy, = LX0,T; V1) N C([0,T]; V),
Xy, = X, = L2(0,T;V3) N C([0, T); V), (4.13)
Xw, = Xw, = X, = Xw, = C([0,TT; Lhy).

We consider the probabﬂity measures

P(v" e -) e P(L*0,T;: V1) NC([0,T): V})), (4.14)
i, () = wip, () =P (" € -) € B(LP(0,T5 V) N C([0, T); V3)), (4.15)
and  pw, () = iy, (-) = P(W; € ) € P(C([0, T]; tho)), fori=1,2,3,4. <416)

=

»

This defines a sequence of probabﬂity measures (1" = [y X flg X X o X Hle Ky,
on X. Then we have the foﬂowing tightness result:

Lemma 4.3. Consider the measure u™ on X defined as above in (4.14) 7(4.16). Then
the sequence {u"},>1 is tight and therefore weakly compact on the phase space X.

Proof. The reader is referred to our previous work [21] for a detailed proof. O

4.4 Passage to the limit

Suppose Lo 1s a probaility measure on V; x V; x Vo x V4 satisfying

/ o a0 (dpe) < o0 (4.17)
VixVixVaxVa

where uy = (v?,v9, 1Y AY); in the previous 1ernma we have shown that the sequence of
measures {" },>1 associated with the Galerkin sequence {v?, v, b7, bz, Wy, Wy, Wy, Wy}
is Weakly compact over . This 1mphes the existence of a su sequence j4" and to sim-
pllfy writing, we write j for n;. We now app vy the Skorohod embed&mg theorem to infer
the foHowmg theorem.

Theorem 4.3. Let iy be a probability measure on Vi x Vo, satisfying (4.17). Then there

exist a probability space (Q, F, If”) with the as.gocz'atNBd expectation denoted by E a sequence
of X-valued random variables (V7,7 b7, by, W7 Wyt Wy W), such that

1. (¥,%9, b, b, W, W3, Wi W) has the same law (v7,v3, b, by, Wi, Wa, Ws, W,).

2. (V7 Vol Ry Ry W W W ,W4 ) converges almost surely in the topology of
X to an element (Vl, Vo, hl, hg, Wl, WQ, Wg, W4) i.e.

V9 = v, in L2(0,T; V1) NC([0,T); V{) P — a.s fori=1,2, (4.18a)
B — by in L*(0,T;V3) N C([0,T): V) P— a.s fori=1,2, (4.18)
W — W; in C([0,T];84) P — a.s fori=1,2,3,4. (4.180)
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3. Fach Winj, i =1,2,3,4 is a cylindrical Wiener process relative to the filtration F}”
given by

Fl o= o (W] (s), Wi (s), Wi (s), Wi (s), ¥1(s), ¥3(s), hi" (5), by’ (), 5 < 1).
4. Bach (V17,57 b7 by Wi Wyt W W, satisfies:

V] — i AFdt + P[0 <||vaf'|12 + IV 2+ (1B + (10 12) (3 W)+
g Vh] + fk x ¥{|dt = PyFdt + Pyory(U7)dwy, (4.19)

dv} — vp AVt + Py [0(IV27 (1 + 197 |1* + 132712 + |12 ) (35 - V)¥3

+gVhy + fk x Vldt = P,Gdt + Y Paoo(U™)dWs7,  (4.20)
k=1

ARy + Pal0(IN0™ ||+ 82"+ 1A | 112 DV - (B 97) = 51N~l§”]d =
ZP 0'3 dW y

diy’ + Py[0(|[Vo7 || + [V |2 + 1712 + (|52 )V - <h”“"]> (w ]d =
ZP oy (U)W,
(4.21)

Vi7(0) = P, %i(0), B%(0) = P, Ri"(0) > 0, i = 1,2 (4.22)
Let S = (Q,]}, (ft)tgo,Wth,W:s,Wzl); where -;Et = ms>t]}£7t € [0,T] and -7:—2 is
defined as follows

N :={Ac FIP(A) =0}, F, = o(Wi(s), Wa(s), Wa(s), Wa(s)V1(s), Va(s), hi(s), ilg((j)Q,?;?)S t),

and F2 = o(F,UN).

Then (S’,\?l,\?g, ha, 7L2) is a global martingale solution in the sense of Definition 2.2.

Proof: The proofs from (1) through (3) are direct consequences of the Skorohod Rep—

resentation 1 heorem.

By utﬂizing the technique as in [1], the proof of (4) follows without any major modifi-
cation.
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From (4), it is easy to see that all the statistical estimates for v and hi,i=1,2are valid
for v and A7, Hence (v]7), i = 1,2 belong to a bounded set of L2(€; L>(0,T; V1) N
L2(€; L*(0,T; D(—A)), there are ¥, ¥, in this intersection space such that

V7 — ¥, weak-star in L2(Q; L>®(0,T; V1)), <424)
and v — ¥; weakly in L2(Q; L?(0,T; D(-A)). (425)

Similarly, there exist hy, hy in L2(Q; L(0, T; Vo) N L3(Q; L2(0, T; D(=A)) such that

h? — h; weak-star in L2(Q; L=(0,T; V3)), (4.26)
and A7 — hyweakly in L*(Q; L*(0, T; D(—A)). (4.27)

Our task now is to show that Vi hiyi=1,2, satisfy the system (4.1).

Due to Lemma 4.1, for i = 1,2, we readily obtain the foﬂowing estimates:

T
supE (/ ]\Vi”j|]2dt> < sup CE ( sup ||\7,-"j||2> < 00, (4.28)
j 0 j 0<t<T
T Ny Ny
supE (/ 2 ]||2dt> < sup CE ( sup || f|;2> < 0. (4.29)
i 0 j 0<t<T

Combining (4.18a), (4.18]@),(4.28) and (4.33) we infer loy applying the Vitali convergence

theorem that
Vi — v, in L*(Q; L*(0,T; Vy)) (4.30)

hi" — h; in L*(Q; L*(0,T; V3)) (4.31)
By thinning the sequence 7, if necessary, we conclude that
¥ —v|| = 0 and A" — Al =0, i=1,2. (4.32)

for almost every (t,w) € [0,T] x Q.

SinceNV{ — v; in C([0,T], Hy) a.s., we can deduce the existence of set Q5,7 = 1, 2such
that P(Q;) =1 and on these set, the foﬂowing convergence hold

lim (v} —¥;(0),¢) 2 = 0,i = 1,2 (4.33)

Jj—00
Similarly, there exist two sets Q; C Q,i =3,4 of full measure such that

lim (A7 (0) — h;(0),4) 2 = 0, i = 3,4 (4.34)

h K3
J]—00
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Set Q = Q \ U?Zl Q; and we now show that the convergence of the other terms holds in
L2(Q x [0,T]. Due to the strong convergence in (4.1821) and the estimates for v}/ i =
1,2 by using the Vitali Convergence Theorem, we find that v?j converges to v; in
L2(Q, L2(0, T, V1)) and A7 converges to h; in L*(Q, L2(0,T,V4)), for i = 1,2. Hence,

y extracting some subsequences, we deduce that v, — V; a.e and P- a.s.in V5 and
h' — h; a.e and P-a.s. in Vs, that is, there exist QL Q x [0,T], for i =1,2,3,4 with
full measure such that v(w, t) € QL. Q2

lim ||V} — ¥y, = 0 (4.35)
Jj—o0

Analogously, V(w,t) € Q3. Q4
lim ||h}? — hylly, =0 (4.36)
j—o0

From Which, we irnply that
lim (v (£) = Vi(t), ) = 0, and Tim (A () = hi(t), ¥) = 0 (4.37)

j—o0 J—00

The convergence for the linear terms are straightforward. Indeed, due to (4.35) and
(4 36) there exist sets Q4,7 =5, ..., 15 of full measure w.r.t dP @ dt and some extracted

subsequences still denoted by V.7 b such that for all (w,t) € Qi = 5,...,14, the
following convergences hold as j — oo,

<ol ([ 191 - wieas) o, (438

<ol (18 = pas) " o (4:35)

/Ot VA — %), ¥)ds

[ o9 = ). )ds

/t<gp2vw hy),v)ds| < C sup ||v(r)]| (/TW’ —BiHst)Q -0, (4.38¢)
0 0<r<T 0

P1
[ oA = R, wys| < o ( JaE Bi||2ds> o, (4.384)
0 0
/t(fk X (V] — %), )ds| < ||¢ (/ %7 — 4] ds>2 — 0. (4.38¢)
0
Furthermore, in virtue of Lemma 4.1, the foHoWing estimates can be easily obtained
,)ds dt = ||¢||IE< sup ||VZ”||2> < K. (4.39&)
0<t<T
7), 1) ds dt < Hsz]E( sup \|h;?f||2> < K. (4.39b)
<t<T
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: (130
it < ||w||E( sy ||h”]||2) N

_ T
5,
0

t ~
P2 TR oY ds
0 M

. , (4.39d)
i w)s| dn = IWIE( s, I117) <
0<t<T
dstt =< kufm( sup Hv?sz) < k. (4.39%)
0<t<T

Coﬂecting aH the above estimates and by Le]oesgue Dominated Convergence Theorem,
we conclude that

t .
lim / (AV]? — AV, ) =0 (440&)
I 0 L2(Qx[0,T])
lim H / P2ITRE — N hy, ) ds =0 (4.40b)
I 0 P L2(Qx[0,T])
lim Hg (VR — Vh;,)ds =0 (4.40(:)
J—oo L2(Qx[0,T])
t ~
lim |6, / (ARY — Ahy, )ds ~0 (4.40d)
Jmo0 0 L2(Qx[0,T1)
t .
lim || [ (fkx (v} —%;),4)ds =0 (4.40e)
J=oo ]| /o L2(Qx[0,17)
Par extraction of some su]:)sequences, there exist subsets Qi = 15,..,23 with full

measure such that on these sets, the convergence in (4.40) hold pointwise.

Now for the nonlinear terms, we first denote 8(|[vy7[|2 + [|v7[|2 + [|AY7[]* + [|h57[|?) by
6(||v;) and O(|[v1])? + V2> + [|he])* + [|h2]]?) by o(||v])) to simplify the exposition.
ext, tor ¢ = 1,2, we have:

[Pl 2 - 90 = 019 - D)%, s
< [PV - 9V = POV - 9)%0 hwds] + [ 1@ - 9)% ],
< /0| (v D7 - V7 = 09I 995 whds] + [ 1@ubI¥1) (3 ) )]

Thanks to (436) and (437), we see for all (z,w,1) € M x Q3 and (z,w,t) € M x Q4

lim O(v;[N(vi” - V)vi? = 6([[vil) (¥ - V)i (4.41)

(2
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Next, because of Lemma 4.1 and Hélder’s inequality, we are able to derive the foﬂowing

bounds

L1009 6)lds < C [ 100 DEY v e vl v ) < 1]
(4.42a)
and

B[ |/| (vl - 9)vs, )ds

The term I, is estimated in the same way as 1. More precisely, we infer from Lemma
4.1 and Holder’s inequality that

2

it < ||w||21ﬁz< wp ||v;w||2> <o (442)
0<t<T

Iy = |(Qu, (191 (¥)¥6. 0)] < @ OI¥ )29l 2 091 2 W, s

< wn;é_r@nje<r|<f||>%w|9<H<f||>2w|mds < ||¢||iéj 0asios )

We can deduce the similar estimates as in (4.42)
Qe I ¥, )l ds < o (4.44a)
]E/OT ‘ /()t (@n, OV 1) (Vi - V)V, ¥)ds dt = E(gzggll%lf) <. (4.44b)

From (4.41) to (4.44) and with the Lebesgue Dominated Gonvergence Theorem, we imply
that

lim
Jj—00

[P )V = 69D - V)5, v)ds

0

=0 (449

L2(Qx[0,T7)

By extracting Subsequences, we infer that there exist Q2T4 and 9%5 such that for all
(w,t) € Q2 we have

lin [ (B0 1) (v - V)Vl = 693 V), )ds =0 (446)

Jj—00.J0

And for all (w,t) € 02, the below convergence holds

t

lim [ (Pu[0(v; ) (vs" - V)V3] = 0(|[9]) (V2 - V) V2, ¥)ds = 0 (4.47)

j—o0 Jo
It is not difficult to deduce the fouowing convergence

[P )T RI)] = 08T (), s —0. (448)

L2(Qx[0,T])

lim
J—00

37



We can extract two sets Q28 and Q27 and extracted subsequences still denoted by vi7, n}?
and V;j, h;” such that on these sets, the foﬂowing convergence hold respectively
t

lim [ (P 0([@ )V (B¥)] = 0([a])V (hiv:), ¥)ds = 0. (4:49a)

Jj— Jo

We address the stochastic term ]oy us1ng Lemma 7.5. We first s1mphfy the expositions
by introducing U™ = (V7,957 hY7 hy?) and U = (V1, Vo, by, ha).

From (4 18(:) we know that an — WZ,V@ = 1,2,3,4 in probability in C(0,T; ) and
thus it sufhces to show that P,,0:(U") = 0;(U) in L*(0,T; Ly(4, V) except on a set

of measure zero of O and hence in probabﬂity. We utilize the Poincare inequality, the

hypotheses (2.4), (2.11), (4.18a) and (4.18]3), we estimate:

1P, 0:(U™) = 0:(U) |2y sty < N1Payo(U™) = Poyo (U) vy + 1@, (U 12,01

1
< ||U™ — U2 + (L IU]*) — 0 as n; — 0. (4.50)

J

Thus, we conclude that || Pjoy (U7) — 1(U)||1,qv) = 0, V(w,t) € QF, as j — oo.
On the other hand, noting that due to (211), (212) along with (41), we find

B( [ Plo@ ) < ([ 0+ 19F) <. (451)
With (4.50), (4.51) in hand and Vitali Convergence Theorern, we infer that
P,,03(@™) — o;(1) in L2(Q; L*([0,T), Lo (4, V). (4.52)

This imphes that the fo“owing convergence holds almost surely and in particular, it

holds in probability:
P,,0:(@%) — o;(@) in L2([0,T], Lo (4, V). (4.53)

Combining with (4180), Lemma 7.9 is applie(i and we infer that
[ ooty - [ o@ai in 22(0,7], V). (4.54)
0 0

By mal{ing use of the Burkholder- Davis—Gundy inequality and the uniform bounds in
Lemma (4.1), we can easily obtain the foﬂowing estimate:

#{| [ o] )
< B[ [ 1P i@ i) < € (/\m Mt

( 1—|—Hu"ﬂ\|2> dt < C. (4.5))

0

38



By utﬂizing the Lebesgue Dominated Convergence T_heorem one more time, we obtain
that the convergence in (4.52) holds further in L2(€; L2([0, T, Ly (4, V). Hence, by

the stochastic F_ubini theorem, we can extract a su]osequence and we find a set of full
measure Q% C Q x [0, 7] such that the convergence of the stochastic term holds for all
(w,t) € Q5.

4.5 Global pathwise uniqueness

Now we prove that the global martingale solution for the modified system is pathwise
unique.

Proposition 4.1. Suppose that (S,\?l,\?g,le,ﬁg) and (S,¥1, Vs, hy, hy) are two global
martingale solutions of (41) relative to the same stochastic basis

S = (O, F, (F)izo0, P, Wy, Wy, W3, W,). Pathwise uniqueness means that if we define
Qo = {91(0) = ¥1(0), 92(0) = ¥5(0), 21(0) = £1(0), hs(0) = h(0)}, then (91,92, hy, ho)

and (V1,Va, hi, he)) are indistinguishable on Qq in the sense that
P(lay (94(8) — (1)) = 0, Vi 3 0)= 1, fori = 1,2

P(Lo, (hi(t) — hi(t)) =0, V¢ > 0) = 1. fori=1,2

Proof. For 1 =1,2 we will let v; =Vv; —v;, h; = h; — hi,v; = 1g,v; and h; = Lo, h;.

We will also need the following stopping times

t
" = inf {/O AV + 3 A2 4 2|V [+ |V [P+ 2|V P |AV)* +

A 12 . 16 A2 -2 2|2 ~ol4 A4 -8
3|A%[" + 2| V|’ + [Val* + 2|V + 3 |ARa| +6[Vha| + 6|V [* +4|V¥ [+

4[|+ 3 |ARs| +6[Vhy| + 6|Vl + 4|V 4 4| Vio| > m}. (4.56)

To simplify our notation, we also set

7 + 192 + [[Pall? + |21 = 101, (4.57)
I¥rall + 192l + a1 + (Ao * = U],
IVAll* + 192 + 1 l* + [Baf* = T

Substituting v; and v, into (4.1) and taking the difference between these equations, we
arrive at the following equations:
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dvi — nAvidt + fk x vidt + gVhidt — g@Vtht +0(|01) (%1 - V)% dt

o0

—0(|U|)(¥1 - V)¥dt = 3~ o1(U)exdW§ — Zal TerdWF,
k=1

v1(0) = ¥1(0) — v,(0) (4.58)

o

Z U)epdWk — > oo (U)erdWE,
— k=1

v2(0) — ¥5(0) — ¥(0) (4.59)

dhy — 6, Ahydt = 0(U)V - (hy¥1)dt — (T)V - (hyvy)dt + Z o3(0)exdWs — > o3(U)erdWs.

k=1 k=1

hi(0) = hy(0) — Ry (0) (4.60)

dhy — 6, Ahydt = O(U)V - (ho¥y)dt — O(T)V - (haVy)dt + Z o4 (0)exdWE — 3" ay(U)erdWF.

k=1 k=1

ha(0) = ha(0) — hy(0) (4.61)

Applying the Ité formula to the map u — |Vul|® in (4.58) and (4.61) and adding the
corresponding relations together yield

d||vi]|? + 2v1 |Avy | dt 4+ d||va||? + 2vs | Avs|* dt + d||ha]|? + 261 | Ahy | dt + d||he|]*+
25, | Aho|? dt = —2g(Vhy, Avi)dt — 2g72 (Vha, Av,) — 29(Vha, Avy)dt—
P1

29(Vhy, Avy)dt—2(0(0) (31-V )1, Avy)+2(0(T) (V2-V ) Vo, Avy)+2(0(0 ) (¥1-V)¥1, Avy)
—20(0) (%5 - V) Vs, Ava) — 2(0(0)V - (hy¥1), Ahy)dt + 2(0(0U)V - (ho¥s), Ahy)dt
+2(fk x vy, Avy)dt + 2(fk x vo, Avy)dt

+Z||01 ) — o1 ( )ekH2dt+Z||02(U) _O-Q(U)ekl‘th

k=1
+ZHO'3 ) — o3 )ekH2dt+ZHU4(ﬁ) — o4(U)eg||Pdt
k=1
+2 Z o1 (U) — o1(U), Av)dWF +2 3 (02(U) — 0o(U)]|dWa, Ave)dWa+
— k=1
Z D)er — o3(0)eg, Ahy Y dWE +2 Z o4(U)ex — 04(U)ex, Ahg)dWy. (4.62)
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Integrating (4.62) in time over [0,t A 7™],0 < ¢t < T , multiplying by 1, and finally
taking the expected value of the supremum in ¢ € [0, T yield

tAT™ 9 _ tAT™ VO
EILQO< sup ||\7||2+2V/ |Av|“ds + sup ||h||2+25/ ‘Ah‘ ds)
0 ] 0

s€[0,tAT™] sE[0,tAT™
< 510, (IO + [FO)) + 3. (463
i=1
where
sup [[V[* = sup [[Vif? 4+ sup v
te[0,tAT™] te[0,tAT™] te[0,tAT™]
sup [l = sup [P+ sup o] (4.64)
te[0,7Am] te[0,tAT™] te[0,tAT™]
SATm 12 tAT™ 9 tAT™ 9
2u/ |Av|”dt = 2y1/ |Av, | d3+2y2/ |AV,|" ds (4.65)
0 0 0

tAT™

25/0Wm AR[ dt = 25, /me ‘Ai_zl’st—i—Qéz/o Ah| ds (4.66)

For a =1,2,3,4,7 = 1,2,5 = 1,2, by simply using the Cauchy-Schwarz inequality, the
following estimates hold:

~ tAT™ _ tAT™ Vs tAT™ 9
T = roElg, (/ |<Vhi,Avj>|ds> < CElg, (/ HhiHst)JriEllgo (/ AV ds>,
0 0 0
(4.67)
where k equals either 8¢ or 89%.
For 8 =5,6;7 = 1,2, we obtain:

Js = 8¢Elq, (/OMTM |(fk x v;, Avi>|ds> <CElg, </OMTm||\7i||2ds>—l— (468)

. tAT™
V’IE]IQO< / ]A\?iIst).
4 0

Next, we estimate

Jr = 8Elg, ( [ TG - 920% — 00T (519 Mﬁlds)
<8BLo, [ KOOI~ 601T1)) (51 - V)1, v ds+

tAT™

SELo, [ (@1 V)91 — (1 V)91, AV ds =+ 2
0
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The estimate for the term j% is proceeded by using Holdér’s inequality and the fact that
the cut-off function defined in (4) is Lipschitz

~ tAT™ _ _
7 < Bt [P+ 1l Wl + ) il 190 i ) (469)
tAT™ 1 LR
< cmta ([ QD IVl 9w 5 )
AT 1 Lo
-I—C'IE]IQO(/O (1U]) [Vv1]2 V|2 |AV1|dt>
tAT™
< C]EJLQO(/O (NTINAV* + 2 |A% [ + 2|V, [%)dt (4.70)

The last line follows thanks to Poincaré’s inequality and the Young inequality.

The estimate for j72 is derived by utilizing Holdér’s inequality, Ladyzhenskya’s inequality
in space dimension two and the Young inequality

J2 < CElg, ( /O v (V1 - V)¥1 — (¥1 - V)¥1, Avy)| dt) (4.71)

m

< CElg, /OW (41 — %) - VI$1 — (¥1- V)(F1 — 1), AV))| dt)

tAT
< CElg, /0 y<[v-1-v]vl—<vl-V>f1,Av‘1>|ds)

m

< O]EILQO ("71|L<x> |V‘A71|L4 + |‘~,1|L4 |V‘71|L4> |A‘71|L2 dt)

/
A SN SN SN SRR SN S B _
< CELoy | [ (9f2 IV9al* ¥0]% [V91]% + 9% [ V92 (92 [ V9 %) Ao

A FR NN S S o, 1, 1, 1 3
< CEEQO/O <|‘7'1|2 VY2 912 [V ]2 [AV] o + [V1]2 [V ]2 [v1 ]2 [V ]2 [Av |7, dt)

By applying the Young inequality to the first term with p = 2, ¢ = 2 and the second term,

4
with p = 3 q = 4 to the second term, we obtain:

= 2 tAT™ 9 tAT™ 9 . N 9, 19 -9
J7 SgE]]'QO 0 |AV1| dt—{—CEﬂQO 0 |VV1| |VV1||AV1|dt+|VV1| (|V1| |VV1| )dt

I tAT™ 9 tAT _ w2 . . ~ 92 -9
= SElg, [ (A di+CELy, [ [PV A%+ 9 [V )t
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Combining the estimates (469) and (4.71), we see that

o= scmta, ([ 10006 w9~ 00 vi)e S

tAT™

<8CElq, [ [B(I01) = 6(1T1)) (@1 - V)9, Ava)]at

tAT™ N ~
+ 8CElg, / (91 - V)1 — (V1 - V)91, A1) |dt (4.72)
0
T — N2 2 72 -2 o2 - 16
CElg, /0 (vl + [1v2l* + 12l + 1Az ) (JAV " + 2 [A¥]7 + 2|V [7)dt
vy KA A R .12 2 e (2
+ 2 [ 1A dt+ CELy, [ WiVl + [an [ dt + [ [V e,
Similarly,
- tAT™ N ~
Js := 8Elg, < / {O(U) (Vg - V)V — O(U) (V3 - V)V, Av2>|ds> (4.73)
0
AL — N2 N2 72 -2 o2 . 16
CEHQO</O (¥l + [1v2l* + 12al? + [[h2ll*) (JAVS " + 2 [A¥s| + 2 [Vo|")dt

Vo tAT™ 9 tAT™ N, 12 2 9 -2
+2E [ 1Al dt+ CELy, [ 92l 2(90f + 1A% dt + [%f [V ).
(474)

In the same manner, the next four deterministic terms are controlled as follows:

- tAT
Jo i= SELq, ( /
0

tAT™ N ~ N _
< CEH%(/O OCIUN) = 0([UNKV - (h1¥1), Aha)|ds+

m

OUOINT - (1) = 61TV - (a), M) ds)

OElq, ( [ i) = V- (v, AR lds = B+ T3 (AT5)

Jg is treated by making use of the Lipschitzian property of the cut-off function (4) and
Holdér’s inequality

- tAT™ R ~ R _
Jg := Elg, (/0 OCIUN) = 0([UNKV - (h1¥1), Aha)|ds

tAT™ _ _ “ _
< CElg, ( L Ul 19l 12 4 ) (T, 9]+ 199 9] ) [P
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By using Ladyzhenskya’s inequality, Agmon’s inequality and the Sobolev embedding

HS — L% in space dimension two, we obtain:

- AT .~ L . L 1 R R 1 1 ~ ~
Ji < C’EILQO</O NT PR |* (| ]” |AR |2 V91| + (V9] || [ Ay |2) (| ARa| + | ARyt

< CElg, </0Wm|\UH2(3 (AR 4 2| AR [+ 4V + 4]Vt (4.76)

where the last line is obtained by using the Young inequality several times and the

Poincaré inequality

The bound for JZ is deduced as follows:
N tAT™ N - _
J2 = Eng(,(/ (V- (hi¥1) = V - (), Ahy)|dt (4.77)
0
tAT™ _ - _ tAT™ _ ~ —
< CElq, (/ (Vhn¥ + Vinwr, Al dt + CElLg, (/ (V- 91hn + TV - 91, Ah1>|dt)
0 0
— P

We estimate J§ ! by using Holder’s inequality, Ladyzhenskya’s inequality in 2D, and the
embedding H' < L* and then finally use the Young inequality

tAT™ _ - _
Elg, / (VT + Vv, Ahy)|dt (4.78)
0

< CElq, /OtATm ('V}h’M Vil + ,Vﬁl 14 |‘71|L4> ‘Aih‘ dt

1 _ 1 JU 1 _
C AR |* V] + V| AR |7 [V]) | AR | dt

tAT™ _
< CElq, / Vi
0

= CElg, /me (vﬁlé Ay |? V| + \vih% Al ? V51| | Ay | dt
51 tAT™ _ 2 tAT™ _ 2 A _ 2 ~ ~
< EMQO/O AR, dt+CIEILQO/O Vha[ (V1" dt + (9 |V | | AR |t

In the same manner, we derive the bound for the term J3 as follows:

- tAT™ _ - _
Jo? = Elg, (/ (V- ¥1hy + WV - vy, Aby)|ds (4.79)
0
tAT™ B _ - B _
< C’IE]lQO/O V%1l g ], + || 19921 [ Ay ds
tAT™ _ 1 _ 3 tAT™ 1 - 1 _
< Cmgo/ (V90 [Ba]* | ARy [? +cmgo/ | [ ARy | [V [ AR | dt
0 0

4
By using the Young inequality to the first term with p = 4q = 3 and to the second term
with p = 2, ¢ = 2, we obtain:

% < Bt [ [T de+ CBo, [T 190 [VEn [+ 19 2+ [
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Collecting all the estimates (476) through (4.79), we find:

Jo = 8Elq, (/me OUTDY - () = BT - (1), A ds> (4.80)

< CElq, (/me(||U||2)(3 (Ah|* 4 4| AR 42| Vh | 6 (V9] + 4V + 4| V[ ar
+6,Elgq, /OMTM ’Aﬁl‘th

Analogously,

Jio := 8E1q, (/me (OIT)Y - (ha¥) = O(IT[)V - (haWa), Ahs)| ds> (4.81)

< cmta ([ QOPIC[aR] + 2k i

+ [Wh| W9+ 4 V9" + [V

+2 ’ABQ

‘ 2

~ 12 tAT™ _ 2
+ R + 52131]190/0 N
For the next four terms, we simply use the Lipschitz assumption (2.12):
. - - - 4 tAT™ 4 N - 9
Ju+Jio+Jiz+Juu= Z]Eﬂszo (/0 Tq, ZHUZ‘(U)@k —oy(U)ex|"ds+
j=1 i=1

< CElg, ( LU 1R+ 1l + Hh;H?)ds) - [482)

The estimates for the last stochastic terms are obtained by using integration by parts,
the Lipschitz assumption (2.12) along with the Burkholder-Davis-Gundy inequality

) (483)
tAT™ tArm 2 _
< OBt [ o)+ crta (7 (SINR + TPt
=1

for v =15,16,7 =1, 2.

tAT™ OO N ~
/ S (0:(0)ex — 04(0)ey, AV AWE
0

.]~7 D= 8E]190< sup
k=1

te[0,tAT™]

Similarly, for ( =17,18,71 =1,2;7 = 3,4, we find:

j< D= 8E]190< sup

s€[0,tAT™]

tATT 0 N - _
/0 S (o5 (0)ex — o5 (0)ex, Ahi)d W
k=1

) (484)
tAT™ tArm 2 _
< Bt [ 1lE) + cmta, (7 SINIR + IPar)
=1
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Collecting all the above estimates between (4.67)—(4.84) and multiplying by two, we
arrive at:

tAT™ 9 _ tAT™ )
En%( sup \|<f|12+2u/0 IAV]>ds +  sup Hh\|2+26/0 N ds)
se

0,tAT™] s€[0,tAT™]

< CB1a, (VO + 15O

AT 2 A (2 A 12 A 16 .12 2V - (2
+ CElgq, ; NU|I7(|AV1]” + 3 |AV|" 4+ 2 |[VV1]” + [V + 2|V V1| |Avs|

) ~ (6 ~ (2 ~ 2 L ~ o4 o 14
‘|—3|AV2| +2‘VV2| +|VV2| +2|VV2| +3‘Ah1’ +6‘Vh1‘ +6|VV1| +
A 4 ~ 2 ~ 4 ~ 4
4|V [* + 4| Vha| +3|Aho| +6[Vha| +6[Via|' +4|V¥a|*+ 4 |Vhy| ) (4.85)
Now, we apply the stochastic Gronwall inequality (Lemma 7.3) with

o X = [[Vill® + V2l + [l + [,

2

)

_ 12 _
o Y=v1 |AVi[* + vy |AVS[* + 61 [Ahy|” + 6z |Ahy

¢ Z=0,R=1+|Av +3|A0 2+ 2|V9 | + V9| +2 |V |* | AV, |* + 3 |AV, [  +
~ |2 ~ 14 ~ 14
2|V%|* + [V > + 2| V¥l + 8 [Aha| 46 |Vha| +6 [V [* +4| V¥ [* +4 |Vha| +
~ 12 ~ 14 ~ 14
3| Aho| + 6 |Vha| +6[V¥al* +4 [V + 4| Vho| .
and yield

tAT™ _ _
Mm( sup (||‘71H2+H‘72||2)+V1/O [AVL[* ds +  sup ]||h1||2+||h2|\2) (4.86)

s€[0,tAT™] s€[0tAT™
tAT™ 9 tAT™ 9 tAT™ _ 2 tAT™ _ 2
—|—V2/ |A\72| dt+V2/ |A\72| dt—i—(Sl/ ’Ahl‘ d8+52/ ’Ahg‘ d8>
0 0 0 0
< CB1a, (MO + IO + 1V + [0 =

From the definition of 7, it is easy to see that 7™ is an increasing sequence and by
Lemma 4.1, we see that lim,,_,., 7™ = 0o. Thus we have shown that

Bia,  sup (P + alP 4 P+ 1)) =0 (4.87)
t€[0,7]
This implies that
P(TLoy(vi(t) — va(t)) = 0;Vt > 0) = 1, (4.88)
and  P(Lg,(hi(t) — ho(t)) = 0: V¢ > 0) = 1. (4.89)
In other words, v; and v, are indistinguishable on 2y and so are hy and h,. This proves
global pathwise uniqueness. O]
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5 The existence of global pathwise solutions

Sections (4.4) and (4.5) already established the existence of martingale solutions and
pathwise uniqueness for the modified system (4.1). We may now apply the Gybngy—
Krylov theorem (see [20]), which is an infnite dimensional extension of the Yamada-
Watanabe Theorem (see [38]), to infer the existence of a global pathwise solution
(vy,Va, hy, ho).

In pursuit of the Gyéngy—Krylov theorem, we come back to the sequence {(v}, vy, hy, hy)}
of Galerkin solutions relative to the given stochastic basis S and consider the collection
of joint distributions ufi™ given by (U™, U™) where U™ := (vi*, vy, b, h2"). We then
define the extended phase spaces as follows:

ZUW = Z, X Zy X Zw, X Zw, X Zw, X Zw,. (5.1)
Where
Zy = 2y, X Zyy X Zny X Zpys (5.2)
2y, = Z,, = L*(0,T; V1) 0 C([0, T; V),
Zy, = Zn, = L*(0,T; Vo) N C([0,T]; Vy),
Zw, = Zw, = Xy = Xw, = C((0, TT; Lho).
We ﬁnaHy take:

(7)) =PU™ € 7,),YZ, € Pr (2y),
1 (7o) = pw,(Zo) = B(Wi € Z3),YZ3 € Pr (C((0,T]; 1)), for i =1,2,3,4,
o= G X g
P = ™ Xy Xy X i X i -
We now state a tightness result.
Lemma 5.1. The collection ™™V is tight and hence weakly compact on ZUW.

Proof. The proof is nearly identical to Lemma 4.3. Indeed, as in [21], for every ¢ > 0,
we can find a set

AV = AV AY2 x A x AR

which is compact in Z;; such that
A\
WP AY) > <1 - 8) | (53)

For the constant sequences {sjy }, which are weakly compact, we see that they are also
tight by Proposition 7.1, and hence there exist compact sets A* C C([0, T]; o) such that
for each n, and for ¢ = 1,2, 3,4,
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My, (1212) >1-— i (54)
We finally take
A= AY x AV x Al x A% x A® x A? (5.5)

which is compact on ZY". From (53) and (5.4), we obtain:

,um’"’W > (1 — ;) (1 — fl) >1—c¢, (56)

which holds for all 0 < € < 1. The proof of the lemma is complete. O

Proposition 5.1. There exists a unique pathwise solution of the system (4.1).

Proof. By Lemma 5.1, in virtue of the Prohorov’s Theorem, we imply that the se-
quence ™" is weakly compact over the space ZUW. Therefore, we can deduce
the existence of a subsequence p™ ™" which converges weakly to an element s
With the help of the Skorohod Representation Theorem, we infer the existence of a
new underlying probability space (Q, F,P) and a sequence of Z¥"W- random variables
(U™, U WE WEF WE WE) and (U,U, Wi, Wy, Ws, W,) such that

P[(Umk, U WF W W Wiy e E} = e W(E), for E € Pr(29W).

5.7)

And

a=]l

[(07 U? W17 WQ) WB; W4> cF

=/ (E), for E€ Pr (2Y"7). (58)

° (Umk, U”k,Wf/,WfL V_sz:, Wf) converges with probability 1 in the topology of

ZUW ko (U, U, Wy, Wa, W3, Wy).
In particular, we infer the following:

o (U™ WF W¥E, WE WF) converges almost surely to (U, Wy, Wa, Ws, W) in the
topology of Zy.

o (U™ WF WF WE WF) converges almost surely to (U, Wy, Wy, W5, W,) in the
topology of Zy.

By the same argument in Section 4.4, we can establish that both (U, Wy, Wy, Wy, W)
and (U, Wy, Wy, W3, Wy) are global martingale solutions of the system (4.1). One can
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readily show that both U and U agree with other at time ¢ = 0 a.s. Hence, by using the
result in Section 4.5, we obtain both U = U in Zy a.s. In other words,

o ({(m Y) €EZy X 2y = y}) P(U =U in Zy) = 1. (59)

This implies, by Proposition 7.3, that the original sequence U™ := (v}, v%, hl', hY) de-
fined on the initial probability space (2, F,P) converges in probability to an element
U = (vi,Va, hy, hy) = (Vl,fg,ﬁl,ﬂg). Along the subsequence, we further infer that
convergence holds almost surely in the topology of Z;;. More precisely, for ¢ = 1, 2,

v — v a.s. in L*(0,7; V)N C([0,T]; Hy), (510)

A — h;  as. in L20,T;Vy) NC([0,T); H). (5.11)

By the identical argument in Section 4.4, we obtain that (vi, v, hy, hy) are a global
pathwise solution of the equations (4.1) in the sense of Definition 2.3. By using the

same technique used in our previous work [21}, we are able to show that (vi,vs) €
L2(0,T; D(=A)) N C([0,T]; Va) and (A1, ha) € L2(0, T (=A)) 1 ([0, T); V). The proof
of the existence of global pathwise solution is complete. O

6 Existence and uniqueness of solutions for the orig-
inal system

6.1 Local martingale solutions

Theorem 4.3 already shows that (S, V1, Va, Bl, ﬁg) is a global martingale solution for
(4.1). Now we set

t>0

7 i —inf { sup (92 + [92r) 2+ [ ()2 + [a(r)2) > M}. (6.1)

Where
M =1+ [[91(0) 7 + [92(0)]1* + [h1(0)|[* + |12 (0)]1?) 6.2)

By the foﬂowing 1emma, T is strictly positive almost surely, and we observe that for
1=1,2

/OMT (HUH) (R )ds—/OtAfV( Vi)ds and /

We obtain that (S, V1, Vo, hi, ho, T)is a local martingale solution.

t/\T

tAF
o(|U)(¥:- )vids:/ (V;-V)V;ds.
0

Lemma 6.1. The stopping time T defined in (6.1) 1s strictly positive almost surely.

49



Proof. Let € > 0 be given. By the definition of 7, it is easy to see that:

{T<etc { sup  ([91()IF + [192()1” + I (s)I + e (s)]F) = [92(0) | (6.3)

sS€[0,7A¢€]
— [P (0)]1> = [[92(0) |* = [[2(0)|* > 1}
From which, using Chebyshev’s inequality, we obtain:
P(7 =0) =P(Ne=o{7 < €}) = limsup P({7 < €})
e—0

< limsupE sup ([[v1(s)[* + [|Va(s)[*+

e—0 s€[0,7A¢]
1R ($)II> + [ha(s)[7) = 91 (0)]|* = 1 (0)]2 = [1¥92(0)[I* — [[A2(0) [ > 1)
Thus, the desired result will be obtained once we can show that

lim suplE< sup [[V1(s)[I + [192() [* + [ha(s)II? + [P (s)]? (6.4)

e—0 s€[0,7N\e
IO = A0} = [92(0)) — ||f32<o>||2) 0.

For that purpose, we let p = 2 and replace v}, v} by vy, Vs, AT, hl by hi, hy and corre-
spondingly s by 7 A € in (4.11) yielding

IE( sup ([|92(r)[1* + [I2(r) |12 + 1R (r)|* + ||7l2(7“)||2)> (6.5)

rel0,7Ae]
< (AP + 19200+ (O + a0 ) + ([P + GPat)

Thus, we arrive at

B s (1914 1) ~ (IO + ) + [0 + 1))

2 (6.6)
= E(/O (IF]”+ |G| )dt = limsup e(|F[ +|CGlL<)) = 0.

Therefore, Theorem 2.1 is proved.

6.2 Local pathwise solutions

We let 7 be as in (6.1), and use an identical argument to Section 9 to conclude that

(v,h,7)isa local pathwise solution of (11) We therefore conclude the proof of Theorem
2.2,
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6.3 Maximal pathwise solutions

We also see that the local solution can be extended in time to be a maximal solution.

Proposition 6.1. There exists a unique mazximal solution (v,h,§) and a sequence pg
announcing .

Proof. The reader is referred to [21] for the proof of this proposition. O

7 Appendices

Appendix A

NOW, suppose that H is a separable Hi“oezrt space. Given p>2,a€(0,1), we deﬁge
the fractional derivative space Wer (0,T; H) as the Sobolev space of all u € L? (0,T;H)
such that

/ /T ‘u|t_8|1+apHdtd < oo, (7.1)

endowed with the norm

4B 0) = / |Pdt+/ /T ’ult_SPMPHdtd (72)

We have appliecl the foHowing 1emmas, the proofs of which can be found in e. g. [13]:

Lemma 7.1. Let & CC € C &, be Banach spaces with the injections being continuous
and &y, &1 reflexive. For p € (1,00), a0 € (0,1), we have

LP(0,T: &) N WP (0,T: &) CC LP(0,T;€) . (7.3)

Lemma 7.2. If £ CC & are Banach spaces and p € (1,00),a € (0,1] are such that
ap > 1, then

Wwer (0,1;€) cc C ([0, T];€) . (7.4)

We additionaﬂy often use the foHowing stochastic version of the Gronwall lemma (see

e [19])
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Lemma 7.3. Fiz T > 0 and assume that X,Y,Z, R : Q x [0,T) — R are non-negative
stochastic processes. Let T <'T' be a stopping time such that

E(/OT(RX + Z)ds) < 0o and /OT Rds < k, a.s.
Suppose that for all stopping times 0 <71, <7, < T
E(t up X+ " Yds) < C’OE<X(TG) n /Tb(RX ¥ Z)ds),
€l7arm Ta Ta
where Cy is independent of 7, and 1,. Then
]E( sup X + TYds) < CE(X(O) —l—/T st),
t€(0,7] 0 0

where C' is a constant depending only on Cy, T, and kK.

Finaﬂy, we require the Vitali convergence theorem (see e.g. [16]):

Theorem 7.1. Suppose that a sequence of functions {f,} are L? integrable on a finite
measure space, where 1 < p < co. Then this sequence converges in LP to a measurable
function f if the following conditions are satisfied:

(i) {fn} converges to f in measure; and

(ii) the functions {|f.|P} are uniformly integrable.

Lemma 7.4. (see [17/) ue WP 0 < sy <s; <s<oo. Then there exists a constant
C, such that:
[ullsy < Cllullg, llullg, o (7.5)

S1,p 52,p

where s = asy + (1 — a)sa.

Remark 7.1. One can easily prove for p > 1 and a nonempty family X of random
variables bounded in LP that if supxcy || X||r < 00, then X is uniformly integrable.

Appendix B

Definition 7.1. Suppose (X,d) is a complete separable metric space with B(X) its
associated Borel o-algebra. Let Cy(X) be the set of all real-valued continuous bounded
functions on X, and Pr(X) be the set of all probability measures on (X,B(X)). A
collection A C Pr(X) is tight if for every e > 0 there exists a compact set K. C X s.t.

p(Ke) >1—¢€ Y e A. (76)
A sequence { i, tn>0 C Pr(X) converges weakly to a probability measure u if
/fdun —>/fd,u Vf € Cy(X). (77)
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The proofs of the fouowing results can be found in e.g. [12].

Proposition 7.1 (Prohorov’s Theorem). A collection A C Pr(X) is weakly compact if
and only if it is tight.

Proposition 7.2 (Skorohod Representation Theorem). Suppose that a sequence { i, }n>0
converges weakly to a measure . Then there exists a probability space (Q,]:" , If”) and

a sequence of X-valued random wvariables {}7”} - relative to this space such that Y,
nz

converges a.s. to the random variable Y and such that the laws of Y, andY are p, and
, respectively, i.e. j,(E) =P (Yn € E) Ju(E) =P (Y € E) ,VE € B(X).

Finally, we suppose that {¥,},s0 is a sequence of X-valued random variables on a
probability space (Q, F,P) and let {/tpn }mnz0 be the collection of joint laws of {¥},},,50,
le.

fimn(E) :==P((Yn,Y,) € E),  VE e B(X x X). (7.8)

We also need this result from [20]:

Proposition 7.3 (Gyongy-Krylov Theorem). A sequence of X -valued random variables
{Y,.}nso converges in probability if and only if for every subsequence of joint probability
laws, {tm, n, }e>0 there exists a further subsequence which converges weakly to a proba-
bility measure p s.1.

p{(zy) e X x Xz =y}) = 1. (7.9)

Lemma 7.5. Let (Q, F,P) be a fixed probability space, X a separable Hilbert space.
Consider a sequence of stochastic bases S, = (0, F,{F }i>0, P, W', W3'), where each
W is a cylindrical Brownian motion over L with respect to F*. Assume that {G"},>¢
are a collection of X -valued F}' predictable processes such that G™ € L*(0,T; Ly(4, X))
a.s. Finally, consider S = (0, F,{F;}i>0, P, W1, W) and G € L*(0,T; Ly (4, X)) a.s.,

which is F; predictable. If

G"— G in probability in L*(0,T; Ly(y, X)), (710)
wnr—Ww in probability in C([0,T]; ), (711)
then
t t
/ G AW — / GdW  in probability in L*(0,T; X). (7.12)
0 0
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