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Abstract: Cauchy singular integral equations are widely used in physics and 
mathematics, especially in solid contact mechanics. The solution of Cauchy singular 
integral equations composed of explicit functions has already been achieved in 
existing research. However, when dealing with the contact problem between two solid 
bodies with irregular surfaces described by implicit parametric functions, difficulties 
arise when trying to solve the Cauchy singular integral because it is composed of 
multiple implicit parameter functions. Moreover, the integral limits are constrained by 
physical characteristics and the unknown. To solve this kind of problem, an 
approximate calculation method with high accuracy will be provided in this paper. 
Specifically, based on the quadrature method and taking the constraint function of the 
boundary as the convergence criterion, both the integral limits satisfying the physical 
characteristics condition and the solution of the Cauchy singular integral equations 
composed of multiple parameter functions can be derived by an iterative method. 
Finally, five different examples are calculated using the new method, and the absolute 
errors between the approximate values provided by the new method and the true 
values are analysed. 
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1. Introduction 
There are two main methods for solving contact problems between solids. One is 

numerical method, including finite element method and boundary integral method. 
This kind of method is often used to solve dynamic contact problems such as the 
contact between spheres and general surfaces under the influence of impact[1], gear 
drives contact under impact condition[2], collision between ball-beam and thin walled 
tube-rigid wall[3], large deformation frictionless dynamic contact-impact[4], 
wheel-rail impact contact[5], contact between a rigid sphere pressing into an elastic 
half-space under cyclic loading[6], gear teeth contact under cyclic loading[7], contact 
between flat-on-flat and cylinder-on-flat under cyclic loading[8], rolling/sliding beam 
to beam contact without or with frictional conditions[9; 10; 11], two-dimensional 
large deformation frictional contact of large sliding contact[12; 13], sliding contact of 
rubber friction on rough rigid surfaces[14], contact and adhesion between a rough 
sphere and a flat surface[15]. 

Another method to solve the contact problem between solids is the analytical 
calculation method based on classical contact mechanics such as the sliding frictional 
contact between a rigid conducting cylindrical punch and a functionally 
graded piezoelectric coated half-plane[16], contact between an elastic coating and a 
moving punch[17], frictional sliding contact between a rigid circular conducting 
punch and a magneto-electro-elastic half-plane[18], dynamics with allowance for 
crack edge contact interaction[19], contact with friction for bodies with cracks[20], 
half-plane contact with initial stresses[21], rigid punch moving along the boundary of 
the elastic half-plane with initial stresses[22]. In these methods, different types of 
singular integral equations which will also appear in other application fields such as 
aeronautical technologies[23], queueing problems[24], etc. need to be solved. Besides, 
different solution methods are discussed due to the different characteristics of singular 
integral equations[25; 26]. Cauchy singular integral equation is most common in the 
classical contact problems, and the general form is usually defined as Eq.(1)[27; 28; 
29; 30]. On this basis, other forms with some specific characteristics have also been 
discussed [31; 32; 33; 34; 35]. 

1 1

1 1

( ) + , ( ) ( )       P s ds K x s P s ds g x x
x s

         (1) 

In Eq.(1), If K(x, s)=0, then the integral is reduced to the characteristic Cauchy 
singular integral equation in the form of Eq.(2), which is a type of Cauchy principal 
value integral. Here, g(x) is determined by the explicit equation as follows:  
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1

1

( ) ( )                   P s ds g x x
x s

          (2) 

In engineering applications, the function types of g(x) are quite different. 
Therefore, their different solution methods should be chosen according to their 
characteristics. On the basis of different principles, these solution methods can be 
summarized as follows: the polynomial approximation method based on Chebyshev 
polynomials[36; 37; 38], Bernstein polynomials[39; 40], or Jacobi polynomials[41]; 
the differential transform method[42]; the Gaussian quadrature method[43]; the 
Nyström method for equations with negative index[44]; the Galerkin method[45; 46; 
47]; the quadrature method[48; 49; 50]; the Adomian decomposition method[51]; the 
Sinc approximations method[52]; and the reproducing kernel Hilbert space 
method[53]. 

In the above methods, g(x) is determined by the explicit equation, and the 
integral limits are known. When solving the problem of contact between two solid 
bodies with irregular profiles in the application of solid contact mechanics, the 
problem of solving Cauchy singular integral equations with the following 
characteristics will be faced: 

( ) g(x) is a derivative function of solid profile, which is obtained by parametric 
functions [X1(k1), Y1(k1)] and [X2(k2), Y2(k2)]. Moreover, the parameters k1 and k2 
cannot be eliminated in [X1(k1), Y1(k1)] and [X2(k2), Y2(k2)]. 

( ) g(x) is a bivariate function and the integral limits a and b are unknown. 
( ) There is no primitive function for the integral function P(s)/(x-s).  
In accordance with the above characteristics, the integral equation Eq.(2) is 

converted to Eq.(3) as follows: 

1 2
( ) ( )

a

b

P s ds g k k
x s

,                       (3) 

Here, P(s) is the pressure distribution function that needs to be solved for, and 
g(k1,k2) could be defined as in Eq.(4) as follows:[30]. 

' ' ' '
1 2 2 2 2 2 1 1 1 1/, /g k k Y k X k Y k X k               (4) 

In addition, Eq.(3) needs to satisfy the conditional equation as follows: 

1 1 2 2X k X k                           (5) 

The upper and lower limits are related to the integral constant C, and the 
constraints can be written as follows: 

1

2

( )
( )

a

b

P a
P b

A
B

                          (6) 

Here, a, b, 1, 2 are the extreme values, and A, B are true value at the 
boundaries. 

In summary, Eq.(3) can be defined as the Cauchy singular integral equations 
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composed of multiple parameter functions with unknown integral limits. However, 
there is no effective method to solve those equations in existing research. Therefore, 
an approximate numerical solution method based on the quadrature method is 
proposed in this paper. 

2. The solution method 
Because the method in this paper is mainly aimed at solving solid contact 

problems, and the parametric function groups [X1(k1), Y1(k1)] and [X2(k2), Y2(k2)] are 
used to describe the profiles of two solids in contact, respectively [54; 55]. Therefore, 
[X1(k1), Y1(k1)] and [X2(k2), Y2(k2)] are not only continuous, but also have and only 

have one intersection point on the contact region [ b, a][56]. In addition, 
Y2[X2-1(k2)]>Y1, then the general solution of Eq.(3) can be expressed as Eq.(7) as 
below: 

1 2
2

( ) ( ) ( , )1( ) +  
( ) ( )

a

b

s+b a s g k k
P x ds C

x sx+b a x
      (7) 

Here, 
1

1 1

1
2 2

k X s

k X s
                       (8) 

Since the upper and lower integral limits a and b in Eq.(7) are unknown, the 
substitution should be carried out first in order to transform these into the integrand 
function. Let s=(b+a)t/2+(a b)/2 and z=(2x a+b)/(a+b), then Eq.(7) can be turned 
into Eq.(9) as follows: 

1

2 -1
( ) ( ) +

2 ( ) ( )
a bP x H t dt C
x+b a - x

              (9) 

Rewrite it as: 

1 2( )= ( )+ ( )P x P x P x                   (10) 

Here, 

1

1 2 -1
( ) ( )

2 ( ) ( )
a bP x H t dt
x+b a - x

            (11) 

with 

 ( )( ) h tH t
z t

                        (12) 
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2 ' 1 ' 1
2 2 2 2

2 ' 1 ' 1
1 1 1 1

1 /
2 2

        1 /
2 2

at bt a b at bt a bh t t Y X X X

at bt a b at bt a bt Y X X X
  (13) 

and 

2 2
( )

2 ( ) ( )
a b C

P x
x+b a x

                   (14) 

It can be determined from Eq.(11)-(14) that P2(x) is a known function; the 
calculation of P1(x) is mainly discussed below. 

Theorem 1: If the parameter function groups [X1(k1), Y1(k1)] and [X2(k2), Y2(k2)] 

are not only continuous, but also have and only have one intersection point on [ b, a]. 
In addition, Y2[X2-1(k2)]>Y1{X1-1[X2(k2)]}, and h(t) is a 2m order differentiable on 

[ 1,1], then Eq.(15) can be obtained as follows: 
21

1-1
0 0

( ) = ( ) ( )+ ( )

j i

N N

j i
j i
t z t z

H t dt w H t w H t Re w          (15) 

Here, ti= 1 iw, w=2/N, N is the number of segments in the integral region, B2u 
are the Bernoulli numbers, and Re1(w) is represented by Eq.(16) as follows: 

22 1
1 1 2 1 2 1 222

1 2 1
2

1( ) [ (1) ( 1)] [ ( 1) (1)] 1 ( )
4 (2 ) 2

um
u u mu

u
u

B wB wRe w H H H H O w
u

(16) 

Proof. 
First, when w 0, Eq.(17) can be obtained, based on the Euler-Maclaurin 

expansion theory provided by references[50; 57] as follows: 
11 ' 2 1 2 1 2 22

-1
0 1

( ) ( ) ( ) [ ( 1) (1)] ( )
(2 )

i

N m
u u u mu

i
i u
t z

BH t dt w H t wh z H H w O w
u

(17) 

To obtain a higher level of accuracy, Eq.(17) is made the first extrapolation. That 
is, the integral regions are divided into 2N equal parts, and the integral width of each 
segment is changed to w/2. Then Eq.(18) can be derived as follows: 

2 22 11 ' 2 1 2 12
2-1

0 1
( ) ( ) ( ) [ ( 1) (1)] ( )

2 2 (2 ) 2 2
j

u mN m
u uu

j m
j u
t z

Bw w w wH t dt H t h z H H O
u

(18) 

Here, tj= 1  jw/2. 
Carry out Eq.(18)×2 Eq.(17); then Eq.(19) can be obtained, which completes the 

proof of Theorem 1. 



 

6 

21

-1
0 0

22 1
1 1 2 1 2 1 222

2 1
2

( ) ( ) ( )

1[ (1) ( 1)] [ ( 1) (1)] 1 ( )
4 (2 ) 2

j i

N N

j i
j i
t z t z

um
u u mu

u
u

H t dt w H t w H t

B wB w H H H H O w
u

  

(19) 
Remark. The integral accuracy of Eq.(19) has been raised to level O(w2) 

compared to that of Eq.(17). The analytic formula for P1(x) after the first extrapolation 
(ET=1) can be constructed as follows: 

2

1 1 2
0 0

( ) ( ) ( )
2 ( ) ( )

j i

N N

ET j i
j i
t z t z

a bP x w H t w H t
x+b a - x

        (20) 

Corollary 1. If the parameter function groups [X1(k1), Y1(k1)] and [X2(k2), Y2(k2)] 

are not only continuous, but also have and only have one intersection point on [ b, a]. 
In addition, Y2 [X2-1(k2)]>Y1{X1-1[X2(k2)]}, and h(t) is a 4m order differentiable on 

[ 1,1] , then Eq.(21) can be obtained: 

2 1 2 1

2 -1 11

2 1 2 1 2-1
0 0

2
3 3

p q

N N

p q
p q
t z t z

w wH t dt H t H t Re w         (21) 

Here, t2p+1=(2p+1)w/4 1, t2q+1=(2q+1)w/2 1, and Re2 (w) are represented by 
Eq.(22) as follows: 

24 2 3 21
3 3 2 1 2 1 224

2 2
3

7 2 2 6[ ( 1) (1)] [ ( 1) (1)] ( )
768 3(2 ) 2

u u um
u u mu

u
u

B wB wRe w H H H H O w
u

(22) 

Proof. 
The second extrapolation is done in the same way. The integral interval in Eq.(19) 

is halved and the integral width of each segment is changed to w/4.  
Then, Eq.(23) can be derived as follows: 

4 21

-1
0 0

22 1 2 21
2 1 2 122

2 2
2

( ) ( ) ( )
2 2

2 1[ (1) ( 1)] [ ( 1) (1)] ( )
16 (2 ) 2 2

k j

N N

k j
j i
t z t z

u u mm
u uu

u m
u

w wH t dt H t H t

B wB w wH H H H O
u

 (23) 

Here, tk= 1 kw/4. 
Carry out Eq.(23)×4 Eq.(19); then Eq.(24) can be derived as follows: 
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4 2 21

-1
0 0 0 0

24 2 3 21
3 3 2 1 2 1 224

2
3

3 ( ) 2 ( ) 2 ( ) ( ) ( )

21 2 2 6[ ( 1) (1)] [ ( 1) (1)] ( )
768 (2 ) 2

k j j i

N N N N

k j j i
j i j i
t z t z t z t z

u u um
u u mu

u
u

H t dt w H t w H t w H t w H t

B wB w H H H H O w
u

 (24) 

Rewrite it as: 

2 1 2 1

42 -1 11 3 34
2 1 2 1-1

0 0

2 2 3 21
2 1 2 1 22

2
3

72 [ ( 1) (1)]
3 3 768

2 2 6[ ( 1) (1)] ( )
3(2 ) 2

p q

N N

p q
p q
t z t z

u u um
u u mu

u
u

B ww wH t dt H t H t H H

B w H H O w
u

(25) 

This completes the proof of corollary 1. 
Remark. Eq.(25) has the integral accuracy of level O(w4). Using the above 

processes, a high level of accuracy can be obtained by further extrapolation based on 
the same extrapolation principle. Therefore, further extrapolation calculations are not 
performed in this paper. 

By substituting Eq.(21) into Eq.(11), the approximate numerical formula Eq.(26) 
of P1(x) double extrapolation can be obtained (ET=2) as follows:  

2 1 2 1

2 -1 1

1 2 2 1 2 12
0 0

2( ) ( ) ( )
3 32 ( ) ( )

p q

N N

ET p q
p q
t z t z

a b w wP x H t H t
x+b a - x

    (26) 

In Eq.(20) and Eq.(26), both a and b are unknown and need to satisfy the 
conditional function shown in Eq.(6). Therefore, P1(x) cannot be calculated by the 
conventional method but can be calculated by the iterative method. The main steps are 
as follows:   

( ) Define the initial values of a and b and the number of segments N, then 
calculate the arrays ti and tj under the condition of ET=1 (the arrays t2p+1 and t2q+1 for 
ET=2). 

( ) In accordance with Eq.(12)-(13), calculate the arrays H(ti) and H(tj) under the 
condition of ET=1 (the arrays H(t2p+1) and H(t2q+1) for ET=2). 

( ) Substitute a, b, H(ti) and H(tj) into Eq.(20) and calculate P1(x) under the 
condition of ET=1 (Substitute H(t2p+1) and H(t2q+1) into Eq.(26) under the condition of 
ET=2). 

( ) Use Eq.(14) to compute P2(x) and use Eq.(10) to calculate P(x). 
( ) According to engineering requirements, set appropriate constraint thresholds 

a, b, 1, 2, and calculate the boundary function values P(a a) and P( b b) based on 
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the expression of P(x) in step . 
( ) If the calculated values of P(a a) and P( b b) satisfy the condition in Eq.(6), 

then a and b are the boundaries. If not, the values of a and b need to be readjusted and 
steps -  repeated until Eq.(6) is satisfied.  

Take the problem of contact between two solid bodies as an example to explain 
the readjustment rule. According to reference[58], if the profiles defined by 
parametric equations [X1(k1), Y1(k1)] and [X2(k2), Y2(k2)] are smooth, then the solution 
of Eq.(9) must be continuously decreasing to the boundary values a and b and reaches 
zero on the boundary (A=0 and B=0 in Eq.(6)). Thus, the readjustment rule for a and b 
is obtained as follows: 

If the boundary function values P(a a) and P( b b) are greater than the 
minimum value of 1 or 2 in the previous calculation, then the boundary a or b needs 
to be expanded, respectively. Otherwise, the boundary should be narrowed. Some 
methods, such as a binary search method, can certainly be used to speed up the 
iteration. 

The flowchart of the above calculation processes is described in Fig. 1. 

 

Fig. 1 Calculation flowchart 

3 Numerical results 
To analyse the effectiveness of the new method, five different examples are 

calculated in this section. In examples 1 and 2, the absolute errors between the true 
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values of P1(x) and P(x) and the numerical solutions calculate by the new method is 
analysed. Three singular integral equations without analytic solutions are calculated in 
examples 3-5. 

3.1 Example 1 

From the function expressions of P1(x) and P2(x), it can be seen that the absolute 
error for P(x) is produced in the process of computing P1(x). Therefore, only the 
absolute errors of Eq.(20) (ET=1) and Eq.(26) (ET=2), which are the expansion of 
P1(x), are discussed in Example 1 (C=0). To avoid the error caused by the iteration 
process, suppose a=1 and b=1. The singular integral function composed of the 
following parameter functions is considered: 

1 1 1

1 1 10.

1

1)5asin(

X k k

Y k k
                    (27) 

2 2 2

2
2 2 2 2

3

1.5 1 9

X k k

Y k k k
                     (28) 

The expression of the true solution is: 

2

2 2

12 1 ln
1

1
( )

xx x
x

x
P x                (29) 

Following calculation steps -  in section 2, the absolute error between the 
numerical solution of P1(x) and the true value is shown in Table. 1. 

Table. 1 Absolute error of approximate solution compared with true value for example 1 

x 
N=26 N=28 N=210 

Absolute 
error(ET=1) 

Absolute  
error(ET=2) 

Absolute 
error(ET=1) 

Absolute  
error(ET=2) 

Absolute 
error(ET=1) 

Absolute  
error(ET=2) 

-0.75 4.26E-05 2.95E-08 2.67E-06 1.16E-10 1.67E-07 4.55E-13
-0.50 1.27E-05 2.40E-09 7.93E-07 9.41E-12 4.96E-08 3.68E-14
-0.25 4.54E-06 4.69E-10 2.84E-07 1.83E-12 1.77E-08 7.17E-15
0.00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.25 4.54E-06 4.69E-10 2.84E-07 1.83E-12 1.77E-08 7.17E-15
0.50 1.27E-05 2.40E-09 7.93E-07 9.41E-12 4.96E-08 3.68E-14
0.75 4.26E-05 2.95E-08 2.67E-06 1.16E-10 1.67E-07 4.55E-13

3.2 Example 2 

In this example, the approximate numerical solution of the function P(x) given 
by Eqs.(30)-(31) is calculated with C=128π2/25. The integral limits a and b are 
unknown but constrained by Eq.(6). 
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1 1 1

2
1 1 1

+0.22

36

X k k

Y k k
                       (30) 

2 2 2

2
2 2 2

+0.23

63

X k k

Y k k
                      (31) 

In engineering applications, integral principle values are usually used to 
represent solutions of singular integrals, which in this example can be expressed as in 
Eq.(32) as follows [30]: 

 16( ) a bP x x x                        (32) 

After calculation, the absolute error between the approximate numerical solution 
and the principal value solution is shown in Table. 2. 

Table. 2 Absolute error of approximate solution compared with principal value for example 2 

x 
N=28 N=210 N=212 

Absolute 
error(ET=1) 

Absolute  
error(ET=2) 

Absolute 
error(ET=1) 

Absolute  
error(ET=2) 

Absolute 
error(ET=1) 

Absolute  
error(ET=2) 

-0.5 4.33E-03 5.84E-04 5.36E-04 7.35E-05 6.68E-05 9.21E-06 
-0.3 1.02E-03 1.40E-04 1.27E-04 1.76E-05 1.59E-05 2.20E-06 
-0.1 6.08E-04 8.40E-05 7.60E-05 1.05E-05 9.50E-06 1.31E-06 
0.1 4.96E-04 6.85E-05 6.20E-05 8.56E-06 7.75E-06 1.07E-06 
0.2 4.84E-04 6.69E-05 6.06E-05 8.36E-06 7.57E-06 1.05E-06 
0.3 4.96E-04 6.85E-05 6.20E-05 8.56E-06 7.75E-06 1.07E-06 
0.5 6.08E-04 8.40E-05 7.60E-05 1.05E-05 9.50E-06 1.31E-06 
0.7 1.02E-03 1.40E-04 1.27E-04 1.76E-05 1.59E-05 2.20E-06 
0.9 4.33E-03 5.84E-04 5.36E-04 7.35E-05 6.68E-05 9.21E-06 

3.3 Example 3 

Examples 1 and 2 have accurate analytical solutions; therefore, the absolute error 
between the values calculated by the new method presented in this paper and the exact 
values is provided. However, the new method is mainly used to solve Cauchy singular 
integral equations composed of multiple implicit parameter functions with unknown 
integral limits but constrained by physical characteristics, and these equations are 
without analytical solutions. In Example 3, one of these types of equations is defined. 
Eq.(33) and Eq.(34) are the implicit parameter functions, with N=210, C=300. 

1 1 1 1 1 1 1 1

5
1 1 1 1 1 1 1 1

2cos 8 cos 9sin 7 sin 2

15sin 9cos 15 cos 6 sin 9 10

X k k k k k k k

Y k k k k k k k
        (33) 

2 2 2 2 2 2 2 2

5
2 2 2 2 2 2 2 2

7sin 8cos 3 cos 9 sin 8

35 cos 35sin 30cos 10 sin 30 10

X k k k k k k k

Y k k k k k k k
   (34) 
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The solid shapes represented by parameter functions [X1(k1), Y1(k1)] and [X2(k2), 
Y2(k2)] are shown in Fig. 2. 

 
Fig. 2 The solid shapes represented by parameter functions in example 3 

The calculation results are illustrated in Fig. 3. 

 
Fig. 3 P(x) for example 3 (ET=2) 

3.4 Example 4 

The method presented in this paper can also be applied to contact problems of 
solid described by piecewise functions. In this example, parametric equations 
describing solid profiles are composed of a piecewise parameter function (Eq.(35)) 
and a standard parameter function (Eq.(36)) with N=29, C=20. The singular equation 
used for calculation has no analytic solution and the integral limits are unknown. 

1 1 1 1 1 1 1
1 1

1 1 1 1 1 1 1

6
1 1 1 1 1 1 1

1 1 2 2
1 1 1 1 1

12cos 2sin 3 cos 2 sin 12,     0

6cos 5sin 3 cos 9 sin 6,          0

7.11cos 0.63sin 0.63 cos 7.83 sin 7.11 10 ,  0

0.7 sin 5600 3.5 cos

k k k k k k X
X k

k k k k k k X

k k k k k k X
Y k

k k k k k 5
110 ,                                           0X

(35) 
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2 2 2 2 2 2 2

7
2 2 2 2 2 2

3sin 2 cos sin

27 cos 0.027sin 1.8co0 s 1.8 10 0.

X k k k k k k

Y k k k k k
    (36) 

The solid shapes represented by parameter functions [X1(k1), Y1(k1)] and [X2(k2), 
Y2(k2)] are described in Fig. 4. 

 
Fig. 4 The solid shapes represented by parameter functions in example 4 

The results are shown in Fig. 5. 

 
Fig. 5 P(x) for example 4 (ET=2) 

3.5 Example 5 

In this example, the solid profile equation for contact is composed of two sets of 
piecewise functions (Eq.(37) and Eq.(38)) with N=28, C=36. The singular integral 
equation also has no analytic solution and the integral limits are unknown, just as in 
examples 3-4.  
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2 2
1 1 1 1 1 1

1 1
1 1 1 1 1 1 1

2 7
1 1 1 1 1

1 1

1 1

5 tan 2tan 3 cos ,                                   0

7cos 2tan 5 cos 6 tan 7,               0

2.08sin 6.50cos 2.08 cos 6.50 10 ,  0

33600 tan 3360

k k k k k X
X k

k k k k k k X

k k k k X
Y k

k k 2 2
1 1 1 10000tan 53200 cos ,       0k k k X

   (37) 

2 2 2
2 2 2 2 2 2 2

2 2
2 2 2 2 2 2

6 3 2 2
2 2 2 2 2 2

2 2
2 2 2 2

2cos 3tan 10 tan 5 cos 2,  0

6tan 5 cos 7 tan ,                              0

9 10 tan 200 tan 300 cos ,           0

8.5 cos 8.5sin 7.5cos 7.5

k k k k k k X
X k

k k k k k X

k k k k k X
Y k

k k k k 5
210 ,       0X

  (38) 

The solid shapes represented by parameter functions [X1(k1), Y1(k1)] and [X2(k2), 
Y2(k2)] are shown in Fig. 6. 

 
Fig. 6 The solid shapes represented by parameter functions in example 5 

The calculation results are shown in Fig. 7. 

 
Fig. 7 P(x) for example 5 (ET=2) 
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4. Conclusion 
Cauchy singular integral equations that are composed of multiple implicit 

parameter functions with unknown integral limits constrained by physical 
characteristics appear in (but are not limited to) the problem of contact between two 
solid bodies with irregular profiles described by parametric functions. A numerical 
approximation method, which consists mainly of transforming integrals into 
numerical calculations, is found to be useful for solving those equations based on an 
iterative method. Higher accuracy can be obtained by making an extrapolation. In 
addition, this method can also directly solve the singular integral equations composed 
of multiple implicit parameter functions with known upper and lower limits. The 
numerical results show that the absolute error between the calculated value and the 
true value is very small and decreases as N increases. This indicates that the proposed 
method is accurate and reliable.  
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