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Boundedness and compactness properties of multiplication operators on quantum 
(non-commutative) function spaces are investigated. For endomorphic multiplication 
operators these properties can be characterized in the setting of quantum symmetric 
spaces. For non-endomorphic multiplication operators these properties can be 
completely characterized in the setting of quantum Lp-spaces and a partial solution 
obtained in the more general setting of quantum Orlicz spaces.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In recent years there appears to be a renewed interest in the study of multiplication operators. Even in the 
commutative setting new results regarding multiplication operators on Orlicz spaces [8,9], Orlicz-Lorentz 
sequence spaces [2] and Köthe sequence spaces [31] have recently been obtained. In the non-commutative 
setting, multiplication operators have been studied on von Neumann algebras and their preduals, and 
between distinct Orlicz spaces [28]. In these articles sufficient conditions for the existence of multiplication 
operators between distinct Orlicz spaces and necessary conditions for the compactness of multiplication 
operators between the respective spaces have been provided.

It is important to note that the space of all multipliers between two symmetric spaces is also known as the 
generalized (Köthe) dual and is related to the relative commutant ([22, Theorem 1.1] and [4, Corollary 5]). 
Numerous articles ([29], [7] and [11], for example) have been written on generalized duality in the com-
mutative setting and, more recently, some of these results have been generalized to the non-commutative 
setting ([19] and [20]). In particular, sufficient conditions on Orlicz functions have been obtained (see [29], 
[7], and [30]) to ensure that generalized duals of commutative Orlicz spaces coincide with Orlicz spaces, and 
the space of multipliers between distinct non-commutative Calderón-Lozanovskĭi spaces (generalizations of 
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Orlicz-Lorentz spaces) is described, under the proviso that the (right continuous inverses of the) Orlicz 
functions satisfy certain inequalities.

In this article we complement these results by characterizing the existence, boundedness and compactness 
of multiplication operators between distinct non-commutative Orlicz spaces, provided the Orlicz functions 
satisfy certain composition relations. We choose to follow an approach focusing on the individual multiplier, 
rather than the identification of spaces of multipliers. (This decision is in part motivated by the fact that 
some questionable results pertaining to the non-commutative case have started appearing in the generalized 
duality literature - see §3.) The aforementioned conditions on the Orlicz functions engender a generalization 
of the setting of multiplication operators from an Lp-space into an Lq-space, where p > q. We will also 
characterize these properties for the case p < q by using non-commutative analogues of the techniques 
employed in [34]. Here our results clearly show that in this setting boundedness and compactness of a multi-
plication operator is dependent on the specific structure of the individual multiplier, and is not conditioned 
by membership of the multiplier to some a priori given space. It is therefore our belief that the “generalized 
duality” approach simply does not work in this setting. Regarding the endomorphic setting, we show that 
these properties can be characterized in the general setting of symmetric spaces.

Throughout this paper we have confined ourselves to non-commutative spaces associated with semi-finite 
von Neumann algebras. The recent construction of Orlicz spaces for type III von Neumann algebras raises 
the intriguing possibility of ultimately extending the results herein to such spaces.

2. Preliminaries

Throughout this paper A will be used to denote a semi-finite von Neumann algebra equipped with a 
faithful normal semi-finite trace τ . We will use 1 to denote the identity of A. If A does not contain minimal 
projections, then it is called non-atomic. A von Neumann algebra is called purely atomic if it contains a 
set {pλ}λ∈Λ of minimal projections such that 

∑
pλ = 1, and this happens if and only if it is a product of 

Type 1 factors (see [6, p. 354]). Furthermore, there exists a unique central projection c ∈ A such that cA is 
purely atomic and c⊥A is non-atomic (this result follows from the corresponding result for JBW -algebras 
- see [1, Lemma 3.42]). The set of all τ -measurable operators affiliated with A will be denoted S(A, τ). Let 
x ∈ S(A, τ) and let |x| =

∫∞
0 λde|x|(λ) denote the spectral decomposition of |x|. We define the distribution 

function of |x| as

d (|x|) (s) := τ
(
e|x|(s,∞)

)
s ≥ 0.

The singular value function of x, denoted μx, is defined to be the right continuous inverse of the distribution 
function of |x|, namely

μx(t) = inf{s ≥ 0 : d (|x|) (s) ≤ t} t ≥ 0.

This is the non-commutative analogue of the concept of a decreasing rearrangement of a measurable function. 
If x, y ∈ S(A, τ), then we will say that x is submajorized by y and write x ≺≺ y if

t∫
0

μx(s)ds ≤
t∫

0

μy(s)ds for all t > 0.

A linear subspace E ⊆ S(A, τ), equipped with a norm 
∥∥·∥∥

E
, is called a symmetric space if

• E is complete;
• uxv ∈ E whenever x ∈ E and u, v ∈ A;
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•
∥∥uxv∥∥

E
≤

∥∥u∥∥A∥∥v∥∥A∥∥x∥∥E for all x ∈ E, u, v ∈ A;
• and x ∈ E with 

∥∥x∥∥
E
≤

∥∥y∥∥
E

, whenever y ∈ E and x ∈ S(A, τ) with μx ≤ μy.

It follows that 
∥∥x∥∥

E
≤

∥∥y∥∥
E

, whenever E is a symmetric space and x, y ∈ E with |x| ≤ |y|. A symmetric 
space E ⊆ S(A, τ) is called strongly symmetric if its norm has the additional property that 

∥∥x∥∥
E
≤

∥∥y∥∥
E

, 
whenever x, y ∈ E satisfy x ≺≺ y. If E is a symmetric space and it follows from x ∈ S(A, τ), y ∈ E and 
x ≺≺ y that x ∈ E and 

∥∥x∥∥
E

≤
∥∥y∥∥

E
, then E is called a fully symmetric space. Let E ⊆ S(A, τ) be a 

symmetric space. The carrier projection cE of E is defined to be the supremum of all projections in A that 
are also in E. If cE = 1, then E is continuously embedded in S(A, τ) equipped with the measure topology 
Tm. We will therefore assume throughout this text that cE = 1. Further details regarding τ -measurable 
operators and symmetric spaces may be found in [36] and [16]. We will focus on two particular examples of 
symmetric spaces, namely Orlicz spaces and Lp-spaces.

A function ϕ : [0, ∞) → [0, ∞] is called an Orlicz (Young) function if ϕ is convex, ϕ(0) = 0 and 
lim
t→∞

ϕ(t) = ∞. We assume further that ϕ is neither identically zero nor identically infinite on (0, ∞) and 

that ϕ is left continuous. Let

aϕ := inf{t > 0 : ϕ(t) > 0} and bϕ := sup{t > 0 : ϕ(t) < ∞}.

Each Orlicz function ϕ induces a complementary Orlicz function ϕ∗ which is defined by ϕ∗(s) = sup
t>0

{st −

ϕ(t)}. The right continuous inverse of an Orlicz function ϕ is defined by ϕ−1(t) := inf{s : ϕ(s) > t} =
sup{s : ϕ(s) ≤ t}. In the following proposition we present a few relevant properties of Orlicz functions, their 
complementary functions and right continuous inverses.

Proposition 2.1. [3] Let ϕ be an Orlicz function, ϕ∗ its complementary function and ϕ−1 its right continuous 
inverse. Then

1. ϕ(ϕ−1(t)) ≤ t ≤ ϕ−1(ϕ(t)), for all 0 ≤ t < ∞;
2. t ≤ ϕ−1(t).(ϕ∗)−1(t) ≤ 2t, for all 0 ≤ t < ∞.

Suppose (Ω, Σ, μ) is a measure space. If ϕ is an Orlicz function, we can define a modular Iϕ on 
L0(Ω, Σ, μ) = L0(μ), the space of all (equivalence classes) of measurable functions on Ω, by setting

Iϕ(f) :=
∫
Ω

ϕ(|f(t)|)dμ.

The collection of all f ∈ L0(μ) such that Iϕ(λf) < ∞ for some λ > 0 is called an Orlicz space and is denoted 
by Lϕ(μ). Restricted to Lϕ(μ), the functional 

∥∥·∥∥
Lϕ(μ) : L

0(μ) → [0, ∞) defined by

∥∥f∥∥
Lϕ(μ) = inf{λ−1 : Iϕ(λf) ≤ 1}

is a norm, called the Luxemburg-Nakano norm. Detailed investigations of Orlicz spaces and their properties 
may be found in [26] and [32]. Having defined Orlicz spaces in the commutative setting, we can use singular 
value functions to define non-commutative analogues of these spaces in the following way. It follows from 
[14, Corollaries 2.6 and 2.7] that if (A, τ) is a semi-finite von Neumann algebra and E(0, ∞) ⊆ L0(0, ∞) is 
a fully symmetric space, then the collection

E(τ) := {x ∈ S(A, τ) : μx ∈ E(0,∞)}
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is a fully symmetric space, when equipped with the norm 
∥∥x∥∥

E(τ) =
∥∥μx

∥∥
E(0,∞) for x ∈ E(τ). Furthermore, 

similar results hold for symmetric spaces and strongly symmetric spaces (see [25] and [16]). In particu-
lar, since Lϕ(0, ∞) is a rearrangement invariant Banach function space with the Fatou property, by [3, 
Theorem 4.8.9]; it follows (see [10, p. 202]) that Lϕ(0, ∞) is fully symmetric and therefore Lϕ(τ) is fully 
symmetric. When dealing with a non-commutative Orlicz space Lϕ(τ), we will often use 

∥∥·∥∥
ϕ

to denote its 
norm, unless we wish to highlight the distinction between this norm and the corresponding norm in the 
commutative setting. The following results contain information to be used in the sequel and also show that 
non-commutative Orlicz spaces can be equivalently defined using a more direct approach. An important 
consideration in this approach is the fact that if ϕ is an Orlicz function and x ∈ S(A, τ), then ϕ(|x|) may 
not exist as an element of S(A, τ), if bϕ < ∞, and therefore care is required.

Lemma 2.2. [27] Let ϕ be an Orlicz function and x ∈ S(A, τ) a τ -measurable element for which ϕ(|x|) is 
again τ -measurable. Extend ϕ to a function on [0, ∞] by setting ϕ(∞) = ∞. Then ϕ(μx) = μϕ(|x|) and 
τ(ϕ(|x|)) =

∫∞
0 ϕ(μx(t))dt. In particular, if bϕ = ∞, then ϕ(|x|) ∈ S(A, τ) for all x ∈ S(A, τ).

Lemma 2.3. If ϕ is an Orlicz function, then ϕ−1(|x|) ∈ S(A, τ) whenever x ∈ S(A, τ).

Proof. Since lim
s→∞

ϕ(s) = ∞, the set {s ≥ 0 : ϕ(s) > t} is non-empty for each t ≥ 0 and hence ϕ−1(t) =
inf{s ≥ 0 : ϕ(s) > t} is finite for each t ≥ 0. Since ϕ−1 is also increasing, this implies that ϕ−1 is bounded 
on compact subsets of [0, ∞). We therefore obtain ϕ−1(|x|) ∈ S(A, τ) whenever x ∈ S(A, τ) (see [10, 
Proposition 4.8]). �
Proposition 2.4. [27] Let ϕ be an Orlicz function and x ∈ S(A, τ). There exists some α > 0 such that ∫∞
0 ϕ(αμx(t))dt < ∞ if and only if there exists some β > 0 such that ϕ(β|x|) ∈ S(A, τ) and τ(ϕ(β|x|)) < ∞. 

Moreover ∥∥μx

∥∥
Lϕ(0,∞) = inf{λ > 0 : ϕ(|x|/λ) ∈ S(A, τ), τ(ϕ(|x|/λ)) ≤ 1}.

Remark 2.5. It is useful to note that in the proof of Proposition 2.4 it is shown that if x ∈ S(A, τ) and 

α > 0 is such that 
∫∞
0 ϕ(αμx(t))dt < ∞, then for every ε > 0, ϕ 

(
α

1+εx
)
∈ A ⊆ S(A, τ) and by Lemma 2.2

ϕ
(

α
1+εx

)
=

∞∫
0

ϕ
(

α
1+εμx(t)

)
dt.

We briefly mention Köthe duality. Suppose E ⊆ S(A, τ) is a symmetric space. The collection

E× := {x ∈ S(A, τ) : τ(|yx|) < ∞ ∀y ∈ E}

is a symmetric space, called the Köthe dual of E, when equipped with the norm∥∥x∥∥
E× := sup {τ(|xy|) : y ∈ E,

∥∥y∥∥
E
≤ 1}.

It is known (see [15]) that

E× = {x ∈ S(A, τ) : yx ∈ L1(τ) ∀y ∈ E} = {x ∈ S(A, τ) : xy ∈ L1(τ) ∀y ∈ E}

and if E(0, ∞) is a (commutative) strongly symmetric space, then

(E(τ))× = E×(τ) := {x ∈ S(A, τ) : μx ∈ E×(0,∞)},
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where E×(0, ∞) := {f ∈ L0(0, ∞) : fg ∈ L1(0, ∞) ∀g ∈ E(0, ∞)}} (see [16, Theorem 53]). In the context 
of Orlicz spaces, we can identify the Köthe dual as described in the following result.

Proposition 2.6. [27] Let ϕ be an Orlicz function and ϕ∗ its complementary function. Then Lϕ∗(τ), equipped 
with the norm 

∥∥·∥∥0
ϕ∗ defined for x ∈ Lϕ∗(τ) by

∥∥x∥∥0
ϕ∗ = sup{τ(|xy|) : y ∈ Lϕ(τ),

∥∥y∥∥
ϕ
≤ 1}

= inf
k>0

⎛⎝ 1
k + 1

k

∞∫
0

ϕ∗(kμx(t))dt

⎞⎠ ,

is the Köthe dual of Lϕ(τ). Consequently

|τ(xy)| ≤
∥∥x∥∥0

ϕ∗

∥∥y∥∥
ϕ

∀x ∈ Lϕ∗
(τ), y ∈ Lϕ(τ).

Remark 2.7. If E ⊆ S(A, τ) is a symmetric space, then using the definition of 
∥∥y∥∥

E× , it is easily verified 
that

τ(|xy|) ≤
∥∥x∥∥

E

∥∥y∥∥
E× ,

whenever x ∈ E and y ∈ E×. Since |τ(xy)| ≤ τ(|xy|), we obtain a sharper claim than the one made in 
Proposition 2.6.

Next, we describe several growth conditions that will enable us to distinguish various classes of Orlicz 
spaces. The first such condition is the Δ2-condition. If there exists a t0 > 0 and a C > 0 such that 
ϕ(2t) ≤ Cϕ(t) < ∞ for all t such that t0 ≤ t < ∞, then ϕ is said to satisfy the Δ2-condition for large t. 
If t0 = 0, then ϕ is said to satisfy the Δ2-condition globally and we write ϕ ∈ Δ2. The following details 
important consequences of the Δ2-condition.

Proposition 2.8. [3] Suppose ϕ is an Orlicz function. If ϕ ∈ Δ2, then ϕ is invertible and for any k > 0, 
there exists mk > 0 such that ϕ(kt) ≤ mkϕ(t), for all t ≥ 0.

An Orlicz function ϕ is said to satisfy the ∇′-condition, if there exists a t0 > 0 and a c > 0 such that 
ϕ(s)ϕ(t) ≤ ϕ(cst) for all s, t ≥ t0. If t0 = 0, then this condition is said to hold globally and we write ϕ ∈ ∇′. 
We will be particularly interested in the following consequence of the ∇′-condition.

Lemma 2.9. Suppose ϕ is an invertible Orlicz function. If ϕ ∈ ∇′, then

ϕ−1(uv) ≤ cϕ−1(u)ϕ−1(v), for all u, v ≥ 0,

where c > 0 is such that ϕ(s)ϕ(t) ≤ ϕ(cst) for all s, t ≥ 0.

Proof. Let ε > 0, u ≥ 0 and v ≥ 0 be given. Since each of ϕ−1(u) and ϕ−1(v) are finite, we may by the 
definition of ϕ−1 select r1, r2 > 0 so that

ϕ(r1) > u, ϕ(r2) > v, r1 ≤ ϕ−1(u) + ε, and r2 ≤ ϕ−1(v) + ε.

But since ϕ(cr1r2) ≥ ϕ(r1)ϕ(r2) > uv, we must have that

ϕ−1(uv) = inf{r > 0 : ϕ(r) > uv} ≤ cr1r2 ≤ c(ϕ−1(u) + ε)(ϕ−1(v) + ε).

In view of the fact that ε was arbitrary, the claim follows. �
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The non-commutative Lp-spaces can be defined as the collection of τ -measurable operators whose singular 
value functions are p-integrable or equivalently as those τ -measurable operators x for which τ(|x|p) < ∞. 
Equipped with the norm

∥∥x∥∥
Lp(τ) = τ(|x|p)1/p =

∞∫
0

(μx(t))p dt, x ∈ Lp(τ),

Lp(τ) is a symmetric space. Furthermore, we note that if ϕ(t) = tp, for t ≥ 0, then ϕ is an Orlicz function, 
satisfying the Δ2- and ∇′-conditions globally, and Lϕ(τ) = Lp(τ), with equality of norms. Unless confusion 
is possible, we will often denote the norm of an Lp-space using 

∥∥·∥∥
p
. If 1 < p < ∞, then we will use p′ to 

denote the conjugate index of p, i.e. 1/p + 1/p′ = 1. The following collects some of the relevant properties 
of Lp-spaces to be used in the sequel.

Proposition 2.10. [15,13,18] Suppose x, y ∈ S(A, τ). Then

1. τ(xy) = τ(yx), whenever xy, yx ∈ L1(τ). If, in addition, x, y ≥ 0, then x1/2yx1/2, y1/2xy1/2 ∈ L1(τ)
and

τ(xy) = τ(x1/2yx1/2) = τ(y1/2xy1/2);

2.
∥∥xy∥∥

q
≤

∥∥x∥∥
p

∥∥y∥∥
r

whenever p, q, r > 0 are such that p−1 + r−1 = q−1; and
3.

∫ t

0 f(μxy(s))ds ≤
∫ t

0 f(μx(s)μy(s))ds for any increasing function f : R+ → R such that t �→ f(et) is 
convex.

Suppose E, F ⊆ S(A, τ) are symmetric spaces and w ∈ S(A, τ). The left multiplication map E →
S(A, τ) : x �→ wx will be denoted Mw. If Mw maps E into F , then Mw will be called a multiplication 
operator from E into F . There are several natural questions regarding such multiplication maps. Firstly, 
what are the conditions on w ∈ S(A, τ) which characterize when Mw maps E into F? Furthermore, under 
what conditions will such multiplication operators be bounded or compact? Unsurprisingly, it is often 
the case that continuity properties of Mw and conditions under which Mw maps E into F are studied 
concurrently. In fact, Mw is automatically continuous if it maps E into F . (To see this observe that any 
w ∈ S(A, τ) induces a continuous (left) multiplication operator on S(A, τ). On combining this fact with the 
fact that each of E and F continuously embed into S(A, τ), it is now a simple exercise to show that Mw

must then have a closed graph as a map from E to F .)

3. Existence and boundedness of multiplication operators

It is easily checked that w ∈ S(A, τ) induces a bounded (left) multiplication operator if and only if |w|
induces a bounded (left) multiplication operator. Furthermore, if this is the case, then∥∥Mw

∥∥ =
∥∥M|w|

∥∥.
It therefore suffices to consider positive elements in our study of boundedness properties of multiplication 
operators. For the endomorphic setting the boundedness of multiplication operators has been characterized 
in the general setting of symmetric spaces ([19, Proposition 5]). For the non-endomorphic case, we will show 
that the boundedness of multiplication operators between different Orlicz spaces can be characterized if the 
Orlicz functions satisfy certain properties. These properties imply that the situation is a natural general-
ization of considering multiplication operators from Lp(τ) into Lq(τ) if p > q. For p < q, a characterization 
will also be provided.
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3.1. Multiplication operators on symmetric spaces

It is natural to consider if it is not possible to lift results from the commutative setting to the non-
commutative setting. It is, in fact, claimed in [20, Corollary 3.1] that if (A, τ) is a semi-finite von Neumann 
algebra, 0 < α0, α1 < ∞, E, F ⊆ L0(I) (I = (0, 1) or I = (0, ∞)) with E an α0-convex symmetric 
quasi-Banach space and F an α1-convex fully symmetric quasi-Banach space with the Fatou property, then 
E(τ)F (τ), the collection of all multipliers from E(τ) to F (τ), is given by

EF (τ) = {x ∈ S(A, τ) : μx ∈ EF },

where EF is the set of all multipliers from E to F . Whilst there are other interesting and useful results in 
[20], the aforementioned result cannot be true without further restrictions on the semi-finite von Neumann 
algebra A. On noting that symmetric Banach spaces are 1-convex (see [17] for definitions and details) and 
Lp-spaces are fully symmetric spaces with the Fatou property, this can be seen from the following example.

Example 3.1. Suppose A = B(H), the set of all bounded operators on the Hilbert space H, and equip A with 
the canonical trace tr. If 1 ≤ p < q, then Lp(tr) is continuously embedded in Lq(tr), by [12, Proposition 4.5]. 
It follows that the identity operator is a multiplier from Lp(tr) into Lq(tr). However, it follows from [34, 
Theorem 1.4] that the only multiplier from Lp(I) to Lq(I) is the function which is zero almost everywhere. 
It follows that LpL

q

(tr) = {0}. However as can be seen from Theorem 3.11, the set of multipliers yielding 
bounded operators Lp(tr) to Lq(tr), is actually quite large.

It is our suspicion that the discussion on p. 286 ([18]) regarding the embedding of a general semi-finite 
von Neumann algebra A into the non-atomic von Neumann algebra A⊗̄L∞(0, ∞) has, at times, not been 
applied with sufficient care. This has led to an insufficient distinction between the atomic and non-atomic 
cases and possible mistakes in the literature. Regarding the proof of [20, Corollary 3.1], it is true that 
x and x ⊗ 1 have the same generalized singular value functions. It need not, however, be the case that 
x ⊗ 1 is a multiplier between two spaces corresponding to A⊗̄L∞(0, ∞) if x is a multiplier between the 
matching spaces corresponding to A. Example 3.1 above demonstrates that in the case A = B(H), 1 is a 
multiplier from Lp(tr) into Lq(tr). However 1 ⊗ 1 is not a multiplier from Lp(A⊗̄L∞(0, ∞), tr ⊗m) into 
Lq(A⊗̄L∞(0, ∞), tr⊗m). To see this let e be any minimal projection in B(H), Ek = ( 1

2k , 1
2k−1 ) for k ∈ N

+

and fn =
n∑

k=1

χEk

m(Ek)1/q for n ∈ N
+. It is easily checked that (fn)∞n=1 is Cauchy in Lp(0, ∞), but not in 

Lq(0, ∞). Furthermore,

e⊗ fn ∈ (L∞ ∩ L1)(A⊗̄L∞(0,∞), tr ⊗m)

⊆ Lp(A⊗̄L∞(0,∞), tr ⊗m) ∩ Lq(A⊗̄L∞(0,∞), tr ⊗m)

and 
∥∥(e⊗ fn) − (e⊗ fm)

∥∥
r

=
∥∥e⊗ (fn − fm)

∥∥
r

=
∥∥fn − fm

∥∥
r

for every n, m ∈ N
+ and 1 ≤ r < ∞. 

It follows that (e ⊗ fn)∞n=1 is Cauchy in Lp(A⊗̄L∞(0, ∞), tr ⊗ m), but not in Lq(A⊗̄L∞(0, ∞), tr ⊗ m). 
Since (1 ⊗ 1)(e ⊗ fn) = e ⊗ fn for each n, this shows that 1 ⊗ 1 is not a continuous multiplier from 
Lp(A⊗̄L∞(0, ∞), tr ⊗m) into Lq(A⊗̄L∞(0, ∞), tr ⊗m).

In the special case where the von Neumann algebra is the set of all bounded operators on a Hilbert space, 
equipped with the canonical trace, it is possible to define non-commutative analogues of sequence spaces 
using sequences of singular values instead of singular value functions (see [5, p. 629], for example). In this 
context it can be shown that the lifting approach has applicability (see [5, Theorem 4.16]).

Cognizant of the above subtleties and since we wish to deal with general von Neumann algebras, we 
will not use the lifting approach nor attempt to deal with the atomic case by means of a reduction to the 
non-atomic setting, but will typically follow a more direct approach.
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The next result shows that sufficient conditions for the existence and boundedness of multiplication 
operators on non-commutative spaces may however often be derived from the classical setting without 
imposing further restrictions on the semi-finite von Neumann algebra.

Lemma 3.2. Suppose Ei(0, ∞) (i = 1, 3) are (commutative) symmetric spaces, E2(0, ∞) is a (commutative) 
strongly symmetric space and (A, τ) is a semi-finite von Neumann algebra. If there exists some k > 0 such 
that ∥∥fg∥∥

E2(0,∞) ≤ k
∥∥f∥∥

E1(0,∞)

∥∥g∥∥
E3(0,∞), (1)

whenever f ∈ E1(0, ∞) and g ∈ E3(0, ∞), then∥∥xy∥∥
E2(τ) ≤ k

∥∥x∥∥
E1(τ)

∥∥y∥∥
E3(τ),

whenever x ∈ E1(τ) and y ∈ E3(τ).

Proof. Suppose x ∈ E1(τ) and y ∈ E3(τ). Then μxy ≺≺ μxμy, by [33, Theorem 4]. Since E2(0, ∞) is a 
strongly symmetric space, this implies that 

∥∥μxy

∥∥
E2(0,∞) ≤

∥∥μxμy

∥∥
E2(0,∞). Using (1) we therefore obtain

∥∥μxy

∥∥
E2(0,∞) ≤

∥∥μxμy

∥∥
E2(0,∞) ≤ k

∥∥μx

∥∥
E1(0,∞)

∥∥μy

∥∥
E3(0,∞).

Since the norm of a trace-measurable operator is given by the norm of its singular value function, the result 
follows. �

Regarding the endomorphic setting, we note that it is shown in [19, Proposition 5] that if E ⊆ S(A, τ)
is a non-trivial symmetric space and w ∈ S(A, τ)+, then Mw is a bounded multiplication operator from E
into itself if and only if w ∈ A. Examination of the proof of this theorem shows that if this is the case, then ∥∥Mw

∥∥ =
∥∥w∥∥A.

3.2. Multiplication operators on Orlicz spaces

We note that it is shown in [19, Theorem 3], that if E is a symmetric space with the Fatou property, 
ϕ, ϕ1, ϕ2 are Orlicz functions with bϕ = bϕ1 = bϕ2 , and k1ϕ

−1 ≤ ϕ−1
1 (t)ϕ2(t) ≤ k2ϕ

−1(t) for all t ≥ 0 for 
some k1, k2 > 0, then the space of multipliers between the Calderón-Lozanovskĭi spaces Eϕ1(τ) and Eϕ(τ) is 
given by Eϕ2(τ). If E = L1, then we obtain the corresponding result for Orlicz spaces. We extend this result 
in the setting of Orlicz spaces by showing that it holds true without the requirement that bϕ = bϕ1 = bϕ2 . 
We use the fact that the corresponding result holds true in the commutative setting (see [30]) to establish 
the first part of this result.

Theorem 3.3. Suppose w ∈ S(A, τ)+ and ϕi (i = 1, 2, 3) are Orlicz functions.

1. If ϕ−1
1 (t)ϕ−1

3 (t) ≤ kϕ−1
2 (t) for all t ≥ 0, then Mw is a bounded multiplication operator from Lϕ1(τ) into 

Lϕ2(τ) whenever w ∈ Lϕ3(τ). Furthermore, if this is the case, then 
∥∥Mw

∥∥ ≤ 2k
∥∥w∥∥

ϕ3
.

2. If there exists some k > 0 such that ϕ−1
2 (t) ≤ kϕ−1

1 (t)ϕ−1
3 (t) for all t ≥ 0, then Mw is a bounded 

multiplication operator from Lϕ1(τ) into Lϕ2(τ) only if w ∈ Lϕ3(τ). Furthermore, if this is the case, 
then 

∥∥w∥∥
ϕ3

≤ 4k
∥∥Mw

∥∥.
Proof. (1) follows from [30, Remark 2] and Lemma 3.2.



882 P. de Jager, L.E. Labuschagne / J. Math. Anal. Appl. 475 (2019) 874–894
To prove (2), suppose that there exists some k > 0 such that ϕ−1
2 (t) ≤ kϕ−1

1 (t)ϕ−1
3 (t) for all t ≥ 0 and 

Mw is a bounded multiplication operator from Lϕ1(τ) into Lϕ2(τ). Let Γ(·) := τ(w·). We show that Γ is a 
bounded linear functional on Lϕ∗

3 (τ). Let ε > 0 be given and suppose x ∈ Lϕ∗
3 (τ)+ with 

∥∥x∥∥
ϕ∗

3
= 1 − ε. It 

follows by Proposition 2.4 and Remark 2.5 that ϕ∗
3(x) ∈ S(A, τ) and τ(ϕ∗

3(x)) ≤ 1. Define x1 := ϕ−1
1 ◦ϕ∗

3(x)
and x2 := (ϕ∗

2)−1 ◦ϕ∗
3(x). Then x1, x2 ∈ S(A, τ), by Lemma 2.3. Furthermore, ϕ1 ◦ϕ−1

1 (t) ≤ t for all t ≥ 0, 
by Proposition 2.1(1), and so 0 ≤ ϕ1(x1) = ϕ1 ◦ ϕ−1

1 (ϕ∗
3(x)) ≤ ϕ∗

3(x) using the Borel functional calculus. 
It follows that τ(ϕ1(x1)) ≤ τ(ϕ∗

3(x)) ≤ 1 and therefore, x1 ∈ Lϕ1(τ) with 
∥∥x1

∥∥
ϕ1

≤ 1, by Proposition 2.4. 
Similarly, x2 ∈ Lϕ∗

2 (τ) and 
∥∥x2

∥∥
ϕ∗

2
≤ 1. Since Mw is a bounded multiplication operator from Lϕ1(τ) into 

Lϕ2(τ), we have that wx1 ∈ Lϕ2(τ). So wx1x2 ∈ L1(τ) by Köthe duality. Applying this and Proposition 2.6
(see also Remark 2.7), we obtain

|τ(wx1x2)| ≤ τ(|wx1x2|) ≤
∥∥wx1

∥∥
ϕ2

∥∥x2
∥∥0
ϕ∗

2
≤

∥∥Mw

∥∥∥∥x1
∥∥
ϕ1

∥∥x2
∥∥0
ϕ∗

2
. (2)

Furthermore, using [3, Theorem 4.8.14] and the fact that the norm of y is equal to the norm of its singular 
value function in the corresponding commutative space, we have 

∥∥y∥∥0
ϕ∗

2
≤ 2

∥∥y∥∥
ϕ∗

2
for any y ∈ Lϕ∗

2 (τ). Hence 
inequality 2 becomes

|τ(wx1x2)| ≤ 2
∥∥Mw

∥∥∥∥x1
∥∥
ϕ1

∥∥x2
∥∥
ϕ∗

2
≤ 2

∥∥Mw

∥∥ = 2
1−ε

∥∥Mw

∥∥∥∥x∥∥
ϕ∗

3
, (3)

since 
∥∥x1

∥∥
ϕ1
, 
∥∥x2

∥∥
ϕ∗

2
≤ 1, as shown earlier and 

∥∥x∥∥
ϕ∗

3
= 1 − ε. Since x1 and x2 were defined using x and 

the Borel functional calculus, it is easily checked that x1x2 = x2x1 ≥ 0. It follows that

x1x2w = x2x1w = (wx1x2)∗ ∈ L1(τ).

Furthermore, w, x1x2 ≥ 0 and so w1/2x1x2w
1/2 ∈ L1(τ), by Proposition 2.10. Next we show that x ≤

2kx1x2. It follows from the first inequality in Proposition 2.1(2) and the assumption that ϕ−1
2 ≤ kϕ−1

1 .ϕ−1
3

that

t ≤ ϕ−1
2 (t).(ϕ∗

2)−1(t) ≤ kϕ−1
1 (t).ϕ−1

3 (t).(ϕ∗
2)−1(t).

Multiplying through by (ϕ∗
3)−1(t) and applying the second inequality in Proposition 2.1(2) we therefore 

obtain

t.(ϕ∗
3)−1(t) ≤ kϕ−1

1 (t).ϕ−1
3 (t).(ϕ∗

3)−1(t).(ϕ∗
2)−1(t) ≤ 2ktϕ−1

1 (t).(ϕ∗
2)−1(t).

Using t = ϕ∗
3(s), we obtain

s ≤ (ϕ∗
3)−1 ◦ ϕ∗

3(s) ≤ 2kϕ−1
1 ◦ ϕ∗

3(s).(ϕ∗
2)−1 ◦ ϕ∗

3(s),

for all s > 0 and therefore x ≤ 2kx1x2, using the properties of the Borel functional calculus and the 
definitions of x1 and x2. It follows that w1/2xw1/2 ≤ w1/22kx1x2w

1/2, by [10, Proposition 4.5], and therefore

τ(w1/2xw1/2) ≤ τ(w1/22kx1x2w
1/2) using the positivity of τ

= 2kτ(wx1x2) using Proposition 2.10

≤ 4k
1−ε

∥∥Mw

∥∥∥∥x∥∥
ϕ∗

3
using (3).

It follows that (w1/2x)w1/2 ∈ L1(τ). Since x, x1 and x2 commute, we can use the fact that x ≤ 2kx1x2
to show that |xw|2 ≤ 4k2|x2x1w|2 and hence |xw| ≤ 2k|x2x1w|, since taking square roots is an operator-
monotone function (see [21, Corollary 3.2]). It follows that wx ∈ L1(τ). Since, apart from the restriction on 
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the size of the norm, x was an arbitrary element of Lϕ∗
3 (τ)+. It follows from Köthe duality that w ∈ Lϕ3(τ). 

We can therefore apply Proposition 2.10 to obtain τ(w1/2xw1/2) = τ(wx) and therefore, since the above 
holds for all ε > 0, we have

|Γ(x)| = |τ(wx)| = τ(w1/2xw1/2) ≤ 4k
∥∥Mw

∥∥∥∥x∥∥
ϕ∗

3
. (4)

Given y ∈ Lϕ∗
3 (τ), we may now use the polar decomposition y = u|y| in terms of some partial isometry 

u ∈ A, to conclude from the above that

|Γ(y)| = |τ(wv|y|)|
= τ((w1/2v|y|1/2)(|y|1/2w1/2))

≤ τ(w1/2v|y|vw1/2)1/2τ(w1/2|y|w1/2)1/2

≤ (4k
∥∥Mw

∥∥∥∥v|y|v∥∥
ϕ∗

3
)1/2(4k

∥∥Mw

∥∥∥∥|y|∥∥
ϕ∗

3
)1/2

≤ 4k
∥∥Mw

∥∥∥∥y∥∥
ϕ∗

3
,

where we used the fact that 
∥∥v|y|v∥∥

ϕ∗
3
≤

∥∥|y|∥∥
ϕ∗

3
=

∥∥y∥∥
ϕ∗

3
to obtain the final inequality. Clearly, ‖Γ‖ ≤

4k
∥∥Mw

∥∥. Since Orlicz spaces are strongly symmetric spaces, we may apply [15, Theorem 5.11] to conclude 
that 

∥∥Γ
∥∥ =

∥∥w∥∥
ϕ3

and hence that 
∥∥w∥∥

ϕ3
≤ 4k

∥∥Mw

∥∥. �
Applying this result to Lp-spaces, we obtain the following.

Corollary 3.4. Suppose 1 < q < p and r is such that 1/p + 1/r = 1/q. If w ∈ S(A, τ), then Mw is a bounded 
multiplication operator from Lp(τ) into Lq(τ) if and only if w ∈ Lr(τ).

Proof. If ϕ1(t) := tp, ϕ2(t) = tq and ϕ3(t) = tr, then

ϕ−1
1 (t)ϕ−1

3 (t) = t1/pt1/r = t1/q = ϕ−1
2 (t), ∀t ≥ 0. �

In [28] sufficient conditions are obtained for the existence of multipliers between Orlicz spaces when the 
Orlicz functions are related by certain composition relations. We show that multiplication operators can be 
completely characterized and norm estimates obtained under similar circumstances.

Theorem 3.5. Suppose w ∈ S(A, τ) and ψ, ϕ1, ϕ2 are Orlicz functions. If ϕ3 := ψ∗◦ϕ2 is an Orlicz function, 
ψ ◦ ϕ2 = ϕ1, and ϕ2 is an Orlicz function satisfying the ∇′-condition, then

1. there exists 0 < c ≤ 1 so that ϕ−1
2 (t) ≤ cϕ−1

1 (t)ϕ−1
3 (t) for all t > 0;

2. Mw is a bounded multiplication operator from Lϕ1(τ) into Lϕ2(τ) if and only if w ∈ Lϕ3(τ). Moreover, 
if this is the case, then

∥∥Mw

∥∥ ≤ 2
c

∥∥w∥∥
ϕ3

≤ 8
∥∥Mw

∥∥,
where c > 0 is such that ϕ−1

2 (st) ≤ cϕ−1
2 (s)ϕ−1

2 (t) for all s, t ≥ 0 (see Lemma 2.9).

Proof. To prove (1), we start by showing that ϕ−1
2 ◦ ψ−1 ≤ ϕ−1

1 . Using the fact that ϕ1 = ψ ◦ ϕ2, we have 
that

ϕ1(ϕ−1
2 (t)) = ψ ◦ ϕ2(ϕ−1

2 (t)) ≤ ψ(t),
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by Proposition 2.1 and the fact that ψ is increasing. Replacing t with ψ−1(t) in the inequality above we 
obtain

ϕ1 ◦ ϕ−1
2 (ψ−1(t)) ≤ ψ(ψ−1(t)) ≤ t.

Apply ϕ−1
1 to the inequality above, and use the fact that ϕ−1

1 is increasing, to conclude from Proposition 2.1
that

ϕ−1
2 (ψ−1(t)) ≤ ϕ−1

1
(
ϕ1 ◦ ϕ−1

2 (ψ−1(t))
)
≤ ϕ−1

1 (t),

as desired. A similar proof shows that ϕ−1
2 ◦ (ψ∗)−1 ≤ ϕ−1

3 .
Next, suppose t > 0. Then using Proposition 2.1 and the fact that ϕ2 is increasing, we have that 

ϕ−1
2 (t) ≤ ϕ−1

2
(
ψ−1(t).(ψ∗)−1(t)

)
. On applying Lemma 2.9, it then follows that ϕ−1

2 (t) ≤ cϕ−1
2

(
ψ−1(t)

)
.

ϕ−1
2

(
(ψ∗)−1(t)

)
. The inequalities verified in the first part of the proof now enable us to conclude that 

ϕ−1
2 (t) ≤ cϕ−1

1 (t).ϕ−1
3 (t).

To prove (2), we start by noting that if Mw is a bounded multiplication operator from Lϕ1(τ) into 
Lϕ2(τ), then it follows from the first part of this Theorem and Theorem 3.3(2) that w ∈ Lϕ3(τ) and ∥∥w∥∥

ϕ3
≤ 4c

∥∥Mw

∥∥.
It remains to prove the sufficiency and reverse inequality in (2). Given any λ ≥ 0 and 0 < ε < 1, we 

may use convexity to conclude that ε−1ϕ2(λ) ≤ ϕ2(ε−1λ), and hence that ψ∗(ε−1ϕ2(λ)) ≤ ψ∗ ◦ϕ2(ε−1λ) =
ϕ3(ε−1λ). Given any positive Borel function f for which ϕ3(ε−1f) is finite almost everywhere, it is clear that 
ψ∗(ε−1ϕ2(f)) is then also finite almost everywhere with ψ∗(ε−1ϕ2(f)) ≤ ϕ3(ε−1f). Since ψ∗ is an Orlicz 
function, this can clearly only be the case if ϕ2(f) itself is also finite almost everywhere. Given any y ∈
Lϕ3(τ)+ with 

∥∥y∥∥
ϕ3

< 1, it follows from Proposition 2.4 that for any ε with ‖y‖ϕ3 < ε < 1, we will have that 
ϕ3(ε−1y) ∈ S(A, τ). On using the Borel functional calculus with y playing the role of a Borel function, we 
may now use the above calculations to conclude that each of ψ∗(ε−1ϕ2(y)) and ϕ2(y) are operators affiliated 
to A (see [35, Lemma 9.4.7 and Theorem 9.4.8]), for which we have that ψ∗(ε−1ϕ2(f)) ≤ ϕ3(ε−1f). We may 
then use Proposition 2.1 to conclude that ε−1ϕ2(y) ≤ (ψ∗)−1(ψ∗(ε−1ϕ2(y))) ≤ (ψ∗)−1(ϕ3(ε−1y)). Since by 
Lemma 2.3, (ψ∗)−1(ϕ3(ε−1y)) ∈ S(A, τ), the preceding inequality ensures that also ϕ2(y) ∈ S(A, τ). Given 
that the specific choice of ε and the preceding inequalities ensure that τ(ψ∗(ε−1ϕ2(y))) ≤ τ(ϕ3(ε−1y)) ≤ 1, 
it follows that ϕ2(y) ∈ Lψ∗(τ)+ with 

∥∥ϕ2(y)
∥∥
ψ∗ ≤

∥∥y∥∥
ϕ3

. One may similarly show that if v ∈ Lϕ1(τ)+ with 

‖v‖ϕ1 < 1, then ϕ2(v) ∈ Lψ(τ)+ with 
∥∥ϕ2(v)

∥∥
ψ
≤

∥∥v∥∥
ϕ1

.
Recall that by assumption there exists 0 < c ≤ 1 such that ϕ2(cst) ≤ ϕ2(s)ϕ2(t) for all s, t ≥ 0. Let 

n ∈ N be given with n > 1, and suppose we are given w ∈ Lϕ3(τ) and x ∈ Lϕ1(τ) with 
∥∥w∥∥

ϕ3
= cn

n+1
and 

∥∥x∥∥
ϕ1

= n+1
2n . Both have norm less than 1, so ϕ2(w) ∈ Lψ∗(τ)+ with 

∥∥ϕ2(w)
∥∥
ψ∗ ≤

∥∥w∥∥
ϕ3

, and 

ϕ2(x) ∈ Lψ(τ)+ with 
∥∥ϕ2(x)

∥∥
ψ
≤

∥∥x∥∥
ϕ1

. Then

τ(ϕ2(|wx|)) =
∞∫
0

ϕ2(μwx(t))dt, (5)

by Lemma 2.2. Furthermore, ϕ2 is increasing and it is easily checked that t �→ ϕ2(et) is convex. Therefore

∞∫
0

ϕ2(μwx(t))dt ≤
∞∫
0

ϕ2(μw(t)μx(t))dt ≤
∞∫
0

ϕ2(μw/c(t))ϕ2(μx(t))dt, (6)

by Proposition 2.10(3). It follows by what has been shown already that ϕ2(μw/c) ∈ Lψ∗(0, ∞) and ϕ2(μx) ∈
Lψ(0, ∞). Therefore, by Proposition 2.6,
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∞∫
0

ϕ2(μw/c(t))ϕ2(μx(t))dt ≤
∥∥ϕ2(μw/c)

∥∥0
Lψ∗ (0,∞)

∥∥ϕ2(μx)
∥∥
Lψ(0,∞)

≤ 2
∥∥ϕ2(μw/c)

∥∥
Lψ∗ (0,∞)

∥∥ϕ2(μx)
∥∥
Lψ(0,∞),

where the second inequality follows by [3, Theorem 4.8.14]. Combining this with (5) and (6) we therefore 
obtain

τ(ϕ2(|wx|)) ≤ 2
∥∥ϕ2(μw/c)

∥∥
Lψ∗ (0,∞)

∥∥ϕ2(μx)
∥∥
Lψ(0,∞)

= 2
∥∥μw/c

∥∥
Lϕ3 (0,∞)

∥∥μx

∥∥
Lϕ1 (0,∞) = 1,

since 
∥∥μw/c

∥∥
Lϕ3 (0,∞) =

∥∥w/c∥∥
ϕ3

= n
n+1 and similarly 

∥∥μx

∥∥
Lϕ1 (0,∞) = n+1

2n . It follows that

∥∥wx∥∥
ϕ2

= inf{λ > 0 : τ(ϕ2(|wx|/λ)) ≤ 1} ≤ 1 = 2
∥∥w/c∥∥

ϕ3

∥∥x∥∥
ϕ1
.

It follows that Mw is a bounded multiplication operator from Lϕ1(τ) into Lϕ2(τ) and 
∥∥Mw

∥∥ ≤ 2
c

∥∥w∥∥
ϕ3

. �
We finish this subsection by showing that the previous result also applies to Lp-spaces.

Corollary 3.6. Suppose 1 < q < p and let r > 1 be such that 1/p + 1/r = 1/q. If w ∈ S(A, τ), then Mw is a 
bounded multiplication operator from Lp(τ) into Lq(τ) if and only if w ∈ Lr(τ).

Proof. Let ϕ1(t) = tp, ϕ2(t) = tq and ψ(t) = tp/q. Then ϕ1, ϕ3 and ψ are Orlicz functions. Furthermore, 
ψ ◦ ϕ2(t) = (tq)p/q = tp = ϕ1(t) and r = qp/(p − q). If we let (p/q)′ denote the conjugate exponent of 
p/q, then it is easily checked that (p/q)′ = p/(p − q) = r/q. A straightforward calculation shows that 
ψ∗(t) = 1

(p/q)(r/q)/p(r/q) t
r/q. If we let ϕ3 = ψ∗ ◦ ϕ2, then ϕ3 = ctr, where c = 1

(p/q)(r/q)/p(r/q) t
r/q. It follows 

that ϕ3 is an Orlicz function and Lϕ3(τ) = Lr(τ), with 
∥∥x∥∥

ϕ3
= c1/p

∥∥x∥∥
r

for every x ∈ Lr(τ). Furthermore, 
ϕ2 is an Orlicz function satisfying the ∇′-condition in that

ϕ−1
2 (st) = (st)1/q = s1/qt1/q = ϕ−1

2 (s)ϕ−1
2 (t) ∀s, t ≥ 0.

The result therefore follows by Theorem 3.5. �
3.3. Multiplication operators on Lp-spaces

In this subsection we consider multiplication operators from Lp(τ) into Lq(τ). It follows from [19, Propo-
sition 5] that Mw is a bounded multiplication operator from Lp(τ) (1 ≤ p ≤ ∞) into itself if and only if 
w ∈ A, in which case 

∥∥Mw

∥∥ =
∥∥w∥∥A. In Corollary 3.4 and Corollary 3.6 we used the theory for Orlicz 

spaces to conclude that if 1 < q < p < ∞ and w ∈ S(A, τ)+, then Mw is a bounded multiplication operator 
from Lp(τ) into Lq(τ) if and only if w ∈ Lr(τ), where 1/p + 1/r = 1/q (this result is also claimed in [19, 
Example 1(ii)] although no proof is given). In this subsection we will see that a direct proof will however 
enable us to determine the norm of the multiplication operator exactly in this case. We also consider the 
case 1 ≤ p < q < ∞.

Theorem 3.7. Suppose 1 < q < p < ∞ and w ∈ S(A, τ)+. Then Mw is a bounded multiplication operator 
from Lp(τ) into Lq(τ) if and only if w ∈ Lr(τ), where 1/p + 1/r = 1/q. Furthermore, if this is the case, 
then 

∥∥Mw

∥∥ =
∥∥w∥∥

r
.
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Proof. Suppose w ∈ Lr(τ). Then, using Proposition 2.10(2), we obtain

∥∥Mwx
∥∥
q

=
∥∥wx∥∥

q
≤

∥∥w∥∥
r

∥∥x∥∥
p
.

It follows that Mw is a bounded multiplication operator from Lp(τ) into Lq(τ) and 
∥∥Mw

∥∥ ≤
∥∥w∥∥

r
.

Conversely, suppose Mw is a bounded multiplication operator from Lp(τ) into Lq(τ). Let x ∈ Lr′(τ) be 
given, where r′ is the conjugate index to r. If x = u|x| is the polar form of x, we set xp = u|x|r′/p and 
xq′ = |x|r′/q′ . It is an easy exercise to see that xp ∈ Lp(τ) and xq′ ∈ Lq′(τ). By hypothesis, wxp ∈ Lq(τ), 
and so wx = wxpxq′ ∈ L1(τ). Köthe duality now ensures that w ∈ Lr(τ).

We proceed to prove the equality of 
∥∥Mw

∥∥ and 
∥∥w∥∥

r
. It is not difficult to conclude from the fact that 

w ∈ Lr(τ)+, that wr/p ∈ Lp(τ) with ‖wr/p‖p = (‖w‖r)r/p. But then

‖Mww
r/p‖q = ‖wr/q‖q = (‖w‖r)r/q = ‖w‖r.(‖w‖r)r/p = ‖w‖r.‖wr/p‖p.

This clearly ensures that ‖Mw‖ ≥ ‖w‖r, and hence that equality of norms must hold. �
Next, we consider the case p < q.

Remark 3.8. It is claimed in [19, Example 1(i)] that the space of multipliers from Lp(τ) into Lq(τ) (p < q) 
consists just of the zero operator. This cannot be true in general as Example 3.1 shows.

We start by showing that in this setting it suffices to consider purely atomic von Neumann algebras.

Theorem 3.9. Suppose 1 ≤ p < q < ∞ and c is the central projection such that cA is atomic and c⊥A is 
non-atomic. If w ∈ S(A, τ)+ is such that Mw is a bounded multiplication operator from Lp(τ) into Lq(τ), 
then wc⊥ = 0.

Proof. Suppose that Mw is a bounded multiplication operator from Lp(τ) into Lq(τ) and assume that 
e = ewc⊥(λ, ∞) is non-zero for some λ > 0. Since e ∈ c⊥A and c⊥A is non-atomic, it follows that given 
0 < α < τ(e), we may select a sequence (en)∞n=1 ⊂ c⊥A of mutually orthogonal subprojections of e such 
that τ(en) = α/2n. Let vn := en/τ(en)1/q. Since 1/p > 1/q and for each n we have that

τ(|vn|p)1/p = τ(en)1/p−1/q = (α/2n)1/p−1/q
,

it is clear that (vn)∞n=1 is a sequence which converges to zero in Lp(τ). So by continuity of Mw, (wc⊥vn)∞n=1 =
(wvn)∞n=1 must converge to zero in Lq(τ). But this cannot be, since the fact that en ≤ e, ensures that for all 
n we have that wc⊥vn = wc⊥en

τ(en)1/q ≥ λ en
τ(en)1/q , with ‖wc⊥vn‖q ≥ λτ( en

τ(en) )
1/q = λ. This clear contradiction 

establishes the claim. �
Since we are dealing with atomic von Neumann algebras, it suffices to consider a (possibly uncountable) 

direct sum of (possibly infinite) factors. We will therefore consider the situation on each such factor before 
investigating the general case. We start by proving a simple lemma that will help us in this regard.

Lemma 3.10. Suppose A = B(H), τ is a faithful, semi-finite normal trace on A and 1 ≤ p < ∞. If w ∈ Lp(τ)
and e is a projection onto a one-dimensional subspace of H, then

∥∥we∥∥
Lp(τ) =

∥∥we∥∥Aτ(e)1/p.
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Proof. Note that

|we|2 = e|w|2e = λe,

for some λ ≥ 0, by [24, Proposition 6.4.3]. It follows that for any ξ ∈ H,∥∥(we)ξ
∥∥2 = 〈weξ,weξ〉 = 〈λeξ, ξ〉 =

∥∥(λ1/2e)ξ
∥∥2

and so 
∥∥we∥∥A = λ1/2. Therefore

τ(|we|p)1/p = τ((|we|2)p/2)1/p = τ(λp/2e)1/p = λ1/2τ(e)1/p =
∥∥we∥∥Aτ(e)1/p. �

For multiplication operators between Lp-spaces associated with factors we have the following character-
ization.

Theorem 3.11. Suppose A = B(H), τ is a faithful semi-finite normal trace on A and 1 ≤ p < q < ∞. Then 
for all w ∈ S(A, τ), Mw is a bounded multiplication operator from Lp(τ) into Lq(τ) (note that in this case 
S(A, τ) = A). Furthermore, ∥∥Mw

∥∥ = k−1/s∥∥w∥∥A,
where k is the trace of any projection onto a one-dimensional subspace of H and s > 0 is such that 
1/q + 1/s = 1/p.

Proof. It follows from [24, Propositions 8.5.3 & 8.5.5] that τ(·) = k tr(·), for some k > 0, where tr(·) denotes 
the canonical trace on B(H). Since all projections onto one-dimensional subspaces of H have the same trace, 
k = τ(e), where e is any such projection. We already noted that in this case S(A, τ) = A, since A = B(H). 
It follows from [5, Theorem 4.16] and [29, Theorem 2] that the space of all multipliers from Lp(tr) into 
Lq(tr) is given by A and that for any w ∈ A we have 

∥∥Mw

∥∥
B(Lp(tr),Lq(tr)) ≥

∥∥w∥∥A. It follows that Mw is a 
bounded multiplication operator from Lp(τ) into Lq(τ) for any w ∈ A. Furthermore∥∥Mw

∥∥ =
∥∥Mw

∥∥
B(Lp(τ),Lq(τ)) ≥ k−1/s∥∥w∥∥A,

since it is easily checked that 
∥∥Mw

∥∥
B(Lp(tr),Lq(tr)) = k1/s

∥∥Mw

∥∥
B(Lp(τ),Lq(τ)).

To prove the reverse inequality, we note that since 1 ≤ p < q < ∞, we have that Lp(tr) is continuously 
embedded into Lq(tr) and tr(|x|q)1/q ≤ tr(|x|p)1/p for any x ∈ Lp(tr), by [12, Proposition 4.5]. It follows 
that 

∥∥x∥∥
Lq(τ) ≤ k−1/s

∥∥x∥∥
Lp(τ) for all x ∈ Lp(τ). If we let w ∈ A, then for any x ∈ Lp(τ) we have ∥∥wx∥∥

Lq(τ) ≤
∥∥w∥∥A∥∥x∥∥Lq(τ) ≤

∥∥w∥∥Ak−1/s
∥∥x∥∥

Lp(τ) and so 
∥∥Mw

∥∥ ≤ k−1/s
∥∥w∥∥A. �

We will need the following lemma in order to move from a factor to a direct sum of factors.

Lemma 3.12. If {pα}α∈A is a (possibly uncountable) family of mutually orthogonal central projections, q ≥ 1
and x ∈ Lq(τ), then |x

∑
α∈A

pα|q =
∑
α∈A

|xpα|q and 
∥∥x ∑

α∈A

pα
∥∥q
q

=
∑
α∈A

τ(|xpα|q).

Proof. Suppose x ∈ Lq(τ) and c is a central projection. For any Borel function we know from [23, Lemma 
5.6.31] that g(|x|e)e = g(|x|)e. But then also g(|x|e)e⊥ = g((|x|e)e⊥)e⊥ = g(0)e⊥. For the specific function 
g(t) = tq, these facts ensure that |x|qpα = |xpα|q for each α. Suppose B is a finite subcollection of A. 
Since {pα}α∈B is a collection of mutually orthogonal central projections (and hence 

∑
α∈B

pα is also a central 

projection), this enables us to conclude that
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|x
∑
α∈B

pα|q = |x|q
∑
α∈B

pα =
∑
α∈B

|x|qpα =
∑
α∈B

|xpα|q. (7)

Furthermore,

|x
∑
α∈A

pα| = |x|1/2
(∑

α∈A

pα

)
|x|1/2 ≥ |x|1/2

(∑
α∈B

pα

)
|x|1/2 = |x

∑
α∈B

pα|. (8)

Using (7) and (8), it follows that

∑
α∈B

τ(|xpα|q) =
∥∥x∑

α∈B

pα
∥∥q
q
≤

∥∥x∑
α∈A

pα
∥∥q
q
.

Since this holds for every finite subcollection of A, this ensures that 
∑
α∈A

τ(|xpα|q) converges, with ∑
α∈A

τ(|xpα|q) ≤
∥∥x ∑

α∈A

pα
∥∥q
q
< ∞. Therefore τ(|xpα|p), and hence also xpα, is non-zero for at most countably 

many α ∈ A. Let (pn)∞n=1 denote the collection of projections for which this holds.

Since 
K∑

n=1
pn ↑

∞∑
n=1

pn and these are all central projections, we may use (7) to conclude that 
K∑

n=1
|xpn|q ↑∣∣∣∣x( ∞∑

n=1
pn

)∣∣∣∣q and therefore

∑
α∈A

|xpα|q =
∞∑

n=1
|xpn|q =

∣∣∣∣∣x
( ∞∑

n=1
pn

)∣∣∣∣∣
q

=

∣∣∣∣∣x∑
α∈A

pα

∣∣∣∣∣
q

,

as desired. Furthermore,

K∑
n=1

τ(|xpn|q) = τ(
K∑

n=1
|xpn|q) ↑ τ(|

( ∞∑
n=1

pn

)
x|q) =

∥∥( ∞∑
n=1

pn

)
x
∥∥q
q
. (9)

Since these are the only projections for which xpα �= 0, it follows that 
∥∥x ∑

α∈A

pα
∥∥q
q

=
∑
α∈A

τ(|xpα|q). �
We are now in a position to characterize multiplication operators from an Lp-space into an Lq-space for 

the case p < q.

Theorem 3.13. Suppose (A, τ) is a semi-finite von Neumann algebra, 1 ≤ p < q < ∞, w ∈ S(A, τ)+ and c is 
the central projection such that cA is atomic (i.e. cA ∼= ⊕

α∈A

B(Hα)) and c⊥A is non-atomic. Let pα denote 

the central projection such that pαA ∼= B(Hα) and let kα denote the trace of a projection in B(Hα) onto a 
one-dimensional subspace of Hα. Then Mw is a bounded multiplication operator from Lp(τ) into Lq(τ) if 
and only if wc = w and sup

α∈A

∥∥wpα

∥∥
A

k
1/s
α

< ∞, where s > 0 is such that 1/q + 1/s = 1/p. Furthermore, if this is 

the case, then

∥∥Mw

∥∥ = sup
α∈A

∥∥wpα∥∥A
k

1/s
α

.

Proof. Suppose wc = w and sup
α∈A

∥∥wpα

∥∥
A

k
1/s
α

< ∞. If x ∈ Lp(τ) with 
∥∥x∥∥

p
= 1, then

∥∥xpα∥∥p =
(∥∥xpα∥∥q)p/q

≥
∥∥xpα∥∥q , (10)
p p p
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since p/q < 1 and 
∥∥xpα∥∥qp ≤

∥∥x∥∥q
p

= 1. Furthermore,

∥∥wx∥∥q
q

= τ(|wx
∑
α∈A

pα|q) since wc = w

=
∑
α∈A

τ(|wxpα|q) by Lemma 3.12

=
∑
α∈A

∥∥wxpα∥∥qq
≤

∑
α∈A

k−q/s
∥∥wpα∥∥qA∥∥xpα∥∥qp by Theorem 3.11

≤ sup
α∈A

∥∥wpα∥∥qA
k
q/s
α

∑
α∈A

∥∥xpα∥∥qp
≤ sup

α∈A

∥∥wpα∥∥qA
k
q/s
α

∑
α∈A

∥∥xpα∥∥pp using (10)

= sup
α∈A

∥∥wpα∥∥qA
k
q/s
α

∥∥x∥∥p
p

by Lemma 3.12.

It follows that

∥∥wx∥∥
q
≤ sup

α∈A

∥∥wpα∥∥A
k

1/s
α

∥∥x∥∥p/q
p

= sup
α∈A

∥∥wpα∥∥A
k

1/s
α

∥∥x∥∥
p
,

since 
∥∥x∥∥

p
= 1. Therefore, Mw is a bounded multiplication operator from Lp(τ) into Lq(τ) and

∥∥Mw

∥∥ ≤ sup
α∈A

∥∥wpα∥∥A
k

1/s
α

.

Conversely, suppose Mw is a bounded multiplication operator from Lp(τ) into Lq(τ). Then wc = w, by 
Theorem 3.9. Let τα denote the restriction of τ to pαA. Since pαLp(τ) = Lp(pαA, τα) and the action 
of w on Lp(pαA, τα) is induced by wpα, we have that Mwpα

is a bounded multiplication operator from 
Lp(pαA, τα) into Lq(pαA, τα), for each α and∥∥wpαx∥∥q ≤

∥∥pα∥∥A∥∥wx∥∥q ≤
∥∥Mw

∥∥∥∥x∥∥
p
,

for each x ∈ Lp(τ). Using Theorem 3.11, it follows that k−1/s
α

∥∥wpα∥∥A ≤
∥∥Mwpα

∥∥ ≤
∥∥Mw

∥∥, for each α. 
Since this holds for all α, we have that

sup
α∈A

∥∥wpα∥∥A
k

1/s
α

≤
∥∥Mw

∥∥. �

4. Compactness of multiplication operators

The characterizations and norm estimates obtained in the previous section will enable us to obtain 
characterizations of compactness in the same settings. It is easily checked that w ∈ S(A, τ) induces a 
compact multiplication operator between symmetric spaces E and F if and only if |w| induces a compact 
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multiplication operator. As in the previous section, it therefore suffices to consider positive elements in 
S(A, τ). We start by quoting a necessary condition for the compactness of multiplication operators which 
will be used throughout.

Theorem 4.1. [28, Theorem 4.2] Given two Orlicz functions ψ1 and ψ2 and y ∈ S(A, τ) such that My :
Lψ1(τ) → Lψ2(τ) is compact. Then there exists a central projection c̃ such that yc̃ = y with c̃A being a 
direct sum of countably many finite type I factors.

The techniques employed to prove Theorem 4.1 can easily be adapted to prove the same result for any 
pair of Banach function spaces which are intermediate spaces of the Banach couple (L∞(τ), L1(τ)).

As with the boundedness of multiplication operators, a characterization for the compactness of endomor-
phic multiplication operators can be obtained in the general setting of symmetric spaces. We know from 
[19, Proposition 5] that if E is a symmetric space and w ∈ S(A, τ), then Mw is a bounded multiplication 
operator from E into itself if and only if w ∈ A. In considering the compactness of multiplication operators 
in the endomorphic setting it therefore suffices to consider w ∈ A.

Lemma 4.2. Suppose E ⊆ S(A, τ) is a symmetric space and w ∈ A+. Then Mw is compact if and only if

Zw
ε := {ew(ε,∞)x : x ∈ E}

is finite-dimensional for every ε > 0.

Proof. Suppose Mw is compact. Let x ∈ E and ε > 0. Then wx ∈ E, since Mw is a bounded operator from 
E into itself. Furthermore, w and ew(ε, ∞) commute and so

Mw(ew(ε,∞)x) = wew(ε,∞)x = ew(ε,∞)wx ∈ Zw
ε .

It follows that Zw
ε is invariant under Mw. The restriction M̃w of Mw to Zw

ε is therefore a compact operator 
from Zw

ε into itself. Let p = ew(ε, ∞). On passing to the reduced space Ap (see [16, p. 211]), the inequality 
pwp ≥ εp, ensures that as an element of Ap, pwp is strictly positive, and hence that there exists v ∈ A+

p

with v ≤ 1
ε p, such that pwpv = vpwp = p. Since p and w commute, this will in A reduce to the statement 

that wv = vw = p. Using this element v, it is easily checked that M̃w is invertible with the inverse given by 
the restriction of Mv to Zw

ε . Since M̃w is also compact, it therefore follows that Zw
ε is finite-dimensional.

Conversely, if Zw
ε is finite dimensional for every ε > 0, then in particular Zw

1/n is finite dimensional for 
every n ∈ N

+. Let wn be defined as wn = wew(1/n, ∞). Then it is easily checked that Mwn
(E) ⊆ Zw

1/n. It 
follows that Mwn

is finite rank for every n ∈ N
+. Furthermore, if x ∈ E, then

∥∥(Mw −Mwn
)(x)

∥∥
E

=
∥∥wew[0, 1/n]x

∥∥
E

≤
∥∥wew[0, 1/n]

∥∥
A
∥∥x∥∥

E

≤ 1
n

∥∥x∥∥
E
.

It follows that 
∥∥Mw −Mwn

∥∥ ≤ 1/n and hence that as the limit of a sequence of finite rank operators, Mw

is compact. �
Theorem 4.3. Let E ⊆ S(A, τ) be a symmetric space which is an intermediate space for the Banach couple 
(L∞(τ), L1(τ)) and let w ∈ A+. Then Mw is a compact multiplication operator from E into itself if and 
only if
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• there exists a sequence (pn)∞n=1 of mutually orthogonal central projections such that wc̃ = w, where 

c̃ =
∞∑

n=1
pn, c̃A =

∞
⊕

n=1
An and each pnA = An is a finite type 1 factor;

• and 
∥∥wpn∥∥A → 0 as n → 0.

Proof. Suppose Mw is compact. By Theorem 4.1 and the comments following it, there exists a central 
projection c̃ with the desired properties. Since pnA = An is a finite type 1 factor, we can write wpn =
Nn+1−1∑
k=Nn

λkqk, where the λk’s (Nn ≤ k < Nn+1) are the eigenvalues of wpn, repeated according to multiplicity, 

and the qk’s are mutually orthogonal projections onto one-dimensional subspaces of the eigenspace of λk. 
Recall that

Zw
ε := {ew(ε,∞)x : x ∈ E}.

Fix ε > 0. If λk > ε, then qk ≤ ew(ε, ∞) (since wqk = λkqk) and so qk = ew(ε, ∞)qk ∈ Zw
ε . Since Zw

ε is 
finite-dimensional, by Lemma 4.2, there can only be a finite number of λk’s such that λk > ε. It follows that 
λk → 0 as k → ∞. Since

∥∥wpn∥∥A = max{λk : Nn ≤ k < Nn+1},

we have that 
∥∥wpn∥∥A → 0 as n → ∞.

Conversely, suppose there exists a projection c̃ with the desired properties and 
∥∥wpn∥∥A → 0. Let wN :=

w
N∑

n=1
pn. Then MwN

is a finite rank operator for each N ∈ N. Furthermore, using [19, Proposition 5] and 

the fact that the pn’s are mutually orthogonal central projections, we obtain

∥∥Mw −MwN

∥∥ =
∥∥w − wN

∥∥
A =

∥∥w ∞∑
n=N+1

pn
∥∥
A = sup

n>N

∥∥wpn∥∥A → 0.

It follows that Mw is the limit of a sequence of finite rank operators and hence compact. �
Next, we consider multiplication operators between Orlicz spaces.

Theorem 4.4. Suppose ϕi (i = 1, 2, 3) are Orlicz functions with ϕ3 ∈ Δ2 and suppose one of the following 
conditions holds

1. either there exists some k such that ϕ−1
1 (t)ϕ−1

3 (t)k−1 ≤ ϕ−1
2 (t) ≤ kϕ−1

1 (t)ϕ−1
3 (t), for all t ≥ 0;

2. or there exists an Orlicz function ψ such that ϕ3 = ψ∗ ◦ ϕ2 and ψ ◦ ϕ2 = ϕ1, with ϕ2 satisfying the 
∇′-condition.

If w ∈ S(A, τ), then Mw is a compact multiplication operator from Lϕ1(τ) into Lϕ2(τ) if and only if 
w ∈ Lϕ3(τ) and there exists a sequence (pn)∞n=1 of mutually orthogonal central projections such that wc̃ = w, 
where c̃ =

∞∑
n=1

pn and c̃A =
∞
⊕

n=1
An, where each pnA = An is a finite type 1 factor.

Proof. Let w ∈ Lϕ3(τ) and suppose there exists a projection c̃ with the requisite properties. Let wN =

w
N∑

n=1
pn. Then MwN

is a finite rank operator for each N ∈ N and w−wN ∈ Lϕ3(τ), since wN ∈ L1∩L∞(τ) ⊆
Lϕ3(τ) for each N ∈ N. It follows from either of Theorem 3.3 or Theorem 3.5 (depending on whether 
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condition (1) or (2) holds) that Mw −MwN
= Mw−wN

is a bounded multiplication operator from Lϕ1(τ)
into Lϕ2(τ) with

∥∥Mw −MwN

∥∥ ≤ 2
∥∥w − wN

∥∥
ϕ3
. (11)

Note that 
∞∑

n=N+1
pn = c̃−

N∑
n=1

pn ↘ 0. So, on using the fact that each pn is a central projection (and hence 

also 
∞∑

n=N+1
pn), we obtain

w − wN = w
∞∑

n=N+1
pn = w1/2

( ∞∑
n=N+1

pn

)
w1/2 ↘ 0.

Since ϕ3 ∈ Δ2, Lϕ3(τ) has absolutely continuous norm and therefore 
∥∥w − wN

∥∥
ϕ3

↘ 0. Using (11) this 
implies that Mw is the limit of a sequence of finite rank operators and hence compact.

Conversely, if Mw is a compact operator, then by Theorem 4.1, there exists a central projection c̃ with the 
desired properties. Furthermore, since Mw is a compact operator, it is bounded and therefore w ∈ Lϕ3(τ), 
by either Theorem 3.3 or Theorem 3.5 (depending on whether condition (1) or (2) holds). �

Suppose 1 < q < p with r such that 1/p + 1/r = 1/q. Then for ϕ1(t) := tp, ϕ2(t) = tq and ϕ3(t) = tr, we 
trivially have

ϕ−1
1 (t)ϕ−1

3 (t) = ϕ−1
2 (t), ∀t ≥ 0.

We therefore obtain the following corollary.

Corollary 4.5. Let 1 < q < p < ∞ and w ∈ S(A, τ)+. Then Mw is a compact multiplication operator from 
Lp(τ) into Lq(τ) if and only if

1. there exists a sequence (pn)∞n=1 of mutually orthogonal central projections such that wc̃ = w, where 

c̃ =
∞∑

n=1
pn, c̃A =

∞
⊕

n=1
An and each An = pnA is a finite type 1 factor;

2. and w ∈ Lr(τ), where 1/p + 1/r = 1/q.

We finish by characterizing the compactness of multiplication operators from Lp(τ) into Lq(τ) for the 
case 1 ≤ p < q < ∞.

Theorem 4.6. Let A ⊆ B(H) be a semi-finite von Neumann algebra equipped with a faithful normal semi-
finite trace τ , 1 ≤ p < q < ∞ and w ∈ S(A, τ)+. Then Mw is a compact multiplication operator from Lp(τ)
into Lq(τ) if and only if

1. there exists a sequence (pn)∞n=1 of mutually orthogonal central projections such that wc̃ = w, where 

c̃ =
∞∑

n=1
pn, c̃A =

∞
⊕

n=1
An and each An = pnA ∼= B(Hn) with Hn finite-dimensional;

2. and 
∥∥wpn

∥∥
A

k
1/s
n

→ 0, where 1/q + 1/s = 1/p and kn is the value of the trace of a minimal projection in 

B(Hn).
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Proof. Suppose conditions (1) and (2) hold. Then Mw is a bounded multiplication operator from Lp(τ)

into Lq(τ), by Theorem 3.13. If we let wN := w
N∑

n=1
pn, then for each N ∈ N, MwN

is a finite rank operator. 

Furthermore, using Theorem 3.13, we obtain

∥∥Mw −MwN

∥∥ =
∥∥M

w
∞∑

n=N+1
pn

∥∥ = sup
n>N

∥∥wpn∥∥A
k

1/s
n

→ 0.

The operator Mw is therefore the limit of a sequence of finite rank operators and hence compact.
Conversely, if Mw is compact, then, by Theorem 4.1, there exists a central projection c̃ with the desired 

properties. Since An is a finite type 1 factor, we can write wpn =
Nn∑

k=Nn−1+1
λkqk, where the λk are eigenvalues 

of wpn (repeated according to multiplicity) and the qk are projections onto 1-dimensional subspaces of pn(H)
with qkqm = 0 if k �= m. Consider the sequence {xk}∞k=1, where xk := τ(qk)−1/pqk ∈ Lp(τ). Recall that 
Lp(τ)∗ ∼= Lp′(τ), where 1/p + 1/p′ = 1, and that the isometric isomorphism is given by y �→ τ(y·). If 
y ∈ Lp′(τ), then on using Lemma 3.10 at appropriate points, we have that

| 〈y, xk〉 | = |τ(qk)−1/pτ(yqk)|

≤ τ(qk)−1/p∥∥yqk∥∥1

= τ(qk)−1/p∥∥yqk∥∥Aτ(qk)

=
∥∥yqk∥∥Aτ(qk)1/p

′

=
∥∥yqk∥∥p′ (12)

Note that, by Lemma 3.12, 
∥∥y∥∥p′

p′ =
∞∑

n=1
τ(|ypn|p

′). It follows that 
∥∥ypn∥∥p′

p′ = τ(|ypn|p
′) → 0. Since 

∥∥yqk∥∥p′ ≤∥∥ypn∥∥p′ for Nn−1 < k ≤ Nn, this implies that 
∥∥yqk∥∥p′ → 0. In view of the fact that y ∈ Lp′(τ) was arbitrary, 

this will, by means of (12), imply that xk → 0 weakly. For Nn−1 < k ≤ Nn, we have

λk

k
1/s
n

=
∥∥wqk∥∥A
k

1/s
n

=

∥∥wqk∥∥qτ(qk)−1/q

τ(qk)1/p−1/q

=
∥∥wqkτ(qk)−1/p∥∥

q
=

∥∥Mwxk

∥∥
q
. (13)

Given that compact operators map weakly convergent sequences onto norm convergent sequences, the weak 
convergence of xk to 0 ensures that 

∥∥Mwxk

∥∥
q
→ 0. Since

∥∥wpn∥∥A
k

1/s
n

= max{λ : λ is an eigenvalue of wpn}
k

1/s
n

= max{λk : Nn−1 < k ≤ Nn}
k

1/s
n

= max{
∥∥Mwxk

∥∥
q

: Nn−1 < k ≤ Nn}

(where we used (13) to obtain the last equality), it follows that 
∥∥wpn

∥∥
A

k
1/s
n

→ 0. �
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