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In this paper we consider the problem of identifying parameters in stochastic 
differential equations. For this purpose, we transform the originally stochastic and 
nonlinear state equation to a deterministic linear partial differential equation for the 
transition probability density. We provide an appropriate likelihood cost function 
for parameter fitting, and derive an adjoint based approach for the computation of 
its gradient.
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1. Introduction

Many processes in applications ranging from science and technology via finance to biology can be modeled
by stochastic processes. Our work is particularly motivated by fatigue degradation modeling, cf., e.g., [10,1,
3,12]. These models often contain parameters that are not directly accessible to measurements and therefore 
have to be fitted from additional observations of the system, usually given at discrete time instances 0 <
t1 < · · · < tn < T , within the time interval [0, T ], in which the stochastic evolution takes place. This leads 
to the formulation as a stochastic state space model (SSM):

state equation:
{

dXt = aθ(t, Xt)dt + bθ(t, Xt)dWt ,

X0 ∼ uθ
0 ,

(1a)

observation equation: Yti = hθ
i (Xti) + ηi, ηi ∼ Φθ. (1b)
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The state equation is a stochastic differential equation (SDE) with drift aθ, diffusion coefficient bθ and 
Wiener process W [12]. The superscript θ denotes the model parameters to be identified.

The stochastic process X on the interval [0, T ] is a family of random variables

Xt : Ω → D ⊆ R
m, t ∈ [0, T ], (2)

on some probability space (Ω, F , P). In the context of degradation modeling, the state vector X may consist 
of, e.g., crack length or volumetric share of damaged material, local strains, and grain misorientation, to 
name just a few examples of relevant physical quantities evolving over time. Stochasticity of this evolution 
is triggered, e.g., by random initial void and grain distribution, and randomness of crack propagation 
directions.

Drift and diffusion are defined as possibly nonlinear functions on the time – state space cylinder

aθ : (0, T ) ×D → R
m,

bθ : (0, T ) ×D → R
m×m,

(3)

where the unknown parameters θ are contained in a subset Q of Rd.
The SSM (1) is a hybrid system in the sense that observations are only available at discrete time in-

stances ti, whereas the evolution is continuous in time. Generally, the observation equation (1b) contains 
(possibly time dependent) model functions

hθ
i : D → R

k,

with random noise to model measurement errors

ηi : Ω̃ → R
k, ti ∈ {t1, . . . , tn} , (4)

on another probability space (Ω̃, F̃ , ̃P). For simplicity of notation and since distinction from (Ω, F , P ) will 
always be clear from the context, we will skip the tilde in the following.

Our aim is to identify the true parameter vector θ in the SSM (1) by means of available indirect mea-
surements. In the context of degradation modeling, the measurements, which can be used for this purpose, 
are, e.g., resistance and orientation measurements.

Parameter identification will here be performed by a Maximum Likelihood approach, which is based on 
maximizing the probability density of the observations by considering

• the stochastic differential state equation,
• the initial conditions,
• the measurement noise, and
• the (physical) parameter constraints.

The problem of parameter identification in SDEs has been studied by many authors, see, e.g., [13] and the 
references therein. Note however that we here deal with the difficulty of only indirect observations (1b), 
which are given at possibly only few time instances. This setting is on one hand relevant for real applications, 
on the other hand, it rules out the use of standard parameter estimation approaches.

The history dependence of the evolution, as well as the fact that two different kinds of stochastic processes 
and random variables, namely the state process X and noise process η, are involved, considerably complicates 
the formulation of a stochastically consistent likelihood function for the general SSM (1). To overcome this 
problem, we transform SDE (1a) to a deterministic model. For this purpose, the SDE’s corresponding 
Kolmogorov forward or Fokker–Planck (FP) equation, which basically describes the evolution of the state 
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density, will be used as state equation instead of the SDE, cf., e.g., [7]. The FP equation will be set up in 
terms of the transition probability density u of the stochastic process X, which is defined as, [15]:

u(t, x) dx = u(t, x;x0) dx = P (x < Xt ≤ x + dx |X0 = x0) , (5)

where X0 is assumed to be distributed according to the density uθ
0,

u(t, x) = u(t, x |X0 ∼ uθ
0), t > 0, x ∈ D,

cf. (1a). Therewith, the FP equation of (1a) reads as follows:

∂

∂t
u(t, x) = −∇ · Jθ(t, x), x ∈ D, (6)

for t ∈ (0, T ) with probability flux

Jθ = aθu− 1
2 ∇ ·

(
bθbθ

T
)
u, (7)

and initial conditions

u(0, x) = uθ
0(x), x ∈ D, (8)

where D is a domain comprising the state space. Note that (6) is always a linear PDE, even if (1a) is a 
nonlinear SDE. Equation (6) can be written in divergence form [14]

∂

∂t
u(t, x) = ∇ ·

(
Bθ∇u−Aθu

)
(t, x), (9)

where

Aθ = aθ − 1
2∇ ·

(
bθbθ

T
)
, (10)

Bθ = 1
2

(
bθbθ

T
)
, (11)

with the matrix divergence ∇ · C =
(∑m

j=1
∂

∂xj
Cij

)T

i=1, ..., m
. Thus, if Bθ is uniformly positive definite on 

(0, T ) ×D, then (9), i.e., (6) is parabolic.
As, for fixed time t, u(t, ·) represents a probability density, it has to fulfill mass conservation and positivity:

∫
D

u(t, x) dx = 1, t ∈ [0, T ], (12)

u(t, x) ≥ 0, (t, x) ∈ [0, T ] ×D. (13)

To guarantee mass conservation, we impose the no-flux boundary condition

Jθ(t, x) · nD(x) = 0, x ∈ ∂D (14)

for t ∈ (0, T ). Indeed, using the Divergence Theorem, it is easy to see that this implies (12), provided
∫

uθ
0(x) dx = 1
D
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holds: Upon exchangeability of time differentiation and spatial integration, we have

d

dt

∫
D

u(t, x) dx =
∫
D

∂

∂t
u(t, x) dx = −

∫
D

∇ · Jθ(t, x) dx = −
∫
∂D

Jθ · nD ds = 0

by (14). Altogether we end up with the weak formulation

∫
D

(
∂u

∂t
(t, x)v(x) − Jθ(t, x) · ∇v(x)

)
dx = 0 ∀v ∈ H1

0 (D) . (15)

Well-posedness of the initial value problem (15), (8) on a finite time interval (0, T ) follows from standard 
analysis of linear parabolic PDEs, cf. [8, Theorems 2, 3, 4, Section 7.1.2], provided all coefficients are in 
L∞((0, T ) × D), uθ

0 ∈ L2(D), and Bθ is uniformly positive definite on (0, T ) ×D. To guarantee global in 
time well-posedness and convergence to a stationary solution of the FP equation as t → ∞, a condition like

Aθ · nD < 0 on ∂D (16)

is needed, see [6] for the case of scalar valued diffusion bθ. In view of (10), condition (16) means that at the 
isolating (cf. (14)) boundary, the diffusion has to dominate the drift to prevent emergence of singularities. 
Moreover, mass conservation (12) and positivity (13) are made rigorous in [6] in this scalar diffusion case. In 
the general case of anisotropic diffusion, these questions, and in particular also large time behavior have been 
studied in [2] for D = R

n, i.e., without boundary conditions. We expect that a combination of the techniques 
from [2,6] allows to prove mass conservation, positivity, global in time well-posedness, and convergence to 
a stationary state also in the anisotropic diffusion setting on bounded domains, as relevant here.

Remark 1. Concerning initial data and initial observations, we always assume to have a possibly parameter 
dependent Ansatz uθ

0 for the initial data; in case u0 is known, parameter dependence may be skipped in the 
notation uθ

0 = u0; also the case of uθ
0 being an arbitrary function can be included by regarding the initial 

data itself as (infinite dimensional) part of the parameter θ.
Initial observations hθ

0(Xt0) + η0 at t0 := 0 might or might not be available. For simplicity of exposition 
we only consider the case without initial observations. The case with observations at time t = 0 can be 
covered by considering the limit t1 → 0.

For later use, we finally state the deterministically transformed SSM on the ith sub-time interval

Σi(θ, u) :

⎧⎪⎪⎨
⎪⎪⎩

∫
D

(
∂u

∂t
(t, x)v(x) − Jθ(t, x) · ∇v(x)

)
dx = 0 ∀v ∈ H1

0 (D) ,

Yi = hθ
i (Xti) + ηi, i ∈ {1, . . . , n} ,

(17)

where Jθ is defined as in (7).
Parameter identification in the transformed SSM (17) by means of Maximum Likelihood estimation 

requires to solve the following optimization problem:

max
θ, u

Ψ(θ, u; y)

s.t. Σ(θ, u)
(18)

where Σ represents the SSM on the entire time interval [0, T ] and Ψ is defined by the likelihood function ψ, 
i.e., the probability density function of the data y for fixed parameters θ. To this end, in Section 2, we will 
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derive a stochastically consistent formulation of the likelihood function ψ. In order to apply gradient based 
optimization methods to (18), we will derive an adjoint based approach that takes into account the special 
structure of the cost function in Section 3, which is the core of this paper. Finally, in Section 4, we will 
draw some conclusions and provide an outlook on future research in this context.

2. The likelihood function

To define the likelihood function ψ for the optimization problem (18), recall that

P
(
hθ(X) + η ∈ B

)
=
∫
B

ψ(y) dy, (19)

where B is an arbitrary element of the k ·n dimensional Borel σ Algebra Bk·n, in view of the fact that obser-
vations are available at {t1, . . . , tn}.1 The value ψ(y) represents the likelihood of the data y = (y1, . . . , yn). 
To obtain an explicit expression for ψ, we impose the following conditions.

Assumption 1.

(i) The stochastic process X is a Markov process, i.e.

P (Xt+Δt = x |X(s), 0 ≤ s ≤ t) = P (Xt+Δt = x |X(t)) , ∀t, Δt > 0,

with a probability density u as in (5).
(ii) For all i ∈ {1, . . . , n}, the random variables Xti and ηi, and therewith hθ

i (Xti) and ηi are stochastically 
independent.

(iii) The components of the measurement noise η = (η1, . . . , ηn) corresponding to different time instances 
are mutually independent and we assume a joint density to exist, which then has to be of the form

φθ(η1, . . . , ηn) =
n∏

i=1
φθ
i (ηi).

Proposition 2. Under Assumption 1, the likelihood function has the two representations

ψ(y) =
∫
Dn

u1(x1)
n∏

j=2
u(xj |Xj−1 = xj−1)

n∏
i=1

φθ
i

(
yi − hθ

i (xi)
)
d(x1, . . . , xn), (20)

where u1(x1) = ũ1(t1, x1) (cf. (23)) and for all j ∈ {2, . . . , n}, u(xj | Xj−1 = xj−1) = ûj(tj , xj ;xj−1), 
where

ûj(·, ·;xj−1) solves the FP equation (15) on (tj−1, tj), with initial conditions

ûj(tj−1, x;xj−1) = δxj−1(x)
(21)

and

ψ(y) =
∫
D

ρθn (xn) ũn (tn, xn) dxn , (22)

1 Extension to the more general case of having ki dimensional observations at time instance ti is straightforward.
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where for all j ∈ {1, . . . , n},

ũj solves the FP equation (15) on (tj−1, tj), with initial conditions

ũj(tj−1, x) =

⎧⎨
⎩

uθ
0(x), if j = 1,

lim
t→t−j−1

ũj−1 (t, x) ρθj−1(x), if j ∈ {2, . . . , n} ,
(23)

and

ρθj (xj) = φθ
j (yj − hθ

j (xj)) . (24)

Proof. The joint probability density of the stochastic process X evaluated at the discrete time instances 
{t1, . . . , tn}, i.e., of X = (X1, . . . , Xn) = (Xt1 , . . . , Xtn), will be denoted by u, i.e.

PX(A) =
∫
A

u(x) dζ(x) ∀A ∈ Bm·n.

To formulate the likelihood function, recall that ψ is the probability density of Y = hθ(X) + η, evaluated 
at the time points {t1, . . . , tn}. Here, the observation operator is of the form

hθ : Dn ⊆ R
m·n → R

k·n, (25)

and fhθ(X) denotes the density of the random variable hθ(X).
Then, the probability of an arbitrary Borel set B is given by

P
(
hθ(X) + η ∈ B

)
=
∫
B

ψ(y) dy

=
∫
B

∫
Rk·n

fhθ(X)(y − s)φθ(s) ds dy

=
∫

Rk·n

∫
B

fhθ(X)(y − s)φθ(s) dy ds

=
∫

Rk·n

∫
B−{s}

fhθ(X)(z) dz φθ(s) ds

=
∫

Rk·n

∫
hθ−1(B−{s})

u(x) dx φθ(s) ds

=
∫

{(x,s) ∈Dn × Rk·n: hθ(x) + s ∈B}

u(x)φθ(s) d(x, s) , (26)

where we have used the Convolution Theorem cf., e.g., [11, Appendix B4] and Assumption 1 (ii) in the 
second, Fubini’s Theorem in the third, the substitution z := y − s in the fourth, and the fact that

∫
B−{s}

fhθ(X)(z) dz = P
(
hθ(X) ∈ B − {s}

)
= P

(
X ∈ hθ−1(B − {s})

)

in the fifth equality.
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We now change variables in (26) by introducing the mapping

ϕ : (x, s) �→ (x, hθ(x) + s) := (x, y). (27)

The functional determinant of the mapping ϕ is given as

detDϕ = det
(

∂ϕ1
∂x

∂ϕ1
∂s

∂ϕ2
∂x

∂ϕ2
∂s

)
= det

(
I ∈ R

m×m 0 ∈ R
m×k

Dhθ(x) ∈ R
k×m I ∈ R

k×k

)
= 1, (28)

and the image of the set over which we integrate in (26) is

ϕ
({

(x, s) ∈ Dn × R
k·n : hθ(x) + s ∈ B

})
=
{
(x, hθ(x) + s) : x ∈ Dn, s ∈ R

k·n, hθ(x) + s ∈ B
}

= Dn×B.

Therewith,

P
(
hθ(X) + η ∈ B

)
=
∫
B

∫
Dn

u(x)φθ(y − hθ(x)) d(x, y) ,

enables to rewrite the likelihood function as

ψ(y) =
∫
Dn

u(x)φθ(y − hθ(x)) dx. (29)

The Markov property (cf. Assumption 1 (i)) allows to split the joint probability density u in (29) as follows:

u(x1, . . . , xn) = u1(x1)
n∏

j=2
u(xj |Xj−1 = xj−1), (30)

where for each j ∈ {2, . . . , n}, u(xj | Xj−1 = xj−1) = ûj(tj , xj ;xj−1) denotes the transition density obtained 
by solving the FP equation on the subinterval (tj−1, tj) with Dirac delta initial condition δxj−1 , cf. (21), 
and

u1(x1) =
∫
D

u(x0, x1) dx0 =
∫
D

uθ
0(x0)u(x1 |X0 = x0) dx0 ,

i.e., u1(x1) is given by the solution at time t1 of the FP equation on (0, t1) with initial condition u(0, x) =
uθ

0(x), which follows from the linearity of the FP equation and Lemma 5 in the Appendix. This proves (20).
To show the second representation (22), we set

u(j)(xj , xj−1) := ûj(tj , xj ;xj−1),

with û(·, ·;xj−1) as in (21). Assume first of all the case of observations for just two time points {t1, t2}, then 
the likelihood function is of the form:

ψ(y) =
∫
D

⎡
⎣ ∫

D

φθ
1(y1 − h1(x1))u1(x1)u(2)(x2, x1) dx1

⎤
⎦φθ

2(y2 − h2(x2)) dx2

=
∫ ⎡

⎣ ∫
ρθ1(x1)u1(x1)u(2)(x2, x1) dx1

⎤
⎦ ρθ2(x2) dx2.
D D
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By Lemma 5, this can be reformulated as:

ψ(y) =
∫
D

ũ2(t2, x2)ρθ2(x2) dx2,

where ũ2 is the solution of the FP equation (15) on the sub-time interval (t1, t2) with initial condition 
ũ2(t1, x) = limt→t−1

ũ1(t, x)ρ1(x).
Inductive generalization to n time instances {t1, . . . , tn} gives the reformulation (22). Namely, with the 

notation

ψ(�)(y1, . . . , y�;x�) =
∫

Dm−1

u1(x1)
�∏

j=2
u(xj |Xj−1 = xj−1)

�∏
i=1

φθ
i

(
yi − hθ

i (xi)
)
d(x1, . . . , x�−1)

for � ∈ {2, . . . , n}, we have the recursion

ψ(�+1)(y1, . . . , y�+1, x�+1) =
∫
D

u(x�+1 |X� = x�)φθ
�+1

(
y�+1 − hθ

�+1(x�+1)
)
ψ(�)(y1, . . . , y�;x�) dx� ,

which according to the induction hypothesis

ψ(�)(y1, . . . , y�;x�) = ũ�(t�, x�) ρθ� (x�) ,

and with the notation (24) yields

ψ(�+1)(y1, . . . , y�+1;x�+1) =

⎡
⎣∫

D

ũ�(t�, x�) ρθ� (x�)u(�+1)(x�+1, x�) dx�

⎤
⎦ ρθ�+1(x�+1) ,

where by Lemma 5, the term in brackets is the value at time t�+1 of the solution ũ�+1 to the FP equation 
(15) on (t�, t�+1) with initial data limt→t−�

ũ�(t, x�)ρθ� (x�) at time t�. �
3. Gradient computation by adjoint approach

As already outlined above, our aim is to reconstruct the parameters θ of the degradation model by 
maximizing the likelihood of the observation data. Thus, the optimization problem is of the form

max
θ, ũ

Ψ(θ, ũ; y)

s.t. Σ̃(θ, ũ; y)

with Ψ defined by the likelihood function derived in the previous section, more precisely, the representation 
(22), i.e.,

Ψ(θ, ũ, y) =
∫
D

φθ
n(yn − hθ

n(xn)) (xn) ũn (tn, xn) dxn ,

and Σ̃ by (23), (24). By means of the parameter-to-state map

θ �→ ũ(θ), (31)
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which maps the parameters to the solution ũ = (ũ1, . . . , ̃un) of (23) with ρj as in (24), the above optimization 
problem can be formulated as an unconstrained problem

max
θ

Ψ(θ, ũ(θ); y) = max
θ

j(θ) . (32)

Efficient parameter identification in (32) requires the gradient ∇j, i.e., the derivatives of the likelihood 
with respect to all the parameters θ1, . . . , θd. For this purpose, an adjoint approach, based on the Lagrange 
function, is applied. Basically, the adjoint approach is used to avoid the expensive computation of the state 
sensitivities from d linearized versions of the state equation over the whole time interval. Instead, we solve 
the adjoint equation, a linear PDE backwards in time, which will be defined piecewise in time, i.e., on 
the subintervals (tj−1, tj) to take into account the discrete observation time instances. This will allow to 
compute the full gradient by means of just one additional linear PDE solution, instead of d.

To define the Lagrange function, we split the time interval according to the observation time instances tj
and introduce Lagrange multipliers (adjoint states) pj on the subintervals (tj−1, tj ]. Therewith, the Lagrange 
function reads as follows:

L(θ, ũ1, . . . , ũn, p1, . . . , pn)

=
∫
D

ρθn (xn) ũn (tn, xn) dxn

+
n∑

j=1

tj∫
tj−1

∫
D

[
∂ũj

∂t
(t, x)pj(t, x) +

(
1
2 ∇ ·

((
bθbθ

T
)
ũj

)
− aθũj

)
(t, x) · ∇pj(t, x)

]
d(x, t)

+
∫
D

(
ũ1(0, x) − uθ

0(x)
)

lim
t→0+

p1(t, x) dx

+
n∑

j=2

∫
D

(
ũj(tj−1, x) − lim

t→t−j−1

ũj−1(t, x)ρθj−1(x)
)

lim
t→t+j−1

pj(t, x) dx

with t0 := 0. Integration by parts with respect to space and time gives:

L(θ, ũ1, . . . , ũn, p1, . . . , pn)

=
∫
D

ρθn (xn) ũn (tn, xn) dxn

+
n∑

j=1

tj∫
tj−1

⎧⎨
⎩
∫
D

ũj(t, x)
[
−∂pj

∂t
− aθ

T∇pj −
1
2

(
bθbθ

T
)

: ∇2pj

]
(t, x) dx

+
∫
∂D

ũj(t, x)
(

1
2b

θbθ
T∇pj

)
(t, x) · nD dS

⎫⎬
⎭ dt

+
n∑

j=2

∫
D

(
ũj(tj , x) pj(tj , x) − lim

t→t−j−1

ũj−1(t, x) ρθj−1(x) pj(tj−1, x)
)

dx

+
∫ (

ũ1 (t1, x) p1(t1, x) − uθ
0(x) p1(0, x)

)
dx
D
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=
∫
D

ρθn (xn) ũn (tn, xn) dxn

+
n∑

j=1

tj∫
tj−1

⎧⎨
⎩
∫
D

ũj(t, x)
[
−∂pj

∂t
− aθ

T∇pj −
1
2

(
bθbθ

T
)

: ∇2pj

]
(t, x) dx

+
∫
∂D

ũj(t, x)
(

1
2b

θbθ
T∇pj

)
(t, x) · nD dS

⎫⎬
⎭ dt

+
n−1∑
j=1

∫
D

ũj(tj , x)
[
pj(tj , x) − ρθj (x) pj+1(tj , x)

]
dx

−
∫
D

uθ
0(x)p1(0, x) dx +

∫
D

ũn (tn, x) pn (tn, x) dx.

Thus, the requirement

L′
ũ(θ, ũ1, . . . , ũn, p1, . . . , pn) = 0

results in the adjoint equation

−∂pj
∂t

− 1
2

(
bθbθ

T
)

: ∇2pj − aθ
T∇pj = 0, in (tj−1, tj) ×D,(

1
2b

θbθ
T∇pj

)
· nD = 0, on (tj−1, tj) × ∂D,

(33)

with the final conditions on each subinterval

pj (tj , x) =

⎧⎨
⎩

lim
t→t+j

pj+1(t, x) ρθj (x), j = 1, . . . , n− 1,

−ρθn(x), j = n.

(34)

By means of the adjoint states p = (p1, . . . , pn) = p(θ), the gradient of the likelihood can be computed 
without computing state sensitivities. To this end, note that by definition of the parameter-to-state map 
(namely such that the state equation constraint is satisfied) and by the chain rule, the gradient of the 
likelihood is given as follows:

∇θj(θ) = ∇θΨ(θ, ũ(θ); y) = ∇θL (θ, ũ(θ),p(θ)) (35)

= L′
θ (θ, ũ(θ),p(θ)) + L′

ũ (θ, ũ(θ),p(θ)) ũ′
θ(θ) + L′

p (θ, ũ(θ),p(θ))p′(θ). (36)

Since p(θ) solves the adjoint problem (33)–(34), the second summand in equation (36) vanishes. So does 
the last summand in (36), due to the fact that ũ(θ) satisfies the state equation. Thus, it suffices to compute 
the direct derivatives of L with respect to θ. More precisely, we end up with

∇θj(θ) = L′
θ (θ, ũ(θ),p(θ)) , (37)

where ũ1, . . . , ̃un solve (23) and p1, . . . , pn solve the adjoint system (33)–(34). Therewith, under the smooth-
ness conditions given in Assumption 3, the gradient can be given explicitly by means of the adjoint state.
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Assumption 3. For θ ∈ Q and i ∈ {1, . . . , d}, (ϑ, y) �→ φϑ
1 (y), . . . , φϑ

n(y) is differentiable with respect to ϑi

and with respect to y in {θ} ×R
k. Moreover, all fϑ ∈ {aϑ, bϑ, uϑ

0 , h
ϑ
1 , . . . , h

ϑ
n} satisfy the following conditions:

(i) For all ϑ in a neighborhood of θ, the function z �→ fϑ(z) is integrable.
(ii) There exists an integrable function g : D → R

+
0 (or g : (0, T ) ×D → R

+
0 ) such that for all ϑ1, ϑ2 in a 

neighborhood of θ and all z ∈ D (or z ∈ (0, T ) ×D)

|fϑ1(z) − fϑ2(z)| ≤ g(z)|ϑ1 − ϑ2| .

(iii) For almost all z ∈ D (or z ∈ (0, T ) ×D), the function ϑ �→ fϑ(z) is differentiable with respect to ϑi

in θ.

Proposition 4. Under the assumptions of Proposition 2, Assumption 3, and if aθ, ∂a
θ

∂θi
, bθ, ∇bθ, ∂b

θ

∂θi
, ∇∂bθ

∂θi
∈

L∞((0, T ) ×D), uθ
0, 

∂uθ
0

∂θi
∈ L2(D), ∂φ

θ
j

∂θi
∈ L∞(Rk), ∂φ

θ
j

∂y ∈ L∞(Rk), ∂h
θ
j

∂θi
∈ L∞(D), and Bθ as defined in (11)

is uniformly positive definite on (0, T ) ×D, we have

∂

∂θi
j(θ) =

∫
D

∂ρθn
∂θi

(x)ũn(tn, x) dx

+
n∑

j=1

tj∫
tj−1

∫
D

[
∇
(

1
2

(
∂bθ

∂θi
bθ

T + bθ
∂bθ

T

∂θi

)
ũj

)
− ∂aθ

T

∂θi
ũj

]
(t, x) · ∇pj(t, x) d(x, t)

−
∫
D

∂uθ
0

∂θi
(x) p1 (0, x) dx−

n−1∑
j=1

∫
D

lim
t→t−j

ũj(t, x)
∂ρθj
∂θi

(x)pj+1(tj , x) dx,

where for all j ∈ {1, . . . , n},

∂ρθj
∂θi

(x) =
∂φθ

j

∂θi
(yj − hθ

j (x)) −
∂φθ

j

∂y
(yj − hθ

j (x))
∂hθ

j

∂θi
(x) .

Here ũj and pj solve (23), and (33)–(34), respectively.

Proof. After the derivations above, it only remains to verify differentiability of j as well as exchangeability of 
integration and differentiation, as can be done according to, e.g., [5, Proposition 5.108] under Assumption 3. 
Moreover, the given conditions on the coefficients in the Fokker–Planck equation and the initial conditions 
guarantee well-definedness, uniqueness and L2(0, T ; H1(D)) ∩ H1(0, T ; (H1(D))∗) ⊆ C(0, T ; L2(D)) regu-
larity of solutions to (23), and (33)–(34). (The latter, by making use of Sobolev embedding results of H1(D)
in Lp(D) for appropriate dimension dependent p > 2 for ũj , pj , actually enables a slight relaxation of 
assumptions on the summability index of derivatives of the coefficients aθ, bθ.) �
4. Conclusions and remarks

In this paper we considered the problem of identifying parameters in stochastic differential equations. 
The main challenges in this setting lie in the fact that observations hθ(X) are only indirect and we are 
in a low frequency regime [9] in the sense that the observation times are too far away from each other 
to admit applicability of conventional drift and diffusion estimators. On the other hand, they are not far 
enough away from each other to justify a mutual independence assumption, which would enable to work 
with a conventional likelihood function. Therefore, in this paper we first of all derived an expression for the 
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correct likelihood. In addition, an adjoint approach for computing gradients of this likelihood, as required for 
sensitivity based optimization in parameter fitting, was presented. This approach could as well be transferred 
to the setting of an infinite dimensional parameter space, including even the task of nonparametric drift 
and diffusion estimation by defining θ = (a, b), with a, b denoting drift and diffusion, respectively.

Future research will be concerned with a numerical implementation of this approach and with inves-
tigating the possibility of applying likelihood profiles [4] for quantifying the uncertainty in the estimated 
parameters.
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Appendix A

To reformulate the likelihood function the following convolution property is required.

Lemma 5. For arbitrary x0 ∈ D, suppose v̂x0 solves the homogeneous linear PDE with Dirac delta initial 
condition: {

Lv̂x0(t, x) = 0, (t, x) ∈ (0, T ) ×D,

v̂x0(0, x) = δx0(x), x ∈ D.

Then, for any w ∈ C(D), the convolution

v(t, x) :=
∫
D

v̂x0(t, x)w(x0) dx0

solves the initial value problem
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lv(t, x) =
∫
D

Lv̂x0(t, x)w(x0) dx0 = 0,

v(0, x) =
∫
D

δx0(x)w(x0) dx0 =
∫
D

δx(x0)w(x0) dx0 = w(x).

Proof. Due to definition of v combined with the convolution property of the Dirac delta function. �
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