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We introduce a notion of λ-graph bisystem that consists of a pair (L−, L+) of 
two labeled Bratteli diagrams L−, L+ satisfying certain compatibility condition for 
labeling their edges. It is a two-sided extension of λ-graph system, that has been 
previously introduced by the author. Its matrix presentation is called a symbolic 
matrix bisystem. We first show that any λ-graph bisystem presents subshifts and 
conversely any subshift is presented by a λ-graph bisystem, called the canonical 
λ-graph bisystem for the subshift. We introduce an algebraically defined relation on 
symbolic matrix bisystems called properly strong shift equivalence and show that 
two subshifts are topologically conjugate if and only if their canonical symbolic 
matrix bisystems are properly strong shift equivalent. A λ-graph bisystem (L−, L+)
yields a pair of C∗-algebras written O+

L− , O−
L+ that are first defined as the C∗-

algebras of certain étale groupoids constructed from (L−, L+). We study structure 
of the C∗-algebras, and show that they are universal unital unique C∗-algebras 
subject to certain operator relations among canonical generators of partial isometries 
and projections encoded by the structure of the λ-graph bisystem (L−, L+). If a 
λ-graph bisystem comes from a λ-graph system of a finite directed graph, then 
the associated subshift is the two-sided topological Markov shift (ΛA, σA) by its 
transition matrix A of the graph, and the associated C∗-algebra O+

L− is isomorphic 
to the Cuntz–Krieger algebra OA, whereas the other C∗-algebra O−

L+ is isomorphic 
to the crossed product C∗-algebra C(ΛA) �σ∗

A
Z of the commutative C∗-algebra 

C(ΛA) of continuous functions on the shift space ΛA of the two-sided topological 
Markov shift by the automorphism σ∗

A induced by the homeomorphism of the shift 
σA. This phenomenon shows a duality between Cuntz–Krieger algebra OA and the 
crossed product C∗-algebra C(ΛA) �σ∗

A
Z.
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1. Introduction

Cuntz–Krieger in [5] initiated an interplay between symbolic dynamics and C∗-algebras. They constructed 
a purely infinite simple C∗-algebra OA called Cuntz–Krieger algebra from a topological Markov shift defined 
by a square matrix A with entries in {0, 1}. They showed that the algebra OA is a universal unique C∗-
algebra generated by a finite family of partial isometries subject to certain operator relations defined by 
the matrix A. They also proved not only that the stable isomorphism classes of the resulting C∗-algebras 
are invariant under topological conjugacy of the underlying topological Markov shifts, but also that their 
K-groups and Ext-groups are realized as flow equivalence invariants of the Markov shifts. Their pioneer 
work has given big influence to both classification theory of C∗-algebras and interplay between symbolic 
dynamical systems and C∗-algebras. After their work, many generalizations of Cuntz–Krieger algebras have 
come up from several view points (cf. [6], [10], [15], [18], [32], . . . ). In [20] (cf. [3]), the author attempted 
to generalize Cuntz–Krieger algebras defined from topological Markov shifts to C∗-algebras defined from 
general subshifts. After [20], he introduced a notion of λ-graph system written L = (V, E, λ, ι). It consists 
of a labeled Bratteli diagram (V, E, λ) with its vertex set V =

⋃∞
l=0 Vl, edge set E =

⋃∞
l=0 El,l+1 and 

a labeling map λ : E −→ Σ, together with a surjective map ι : Vl+1 −→ Vl, l ∈ Z+ = {0, 1, . . . , }. 
We require certain compatibility condition between the labeled Bratteli diagram (V, E, λ) and the map 
ι : V −→ V , called local property of λ-graph system. He showed that any λ-graph system presents a 
subshift and conversely any subshift can be presented by a λ-graph system, called the canonical λ-graph 
system. He also introduced a notion of symbolic matrix system that is a matrix presentation of λ-graph 
system, and defined some algebraic relations called (properly) strong shift equivalence in symbolic matrix 
systems. He proved that if two symbolic matrix systems are (properly) strong shift equivalent, then their 
presenting subshifts are topologically conjugate. Conversely if two subshifts are topologically conjugate, 
then their canonically constructed symbolic matrix systems from the subshifts are (properly) strong shift 
equivalent (cf. [25]). This result generalizes a fundamental classification theorem of topological Markov 
shifts proved by R. Williams [39]. A construction of C∗-algebra from a λ-graph system was presented in 
[23]. The class of such C∗-algebras are generalization of Cuntz–Krieger algebras. The resulting C∗-algebra 
was written OL and whose K-theoretic groups were proved to be invariant under (properly) strong shift 
equivalence of underlying symbolic dynamical systems, and hence yield topological conjugacy invariants of 
general subshifts. Especially, the K-groups K∗(OLΛ) and the Ext-group Ext∗(OLΛ) for the C∗-algebra OLΛ

of the canonical λ-graph system LΛ of a subshift Λ was the first found computable invariant under flow 
equivalence of general subshifts ([24]).

As seen in the construction of λ-graph system from subshifts in [22], it is essentially due to its (right) 
one-sided structure of the subshifts. Hence the resulting C∗-algebra OL do not exactly reflect two-sided 
dynamics. In this paper, we will attempt to construct two-sided extension of λ-graph systems, construct 
associated C∗-algebras and study their structure. We will introduce a notion of λ-graph bisystem over a 
finite alphabet. It is a pair of two labeled Bratteli diagrams L−, L+ over alphabets Σ−, Σ+, respectively, 
and satisfy certain compatible condition of their edge labeling, called local property of λ-graph bisystem, 
where two alphabet sets Σ−, Σ+ are not related in general. The two labeled Bratteli diagrams are of the 
form L− = (V, E−, λ−), L+ = (V, E+, λ+). They have common vertex sets V =

⋃∞
l=0 Vl together with 

edge sets E− =
⋃∞

E− and E+ =
⋃∞

E+ and labeling maps λ− : E− −→ Σ−, λ+ : E+ −→ Σ+, 
l=0 l+1,l l=0 l,l+1
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respectively. Its matrix presentation is called a symbolic matrix bisystem written (M−, M+). It is a pair 
(M−

l,l+1, M+
l,l+1)l∈Z+ of sequences of rectangular matrices such that M−

l,l+1, M+
l,l+1 are symbolic matrices 

over Σ−, Σ+, respectively satisfying the following commutation relations corresponding to the local property 
of λ-graph bisystem:

M−
l,l+1M+

l+1,l+2
κ� M+

l,l+1M−
l+1,l+2, l ∈ Z+, (1.1)

where 
κ� denotes the equality through exchanging symbols κ : β ·α ∈ Σ− ·Σ+ −→ α·β ∈ Σ+ ·Σ−. The notions 

of λ-graph bisystem and symbolic matrix bisystem are not only two-sided extensions of the preceding λ-graph 
system and symbolic matrix system, respectively, but also generalization of them, respectively. We will first 
show that any λ-graph bisystem presents two subshifts. One is the subshift presented by the labeled Bratteli 
diagram L−, and the other one is the one presented the labeled Bratteli diagram L+. If a λ-graph bisystem 
satisfies a particular condition on edge labeling called FPCC (Follower and Predecessor Compatibility 
Condition), then the two presented subshifts coincide. Conversely any subshift is presented by a λ-graph 
bisystem satisfying FPCC, called the canonical λ-graph bisystem for the subshift (Proposition 5.4). We will 
introduce a notion of properly strong shift equivalence in symbolic matrix bisystems satisfying FPCC, and 
prove the following theorem.

Theorem 1.1 (Theorem 6.3). Two subshifts are topologically conjugate if and only if their canonical symbolic 
matrix bisystems are properly strong shift equivalent.

The proof of the only if part of the theorem is harder than that of the if part. To prove the only if 
part, we basically follow the idea given in the proof of [22, Theorem 4.2], and provide a notion of bipartite 
λ-graph bisystem as well as bipartite symbolic matrix bisystem. We will show that the canonical λ-graph 
bisystems, whose presenting subshifts are topologically conjugate, are connected by a finite chain of bipartite 
λ-graph bisystems. We will also introduce the notion of strong shift equivalence in general symbolic matrix 
bisystems. Properly strong shift equivalence in symbolic matrix bisystems satisfying FPCC implies strong 
shift equivalence.

We will construct a pair of C∗-algebra written O+
L− , O−

L+ from a λ-graph bisystem (L−, L+). The 
two algebras O+

L− , O−
L+ are symmetrically constructed as the C∗-algebras of certain étale groupoids 

G+
L− , G−

L+ . The groupoids G+
L− , G−

L+ are Deaconu–Renault groupoids for certain shift dynamical systems 
(X+

L− , σL−), (X−
L+ , σL+) associated with the λ-graph bisystem (L−, L+). They are also regarded as a gen-

eralization of the étale groupoids constructed from λ-graph systems in [23]. We will introduce a notion of 
σL−-condition (I) for λ-graph bisystem that guarantees the étale groupoid G+

L− being essentially principal 
and uniqueness of the C∗-algebra O+

L− subject to the operator relations (L−, L+) below. Let {vl1, . . . , vlm(l)}
be the vertex set Vl. For an edge e− ∈ E−

l+1,l, its source vertex and terminal vertex are denoted by 
s(e−) ∈ Vl+1 and t(e−) ∈ Vl, respectively. For an edge e+ ∈ E+

l,l+1, s(e+) ∈ Vl, t(e+) ∈ Vl+1 are simi-
larly defined. The directions of edges in L− are upward, whereas those of edges in L+ are downward. The 
transition matrices A−

l,l+1, A
+
l,l+1 for L−, L+ are defined by setting

A−
l,l+1(i, β, j) =

{
1 if t(e−) = vli, λ

−(e−) = β, s(e−) = vl+1
j for some e− ∈ E−

l+1,l,

0 otherwise,

A+
l,l+1(i, α, j) =

{
1 if s(e+) = vli, λ

+(e+) = α, t(e+) = vl+1
j for some e+ ∈ E+

l,l+1,

0 otherwise,

for i = 1, 2, . . . , m(l), j = 1, 2, . . . , m(l + 1), β ∈ Σ−, α ∈ Σ+.
We will prove the following theorem, that is one of main results of the paper.
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Theorem 1.2 (Theorem 8.11). Suppose that a λ-graph bisystem (L−, L+) satisfies σL−-condition (I). Then 
the C∗-algebra O+

L− is the universal unital unique C∗-algebra generated by partial isometries Sα indexed by 
symbols α ∈ Σ+ and mutually commuting projections El

i(β) indexed by vertices vli ∈ Vl and symbols β ∈ Σ−

with β ∈ Σ−
1 (vli) subject to the following operator relations called (L−, L+):

∑
α∈Σ+

SαS
∗
α =

m(l)∑
i=1

∑
β∈Σ−

1 (vl
i)

El
i(β) = 1, (1.2)

SαS
∗
αE

l
i(β) = El

i(β)SαS
∗
α, (1.3)

∑
β∈Σ−

1 (vl
i)

El
i(β) =

m(l+1)∑
j=1

∑
γ∈Σ−

1 (vl+1
j )

A−
l,l+1(i, γ, j)E

l+1
j (γ), (1.4)

S∗
αE

l
i(β)Sα =

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1
j (β), (1.5)

where Σ−
1 (vli) = {λ−(e−) ∈ Σ− | e− ∈ E−

l,l−1 such that s(e−) = vli} for vli ∈ Vl.

For the other C∗-algebra O−
L+ , we have a symmetric structure theorem to the above Theorem.

λ-graph systems are typical examples of λ-graph bisystems. If a λ-graph bisystem (L−, L+) comes from 
a λ-graph system L, then the C∗-algebra O+

L− coincides with the C∗-algebra OL of a λ-graph system L
previously studied in [23].

For a λ-graph bisystem (L−, L+), let us denote by ΩL− the compact Hausdorff space of path spaces of the 
labeled Bratteli diagram L−. By the local property of λ-graph bisystem, the edges labeled symbols α ∈ Σ+

of the other labeled Bratteli diagram L+ give rise to an endomorphism on the abelian group C(ΩL− , Z) of 
Z-valued continuous functions on ΩL− , that is denoted by λ+

L−∗. Then we have a K-theory formulas for the 
C∗-algebra O+

L− .

Theorem 1.3 (Theorem 9.2).

K0(O+
L−) ∼=C(ΩL− ,Z)/(id−λ+

L−∗)C(ΩL− ,Z),

K1(O+
L−) ∼= Ker(id−λ+

L−∗) in C(ΩL− ,Z).

Similar K-theory formulas for the other C∗-algebra O−
L+ hold. Since the properly strong shift equivalence 

class of the canonical symbolic matrix bisystem for a subshift is invariant under topological conjugacy of the 
subshift, the following result tells us that the above K-groups Ki(O+

L−), i = 0, 1 yield topological conjugacy 
invariants of subshifts.

Theorem 1.4 (Theorem 9.3). Let (M−, M+) and (N−, N+) be symbolic matrix bisystems. Let (L−
M, L+

M)
and (L−

N , L+
N ) be the associated λ-graph bisystems both of which satisfy FPCC. Suppose that (M−, M+) and 

(N−, N+) are properly strong shift equivalent. Then the C∗-algebras O+
L

−
M

and O+
L

−
N

are Morita equivalent, 
so that their K-groups Ki(O+

L
−
M

) and Ki(O+
L

−
N

) are isomorphic for i = 0, 1.

Corollary 1.5 (Corollary 9.4). The K-groups Ki(O+
L

−
Λ
), i = 0, 1 of the C∗-algebra O+

L
−
Λ

of the canonical 
λ-graph bisystem (L−

Λ , L
+
Λ) of a subshift Λ is invariant under topological conjugacy of subshifts.

Let L = (V, E, λ, ι) be a λ-graph system over Σ. Put Σ+ = Σ. Let L+ be the original labeled Bratteli 
diagram L without the map ι : V −→ V . Define a new alphabet Σ− = {ι}. The other labeled Bratteli 
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diagram L− = (V, E−, λ−) over alphabet Σ− is defined in the following way. Define an edge e− ∈ E−
l+1,l

if ι(vl+1
j ) = vli so that s(e−) = vl+1

j , t(e−) = vli and λ−(e−) = ι ∈ Σ−. Then we have a labeled Bratteli 
diagram L− = (V, E−, λ−) over alphabet Σ−. Then the local property of the λ-graph system L makes the 
pair (L−, L+) a λ-graph bisystem. Hence we have a λ-graph bisystem from a λ-graph system. Let X−

L+

be the unit space of the étale groupoid G−
L+ . The ι-map induces a shift homeomorphism on X−

L+ denoted 
by σL+ . It yields an automorphism written σ∗

L+ on the commutative C∗-algebra C(X−
L+) of continuous 

functions on X−
L+ . Then we see the following.

Proposition 1.6 (Proposition 10.2). Let L be a left-resolving λ-graph system over Σ. Let (L−, L+) be the 
associated λ-graph bisystem. Then we have

(i) The C∗-algebra O+
L− is canonically isomorphic to the C∗-algebra OL of the original λ-graph system L.

(ii) The C∗-algebra O−
L+ is isomorphic to the crossed product C(X−

L+) �σ∗
L+ Z.

An irreducible finite directed graph naturally gives rise to a λ-graph system. Let A be its transition 
matrix for a given finite directed graph. We then have the two-sided topological Markov shift (ΛA, σA) for 
the matrix A. We denote by LA the associated λ-graph system for the finite directed graph. The λ-graph 
bisystem from LA obtained by the above procedure is (L−

A, L
+
A). As a corollary of the above proposition we 

have

Corollary 1.7 (Corollary 10.3). The C∗-algebra O+
L

−
A

is isomorphic to the Cuntz–Krieger algebra OA, whereas 
the other C∗-algebra O−

L
+
A

is isomorphic to the C∗-algebra of the crossed product C(ΛA) �σ∗
A
Z of the 

commutative C∗-algebra C(ΛA) by the automorphism σ∗
A induced by the homeomorphism σA of the shift on 

ΛA.

The above corollary suggests us that the Cuntz–Krieger algebra OA and the crossed product C∗-algebra 
C(ΛA) �σ∗

A
Z have a relation like a “duality” pair.

We finally refer to the transpose of λ-graph bisystems and its C∗-algebras.

Proposition 1.8. For a λ-graph bisystem (L−, L+), denote by L−t (resp. L+t) the labeled Bratteli diagram 
obtained by reversing the directions of all edges in L− (resp. L+). Then the pair (L+t, L−t) becomes a 
λ-graph bisystem. We then have canonical isomorphisms of C∗-algebras:

O+
L−

∼= O−
L−t , O−

L+
∼= O+

L+t .

The paper is organized in the following way:
Section 1 is Introduction in which we describe a brief survey of the paper.
In Section 2, we review λ-graph systems, symbolic matrix systems and their C∗-algebras. The operator 

relations among the canonical generating partial isometries and projections in the C∗-algebra OL associated 
with a λ-graph system L are described.

In Section 3, we introduce a new notion of λ-graph bisystem, that is a main target of the paper. It is a 
generalization of λ-graph system surveyed in the preceding section. Several examples of λ-graph bisystems 
are presented.

In Section 4, a matrix presentation of a λ-graph bisystem is introduced. It is called a symbolic matrix 
bisystem, that is also a generalization of symbolic matrix system surveyed in Section 2.

In Section 5, it is shown that for any subshift, there exists a λ-graph bisystem satisfying FPCC and 
presenting the subshift. The λ-graph bisystem is called the canonical λ-graph bisystem for the subshift.

In Section 6, properly strong shift equivalence in symbolic matrix bisystems satisfying FPCC is intro-
duced. It is proved that two subshifts are topologically conjugate if and only if their canonical symbolic 
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matrix bisystems are properly strong shift equivalent. We also introduce a notion of strong shift equivalence 
in general symbolic matrix bisystems.

In Section 7, two étale groupoids G+
L− , G−

L+ are introduced as the Deaconu–Renault groupoids constructed 
from cerain shift dynamical systems associated with continuous graphs in the sense of Deaconu [8] from 
a λ-graph bisystem (L−, L+). We then define the C∗-algebras O+

L− , O−
L+ as their groupoid C∗-algebras 

C∗(G+
L−), C∗(G−

L+), respectively.
In Section 8, condition (I) on a λ-graph bisystem (L−, L+) is introduced. Under the condition (I), the 

C∗-algebra O+
L− as well as O−

L+ is realized as a universal unital unique C∗-algebra generated by partial 
isometries and projections subject to certain operator relations encoded by the structure of the λ-graph 
bisystem (L−, L+). It is one of the main results of the paper.

In Section 9, K-theory formulas of the C∗-algebras O+
L− , O−

L+ are presented. It is shown that if two 
symbolic matrix bisystems satisfying FPCC are properly strong shift equivalent, then the C∗-algebras 
associated with the λ-graph bisystems of the symbolic matrix bisystems are Morita equivalent, so that their 
K-theory groups yield topological conjugacy invariants of subshifts.

In Section 10, the two C∗-algebras O+
L− , O−

L+ for λ-graph bisystems coming from λ-graph systems are 
studied. Let (L−, L+) be the λ-graph bisystem defined by a λ-graph system L. It is proved that the C∗-
algebra O+

L− is isomorphic to the C∗-algebra OL of the λ-graph system L in Section 2, and the other 
C∗-algebra O−

L+ is isomorphic to the crossed product C(X−
L+) �σ∗

L+ Z of the commutative C∗-algebra on 
the unit space X−

L+ of the groupoid G−
L+ by the homeomorphism of the shift σL+ . In particular, we know 

that the Cuntz–Krieger algebra OA for a finite nonnegative matrix A and the C∗-algebra of the crossed 
product C(ΛA) �σ∗

A
Z of the two-sided topological Markov shift ΛA by the homeomorphism of the shift are 

regarded as a duality pair.

Throughout the paper, the notation N, Z+ will denote the set of positive integers, the set of nonneg-
ative integers, respectively. By a nonnegative matrix we mean a finite rectangular matrix with entries in 
nonnegative integers.

2. Subshifts, λ-graph systems and its C∗-algebra

Let Σ be a finite set, which we call an alphabet. Each element of Σ is called a symbol or a label. Denote by 
ΣZ the set of bi-infinite sequences (xn)n∈Z of elements of Σ. We endow ΣZ with the infinite product topology, 
so that it is a compact Hausdorff space. Let us denote by σ : ΣZ −→ ΣZ the homeomorphism defined by the 
left shift σ((xn)n∈Z) = (xn+1)n∈Z. Let Λ ⊂ ΣZ be a σ-invariant closed subset, that is σ(Λ) = Λ. Then the 
topological dynamical system (Λ, σ) is called a subshift over Σ, and the space Λ is called the shift space for 
(Λ, σ). We often write a subshift (Λ, σ) as Λ for short. For a subshift Λ and n ∈ Z+, let us denote by Bn(Λ)
the set of admissible words in Λ with length n, that is defined by Bn(Λ) = {(x1, . . . , xn) ∈ Σn | (xi)i∈Z ∈ Λ}.

For N = |Σ|, the subshift (ΣZ, σ) is called the full N -shift. More generally for an N × N matrix A =
[A(i, j)]Ni,j=1 with entries A(i, j) in {0, 1}, the subshift ΛA defined by

ΛA = {(xn)n∈Z ∈ {1, 2, . . . , N}Z | A(xn, xn+1) = 1 for all n ∈ Z} (2.1)

is called the topological Markov shift defined by the matrix A. A topological Markov shift is often called a 
shift of finite type or simply SFT. The class of sofic shifts are a generalized class containing shifts of finite 
type. Let G = (V, E , λ) be a finite labeled directed graph with vertex set V, edge set E and labeling map 
λ : E −→ Σ. For n ∈ N, let

Bn(G) = {(λ(e1), . . . , λ(en)) ∈ Σn | ei ∈ E , t(ei) = s(ei+1), i = 1, 2, . . . , n− 1}
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be the set of words appearing in the labeled graph G, where t(ei) denote the terminal vertex of ei and 
s(ei+1) denote the source vertex of ei+1. Then the sofic shift ΛG for the labeled graph G is defined by

ΛG = {(xn)n∈Z ∈ ΣZ | (xn+1, . . . , xn+k) ∈ Bk(G) for all k ∈ N, n ∈ Z}

([11], [38]). A labeled graph G is said to be left-resolving (resp. right-resolving), if λ(e) = λ(f) implies 
t(e) �= t(f) (resp. s(e) �= s(f)). It is well-known that any sofic shift may be presented by a left-resolving 
labeled graph (cf. [16], [17], [19]). It is also presented by a right-resolving labeled graph. There are lots of 
non-sofic subshifts, for example, Dyck shifts, β-shifts, substitution subshifts, etc. (cf. [19]). Non-sofic shifts 
can not be presented by any finite labeled graphs.

A λ-graph system is a graphical object to present general subshifts ([22]). The idea defining it is basically 
due to a notion coming from operator algebras, called Bratteli diagram (cf. [1]). Let L = (V, E, λ, ι) be 
a λ-graph system over Σ with vertex set V =

⋃∞
l=0 Vl and edge set E =

⋃∞
l=0 El,l+1 that is labeled with 

symbols in Σ by λ : E → Σ, and that is supplied with a surjective map ι(= ιl,l+1) : Vl+1 → Vl for each 
l ∈ Z+. Here the vertex sets Vl, l ∈ Z+ are finite disjoint sets, as well as El,l+1, l ∈ Z+ are finite disjoint 
sets. An edge e in El,l+1 has its source vertex s(e) in Vl and its terminal vertex t(e) in Vl+1 respectively. 
Every vertex in V has a successor and every vertex in Vl for l ∈ N has a predecessor. It is then required for 
definition of λ-graph system that there exists an edge in El+1,l+2 with label α and its terminal is v ∈ Vl+2
if and only if there exists an edge in El,l+1 with label α and its terminal is ι(v) ∈ Vl+1. For u ∈ Vl and 
v ∈ Vl+2, we put

Eι(u, v) = {e ∈ El+1,l+2 | ι(s(e)) = u, t(e) = v},
Eι(u, v) = {e ∈ El,l+1 | s(e) = u, t(e) = ι(v)}.

As a key hypothesis for L to be a λ-graph system, we require the condition that there exists a bijective 
correspondence between Eι(u, v) and Eι(u, v) that preserves labels for each pair (u, v) ∈ Vl×Vl+2 of vertices. 
We call this property the local property of λ-graph system. For a λ-graph system L, let WL be the set of finite 
label sequences appearing as concatenating finite labeled paths in L. Then there exists a unique subshift ΛL

whose admissible words B∗(ΛL) =
⋃∞

n=0 Bn(ΛL) coincide with WL. The subshift ΛL is called the subshift 
presented by L. Conversely, we have a canonical method to construct a λ-graph system LΛ from an arbitrary 
subshift Λ ([22]). The λ-graph system is called the canonical λ-graph system for the subshift.

A λ-graph system has its matrix presentation, that is called a symbolic matrix system denoted by (I, M). 
In [22], the notation (M, I) has been used for symbolic matrix system. In this paper, the notation (I, M)
will be used instead. For a λ-graph system L = (V, E, λ, ι) over Σ, we define its transition matrix system
(Il,l+1, Al,l+1)l∈Z+ by setting

Il,l+1(i, j) =
{

1 if ιl,l+1(vl+1
j ) = vli,

0 otherwise
(2.2)

Al,l+1(i, α, j) =
{

1 if s(e) = vli, λ(e) = α, t(e) = vl+1
j for some e ∈ El,l+1,

0 otherwise,
(2.3)

for i = 1, 2, . . . , m(l), j = 1, 2, . . . , m(l+1), α ∈ Σ. For l ∈ Z+ and i = 1, 2, . . . , m(l), j = 1, 2, . . . , m(l+1), 
we define Ml,l+1(i, j) = α1+· · ·+αn if Al,l+1(i, αk, j) = 1 for k = 1, . . . , n. That is Ml,l+1(i, j) = α1+· · ·+αn

if and only if there exist labeled edges from vli to vl+1
j labeled α1, . . . , αn. By the local property of λ-graph 

system, the matrix equations

Ml,l+1Il+1,l+2 = Il,l+1Ml+1,l+2, l ∈ Z+ (2.4)
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hold, where in the above equality α·1 and 1 ·α for α ∈ Σ are identified with each other, and also both α·0 and 
0 ·α are recognized as 0. The sequence (Il,l+1, Ml,l+1), l ∈ Z+ of pairs of matrices Il,l+1, Ml,l+1 is called the 
symbolic matrix system associated to the λ-graph system L. Conversely a sequence (Il,l+1, Ml,l+1), l ∈ Z+
of pairs of symbolic matrices Ml,l+1 over alphabet Σ and matrices Il,l+1 over {0, 1} satisfying (2.4) gives rise 
to a λ-graph system over Σ, and hence a subshift. The sequence (Il,l+1, Ml,l+1), l ∈ Z+ is written (I, M), 
or (IM, M).

In [22] (cf. [25]), the author introduced a notion of strong shift equivalence in symbolic matrix systems. It 
has been proved that if two symbolic matrix systems are strong shift equivalent, then the presenting subshifts 
are topologically conjugate. Conversely if two subshifts are topologically conjugate, then the canonically 
constructed symbolic matrix systems are strong shift equivalent. Therefore classification of subshifts are 
completely deduced to the classification of symbolic matrix systems up to strong shift equivalence. This result 
is a generalization of the fundamental classification theory of topological Markov shifts by R. Williams ([39], 
see [30] for sofic case). The author in [22] also introduced notions of K-groups and Bowen–Franks groups for 
symbolic matrix systems and hence for λ-graph systems, and proved that they are all strong shift equivalence 
invariants of symbolic matrix systems. Hence these invariants give rise to topological conjugacy invariants 
of general subshifts. These invariants are regarded as K-theoretic invariants of the associated C∗-algebras.

A λ-graph system L is said to be left-resolving if e, f ∈ E with t(e) = t(f) and λ(e) = λ(f) implies e = f . 
In what follows all λ-graph systems are assumed to be left-resolving. Let us denote by {vl1, . . . , vlm(l)} the 
set Vl of vertices at level l. The author in [23] introduced a C∗-algebra OL associated to the λ-graph system 
as a generalization of Cuntz–Krieger algebras. The C∗-algebra OL was first constructed as a C∗-algebra 
C∗(GL) of an étale groupoid GL associated to L. It is realized as a universal C∗-algebra in the following way.

Theorem 2.1 ([23, Theorem A]). Let L be a left-resolving λ-graph system over alphabet Σ. Then the C∗-
algebra OL is realized as a universal concrete C∗-algebra generated by partial isometries Sα indexed by 
symbols α ∈ Σ and projections El

i, i = 1, 2, . . . , m(l) indexed by vertices vli ∈ Vl, l ∈ Z+ satisfying the 
following operator relations called (L):

∑
α∈Σ

SαS
∗
α =

m(l)∑
i=1

El
i = 1, (2.5)

SαS
∗
αE

l
i = El

iSαS
∗
α, (2.6)

El
i =

m(l+1)∑
j=1

Il,l+1(i, j)El+1
j , (2.7)

S∗
αE

l
iSα =

m(l+1)∑
j=1

Al,l+1(i, α, j)El+1
j (2.8)

for i = 1, 2, . . . , m(l), l ∈ Z+, α ∈ Σ. If in particular L satisfies condition (I) in the sense of [23], the 
operator relations determine the C∗-algebra in a unique way.

Let G = (V, E , λ) be a finite labeled directed graph with labeling map λ : E −→ Σ. We assume that 
the labeling is left-resolving in the above mentioned sense. Then we have a λ-graph system LG from the 
finite labeled graph G by setting Vl = V, El,l+1 = E for every l ∈ Z+ and ι(v) = v, v ∈ V. Then the 
C∗-algebra OG is so called a graph algebra with labeled edges ([23, Proposition 7.1], cf. [2], [18]). Any 
topological Markov shift is realized as an edge shift with labeled edges, then the operator relations among 
its canonical generators above reduce to the usual operator relations of Cuntz–Krieger algebras. Hence the 
class of C∗-algebras OL generalizes the class of Cuntz–Krieger algebras. It actually generalizes the class of 
C∗-algebras associated with subshifts [20] (cf. [3]).
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The K-groups for symbolic matrix system described above is nothing but the K-groups Ki(OL) of the 
C∗-algebra of the λ-graph system L for the symbolic matrix system ([23]).

A λ-graph system seems to fit in describing one-sided structure of subshifts. Actually even if a subshift is 
a topological Markov shift, the associated Cuntz–Krieger algebra it-self does not cover two-sided structure 
of the underlying topological Markov shift. In this paper, we will generalize λ-graph system and introduce 
two-sided extension of it, and construct associated C∗-algebras.

3. λ-graph bisystems

Let Σ− and Σ+ be two finite alphabets. They are generally not related to each other. We will generalize 
the definition of λ-graph system to two-sided versions in the following way.

Definition 3.1. A λ-graph bisystem (L−, L+) is a pair of labeled Bratteli diagrams L− = (V −, E−, λ−) over 
Σ− and L+ = (V +, E+, λ+) over Σ+ satisfying the following five conditions:

(i) V − = V + =
⋃∞

l=0 Vl disjoint union of finite sets Vl, l ∈ Z+ with m(l) := |Vl| < ∞ for l ∈ Z+.
(ii) E− =

⋃∞
l=0 E

−
l+1,l and E+ =

⋃∞
l=0 E

+
l,l+1 disjoint unions of finite sets E−

l+1,l, E
+
l,l+1, l ∈ Z+, respectively.

(iii) (1) Every edge e− ∈ E−
l+1,l satisfies s(e−) ∈ Vl+1, t(e−) ∈ Vl, and every edge e+ ∈ E+

l,l+1 satisfies 
s(e+) ∈ Vl, t(e+) ∈ Vl+1.
(2) For every vertex v ∈ Vl with l �= 0, there exists e− ∈ E−

l+1,l, f
− ∈ E−

l,l−1 such that v = s(f−) = t(e−), 
and for every vertex v ∈ V0, there exists e− ∈ E−

1,0 such that v = t(e−).
For every vertex v ∈ Vl with l �= 0, there exists e+ ∈ E+

l,l+1, f
+ ∈ E+

l−1,l such that v = t(f+) = s(e+), 
and for every vertex v ∈ V0, there exists e+ ∈ E+

0,1 such that v = s(e+).
(iv) The labeling map λ− : E− −→ Σ− is right-resolving, that is, the condition s(e−) = s(f−), λ−(e−) =

λ−(f−) implies e− = f−.
The labeling map λ+ : E+ −→ Σ+ is left-resolving, that is, the condition t(e+) = t(f+), λ+(e+) =
λ+(f+) implies e+ = f+.

(v) For every pair u ∈ Vl, v ∈ Vl+2 with l ∈ Z+, we put

E−
+ (u, v) ={(e−, e+) ∈ E−

l+1,l × E+
l+1,l+2 | t(e−) = u, s(e−) = s(e+), t(e+) = v},

E+
−(u, v) ={(f+, f−) ∈ E+

l,l+1 ×E−
l+2,l+1 | s(f+) = u, t(f+) = t(f−), s(f−) = v}.

Then there exists a bijective correspondence

ϕ : E−
+ (u, v) −→ E+

−(u, v)

satisfying λ−(e−) = λ−(f−), λ+(e+) = λ+(f+) whenever ϕ(e−, e+) = (f+, f−).

The property (v) is called the local property of λ-graph bisystem. The pair (L−, L+) is called a λ-graph 
bisystem over Σ±.

We write V := V − = V + and {vl1, . . . , vlm(l)} for the vertex set Vl.
A λ-graph bisystem (L−, L+) is said to be standard if its top vertex set V0 is a singleton. A λ-graph 

bisystem (L−, L+) is said to have a common alphabet if Σ− = Σ+. In this case, we write the alphabet 
Σ− = Σ+ as Σ, and we say that (L−, L+) is a λ-graph bisystem over common alphabet Σ. We write an 
edge e− ∈ E− (resp. e+ ∈ E+) as e without − sign (resp. + sign) unless we specify.

Let (L−, L+) be a λ-graph bisystem over Σ±. For a vertex u ∈ Vl, we define its follower set F (u) in L−

and its predecessor set P (u) in L+ as in the following way:
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F (u) :={(λ−(fl), λ−(fl−1), . . . , λ−(f1)) ∈ (Σ−)l | fl ∈ E−
l,l−1, fl−1 ∈ E−

l−1,l−2, . . . , f1 ∈ E−
1,0,

s(fl) = u, t(fl) = s(fl−1), . . . , t(f2) = s(f1)}.

Each element of F (u) is figured such as

u
λ−(fl)−→ © λ−(fl−1)−→ · · · λ

−(f2)−→ © λ−(f1)−→ ©.

Similarly,

P (u) :={(λ+(e1), λ+(e2), . . . , λ+(el)) ∈ (Σ+)l | e1 ∈ E+
0,1, e2 ∈ E+

1,2, . . . , el ∈ E+
l−1,l,

t(e1) = s(e2), t(e2) = s(e3), . . . , t(el−1) = s(el), t(el) = u}.

Each element of P (u) is figured such as

© λ+(e1)−→ © λ+(e2)−→ · · · λ
+(el−1)−→ © λ+(el)−→ u.

A standard λ-graph bisystem (L−, L+) having a common alphabet is said to satisfy Follower-Predecessor 
Compatibility Condition, FPCC for short, if (L−, L+) satisfies the condition F (u) = P (u) for every vertex 
u ∈ Vl, l ∈ N.

We will present several examples of λ-graph bisystems.

Example 3.2.

(i) λ-graph systems.
Let L = (V, E, λ, ι) be a λ-graph system over Σ. We may construct a λ-graph bisystem (L−, L+) from 

L in the following way. Let us recognize the map ι : E −→ Σ with a new symbol written ι, and define a 
new alphabet Σ− := {ι}. The original alphabet Σ is written Σ+. We define E+

l,l+1 := El,l+1 for l ∈ Z+ and 
λ+ := λ : E+ −→ Σ+. We then have a labeled Bratteli diagram L+ := (V, E+, λ+) over alphabet Σ+. The 
other labeled Bratteli diagram L− := (V, E−, λ−) over alphabet Σ− is defined in the following way. Define 
an edge e− ∈ E−

l+1,l if ι(vl+1
j ) = vli so that s(e−) = vl+1

j , t(e−) = vli and λ−(e−) := ι ∈ Σ−. Then we have 
a labeling map λ− : E−

l+1,l −→ {ι} = Σ−, and hence a labeled Bratteli diagram L− := (V, E−, λ−) over 
alphabet Σ−. Then the local property of the λ-graph system L makes the pair (L−, L+) a λ-graph bisystem. 
This λ-graph bisystem does not satisfy FPCC.

Fig. 1 in the end of this section is the first six levels of the λ-graph bisystem defined by the canonical 
λ-graph system for the β-shift for β = 3

2 , that was used in [14]. The β-shift is not sofic. In the λ-graph 
system, the alphabet Σ+ = Σ = {0, 1}.

(ii) A λ-graph bisystem for full N -shift.
Let N be a positive integer with N > 1. Take finite alphabets Σ− = {α−

1 , . . . , α
−
N} and Σ+ =

{α+
1 , . . . , α

+
N}. We will construct a λ-graph bisystem (L−

N , L+
N ) in the following way. Let Vl = {vl} one 

point set for each l ∈ Z+, and E−
l+1,l = {e−1 , . . . , e−N}, E+

l,l+1 = {e+
1 , . . . , e

+
N} such that

s(e−i ) = vl+1, t(e−i ) = vl, λ−(e−i ) = α−
i for i = 1, . . . , N, l ∈ Z+,

s(e+
i ) = vl, t(e+

i ) = vl+1, λ+(e+
i ) = α+

i for i = 1, . . . , N, l ∈ Z+.

We set L−
N = (V, E−, λ−) and L+

N = (V, E+, λ+). Then (L−
N , L+

N ) is a λ-graph bisystem satisfying FPCC.
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(iii) A λ-graph bisystem for golden mean shift.

The topological Markov shift defined by the matrix F =
[
1 1
1 0

]
is called the golden mean shift (cf. [19]). 

Let Σ− = {α−, β−} and Σ+ = {α+, β+}. We set V0 = {v0
1}, V1 = {v1

1 , v
1
2}, Vl = {vl1, vl2, vl3, vl4} for l ≥ 2. 

The labeled Bratteli diagram L−
F is defined as follows. Define directed edges labeled symbols in Σ− such as

v0
1

α−
←− v1

1 , v0
1

α−
←− v1

2 , v0
1

β−

←− v1
1 ,

v1
1

α−
←− v2

1 , v1
1

α−
←− v2

3 , v1
2

α−
←− v2

2 , v1
2

α−
←− v2

4 , v1
2

β−

←− v2
1 , v1

2
β−

←− v2
2 ,

vl1
α−
←− vl+1

1 , vl1
α−
←− vl+1

3 , vl2
α−
←− vl+1

2 , vl2
α−
←− vl+1

4 , vl3
β−

←− vl+1
1 , vl4

β−

←− vl+1
2 ,

for l ≥ 2. The other labeled Bratteli diagram L+
F is defined as follows. Define directed edges labeled symbols 

in Σ+ such as

v0
1

α+

−→ v1
1 , v0

1
α+

−→ v1
2 , v0

1
β+

−→ v1
1 ,

v1
1

α+

−→ v2
1 , v1

1
α+

−→ v2
2 , v1

2
α+

−→ v2
3 , v1

2
α+

−→ v2
4 , v1

2
β+

−→ v2
1 , v1

2
β+

−→ v2
3 ,

vl1
α+

−→ vl+1
1 , vl1

α+

−→ vl+1
2 , vl3

α+

−→ vl+1
3 , vl3

α+

−→ vl+1
4 , vl2

β+

−→ vl+1
1 , vl4

β+

−→ vl+1
3 ,

for l ≥ 2. The pair (L−, L+) becomes a λ-graph bisystem satisfying FPCC. It is figured in Fig. 2 in the end 
of this section.

(iv) A λ-graph bisystem for even shift.

The sofic shift defined by the symbolic matrix E =
[
α β
β 0

]
is called the even shift (cf. [19]). Let Σ+ =

{α+, β+} and Σ− = {α−, β−}. We set V0 = {v0
1}, V1 = {v1

1 , v
1
2}, V2 = {v2

1 , v
2
2 , v

2
3}, Vl = {vl1, vl2, vl3, vl4} for 

l ≥ 3. The labeled Bratteli diagram L−
E is defined as follows. Define directed edges labeled symbols in Σ−

such as

v0
1

α−
←− v1

1 , v0
1

β−

←− v1
2 ,

v1
1

α−
←− v2

1 , v1
1

β−

←− v2
3 , v1

2
β−

←− v2
2 ,

v2
1

α−
←− v3

1 , v2
2

α−
←− v3

2 , v2
1

β−

←− v3
3 , v2

2
β−

←− v3
4 , v2

3
β−

←− v3
1 ,

vl1
α−
←− vl+1

1 , vl2
α−
←− vl+1

2 , vl1
β−

←− vl+1
3 , vl2

β−

←− vl+1
4 , vl3

β−

←− vl+1
1 , vl4

β−

←− vl+1
2 ,

for l ≥ 3. The other labeled Bratteli diagram L+
E is defined as follows. Define directed edges labeled symbols 

in Σ+ such as

v0
1

α+

−→ v1
1 , v0

1
β+

−→ v1
2 ,

v1
1

α+

−→ v2
1 , v1

1
β+

−→ v2
2 , v1

2
β+

−→ v2
3 ,

v2
1

α+

−→ v3
1 , v2

3
α+

−→ v3
3 , v2

1
β+

−→ v3
2 , v2

2
β+

−→ v3
1 , v2

3
β+

−→ v3
4 ,

vl1
α+

−→ vl+1
1 , vl3

α+

−→ vl+1
3 , vl1

β+

−→ vl+1
2 , vl2

β+

−→ vl+1
1 , vl3

β+

−→ vl+1
4 , vl4

β+

−→ vl+1
3 ,

for l ≥ 3. The pair (L−
E , L

+
E ) becomes a λ-graph bisystem that satisfies FPCC. It is figured in Fig. 3 in the 

end of this section.
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Fig. 1. λ-graph bisystem (L−,L+) of Example 3.2 (i).

Let (L−, L+) be a λ-graph bisystem. Let us denote by L−t the labeled Bratteli diagram for which 
every edge is reversed with the original edge. This means that for an edge e− ∈ E−

l+1,l such that s(e−) ∈
Vl+1, t(e−) ∈ Vl, the reversed edge e−t is defined by t(e−t) := s(e−) ∈ Vl+1, s(e−t) := t(e−) ∈ Vl and 
λ−(e−t) := λ−(e−) ∈ Σ−. The resulting labeled Bratteli diagram is written L−t. We similarly define a 
labeled Bratteli diagram L+t from L+. It is easy to see that the pair (L+t, L−t) becomes a λ-graph bisystem. 
It is called the transpose of (L−, L+) and written (L−, L+)t.

Fig. 1, upward arrows ←− in L− are labeled ι, and downward arrows ←− and ←− (bold) in L+ are 
labeled 0 and 1, respectively.

Fig. 2, upward arrows ←− and ←− (bold) in L−
F are labeled α− and β−, respectively, and downward 

arrows ←− and ←− (bold) in L+
F are labeled α+ and β+, respectively.

Fig. 3, upward arrows ←− and ←− (bold) in L−
E are labeled α− and β−, respectively, and downward 

arrows ←− and ←− (bold) in L+
E are labeled α+ and β+, respectively.

4. Symbolic matrix bisystems

Let Σ be a finite alphabet. We denote by SΣ the set of finite formal sums of elements of Σ. By a symbolic 
matrix A over Σ we mean a rectangular finite matrix A = [A(i, j)]i,j whose entries in SΣ. We write the 
empty word ∅ as 0 in SΣ. For the symbolic matrix A, we write an edge ek labeled αk for k = 1, . . . , n for a 
vertex vi to a vertex vj if A(i, j) = α1 + · · · + αn. For two alphabets Σ, Σ′, the notation Σ · Σ′ denotes the 
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Fig. 2. λ-graph bisystem (L−
F ,L+

F ) of Example 3.2 (iii).

set {a · b | a ∈ Σ, b ∈ Σ′}. The following notion of specified equivalence between symbolic matrices due to 
M. Nasu in [30], [31]. For two symbolic matrices A over alphabet Σ and A′ over alphabet Σ′ and bijection φ
from a subset of Σ onto a subset of Σ′, we call A and A′ are specified equivalent under specification φ if A′

can be obtained from A by replacing every symbol α appearing in A by φ(α). We write it as A 
φ� A′. We 

call φ a specification from Σ to Σ′. For two alphabet Σ1, Σ2, the bijection α · β ∈ Σ1 ·Σ2 −→ β ·α ∈ Σ2 ·Σ1
naturally yields a bijection from SΣ1·Σ2 to SΣ2·Σ1 that we denote by κ and call the exchanging specification 
between Σ1 and Σ2.

Definition 4.1. A symbolic matrix bisystem (M−
l,l+1, M+

l,l+1), l ∈ Z+ is a pair of sequences of rectangular 
symbolic matrices M−

l,l+1 over Σ− and M+
l,l+1 over Σ+ satisfying the following five conditions:

(i) Both M−
l,l+1 and M+

l,l+1 are m(l) ×m(l+ 1) rectangular symbolic matrices with m(l) ∈ N for l ∈ Z+.
(ii) (1) For i, there exists j such that M−

l,l+1(i, j) �= 0, and
for i, there exists j such that M+

l,l+1(i, j) �= 0.
(2) For j, there exists i such that M−

l,l+1(i, j) �= 0, and
for j, there exists i such that M+

l,l+1(i, j) �= 0.
(iii) Each component of both M−

l,l+1 and M+
l,l+1 does not have multiple symbols. This means that if 

M−
l,l+1(i, j) = α1+· · ·+αn, then the symbols α1, . . . , αn are all distinct each other. The same condition 

is required for M+ .
l,l+1
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Fig. 3. λ-graph bisystem (L−
E ,L+

E ) of Example 3.2 (iv).

(iv) For each j = 1, 2, . . . , m(l + 1), both the jth columns [M−
l,l+1(i, j)]

m(l)
i=1 and [M+

l,l+1(i, j)]
m(l)
i=1 do not 

have multiple symbols. Namely, if a symbol α appears in M−
l,l+1(i, j) for some i ∈ {1, 2, . . . , m(l)}, 

then it does not appear in any other row M−
l,l+1(i′, j) for i′ �= i, and M+

l,l+1 has the same property.
(v) M−

l,l+1M+
l+1,l+2

κ� M+
l,l+1M−

l+1,l+2 for l ∈ Z+, that means for i = 1, 2, . . . , m(l), j = 1, 2, . . . , m(l+2),

m(l+1)∑
k=1

M−
l,l+1(i, k)M+

l+1,l+2(k, j) =
m(l+1)∑
k=1

κ
(
M+

l,l+1(i, k)M−
l+1,l+2(k, j)

)
, (4.1)

where κ is the exchanging specification between Σ and Σ′.

The matrix M−
l,l+1 (resp. M+

l,l+1) satisfying the condition (iv) is said to be right-resolving (resp. left-
resolving). The condition (v) exactly corresponds to the local property of λ-graph bisystems (v) in Defini-
tion 3.1. The pair (M−, M+) is called a symbolic matrix bisystem over Σ±. It is easy to see that a symbolic 
matrix bisystem is exactly a matrix presentation of λ-graph bisystem.

A symbolic matrix bisystem (M−, M+) is said to be standard if m(0) = 1, that is its row sizes of the 
matrices M−

0,1 and M+
0,1 are one. A symbolic matrix bisystem (M−, M+) is said to have a common alphabet

if Σ− = Σ+. In this case, write the alphabet Σ− = Σ+ as Σ, and say that (M−, M+) is a symbolic matrix 
bisystem over common alphabet Σ. It is said to satisfy Follower-Predecessor Compatibility Condition, FPCC 
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for short, if for every l ∈ N and j = 1, 2, . . . , m(l), the set of words appearing in [M−
0,1M−

1,2 · · ·M−
l−1,l](1, j)

coincides with the set of transposed words appearing in [M+
0,1M+

1,2 · · ·M+
l−1,l](1, j).

Two symbolic matrix bisystems (M−, M+) over Σ±
M and (N−, N+) over Σ±

N are said to be isomorphic if 
their sizes m(l) ×m(l+1) and n(l) ×n(l+1) of the matrices M±

l,l+1 and N±
l,l+1 coincide, that is m(l) = n(l), 

for each l ∈ Z+ and there exists a specification φ from ΣM to ΣN and an m(l) ×m(l)-permutation matrix 
Pl for each l ∈ Z+ such that

PlM−
l,l+1

φ� N−
l,l+1Pl+1, PlM+

l,l+1
φ� N+

l,l+1Pl+1 for l ∈ Z+.

Let A = [αij ]Ni,j=1 be an N × N symbolic matrix over Σ = {αij | i, j = 1, . . . , N}. We set alphabets 
Σ− = {α−

ij | i, j = 1, . . . , N} and Σ+ = {α+
ij | i, j = 1, . . . , N}. We will define N2×N2 symbolic matrices M−

A

over Σ− and M+
A over Σ+ in the following way. Define first the N ×N matrix A+ :=

⎡⎢⎣ α+
11 · · · α+

1N
...

...
α+
N1 · · · α+

NN

⎤⎥⎦
and the diagonal matrix α−

ijIN whose diagonal entries are (α−
ij , . . . , α

−
ij). We define N2 × N2 symbolic 

matrices M−
A, M+

A by setting

M−
A :=

⎡⎢⎢⎢⎣
α−

11IN α−
21IN · · · α−

N1IN
α−

12IN α−
22IN · · · α−

N2IN
...

...
. . .

...
α−

1NIN α−
2NIN · · · α−

NNIN

⎤⎥⎥⎥⎦ , M+
A :=

⎡⎢⎢⎢⎣
A+ 0 . . . 0

0 A+ . . .
...

...
. . . . . . 0

0 . . . 0 A+

⎤⎥⎥⎥⎦ .

For N = 2 and a 2 × 2 symbolic matrix A =
[
a b
c d

]
, we have

M−
A =

⎡⎢⎣a
− 0 c− 0
0 a− 0 c−

b− 0 d− 0
0 b− 0 d−

⎤⎥⎦ , M+
A =

⎡⎢⎣a
+ b+ 0 0
c+ d+ 0 0
0 0 a+ b+

0 0 c+ d+

⎤⎥⎦ . (4.2)

Let κ : Σ− ·Σ+ −→ Σ+ ·Σ− be the exchanging specification defined by κ(β ·α) = α · β for α ∈ Σ+, β ∈ Σ−. 
We have the following lemma by straightforward calculation.

Lemma 4.2. For an N × N symbolic matrix A = [αij ]Ni,j=1, we have a specified equivalence M−
A · M+

A
κ�

M+
A · M−

A.

Proof. The matrices M−
A · M+

A and M+
A · M−

A are N ×N matrices over N ×N symbolic matrices. Their 
(i, j)th block matrices are

⎡⎢⎢⎢⎣
α−
jiα

+
11 α−

jiα
+
12 · · · α−

jiα
+
1N

α−
jiα

+
21 α−

jiα
+
22 · · · α−

jiα
+
2N

...
...

. . .
...

α−
jiα

+
N1 α−

jiα
+
N2 · · · α−

jiα
+
NN

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
α+

11α
−
ji α+

12α
−
ji · · · α+

1Nα−
ji

α+
21α

−
ji α+

22α
−
ji · · · α+

2Nα−
ji

...
...

. . .
...

α+
N1α

−
ji α+

N2α
−
ji · · · α+

NNα−
ji

⎤⎥⎥⎥⎦
respectively, so that we have a specified equivalence M−

A ·M+
A

κ� M+
A · M−

A. �
The following proposition is straightforward.
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Proposition 4.3. For an N ×N symbolic matrix A = [αij ]Ni,j=1, we put

M−
A0,1

= [α−
11, α

−
12, · · · , α−

1N , α−
21, α

−
22, · · · , α−

2N , · · · , α−
N1, α

−
N2, · · · , α−

NN ],

M+
A0,1

= [α+
11, α

+
12, · · · , α+

1N , α+
21, α

+
22, · · · , α+

2N , · · · , α+
N1, α

+
N2, · · · , α+

NN ],

M−
Al,l+1

= M−
A for l = 1, 2, . . . ,

M+
Al,l+1

= M+
A for l = 1, 2, . . . .

Then (M−
Al,l+1

, M+
Al,l+1

)l∈Z+ becomes a standard symbolic matrix bisystem.

If in particular we identify the symbols α−
ij with α+

ij for i, j = 1, . . . , N and put Σ = Σ− = Σ+, then the 
symbolic matrix bisystem (M−

Al,l+1
, M+

Al,l+1
)l∈Z+ satisfies FPCC.

Remark 4.4. Let (I, M) be a symbolic matrix system over Σ as in Section 2. It satisfies the equality (2.4). 
We set Σ+ = Σ and Σ− = {1}. By putting

M−
l,l+1 = Il,l+1, M+

l,l+1 = Ml,l+1, l ∈ Z+,

we have a symbolic matrix bisystem (M−, M+).

5. Subshifts and λ-graph bisystems

We will show that any λ-graph bisystem (L−, L+) gives rise to two subshifts written ΛL− and ΛL+ . 
They are called the presenting subshifts by (L−, L+). If in particular (L−, L+) satisfies FPCC, then the two 
subshifts coincide, and determine one specific subshift. Conversely any subshift yields a λ-graph bisystem 
satisfying FPCC whose presenting subshift is the original subshift. We fix an arbitrary λ-graph bisystem 
(L−, L+) over Σ±. Let us denote by WL− , WL+ the set of words appearing in the labeled Bratteli diagram 
L−, L+ respectively. They are defined by

WL− ={(λ−(fl+n), λ−(fl+n−1), . . . , λ−(f1+n)) ∈ (Σ−)l | fm ∈ E−
m,m−1,m = n + 1, . . . , n + l,

t(fm) = s(fm−1),m = n + 2, . . . , n + l for some n ∈ Z+ and l ∈ N},

WL+ ={(λ+(en+1), λ+(en+2), . . . , λ+(en+l)) ∈ (Σ+)l | em ∈ E+
m−1,m,m = n + 1, . . . , n + l,

t(em) = s(em+1),m = n + 1, . . . , n + l − 1 for some n ∈ Z+ and l ∈ N}.

It is easy to see that if (L−, L+) satisfies FPCC, then WL− = WL+ . In this case we write W(L−,L+) :=
WL+(= WL−).

Lemma 5.1. For a λ-graph bisystem (L−, L+) (not necessarily satisfying FPCC), there exist a unique pair 
of subshifts ΛL− and ΛL+ such that their sets of admissible words are WL− and WL+ , respectively.

Proof. It suffices to show that the set WL+ is a language in the sense of [19, Definition 1.3.1] because of 
[19, Proposition 1.3.4]. It is clear that any subword of a word of WL+ belongs to WL+ . We will show any 
word of WL+ may extend to its both sides. For w ∈ WL+ , it is obvious that there exists α+ ∈ Σ+ such that 
wα+ ∈ WL+ . By the local property of λ-graph bisystem, we may find β+ ∈ Σ+ such that β+w ∈ WL+ . 
Hence a word of WL+ can extend to its both sides, proving the set WL+ is a language. We similarly see that 
WL− is a language. Therefore they give rise to subshifts written ΛL+ and ΛL− , respectively, such that their 
admissible words are WL+ and WL+ , respectively. �



K. Matsumoto / J. Math. Anal. Appl. 485 (2020) 123843 17
The subshifts ΛL− and ΛL+ are called the subshifts presented by (L−, L+). If in particular (L−, L+)
satisfies FPCC, then WL− = WL+ so that their presenting subshifts ΛL− and ΛL+ coincide. Hence a λ-
graph bisystem (L−, L+) satisfying FPCC yields a unique subshift which is called the subshift presented by 
(L−, L+) and written Λ(L−,L+).

We will next construct a λ-graph bisystem satisfying FPCC from an arbitrary subshift Λ such that the 
presented subshift by the λ-graph bisystem coincides with the original subshift. We fix a subshift Λ over Σ. 
For k, l ∈ Z with k < l and x = (xn)n∈Z ∈ Λ, we set

Wk,l(x) :={(μk+1, μk+2, . . . , μl−1) ∈ Bl−k−1(Λ) |
(. . . , xk−1, xk, μk+1, μk+2, . . . , μl−1, xl, xl+1, . . . ) ∈ Λ},

· · · −→
xk−1

−→
xk

�� · · ·� −→
xl

−→
xl+1

· · ·

and Wk,k(x) := ∅. In the above picture, the finite sequence of boxes �� · · ·� denotes the words 
(μk+1, μk+2, . . . , μl−1) of length l − k − 1 that can put in between the left infinite sequence (. . . , xk−1, xk)
of x and the right infinite sequence (xl, xl+1, . . . ) of x. Two bi-infinite sequences x, y ∈ Λ are said to be 
(k, l)-centrally equivalent if Wk,l(x) = Wk,l(y), and written x c∼

(k,l)
y. This means that the set of words put 

in between x(−∞,k] and x[l,∞) coincides with the set of words put in between y(−∞,k] and y[l,∞), where 
x(−∞,k] = (xn)n≤k and x[l,∞) = (xn)n≥l. Define the set of equivalence classes

Ωc
k,l = Λ/ c∼

(k,l)
,

that is a finite set because the set of words whose lengths are less than or equal to l− k − 1 is finite. Let 
{Ck,l

1 , Ck,l
2 , . . . , Ck,l

m(k,l)} be the set Ωc
k,l of c∼

(k,l)
equivalence classes.

For x = (xn)n∈Z ∈ Ck,l
i and α ∈ Σ, suppose that (μk+1, μk+2, . . . , μl−2, α) ∈ Wk,l(x) for some μ =

(μk+1, μk+2, . . . , μl−2) ∈ Bl−k−2(Λ) so that the bi-infinite sequence

x(μ, α) := (. . . , xk−1, xk, μk+1, μk+2, . . . , μl−2, α, xl, xl+1, . . . ) ∈ Λ

belongs to Λ. If x(μ, α) belongs to Ck,l−1
j , then we write αCk,l

i ⊂ Ck,l−1
j .

Similarly for x = (xn)n∈Z ∈ Ck,l
i and β ∈ Σ, suppose that (β, νk+2, νk+3, . . . , νl−1) ∈ Wk,l(x) for some 

ν = (νk+2, νk+3, . . . , νl−1) ∈ Bl−k−2(Λ) so that the bi-infinite sequence

x(β, ν) := (. . . , xk−1, xk, β, νk+2, νk+3, . . . , νl−1, xl, xl+1, . . . ) ∈ Λ

belongs to Λ. If x(β, ν) belongs to Ck+1,l
h , then we write Ck,l

i β ⊂ Ck+1,l
h .

Lemma 5.2. Keep the above notation.

(i) The notation αCk,l
i ⊂ Ck,l−1

j is well-defined, that is, it does not depend on the choice of x = (xn)n∈Z ∈
Ck,l

i and μ = (μk+1, μk+2, . . . , μl−2) ∈ Bl−k−2(Λ) as long as (μk+1, μk+2, . . . , μl−2, α) ∈ Wk,l(x).
(ii) The notation Ck,l

i β ⊂ Ck+1,l
h is well-defined, that is, it does not depend on the choice of x = (xn)n∈Z ∈

Ck,l
i and ν = (νk+2, νk+3, . . . , νl−1) ∈ Bl−k−2(Λ) as long as (β, νk+2, νk+3, . . . , νl−1) ∈ Wk,l(x).

Proof. (i) Take x = (xn)n∈Z, z = (zn)n∈Z ∈ Ck,l
i such that x c∼

(k,l)
z. Suppose that α ∈ Σ

satisfies (μk+1, μk+2, . . . , μl−2, α) ∈ Wk,l(x) and (νk+1, νk+2, . . . , νl−2, α) ∈ Wk,l(z) for some μ =
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(μk+1, μk+2, . . . , μl−2) and ν = (νk+1, νk+2, . . . , νl−2) ∈ Bl−k−2(Λ). Consider the bi-infinite sequences 
x(μ, α), z(ν, α) ∈ Λ. Since Wk,l(x) = Wk,l(z), we have Wk,l−1(x(μ, α)) = Wk,l−1(z(ν, α)). This implies 
that x(μ, α) c∼

(k,l−1)
z(ν, α), proving the class Ck,l−1

j containing x(μ, α) does not depend on the choice of x =

(xn)n∈Z ∈ Ck,l
i and μ = (μk+1, μk+2, . . . , μl−2) ∈ Bl−k−2(Λ) as long as (μk+1, μk+2, . . . , μl−2, α) ∈ Wk,l(x). 

Hence the class Ck,l−1
j is well-defined. (ii) is similarly shown to (i). �

The following lemma is now clear.

Lemma 5.3. For x, y ∈ Λ, we have x c∼
(k,l)

z if and only if σ(x) c∼
(k−1,l−1)

σ(z).

Hence we may identify Ωc
k,l with Ωc

k−1,l−1 and Ck,l
i with Ck−1,l−1

i for i = 1, 2, . . . , m(k, l) = m(k−1, l−1)
through the shift σ : Λ −→ Λ so that we identify Ωc

k,l with Ωc
k+n,l+n and Ck,l

i with Ck+n,l+n
i for all n ∈ Z

and i = 1, 2, . . . , m(k, l) = m(k + n, l + n).
Let us in particular specify the following equivalence classes Ωc

−l,1 and Ωc
−1,l and define the vertex sets 

V −
l and V +

l for l = 0, 1, 2, . . . by setting

V −
0 := {Λ}, V +

0 := {Λ},
V −

1 := Ωc
−1,1, V +

1 := Ωc
−1,1,

V −
2 := Ωc

−2,1, V +
2 := Ωc

−1,2,

V −
3 := Ωc

−3,1, V +
3 := Ωc

−1,3,

· · · · · ·
V −
l := Ωc

−l,1, V +
l := Ωc

−1,l,

· · · · · ·

Write V0 = V −
0 = V +

0 . Put m(l) = m(−l, 1)(= m(−1, l)) and let

V −
l = {C−l,1

1 , C−l,1
2 , . . . , C−l,1

m(l)}, V +
l = {C−1,l

1 , C−1,l
2 , . . . , C−1,l

m(l)}.

Through the bijective correspondence

x ∈ V −
l ←→ σ1−l(x) ∈ V +

l ,

the classes C−l,1
i and C−1,l

i for each i = 1, 2, . . . , m(l) are identified with each other and denoted by Cl
i. 

Hence the sets V −
l and V +

l are identified for each l ∈ Z+. They are denoted by Vl. We regard Cl
i as a vertex 

denoted by vli for i = 1, 2, . . . , m(l), and define an edge e+ labeled α ∈ Σ from vli to vl+1
j if αCl+1

j ⊂ Cl
i . 

We write s(e+) = vli the source vertex of e+ and t(e+) = vl+1
j the terminal vertex of e+, and the label 

λ+(e+) = α. The set of such edges from vli to vl+1
j for some i = 1, 2, . . . , m(l), j = 1, 2, . . . , m(l + 1) is 

denoted by E+
l,l+1. This situation is written

vli
α−→
e+

vl+1
j if αCl+1

j ⊂ Cl
i .

Similarly we define an edge e− labeled β ∈ Σ from vl+1
j to vli if Cl+1

j β ⊂ Cl
i . We write s(e−) = vl+1

j the 
source vertex of e− and t(e−) = vli the terminal vertex of e−, and the label λ−(e−) = β. The set of such 
edges from vl+1

j to vli for some i = 1, 2, . . . , m(l), j = 1, 2, . . . , m(l + 1) is denoted by E−
l+1,l. This situation 

is written
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vl+1
j

β−→
e−

vli if Cl+1
j β ⊂ Cl

i .

We set E+ =
⋃∞

l=0 E
+
l,l+1, E

− =
⋃∞

l=0 E
−
l+1,l. The natural labeling maps λ+ : E+ −→ Σ and λ− : E− −→ Σ

are denoted by λ+ and λ−, respectively. We now have the pair L+
Λ = (V, E+, λ+) and L−

Λ = (V, E−, λ−) of 
labeled Bratteli diagrams.

Proposition 5.4. The pair (L−
Λ , L

+
Λ) of labeled Bratteli diagrams is a λ-graph bisystem satisfying FPCC and 

presenting the subshift Λ.

Proof. We first show that the pair (L−
Λ , L

+
Λ ) satisfies the local property of λ-graph bisystem. For vli(= Cl

i) ∈
Vl, v

l+2
j (= Cl+2

j ) ∈ Vl+2, take (e−, e+) ∈ E−
+ (vli, vl+2

j ) so that t(e−) = vli, t(e+) = vl+2
j and s(e−) = s(e+)

denoted by vl+1
k . This means that λ+(e+)Cl+2

j ⊂ Cl+1
k and Cl+1

k λ−(e−) ⊂ Cl
i . Put α = λ+(e+), β =

λ−(e−) ∈ Σ. For x = (xn)n∈Z ∈ Cl+2
j with x ∈ C

−(l+2),1
j , take ν = (ν−l, ν−l+1, . . . , ν−1) ∈ Bl(Λ) with 

(β, ν−l, ν−l+1, . . . , ν−1, α) ∈ W−(l+2),1(x) so that

x(β, να) = (. . . , x−(l+3), x−(l+2), β, ν−l, ν−l+1, . . . , ν−1, α, x1, x2, . . . ) ∈ Λ

where να = (ν−l, ν−l+1, . . . , ν−1, α). Let Cl+1
k′ be the class of x(β, να) in Ωc

−(l+1),1, so that we have Cl+2
j β ⊂

Cl+1
k′ , and there exists an edge, denoted by f−, from vl+2

j to vl+1
k′ labeled β. The class of x(β, να) in 

Ωc
−(l+1),0 is identified with the class of σ−l(x(β, να)) in Ωc

−1,l. As λ+(e+)Cl+2
j λ−(e−) ⊂ Cl

i , it belongs to 

Cl
i , so that there exists an edge, denoted by f+, from vli to vlk′ such that λ+(f+) = α. We thus have 

(f+, f−) ∈ E+
−(vli, vl+2

j ). It is easy to see that the correspondence

(e−, e+) ∈ E−
+ (vli, vl+2

j ) −→ (f+, f−) ∈ E+
−(vli, vl+2

j )

gives rise to a desired bijection between E−
+(vli, vl+2

j ) and E+
−(vli, vl+2

j ).

We second show that both L−
Λ and L+

Λ present the subshift Λ. Let W
L

+
Λ

be the set of admissible words 
appearing in the labeled graph L+

Λ defined before Lemma 5.1. For any word μ = (μ1, μ2, . . . , μl) ∈ W
L

+
Λ
, 

there exist em ∈ E+
m−1,m, m = n + 1, . . . , n + l such that μ1 = λ+(en+1), μ2 = λ+(en+2), . . . , μl = λ+(en+l)

and t(em) = s(em+1), m = n + 1, . . . , n + l − 1 for some n ∈ Z+. Let vni = s(en+1), vn+l−1
j = t(en+l). We 

then have

λ+(en+1)λ+(en+2) · · ·λ+(en+l)Cl
i ⊂ Cn+l−1

j .

This means that (μ1, . . . , μl) ∈ Bl(Λ).
Conversely it is obvious that any word μ = (μ1, . . . , μl) ∈ Bl(Λ) appears as a labeled path in L+

Λ . Hence 
the set W

L
+
Λ

coincides with the set B∗(Λ) of admissible words of Λ, so that L+
Λ and similarly L−

Λ present 
Λ. �
Definition 5.5. The λ-graph bisystem (L−

Λ , L
+
Λ ) for a subshift Λ is called the canonical λ-graph bisystem for 

Λ. Its symbolic matrix bisystem (M−
Λ , M

+
Λ ) is called the canonical symbolic matrix bisystem for Λ.

The λ-graph bisystems presented in Example 3.2 (ii), (iii) and (iv) are the canonical λ-graph bisystems 
for the full N -shift, the golden mean shift and the even shift, respectively.



20 K. Matsumoto / J. Math. Anal. Appl. 485 (2020) 123843
6. Strong shift equivalence

In the theory of subshifts, one of most interesting and important subjects is their classification. R. 
Williams in [39] proved that two topological Markov shifts are topologically conjugate if and only if their 
underlying matrices have a special algebraic relation, called strong shift equivalence. His result and its 
proof have been giving a great influence on further research of symbolic dynamical systems (cf. [19]). After 
Williams, M. Nasu in [30], generalized Williams’s result to sofic shifts. The author introduced a notion of 
(properly) strong shift equivalence in symbolic matrix systems in [22] (cf. [25]) and proved that two subshifts 
are topologically conjugate if and only if their canonical symbolic matrix systems are (properly) strong shift 
equivalent.

As seen in the preceding section, any subshift is presented by a λ-graph bisystem satisfying FPCC, and 
hence by a symbolic matrix bisystem having a common alphabet. In the first part of this section, we will 
introduce a notion of properly strong shift equivalence in symbolic matrix bisystems satisfying FPCC, and 
prove that two subshifts are topologically conjugate if and only if their canonical symbolic matrix bisystems 
are properly strong shift equivalent. Throughout the first part of this section, we assume that all λ-graph 
bisystems and symbolic matrix bisystems have common alphabets and satisfy FPCC.

Let A and A′ be symbolic matrices over alphabets Σ and Σ′ respectively. Let φ be a bijection from a 
subset of Σ onto a subset of Σ′. Recall that A and A′ are said to be specified equivalent under specification 
φ if A′ can be obtained from A by replacing every symbol α appearing in components of A by φ(α). We 

write it as A 
φ� A′. We call φ a specification from Σ to Σ′. If we do not specify the specification φ, we 

simply write it A � A′. For an alphabet Σ, we denote by SΣ the set of finite formal sums of elements of 
Σ. For alphabets C, D, put C ·D = {cd | c ∈ C, d ∈ D}. For x =

∑
j

cj ∈ SC and y =
∑
k

dk ∈ SD, define 

xy =
∑
j,k

cjdk ∈ SC·D. Recall that the exchanging specification κ from C · D to D · C is a bijection from 

SC·D to SD·C defined by

κ(
∑
j,k

cjdk) =
∑
j,k

dkcj ∈ SD·C for
∑
j,k

cjdk ∈ SC·D.

We first define properly strong shift equivalence in 1-step between two symbolic matrix bisystems sat-
isfying FPCC as a generalization of strong shift equivalences in 1-step between two nonnegative matrices 
defined by R. Williams in [39], and between two symbolic matrices defined by Nasu in [30].

Let (M−, M+) and (N−, N+) be symbolic matrix bisystems over alphabets ΣM and ΣN respectively, 
both of them satisfy FPCC, where M−

l,l+1, M+
l,l+1 are m(l) ×m(l+ 1) symbolic matrices and N−

l,l+1, N+
l,l+1

are n(l) × n(l + 1) symbolic matrices.

Definition 6.1. Two symbolic matrix bisystems (M−, M+) and (N−, N+) are said to be properly strong 
shift equivalent in 1-step if there exist alphabets C, D and specifications

ϕ : ΣM → C ·D, φ : ΣN → D · C

and sequences c(l), d(l) on l ∈ Z+ such that for each l ∈ Z+, there exist

(1) a c(l) × d(l + 1) matrix Pl over C,
(2) a d(l) × c(l + 1) matrix Ql over D,
(3) a d(l) × d(l + 1) matrix Xl over D for l being odd,
(4) a c(l) × c(l + 1) matrix Xl over D for l being even,
(5) a c(l) × c(l + 1) matrix Yl over C for l being odd,
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(6) a d(l) × d(l + 1) matrix Yl over C for l being even,

satisfying the following equations:

M+
l,l+1

ϕ� P2lQ2l+1, N+
l,l+1

φ� Q2lP2l+1, (6.1)

M−
l,l+1

κϕ� X2lY2l+1, N−
l,l+1

κφ� Y2lX2l+1 (6.2)

and

Y2l+1P2l+2
κ� P2l+1Y2l+2, X2l+1Q2l+2

κ� Q2l+1X2l+2, (6.3)

X2lP2l+1
κ� P2lX2l+1, Y2lQ2l+1

κ� Q2lY2l+1, (6.4)

where κ is the exchanging specification defined by κ(a · b) = b · a, and κϕ, κφ denote the compositions 
κ ◦ ϕ, κ ◦ φ, respectively.

We write this situation as (M−, M+) ≈
1−pr

(N−, N+). By (6.1), we know c(2l) = m(l) and d(2l) = n(l)
for l ∈ Z+.

Two symbolic matrix bisystems (M−, M+) and (N−, N+) are said to be properly strong shift equivalent 
in �-step if there exists a sequence of symbolic matrix bisystems (M−

(i), M
+
(i)), i = 1, 2, . . . , � − 1 such that

(M−,M+) ≈
1−pr

(M−
(1),M

+
(1)) ≈

1−pr
· · · ≈

1−pr
(M−

(�−1),M
+
(�−1)) ≈

1−pr
(N−,N+).

We denote this situation by (M−, M+) ≈
�−pr

(N−, N+) and simply call it a properly strong shift equivalence.

Proposition 6.2. Properly strong shift equivalence in symbolic matrix bisystems is an equivalence relation.

Proof. It is clear that properly strong shift equivalence is symmetric and transitive. It suffices to show that 
(M−, M+) ≈

1−pr
(M−, M+). Put C = ΣM, D = {0, 1}. Define ϕ : a ∈ ΣM → a ·1 ∈ C ·D and φ : a ∈ ΣM →

1 · a ∈ D ·C. Let Ek be the k× k identity matrix. Set c(2l) = c(2l+ 1) = d(2l) = m(l), d(2l+ 1) = m(l+ 1)
for l ∈ Z+, and

P2l = P2l+1 = M+
l,l+1, Q2l = Em(l), Q2l+1 = Em(l+1),

Y2l = Y2l+1 = M−
l,l+1, X2l = Em(l), X2l+1 = Em(l+1).

It is straightforward to see that they give a properly strong shift equivalence in 1-step between (M−, M+)
and (M−, M+). �

We will prove the following theorem.

Theorem 6.3. Two subshifts are topologically conjugate if and only if their canonical symbolic matrix bisys-
tems are properly strong shift equivalent.

We will first show the only if part of the theorem above. In our proof, we will use Nasu’s factorization 
theorem for topological conjugacy between subshifts into bipartite codes ([30]). We now introduce the notion 
of bipartite symbolic matrix bisystem.
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Definition 6.4. A symbolic matrix bisystem (M−, M+) over common alphabet Σ is said to be bipartite if 
there exist disjoint subsets C, D ⊂ Σ with Σ = C � D and sequences c(l), d(l) on l ∈ Z+ with m(l) =
c(l) + d(l), l ∈ N such that for each l ∈ Z+, there exist

(1) a c(l) × d(l + 1) matrix Pl,l+1 over C,
(2) a d(l) × c(l + 1) matrix Ql,l+1 over D,
(3) a d(l) × d(l + 1) matrix Xl,l+1 over D for l being odd,
(4) a c(l) × c(l + 1) matrix Xl,l+1 over D for l being even,
(5) a c(l) × c(l + 1) matrix Yl,l+1 over C for l being odd,
(6) a d(l) × d(l + 1) matrix Yl,l+1 over C for l being even,

satisfying the following equations:

M+
l,l+1 =

[
0 Pl,l+1

Ql,l+1 0

]
, M−

l,l+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
Yl,l+1 0

0 Xl,l+1

]
if l is odd,

[
Xl,l+1 0

0 Yl,l+1

]
if l is even.

(6.5)

Under the assumption that (M−, M+) is standard so that m(0) = 1, we require that c(0) = d(0) = 1 and 
the above equalities (6.5) for l = 0 mean

M+
0,1 = [Q0,1 P0,1 ] , M−

0,1 = [X0,1 Y0,1 ] . (6.6)

We thus see

Lemma 6.5. For a bipartite symbolic matrix bisystem (M−, M+) as above, put

Pl = Pl,l+1, Ql = Ql,l+1, Yl = Yl,l+1, Xl = Xl,l+1

and

MCD+
l,l+1 := P2lQ2l+1, MDC+

l,l+1 := Q2lP2l+1,

MCD−
l,l+1 : κ� X2lY2l+1, MDC−

l,l+1 : κ� Y2lX2l+1.

Then the both pairs (MCD−, MCD+) and (MDC−, MDC+) are symbolic matrix bisystems over alphabets 
C ·D and D ·C respectively and they are properly strong shift equivalent in 1-step, where MCD−

l,l+1 : κ� X2lY2l+1
means that MCD−

l,l+1 (i, j) is defined by κ(X2lY2l+1(i, j)) ∈ C ·D for all i = 1, 2, . . . , m(l), j = 1, 2, . . . , m(l+1), 
and MDC−

l,l+1 : κ� Y2lX2l+1 is similarly defined.

Proof. By the relations M−
l,l+1M+

l+1,l+2
κ� M+

l,l+1M−
l+1,l+2 for l ∈ Z+, we have for l being odd,[

Yl 0
0 Xl

] [
0 Pl+1

Ql+1 0

]
κ�
[

0 Pl

Ql 0

] [
Xl+1 0

0 Yl+1

]
so that

YlPl+1
κ� PlYl+1, XlQl+1

κ� QlXl+1. (6.7)

For l being even,
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[
Xl 0
0 Yl

] [
0 Pl+1

Ql+1 0

]
κ�
[

0 Pl

Ql 0

] [
Yl+1 0

0 Xl+1

]
so that

XlPl+1
κ� PlXl+1, YlQl+1

κ� QlYl+1. (6.8)

We then have

MCD−
l,l+1 · MCD+

l+1,l+2 �X2lY2l+1P2l+2Q2l+3

�X2lP2l+1Y2l+2Q2l+3

�P2lX2l+1Q2l+2Y2l+3

�P2lQ2l+1X2l+2Y2l+3

�MCD+
l,l+1 · MCD−

l+1,l+2,

and

MDC+
l,l+1 · MDC−

l+1,l+2 �Y2lX2l+1Q2l+2P2l+3

�Y2lQ2l+1X2l+2P2l+3

�Q2lY2l+1P2l+2X2l+3

�Q2lP2l+1Y2l+2X2l+3

�MDC−
l,l+1 · MDC+

l+1,l+2.

By looking at the above specified equivalences, we know that

MCD−
l,l+1 · MCD+

l+1,l+2
κ�MCD+

l,l+1 ·MCD−
l+1,l+2,

and

MDC+
l,l+1 ·MDC−

l+1,l+2
κ�MDC−

l,l+1 ·MDC+
l+1,l+2.

Hence both pairs (MCD−, MCD+) and (MDC−, MDC+) are symbolic matrix bisystems. The corresponding 
equations to (6.3) and (6.4) come from (6.7), (6.8) so that they are properly strong shift equivalent in 1-
step. �
Definition 6.6. A λ-graph bisystem (L−, L+) over common alphabet Σ is said to be bipartite if there exist 
disjoint subsets C, D ⊂ Σ such that Σ = C ∪D and disjoint subsets V C

l , V D
l ⊂ Vl for each l ∈ Z+ such that 

V C
l ∪ V D

l = Vl and

(1) for each e+ ∈ E+
l,l+1,

λ+(e+) ∈ C if and only if s(e+) ∈ V C
l , t(e+) ∈ V D

l+1,

λ+(e+) ∈ D if and only if s(e+) ∈ V D
l , t(e+) ∈ V C

l+1,
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(2) for each e− ∈ E−
l+1,l,

λ−(e−) ∈ C if and only if
{
s(e−) ∈ V C

l+1, t(e−) ∈ V C
l for l being odd,

s(e−) ∈ V D
l+1, t(e−) ∈ V D

l for l being even,

λ−(e−) ∈ D if and only if
{
s(e−) ∈ V D

l+1, t(e−) ∈ V D
l for l being odd,

s(e−) ∈ V C
l+1, t(e−) ∈ V C

l for l being even.

Proposition 6.7. A symbolic matrix bisystem is bipartite if and only if the associated λ-graph bisystem is 
bipartite.

Proof. It is clear that a bipartite symbolic matrix bisystem gives rise to a bipartite λ-graph bisystem. 
Conversely, suppose that a λ-graph bisystem (L−, L+) is bipartite. Let c(l) and d(l) be the cardinalities of the 
sets V D

l and V C
l respectively. We may identify V D

l and V C
l with the sets {1, 2, . . . , c(l)} and {1, 2, . . . , d(l)}

respectively. For i ∈ V C
l , j ∈ V D

l+1, put

Pl,l+1(i, j) = λ+(e+
1 ) + · · · + λ+(e+

np
)

where e+
k ∈ E+

l,l+1, k = 1, 2, . . . , np are all edges of E+
l,l+1 satisfying s(e+

k ) = i, t(e+
k ) = j, so that Pl,l+1(i, j) ∈

SC . Similarly we define for i ∈ V D
l , j ∈ V C

l+1, put

Ql,l+1(i, j) = λ+(f+
1 ) + · · · + λ+(f+

nq
)

where f+
k ∈ E+

l,l+1, k = 1, 2, . . . , nq are all edges of E+
l,l+1 satisfying s(f+

k ) = i, t(f+
k ) = j, so that 

Ql,l+1(i, j) ∈ SD. For i ∈ V C
l , j ∈ V C

l+1 with l being odd, put

Yl,l+1(i, j) = λ−(e−1 ) + · · · + λ−(e−ny
)

where e−k ∈ E−
l+1,l, k = 1, 2, . . . , ny are all edges of E−

l+1,l satisfying s(e−k ) = j, t(e−k ) = i, so that Yl,l+1(i, j) ∈
SC . For i ∈ V C

l , j ∈ V C
l+1 with l being even, put

Xl,l+1(i, j) = λ−(f−
1 ) + · · · + λ−(f−

nx
)

where f−
k ∈ E−

l+1,l, k = 1, 2, . . . , nx are all edges of E−
l+1,l satisfying s(f−

k ) = j, t(f−
k ) = i, so that 

Xl,l+1(i, j) ∈ SD. For i ∈ V D
l , j ∈ V C

l+1, we similarly define Yl,l+1(i, j) ∈ SC for l being even, and 
Xl,l+1(i, j) ∈ SD for l being odd. Let (M−, M+) be the corresponding symbolic matrix bisystem for 
(L−, L+). It is now clear that they satisfy the equalities (6.5). Then the symbolic matrix bisystem (M−, M+)
for (L−, L+) is bipartite. �

Nasu introduced the notion of bipartite subshift in [30] and [31]. A subshift Λ over alphabet Σ is said to 
be bipartite if there exist disjoint subsets C, D ⊂ Σ with Σ = C �D such that any (xn)n∈Z ∈ Λ is either

xn ∈ C and xn+1 ∈ D for all n ∈ Z or xn ∈ D and xn+1 ∈ C for all n ∈ Z.

Let Λ(2) be the 2-higher power shift for Λ that is defined by the subshift

Λ(2) = {(x[2n,2n+1])n∈Z ∈ (Σ2)Z | (xn)n∈Z ∈ Λ}

over alphabet Σ2 where x[2n,2n+1] = (x2n, x2n+1), n ∈ Z. Put
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ΛCD = {(cidi)i∈Z ∈ Λ(2) | ci ∈ C, di ∈ D},
ΛDC = {(dici+1)i∈Z ∈ Λ(2) | ci ∈ C, di ∈ D}.

They are subshifts over alphabets C · D and D · C respectively. Hence Λ(2) is partitioned into the two 
subshifts ΛCD and ΛDC .

Proposition 6.8. A subshift Λ is bipartite if and only if its canonical symbolic matrix bisystem (M−, M+)
is bipartite.

Proof. It is clear that a bipartite symbolic matrix bisystem yields a bipartite λ-graph bisystem, that gives 
rise to a bipartite subshift by its construction of the subshift from the λ-graph bisystem.

Suppose that Λ is bipartite with respect to alphabets C, D. It suffices to show that its canonical λ-
graph bisystem (L−, L+) is bipartite. Let us denote by L− = (V −, E−, λ−) and L+ = (V +, E+, λ+). Let 
[x]k,l ∈ Ωc

k.l denote the (k, l)-central equivalence class of x ∈ Λ. Define for Z, W = C or D,

V ZW−
l ={[x]−l,1 ∈ V −

l | x−l ∈ Z, x1 ∈ W},
V ZW+
l ={[x]−1,l ∈ V +

l | x−1 ∈ Z, xl ∈ W}.

Since Λ is bipartite, we know that V CD−
l , V DC−

l , V CD+
l , V DC+

l are all empty if l is odd, whereas 
V CC−
l , V DD−

l , V CC+
l , V DD+

l are all empty if l is even so that

V −
l =
{
V CC−
l ∪ V DD−

l if l is odd,
V DC−
l ∪ V CD−

l if l is even,

V +
l =
{
V CC+
l ∪ V DD+

l if l is odd,
V DC+
l ∪ V CD+

l if l is even.

Let π : x ∈ V +
l −→ σl−1(x) ∈ V −

l be the bijection that satisfies for Z, W = C or D, π(V ZW+
l ) =

V ZW−
l , l ∈ Z+. We identify V +

l with V −
l through the map π : V +

l −→ V −
l . We set Vl := V −

l and 
V C
l := V ZC−

l , V D
l := V ZD−

l for Z = C or D. Then we have

Vl = V C
l � V D

l for all l ∈ N and V0 = V C
0 = V D

0 = {∅}.

We regard V0, V C
0 , V D

0 as all singletons. For each e− ∈ E−
l+1,l, it is easy to see that

λ−(e−) ∈ C if and only if
{
s(e−) ∈ V DC−

l+1 , t(e−) ∈ V CC−
l for l being odd,

s(e−) ∈ V DD−
l+1 , t(e−) ∈ V CD−

l for l being even,

λ−(e−) ∈ D if and only if
{
s(e−) ∈ V CD−

l+1 , t(e−) ∈ V DD−
l for l being odd,

s(e−) ∈ V CC−
l+1 , t(e−) ∈ V DC−

l for l being even,

and for each e+ ∈ E+
l,l+1

λ+(e+) ∈ C if and only if s(e+) ∈ V ZC+
l , t(e+) ∈ V ZD+

l+1 ,

λ+(e+) ∈ D if and only if s(e+) ∈ V WD+
l , t(e+) ∈ V WC+

l+1

for Z, W = C or D. Therefore the λ-graph bisystem (L−, L+) is bipartite. �
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Let Λ be a bipartite subshift over Σ with respect to alphabets C, D. As in Lemma 6.5, we have two 
symbolic matrix bisystems (MCD−, MCD+) and (MDC−, MDC+) over alphabets C ·D and D ·C from the 
bipartite canonical symbolic matrix bisystem (M−

Λ , M
+
Λ ) for Λ respectively. They are naturally identified 

with the canonical symbolic matrix bisystems for the subshifts ΛCD and ΛDC respectively. By Lemma 6.5, 
we thus see a corollary below of Proposition 6.8.

Corollary 6.9. For a bipartite subshift Λ with respect to alphabets C, D, we have a properly strong shift 
equivalence in 1-step:

(MCD−,MCD+) ≈
1−pr

(MDC−,MDC+).

The following notion of bipartite conjugacy has been introduced by Nasu in [30], [31]. The conjugacy from 
ΛCD onto ΛDC that maps (cidi)i∈Z to (dici+1)i∈Z is called the forward bipartite conjugacy. The conjugacy 
from ΛCD onto ΛDC that maps (cidi)i∈Z to (di−1ci)i∈Z is called the backward bipartite conjugacy. A 
topological conjugacy between subshifts is called a symbolic conjugacy if it is a 1-block map given by a 
bijection between the underlying alphabets of the subshifts. Nasu proved the following factorization theorem 
for topological conjugacies between subshifts.

Lemma 6.10 (M. Nasu [30]). Any topological conjugacy ψ between subshifts is factorized into finite compo-
sitions of the form

ψ = κnζnκn−1ζn−1 · · ·κ1ζ1κ0

where κ0, . . . , κn are symbolic conjugacies and ζ1, . . . , ζn are either forward or backward bipartite conjugacies.

Thanks to the Nasu’s result above, we reach the following theorem.

Theorem 6.11. If two subshifts are topologically conjugate, their canonical symbolic matrix bisystems are 
properly strong shift equivalent.

We will prove the converse implication of the theorem above. We will indeed prove the following propo-
sition.

Proposition 6.12. If two symbolic matrix bisystems are properly strong shift equivalent in 1-step, their pre-
senting subshifts are topologically conjugate.

To prove the proposition, we provide a notation and a lemma. For (M−, M+), set the m(l) ×m(l + k)
matrices:

M−
l,l+k = M−

l,l+1 · M−
l+1,l+2 · · ·M−

l+k−1,l+k,

M+
l,l+k = M+

l,l+1 · M+
l+1,l+2 · · ·M+

l+k−1,l+k

for each l, k ∈ Z+. Let us denote by ΛM the presented subshift by (M−, M+).

Lemma 6.13. Assume that two symbolic matrix bisystems (M−, M+) over ΣM and (N−, N+) over ΣN are 
properly strong shift equivalent in 1-step. Let ϕ : ΣM → C ·D and φ : ΣN → D ·C be specifications that give 
rise to the properly strong shift equivalence in 1-step between them. For any word x1x2 ∈ B2(ΛM) of length 
two in the presenting subshift ΛM, put ϕ(xi) = cidi, i = 1, 2 where ci ∈ C, di ∈ D. Then there uniquely 
exists a symbol y0 ∈ ΣN such that φ(y0) = d1c2.
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Proof. Note that by definition the specification φ is not necessarily surjective onto D ·C. Since φ is injective, 
it suffices to show the existence of y0 such that φ(y0) = d1c2. As x1x2 ∈ B2(ΛM), for any fixed l ≥ 3, we 
may find j = 1, 2, . . . , m(l + 2) and k = 1, 2, . . . , m(l) such that x1x2 appears in M+

l,l+2(k, j), and hence in 
some component of M+

l,l+1M+
l+1,l+2. Under specifications appeared in Definition 6.1, we know the following 

specified equivalences:

M−
l−1,lM+

l,l+1M+
l+1,l+2 � X2l−2Y2l−1P2lQ2l+1P2l+2Q2l+3

� X2l−2P2l−1Q2lP2l+1Q2l+2Y2l+3.

Since ϕ(x1x2) = c1d1c2d2 that appears in some component of P2lQ2l+1P2l+2Q2l+3 and hence of 
P2l−1Q2lP2l+1Q2l+2. This implies that the word d1c2 appears in some component of Q2lP2l+1. By the 

specified equivalence N+
l,l+1

φ� Q2lP2l+1 in (6.1), we may find a unique symbol y0 in ΣN such that 
φ(y0) = d1c2. �
Proof of Proposition 6.12. Suppose that (M−, M+) and (N−, N+) are properly strong shift equivalent in 
1-step. We use the same notation as in Definition 6.1. By the preceding lemma, we have a 2-block map Φ
from B2(ΛM) to ΣN defined by Φ(x1x2) = y0 where ϕ(xi) = cidi, i = 1, 2 and φ(y0) = d1c2. Let Φ∞ be the 
sliding block code induced by Φ so that Φ∞ is a map from ΛM to (ΣN )Z (see [19] for sliding block code). 
We also write as Φ the map from B∗(ΛM) to the set of all words of ΣN defined by

Φ(x1x2 · · ·xn) = Φ(x1x2)Φ(x2x3) · · ·Φ(xn−1xn).

We will prove that Φ∞(ΛM) ⊂ ΛN . To prove this, it suffices to show that for any word w in ΛM, Φ(w) is an 
admissible word in ΛN . For w = w1w2 · · ·wn ∈ Bn(ΛM) and any fixed l ≥ n +1, we find j = 1, 2, . . . , m(l+n)
and k = 1, 2, . . . , m(l) such that w appears in M+

l,l+n(k, j). Take i = 1, 2, . . . , m(l−1) with M−
l−1,l(i, k) �= 0, 

so that w appears in M−
l−1,lM+

l,l+n(i, j). Put ϕ(wi) = cidi, i = 1, 2, . . . , n. Under specifications appeared in 
Definition 6.1, we have the following specified equivalences:

M−
l−1,lM+

l,l+n�X2l−2Y2l−1P2lQ2l+1P2l+2 · · · Q2l+2n−1P2l+2nQ2l+2n+1

�X2l−2P2l−1Q2lP2l+1Q2l+2 · · · P2l+2n−1Q2l+2nY2l+2n+1,

so that the word d1c2d2c3 · · · dn−1cn appears in some component of Q2lP2l+1Q2l+2 · · · P2l+2n−1. Hence 
the word φ−1(d1c2)φ−1(d2c3) · · ·φ−1(dn−1cn) appears in the corresponding component of N+

l,l+1N+
l+1,l+2 · · ·

N+
l+n−2,l+n−1. Thus we see that Φ(w) is an admissible word in ΛN and that the sliding block code Φ∞ maps 

ΛM to ΛN . Similarly, we can construct a sliding block code Ψ∞ from ΛN to ΛM that is the inverse of Φ∞. 
Thus two subshifts ΛN and ΛM are topologically conjugate. �

Therefore we conclude the following theorem

Theorem 6.14. If two symbolic matrix bisystems are properly strong shift equivalent, their associated subshifts 
are topologically conjugate.

By Theorem 6.11 and Theorem 6.14, we conclude Theorem 6.3.

Remark 6.15. If there exist the matrices Pl, Ql for all sufficiently large number l in Definition 6.1, we may 
show that the presenting subshifts are topologically conjugate by following the proof of Proposition 6.12.

Properly strong shift equivalence exactly corresponds to a finite sequence of bipartite decompositions 
of symbolic matrix bisystems and λ-graph bisystems. The definition of properly strong shift equivalence 
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for symbolic matrix bisystems however needs rather complicated formulations than that of strong shift 
equivalence for nonnegative matrices in [39]. We will in the rest of this section introduce the notion of strong 
shift equivalence between two symbolic matrix bisystems that is simpler and weaker than properly strong 
shift equivalence. It is also a generalization of the notion of strong shift equivalence between nonnegative 
matrices defined by Williams in [39], between symbolic matrices defined by Nasu in [30], and between 
symbolic matrix systems defined in [22]. From now on, we will treat general symbolic matrix bisystems. We 
do not assume that symbolic matrix bisystems satisfy FPCC.

Let (M−, M+), (N−, N+) be two symbolic matrix bisystems over alphabets Σ±
M, Σ±

N , respectively. Let 
m(l), n(l) be the sequences for which M−

l,l+1, M+
l,l+1 are m(l) ×m(l+1) symbolic matrices and N−

l,l+1, N+
l,l+1

are n(l) × n(l + 1) symbolic matrices, respectively.

Definition 6.16. Two symbolic matrix bisystems (M−, M+) and (N−, N+) are said to be strong shift equiv-
alent in 1-step if there exist alphabets C, D and specifications

ϕ1 : Σ−
M · Σ+

M −→ C ·D, ϕ2 : Σ−
N · Σ+

N −→ D · C

and

φ±
C : Σ±

M · C −→ C · Σ±
N , φ±

D : Σ±
N ·D −→ D · Σ±

M, (double-sign corresponds)

such that for each l ∈ Z+, there exist an m(l) × n(l + 1) matrix Hl over C and an n(l) ×m(l + 1) matrix 
Kl over D satisfying the following equations:

M−
l,l+1M+

l+1,l+2
ϕ1� HlKl+1, N−

l,l+1N+
l+1,l+2

ϕ2� KlHl+1

and

M+
l,l+1Hl+1

φ+
C� HlN+

l+1,l+2, N+
l,l+1Kl+1

φ+
D� KlM+

l+1,l+2,

M−
l,l+1Hl+1

φ−
C� HlN−

l+1,l+2, N−
l,l+1Kl+1

φ−
D� KlM−

l+1,l+2.

We write this situation as (M−, M+) ≈
1−st

(N−, N+).

Two symbolic matrix bisystems (M−, M+) and (N−, N+) are said to be strong shift equivalent in �-step
if there exist symbolic matrix bisystems (M−

(i), M
+
(i)), i = 1, 2, . . . , � − 1 such that

(M−,M+) ≈
1−st

(M−
(1),M

+
(1)) ≈

1−st
· · · ≈

1−st
(M−

(�−1),M
+
(�−1)) ≈

1−st
(N−,N+).

We denote this situation by (M−, M+) ≈
�−st

(N−, N+) and simply call it a strong shift equivalence.

Remark 6.17. If (M−, M+) and (N−, N+) come from symbolic matrix systems (IM, M) and (IN , N ), 
respectively, then the above definition of strong shift equivalence coincides with the strong shift equivalence 
in symbolic matrix systems [22, p. 304].

Similarly to the case of properly strong shift equivalence, we see that strong shift equivalence on symbolic 
matrix bisystems is an equivalence relation.

Proposition 6.18. For symbolic matrix bisystems satisfying FPCC, properly strong shift equivalence in 1-step 
implies strong shift equivalence in 1-step.
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Proof. Let Pl, Ql, Xl and Yl be the matrices in Definition 6.1 between (M−, M+) and (N−, N+). We set

Hl = X2lP2l+1, Kl = Y2lQ2l+1.

It is straightforward to see that they give rise to a strong shift equivalence in 1-step between (M−, M+)
and (N−, N+). �
7. Étale groupoids for λ-graph bisystems and its C∗-algebras

Let (L−, L+) be a λ-graph bisystem over alphabet Σ±. We will first construct two continuous graphs 
E+

L− and E−
L+ in the sense of Deaconu [8] (cf. [6], [7], [9]), and its shift dynamical systems (X+

L− , σL−) and 
(X−

L+ , σL+), respectively. Let L− = (V −, E−, λ−) and L+ = (V +, E+, λ+). Let Vl be the common vertex 
sets V −

l = V +
l and denote it by {vl1, . . . , vlm(l)}.

We first define two spaces of label sequences as follows:

ΩL− :={(. . . , u3, β−3, u2, β−2, u1, β−1) ∈
∞∏
l=1

(Vl × Σ−) |

ul ∈ Vl, β−l = λ−(e−l ) for some e−l ∈ E−
l,l−1, l = 1, 2, . . . ,

such that t(e−l+1) = ul = s(e−l ), l = 1, 2, . . . }.

Each element of ΩL− is a left-infinite sequence written

· · · −→ u3
β−3−→ u2

β−2−→ u1
β−1−→ .

As L− is right-resolving, the edge e−l ∈ E−
l,l−1 is uniquely determined by its source vertex ul ∈ Vl and its 

label β−l. An element (. . . , u3, β−3, u2, β−2, u1, β−1) ∈ ΩL− is denoted by

ω = (ul, β−l)∞l=1 ∈ ΩL− .

For the pair (u1, β−1), the edge e−1 ∈ E−
1,0 satisfying λ−(e−1 ) = β−1, s(e−1 ) = u1 is unique, so that the 

terminal vertex t(e−1 ) ∈ V0 is uniquely determined by (u1, β−1), that is denoted by u0 or u0(ω).
The other space ΩL+ is defined similarly as follows:

ΩL+ :={(α1, u1, α2, u2, α3, u3, . . . ) ∈
∞∏
l=1

(Σ+ × Vl) |

ul ∈ Vl, αl = λ+(e+
l ) for some e+

l ∈ E+
l−1,l, l = 1, 2, . . . ,

such that t(e+
l ) = ul = s(e+

l+1), l = 1, 2, . . . }.

Each element of ΩL+ is a right-infinite sequence written

α1−→ u1
α2−→ u2

α3−→ u3 · · · .

As L+ is left-resolving, the edge e+
l ∈ E+

l−1,l is uniquely determined by its terminal vertex ul ∈ Vl and its 
label αl. An element (α1, u1, α2, u2, α3, u3, . . . ) ∈ ΩL+ is denoted by ω = (αl, ul)∞l=1 ∈ ΩL+ . Similarly to 
ΩL− , the left-resolving property of L+ ensures us that the edge e+

1 ∈ E+
0,1 satisfying λ+(e+

1 ) = α1, t(e+
1 ) = u1

is unique for the pair (α1, u1), so that the source vertex s(e+
1 ) ∈ V0 is uniquely determined by (α1, u1), that 

is denoted by u0 or u0(ω).
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We endow both the spaces ΩL− and ΩL+ with the relative topology of the infinite product topology on ∏∞
l=1(Vl × Σ−) and 

∏∞
l=1(Σ+ × Vl), respectively, so that they are compact Hausdorff spaces.

We will next define two continuous graphs written E+
L− and E−

L+ from (L−, L+) in the following way:

E+
L− :={(ω, α, ω′) ∈ ΩL− × Σ+ × ΩL− | ω = (ul, β−l)∞l=1, ω

′ = (u′
l, β−l+1)∞l=1,

α = λ+(e+
l,l+1) for some e+

l,l+1 ∈ E+
l,l+1

such that ul = s(e+
l,l+1), u

′
l+1 = t(e+

l,l+1), l = 0, 1, 2, . . . }.

Each element of E+
L− is figured such as

· · · β−4−−−−→ u3
β−3−−−−→ u2

β−2−−−−→ u1
β−1−−−−→ u0

e+3,4

⏐⏐�α e+2,3

⏐⏐�α e+1,2

⏐⏐�α e+0,1

⏐⏐�α
· · · β−4−−−−→ u′

4
β−3−−−−→ u′

3
β−2−−−−→ u′

2
β−1−−−−→ u′

1
β0−−−−→ u′

0.

Similarly

E−
L+ :={(ω, β, ω′) ∈ ΩL+ × Σ− × ΩL+ | ω = (αl, ul)∞l=1, ω

′ = (αl−1, u
′
l)∞l=1,

β = λ−(e−l+1,l) for some e−l+1,l ∈ E−
l+1,l

such that ul = t(e−l+1,l), u
′
l+1 = s(e−l+1,l), l = 0, 1, 2, . . . }.

Each element of E−
L+ is figured such as

u0
α1−−−−→ u1

α2−−−−→ u2
α3−−−−→ u3

α4−−−−→ · · ·

e−1,0

�⏐⏐β e−2,1

�⏐⏐β e−3,2

�⏐⏐β e−4,3

�⏐⏐β
u′

0
α0−−−−→ u′

1
α1−−−−→ u′

2
α2−−−−→ u′

3
α3−−−−→ u′

4
α4−−−−→ · · · .

Following Deaconu [8] (cf. [6], [7], [9]), we construct a shift dynamical system:

X+
L− :={(αi, ω

i)∞i=1 ∈
∞∏
i=1

(Σ+ × ΩL−) | ωi = (ui
l, β−l+i+1)∞l=1 ∈ ΩL− , i = 1, 2, . . . ,

(ωi, αi+1, ω
i+1) ∈ E+

L− , i = 1, 2, . . . , (ω0, α1, ω
1) ∈ E+

L− for some ω0 ∈ ΩL−}

and the shift map σL− : X+
L− −→ X+

L− by setting

σL−((αi, ω
i)∞i=1) = (αi+1, ω

i+1)∞i=1, (αi, ω
i)∞i=1 ∈ X+

L− .

The set X+
L− is endowed with the relative topology of the infinite product topology of Σ+ × ΩL− . It is a 

zero-dimensional compact Hausdorff space. The shift map σL− : X+
L− −→ X+

L− is continuous and a local 
homeomorphism. As L+ is left-resolving, for any element x = (αi, ωi)∞i=1 ∈ X+

L− , there uniquely exists 
ω0 ∈ ΩL− such that (ω0, α1, ω1) ∈ E+

L− by the local property of λ-graph bisystem. We denote ω0 by 
ω0(x), which is uniquely determined by x ∈ X+

L− . Therefore an element x = (αi, ωi)∞i=1 ∈ X+
L− defines a 

two-dimensional diagram as follows:
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ω0 · · · β−2−−−−→ u0
2

β−1−−−−→ u0
1

β0−−−−→ u0
0⏐⏐�α1

⏐⏐�α1

⏐⏐�α1

ω1 · · · β−2−−−−→ u1
3

β−1−−−−→ u1
2

β0−−−−→ u1
1

β1−−−−→ u1
0⏐⏐�α2

⏐⏐�α2

⏐⏐�α2

⏐⏐�α2

ω2 · · · β−2−−−−→ v2
4

β−1−−−−→ v2
3

β0−−−−→ v2
2

β1−−−−→ v2
1

β2−−−−→ v2
0⏐⏐�α3

⏐⏐�α3

⏐⏐�α3

⏐⏐�α3

⏐⏐�α3

ω3 · · · β−2−−−−→ v3
5

β−1−−−−→ v3
4

β0−−−−→ v3
3

β1−−−−→ v3
2

β2−−−−→ v3
1

β3−−−−→ v3
0⏐⏐�α4

⏐⏐�α4

⏐⏐�α4

⏐⏐�α4

⏐⏐�α4

⏐⏐�α4

We may similarly construct a shift dynamical system (X−
L+ , σL+) from the other continuous graph E−

L+ .
By the now standard Deaconu–Renault groupoid construction (see [8], [9], [35], [36], cf. [37]), we have an 

amenable and étale groupoid written G+
L− from the shift dynamical system (X+

L− , σL−). The space of the 
groupoid is defined by

G+
L− := {(x, n, y) ∈ X+

L− × Z×X+
L− | ∃k, l ∈ Z+;n = k − l, σk

L−(x) = σl
L−(y)}.

The unit space (G+
L−)(0) is defined by

(G+
L−)(0) := {(x, 0, x) ∈ G+

L− | x ∈ X+
L−}.

It is identified with the space X+
L− as a topological space. The range map and the source map are defined 

by r(x, n, y) = x, s(x, n, y) = y. The product and the inverse operations are defined by

(x, n, y)(y,m, z) = (x, n + m, z), (x, n, y)−1 = (y,−n, x).

We may similarly construct the other amenable and étale groupoid G−
L+ from the shift dynamical system 

(X−
L+ , σL+).
Now we will define our C∗-algebra O+

L− in the following way.

Definition 7.1. The C∗-algebra O+
L− associated with a λ-graph bisystem (L−, L+) is defined to be the C∗-

algebra C∗(G+
L−) of the groupoid G+

L− . Similarly we define the C∗-algebra O−
L+ from the other groupoid 

G−
L+ .

For general theory of C∗-algebras of étale groupoids, see ([34], [35], [36], cf. [8], [9], [37], etc.). Let Cc(G+
L−)

be the set of complex-valued continuous functions on G+
L− with compact support. It has a natural product 

structure and ∗-involution of given by

(f ∗ g)(s) =
∑
t;

r(t)=r(s)

f(t)g(t−1s) =
∑
t1,t2;
s=t1t2

f(t1)g(t2),

f∗(s) = f(s−1), f, g ∈ Cc(G+
L−), s ∈ G+

L− .

The algebra Cc(G+
L−) is a dense ∗-subalgebra of C∗(G+

L−).
We will study the algebraic structure of the C∗-algebra O+

L− .
Recall that F (vli) denotes the follower set of vli ∈ Vl in L−, that is defined after Definition 3.1. We define 

the cylinder set UΩ − (vli; ξ) ⊂ ΩL− for ξ = (ξ1, ξ2, . . . , ξl) ∈ F (vli) by setting

L
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UΩ
L− (vli; ξ) :={(. . . , u3, β−3, u2, β−2, u1, β−1) ∈ ΩL− |

ul = vli, β−l = ξ1, β−l+1 = ξ2, . . . β−1 = ξl}.

Each element of UΩ
L− (vli; ξ) is figured such as

· · · −→ vli
ξ1−→ © ξ2−→ © −→ · · · ξl−→ ©.

We note that the vertices ul−1, ul−2, . . . , u0 of the terminals of the labeled edges ξ1, ξ2, . . . , ξl are automat-
ically determined by vli and ξ, because L− is right-resolving. The set of cylinder sets UΩ

L− (vli; ξ) form a 
basis of open sets of ΩL− . Let us define a clopen set of X+

L− by setting

UX+
L−

(vli; ξ) = {x ∈ X+
L− | ω0(x) ∈ UΩ

L− (vli; ξ)}. (7.1)

Recall that Bm(ΛL+) denotes the set of admissible words of the subshift ΛL+ with length m. For vli ∈ Vl, ξ =
(ξ1, ξ2, . . . , ξl) ∈ F (vli) and μ = (μ1, . . . , μm) ∈ Bm(ΛL+) with m ≤ l, define the cylinder set UX+

L−
(μ, vli; ξ)

of X+
L− by setting

UX+
L−

(μ, vli; ξ) = {(αi, ω
i)∞i=1 ∈ X+

L− | α1 = μ1, α2 = μ2, . . . , αm = μm, ωm ∈ UΩ
L− (vli; ξ)}. (7.2)

Each element of UX+
L−

(μ, vli; ξ) is figured such as

ω0 · · · −−−−→ u0
l−m

ξ1−−−−→ · · · ξl−m−−−−→ u0
0⏐⏐�μ1

⏐⏐�μ1

⏐⏐�μ1

ω1 · · · −−−−→ u1
l−m+1

ξ1−−−−→ · · · ξl−m−−−−→ u1
1

ξl−m+1−−−−−→ u1
0⏐⏐�μ2

⏐⏐�μ2

⏐⏐�μ2

⏐⏐�μ2

· · · −−−−→
... ξ1−−−−→ · · · −−−−→

... ξl−m+1−−−−−→
... ξl−1−−−−→⏐⏐�μm

⏐⏐�μm

⏐⏐�μm

⏐⏐�μm

⏐⏐�μm

ωm · · · −−−−→ um
l = vli

ξ1−−−−→ · · · −−−−→
... −−−−→ um

2
ξl−1−−−−→ um

1
ξl−−−−→ um

0⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�
For x = (αi, ωi)∞i=1 ∈ X+

L− , we put λi(x) = αi ∈ Σ+, ωi(x) = ωi ∈ ΩL− for i ∈ N, respectively, so 
that x = (λi(x), ωi(x))∞i=1. Now L+ is left-resolving so that there uniquely exists ω0(x) ∈ ΩL− satisfying 
(ω0(x), α1, ω1) ∈ E+

L− . Define U(μ) ⊂ G+
L− for μ = (μ1, . . . , μk) ∈ Bk(ΛL+), and U(vli; ξ) ⊂ G+

L− for 
vli ∈ Vl, ξ ∈ F (vli) by

U(μ) ={(x, k, z) ∈ G+
L− | σk

L−(x) = z, λ1(x) = μ1, . . . , λk(x) = μk}, and

U(vli; ξ) ={(x, 0, x) ∈ G+
L− | ω0(x) ∈ UΩ

L− (vli; ξ)}(= UX+
L−

(vli; ξ)).

They are clopen sets of G+
L− . We set

Sμ = χU(μ), El−
i (ξ) = χU(vl;ξ) in Cc(G+

−)

i L
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where χF ∈ Cc(G+
L−) denotes the characteristic function of a clopen set F on the groupoid G+

L− . We in 
particular write Sμ as Sα for the symbol μ = α ∈ Σ+. For μ /∈ B∗(ΛL+), ξ /∈ F (vli), we recognize that 
Sμ = 0, El−

i (ξ) = 0. The following lemma is straightforward.

Lemma 7.2.

(i) For μ = (μ1, . . . , μm) ∈ Bm(ΛL+), we have Sμ = Sμ1 · · ·Sμm
.

(ii) For ξ ∈ F (vli), the operator El−
i (ξ) is a projection such that the family El−

i (ξ), ξ ∈ F (vli), i =
1, . . . , m(l), l ∈ Z+ are mutually commuting projections.

The transition matrices A−
l,l+1, A

+
l,l+1 for L−, L+ respectively are defined by setting

A−
l,l+1(i, β, j) =

{
1 if t(e−) = vli, λ

−(e−) = β, s(e−) = vl+1
j for some e− ∈ E−

l+1,l,

0 otherwise,

A+
l,l+1(i, α, j) =

{
1 if s(e+) = vli, λ

+(e+) = α, t(e+) = vl+1
j for some e+ ∈ E+

l,l+1,

0 otherwise

for i = 1, 2, . . . , m(l), j = 1, 2, . . . , m(l + 1), β ∈ Σ−, α ∈ Σ+. Let us denote by AL− the C∗-subalgebra of 
O+

L− generated by El−
i (ξ), vli ∈ Vl, ξ ∈ F (vli). We define the other C∗-subalgebra AL+ of O−

L+ in a similar 
way. Let us denote by C(ΩL−) the commutative C∗-algebra of complex valued continuous functions on ΩL− . 
For a subset B ⊂ A of a C∗-algebra A, we denote by C∗(B) the C∗-subalgebra of A generated by B.

Lemma 7.3.

(i) Each operator El−
i (ξ) indexed by vertex vli ∈ Vl and admissible word ξ = (ξ1, . . . , ξl) ∈ F (vli) is a 

projection satisfying the following operator relations:

∑
ξ∈F (vl

i)

m(l)∑
i=1

El−
i (ξ) = 1, (7.3)

El−
i (ξ) =

∑
β∈Σ−

m(l+1)∑
j=1

A−
l,l+1(i, β, j)E

l+1−
j (βξ), (7.4)

where the word βξ in (7.4) is defined by βξ = (β, ξ1, . . . , ξl) for β ∈ Σ−, ξ = (ξ1, . . . , ξl) ∈ F (vli), and 
El+1

j (βξ) = 0 unless βξ ∈ F (vl+1
j ).

(ii) The correspondence

ϕl : El−
i (ξ) ∈ AL− −→ χUΩ

L− (vl
i;ξ) ∈ C(ΩL−) (7.5)

gives rise to an isomorphism of C∗-algebras between AL− and C(ΩL−).

Proof. (i) Any element x ∈ X+
L− defines an element ω0(x) ∈ ΩL− . As the set X+

L− is a disjoint union:

X+
L− =

m(l)⋃
i=1

⋃
ξ∈F (vl

i)

UX+
L−

(vli; ξ)

for a fixed l ∈ N, we know the equality (7.3). The disjoint union
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UΩ
L− (vli; ξ) =

⋃
β∈Σ−

m(l+1)⋃
j=1;

A
−
l,l+1(i,β,j)=1

UΩ
L− (vl+1

j ;βξ) (7.6)

yields the identity

χU(vl
i;ξ) =

∑
β∈Σ−

m(l+1)∑
j=1

A−
l,l+1(i, β, j)χU(vl+1

j ;βξ) (7.7)

that leads to the equality (7.4).
(ii) Define the C∗-subalgebras for l ∈ N

AL−,l :=C∗(El−
i (ξ) | ξ ∈ F (vli), i = 1, 2, . . . ,m(l)) ⊂ AL− ,

C(ΩL−,l) :=C∗(χUΩ
L− (vl

i;ξ) | ξ ∈ F (vli), i = 1, 2, . . . ,m(l)) ⊂ C(ΩL−).

Then the correspondence (7.5) gives rise to an isomorphism ϕl : AL−,l −→ C(ΩL−,l) of the commutative 
finite dimensional C∗-algebras. By the identity (7.4) together with (7.7), we have embeddings

AL−,l ↪→ AL−,l+1, C(ΩL−,l) ↪→ C(ΩL−,l+1),

that are compatible to the isomorphisms ϕl : AL−,l −→ C(ΩL−,l), l ∈ N. As the algebras AL− , C(ΩL−l) are 
inductive limits AL− = lim

l→∞
AL−,l, C(ΩL−l) = lim

l→∞
C(ΩL−,l) respectively, we conclude that the C∗-algebras 

AL− and C(ΩL−l) are isomorphic. �
The following lemma is a key to proving the identity (7.10).

Lemma 7.4. For ξ = (ξ1, ξ2, . . . , ξl) ∈ F (vli), α ∈ Σ+ and x ∈ X+
L− , the following two conditions are 

equivalent:

(i) There exists z ∈ X+
L− such that

ω0(z) ∈ UΩ
L− (vli; ξ), σL−(z) = x, λ1(z) = α. (7.8)

(ii) There exist β ∈ Σ− and j = 1, 2, . . . , m(l + 1) such that

ξβ ∈ F (vl+1
j ), A+

l,l+1(i, α, j) = 1, x ∈ UX+
L−

(vl+1
j ; ξβ). (7.9)

Such z and β bijectively correspond to each other.

Proof. (i) =⇒ (ii): Suppose that z ∈ X+
L− satisfies the conditions (7.8). Since we see (ω0(z), α, ω1(z)) ∈ E+

L− , 
we have ω1(z) = ω0(x). Let ω0(x) = (ul, β−l)∞l=1 ∈ ΩL− , so that β−1 = ξl, β−2 = ξl−1, . . . , β−l = ξ1, such 
as the following figure:

· · · −−−−→ vli
ξ1−−−−→ © ξ2−−−−→ · · · ξl−−−−→ ©⏐⏐�α ⏐⏐�α ⏐⏐�α

· · · −−−−→ ul+1
β−l−−−−→ ul

β−l+1−−−−→ · · · β−1−−−−→ u1
β0−−−−→ u0.

Put β = β0 and vl+1
j = ul+1. Then the condition (7.9) holds.
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(ii) =⇒ (i): Conversely let β ∈ Σ− and j = 1, 2, . . . , m(l + 1) satisfy the condition (7.9). Let 
ω0(x) = (ul, β−l)∞l=1 ∈ ΩL− , so that β−1 = ξl, β−2 = ξl−1, . . . , β−l = ξ1. By the hypothesis ξ =
(ξ1, ξ2, . . . , ξl) ∈ F (vli), there exist unique labeled edges f−

n,n−1 ∈ E−
n,n−1 for n = 1, 2, . . . , l such that 

s(f−
l,l−1) = vli, t(f−

n,n−1) = s(f−
n−1,n−2), λ−(f−

n,n−1) = ξl−n+1 for n = 1, 2, . . . , l. We put u′
n = s(f−

n,n−1) for 
n = 1, 2, . . . , l, so that u′

l = vli. By the hypothesis A+
l,l+1(i, α, j) = 1 with the local property of λ-graph bisys-

tem, we may find labeled edges e+
n,n+1 ∈ E+

n,n+1 for n = 0, 1, . . . , l such that s(e+
n,n+1) = u′

n, t(e+
n,n+1) =

un, λ+(e+
n,n+1) = α. By the condition (ul, β−l)∞l=1 ∈ ΩL− , there exists an labeled edge e−l+2,l+1 ∈ E−

l+2,l+1
such that s(e−l+2,l+1) = ul+2, t(e−l+2,l+1) = ul+1(= vl+1

j ), λ−(e−l+2,l+1) = β−l−1. By applying the local prop-
erty of λ-graph bisystem for the pair e+

l,l+1 and e−l+2,l+1 satisfying t(e+
l,l+1) = t(e−l+2,l+1), we may find labeled 

edges f−
l+1,l ∈ E−

l+1,l and e+
l+1,l+2 ∈ E+

l+1,l+2 such that

t(f−
l+1,l) = u′

l(= vli), s(f−
l+1,l) = s(e+

l+1,l+2), t(e+
l+1,l+2) = ul+2,

λ−(f−
l+1,l) = β−l−1, λ+(e+

l+1,l+2) = α.

We put u′
l+1 = s(f−

l+1,l) ∈ Vl+1. Like this way, by successively applying the local property of λ-
graph bisystem, we may find ω′ = (u′

l, β−l−1)∞l=1 ∈ ΩL−(vli; ξ) such that β−1 = ξl, . . . , β−l = ξ1 and 
(ω′, α, ω0(x)) ∈ E+

L− . By defining z = (αi, ωi)∞i=1 ∈
∏∞

i=1(Σ+ × ΩL−) such that α1 = α, ω1 = ω0(x) and 
(αi, ωi)∞i=2 = x, we have z ∈ X+

L− , σL−(z) = x, λ1(z) = α and ω0(z) = ω′ ∈ ΩL−(vli; ξ). �
Lemma 7.5. For α ∈ Σ+ and ξ ∈ F (vli), we have

S∗
αE

l−
i (ξ)Sα =

∑
β∈Σ−

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1−
j (ξβ), (7.10)

where El+1−
j (ξβ) = 0 unless ξβ ∈ F (vl+1

j ).

Proof. It suffices to show that the equality

χ∗
U(α) ∗ χU(vl

i;ξ) ∗ χU(α) =
∑

β∈Σ−

m(l+1)∑
j=1

A+
l,l+1(i, α, j)χU(vl+1

j ;ξβ) (7.11)

holds. We then have for s = (x, n, z) ∈ G+
L− ,

[χ∗
U(α) ∗ χU(vl

i;ξ) ∗ χU(α)](x, n, z)

=
∑
t;

r(t)=r(s)

χU(α)(t−1)(χU(vl
i;ξ) ∗ χU(α))(t−1s) (Put t = (y,m,w) ∈ G+

L−)

=
∑
m,w

χU(α)(w,−m,x)(χU(vl
i;ξ) ∗ χU(α))(w, n−m, z)

=
∑
w;

x=σ
L− (w),λ1(w)=α

(χU(vl
i;ξ) ∗ χU(α))(w, n + 1, z),

because χU(α)(w, −m, x) = 1 if and only if m = −1, x = σL−(w), λ1(w) = α. Now

(χU(vl;ξ) ∗ χU(α))(w, n + 1, z)

i
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=
∑
t′;

r(t′)=w

χU(vl
i;ξ)(t

′)χU(α)(t′
−1 · (w, n + 1, z)) (Put (y′,m′, w′) = t′ ∈ G+

L−)

=
∑

m′,y′;
y′=w

χU(vl
i;ξ)(y

′,m′, w′)χU(α)(w′,−m′ + n + 1, z)

=
∑
w′;

z=σ
L− (w′),λ1(w′)=α

χU(vl
i;ξ)(w, n,w

′),

because χU(α)(w′, −m′ + n + 1, z) = 1 if and only if m′ = n, z = σL−(w′), λ1(w′) = α. Since 
χU(vl

i;ξ)(w, n, w
′) = 1 if and only if w = w′, n = 0 and ω0(w) ∈ UΩ+

L−
(vli; ξ), we have

[χ∗
U(α) ∗ χU(vl

i;ξ) ∗ χU(α)](x, n, z) =
∑
w;

x=z=σ
L− (w),λ1(w)=α

χUΩ+
L−

(vl
i;ξ)(ω

0(w)).

By Lemma 7.4 with the hypothesis ξ ∈ F (vli), we have ω0(w) ∈ UΩ+
L−

(vli; ξ) with x = z = σL−(w), λ1(w) = α

if and only if x = z ∈ UX+
L−

(vl+1
j ; ξβ) for some j and β ∈ Σ− such that A+

l,l+1(i, α, j) = 1 and ξβ ∈ F (vl+1
j ). 

Hence we obtain the equality

∑
w;

x=z=σ
L− (w),λ1(w)=α

χUΩ+
L−

(vl
i;ξ)(ω

0(w)) =
∑

β∈Σ−

m(l+1)∑
j=1

A+
l,l+1(i, α, j)χU(vl+1

j ;ξβ)(x, n, z),

proving the equality (7.11). �
By the formula (7.10) for a fixed l ∈ Z+, we have the identity

S∗
αSα =

m(l)∑
i=1

m(l+1)∑
j=1

∑
η∈F (vl+1

j )

A+
l,l+1(i, α, j)E

l+1−
j (η). (7.12)

For μ = (μ1, . . . , μm), ν = (ν1, . . . , νn) ∈ B∗(ΛL+) and vli ∈ Vl, ξ ∈ F (vli) with m, n ≤ l, let U(μ, ν, vli; ξ)
be the clopen set of G+

L− defined by

U(μ, ν, vli; ξ)

={(x,m− n, z) ∈ G+
L− | λ[1,m](x) = μ, λ[1,n](z) = ν, σm

L−(x) = σn
L−(z) ∈ ΩL−(vli; ξ)}

where x = (λi(x), ωi(x))∞i=1, z = (λi(z), ωi(z))∞i=1 ∈ X+
L− and λ[1,m](x) = (λ1(x), . . . , λm(x)), λ[1,n](z) =

(λ(z)1, . . . , λn(z)) ∈ B∗(ΛL+). For μ = ν, we write U(μ, μ, vli; ξ) as U(μ, vli; ξ), that is identified with 
UX+

L−
(μ, vli; ξ) defined in (7.2). Then we have

Lemma 7.6.

SμE
l−
i (ξ)S∗

ν = χU(μ,ν,vl
i;ξ).

In particular, for the clopen set U(μ, vli; ξ) with μ ∈ (μ1, . . . , μm) ∈ Bm(ΛL+), vli ∈ Vl defined in (7.2), we 
have

SμE
l−
i (ξ)S∗

μ = χU(μ,vl;ξ). (7.13)

i
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Proof. It suffices to show the equality

χU(μ) ∗ χU(vl
i;ξ) ∗ χ

∗
U(ν) = χU(μ,ν,vl

i;ξ) (7.14)

holds. Suppose μ = (μ1, . . . , μm), ν = (ν1, . . . , νn) ∈ B∗(ΛL+). For s = (x, p, z) ∈ G+
L− , we have

[χU(μ) ∗ χU(vl
i;ξ) ∗ χ

∗
U(ν)](x, p, z)

=
∑
t;

r(t)=r(s)

χU(μ)(t)[χU(vl
i;ξ) ∗ χ

∗
U(ν)](t−1s) (Put t = (y, q, w))

=
∑
q,w

χU(μ)(x, q, w)[χU(vl
i;ξ) ∗ χ

∗
U(ν)](w, p− q, z).

We know (x, q, w) ∈ U(μ) if and only if q = m, λ[1,m](x) = μ and σm
L−(x) = w, so that we have

[χU(μ) ∗ χU(vl
i;ξ) ∗ χ

∗
U(ν)](x, p, z)

=[χU(vl
i;ξ) ∗ χ

∗
U(ν)](σm

L−(x), p−m, z)

=
∑
t′;

r(t′)=σm
L− (x)

χU(vl
i;ξ)(t

′)χ∗
U(ν)(t′

−1 · (σm
L−(x), p−m, z)) (Put t′ = (y′, q′, w′), y′ = σm

L−(x))

=
∑
q′,w′

χU(vl
i;ξ)(y

′, q′, w′)χ∗
U(ν)(w′, p−m− q′, z)

=
∑
q′,w′

χU(vl
i;ξ)(σ

m
L−(x), q′, w′)χU(ν)(z,−p + m + q′, w′).

Now we have (z, −p + m + q′, w′) ∈ U(ν) if and only if σn
L−(z) = w′, λ[1,n](z) = ν and −p + m + q′ = n, so 

that

[χU(μ) ∗ χU(vl
i;ξ) ∗ χ

∗
U(ν)](x, p, z) = χU(vl

i;ξ)(σ
m
L−(x), p + n−m,σn

L−(z)).

As (σm
L−(x), p + n − m, σn

L−(z)) ∈ U(vli; ξ) with λ[1,m](x) = μ, λ[1,n](z) = ν if and only if (x, p, z) ∈
U(μ, ν, vli; ξ), we have the identity (7.14). �
Lemma 7.7. The set of finite linear combinations of elements of the form

SμE
l−
i (ξ)S∗

ν , μ ∈ Bm(ΛL+), ν ∈ Bn(ΛL+), ξ ∈ F (vli), i = 1, 2, . . . ,m(l), m, n ≤ l (7.15)

is dense in the C∗-algebra O+
L− .

Proof. Since the sets of the form U(μ, ν, vli; ξ) form a basis of open sets of the groupoid G+
L− , the set of 

finite linear combinations of elements of the form of (7.15) becomes a dense ∗-subalgebra of O+
L− because 

of Lemma 7.6. �
Put for α ∈ Σ+

X+
L−(α) = {x ∈ X+

L− | λ1(x) = α}.

Regard it as a clopen subset {(x, 0, x) ∈ G+
− | λ1(x) = α} of (G+

−)(0) and hence of G+
− . Then we have
L L L
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Lemma 7.8.

(i) SαS
∗
α = χX+

L− (α).
(ii) SαS

∗
αE

l−
i (ξ) = El−

i (ξ)SαS
∗
α for ξ ∈ F (vli).

Proof. (i) By Lemma 7.6, we have for a fixed l ∈ N,

SαS
∗
α =

m(l)∑
i=1

∑
ξ∈F (vl

i)

SαE
l−
i (ξ)S∗

α =
m(l)∑
i=1

∑
ξ∈F (vl

i)

χU(α,vl
i;ξ) = χ∪m(l)

i=1 ∪
ξ∈F (vl

i)
U(α,vl

i;ξ)
.

As 
⋃m(l)

i=1
⋃

ξ∈F (vl
i)
U(α, vli; ξ) = X+

L−(α), we obtain the equality SαS
∗
α = χX+

L− (α).
(ii) For s = (x, n, z) ∈ G+

L− , we have

[χX+
L− (α) ∗ χU(vl

i;ξ)](x, n, z)

=
∑
t;

r(t)=r(s)

χX+
L− (α)(t−1)χU(vl

i;ξ)(t
−1s) (Put t = (y,m,w) ∈ G+

L−)

=
∑
m,w

χX+
L− (α)(w,−m,x)χU(vl

i;ξ)(w, n−m, z).

Now χX+
L− (α)(w, −m, x) = 1 if and only if m = 0, w = x, λ1(x) = α. Since we have χU(vl

i;ξ)(x, n, z) = 1 if 
and only if x = z, n = 0, ω0(x) ∈ UΩ

L− (vli; ξ), so that

[χX+
L− (α) ∗ χU(vl

i;ξ)](x, n, z) =
{

1 if x = z, n = 0, λ1(x) = α, ω0(x) ∈ UΩ
L− (vli; ξ),

0 otherwise.

On the other hand

[χU(vl
i;ξ) ∗ χX+

L− (α)](x, n, z)

=
∑
t;

r(t)=r(s)

χU(vl
i;ξ)(t

−1)χX+
L− (α)(t

−1s) (Put t = (y,m,w) ∈ G+
L−)

=
∑
m,w

χU(vl
i;ξ)(w,−m,x)χX+

L− (α)(w, n−m, z).

Now χX+
L− (α)(w, n −m, z) = 1 if and only if n = m, w = z, λ1(z) = α. Since we have χU(vl

i;ξ)(z, −n, x) = 1
if and only if z = x, n = 0, ω0(x) ∈ UΩ

L− (vli; ξ), so that

[χU(vl
i;ξ) ∗ χX+

L− (α)](x, n, z) =
{

1 if x = z, n = 0, λ1(x) = α, ω0(x) ∈ UΩ
L− (vli; ξ),

0 otherwise,

proving χX+
L− (α) ∗ χU(vl

i;ξ) = χU(vl
i;ξ) ∗ χX+

L− (α) and hence SαS
∗
αE

l−
i (ξ) = El−

i (ξ)SαS
∗
α. �

Proposition 7.9.

(i) The C∗-algebra O+
L− is generated by partial isometries Sα indexed by α ∈ Σ+ and mutually commuting 

projections El−
i (ξ) indexed by vertices vli ∈ Vl and admissible words ξ = (ξ1, . . . , ξl) ∈ F (vli).
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(ii) The partial isometries Sα, α ∈ Σ+ and the mutually commuting projections El−
i (ξ), ξ ∈ F (vli) satisfy 

the following operator relations called (L−, L+):

∑
α∈Σ+

SαS
∗
α =

m(l)∑
i=1

∑
ξ∈F (vl

i)

El−
i (ξ) = 1, (7.16)

SαS
∗
αE

l−
i (ξ) = El−

i (ξ)SαS
∗
α, (7.17)

El−
i (ξ) =

∑
β∈Σ−

m(l+1)∑
j=1

A−
l,l+1(i, β, j)E

l+1−
j (βξ), (7.18)

S∗
αE

l−
i (ξ)Sα =

∑
β∈Σ−

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1−
j (ξβ). (7.19)

Similarly we have

Proposition 7.10.

(i) The C∗-algebra O−
L+ is generated by partial isometries Tβ indexed by β ∈ Σ− and mutually commuting 

projections El+
i (η) indexed by vertices vli ∈ Vl and admissible words η = (η1, . . . , ηl) ∈ P (vli).

(ii) The partial isometries Tβ, β ∈ Σ− and the mutually commuting projections El+
i (η), η ∈ P (vli) satisfy 

the following operator relations called (L+, L−):

∑
β∈Σ−

TβT
∗
β =

m(l)∑
i=1

∑
η∈P (vl

i)

El+
i (η) = 1, (7.20)

TβT
∗
βE

l+
i (η) = El+

i (η)TβT
∗
β , (7.21)

El+
i (η) =

∑
α∈Σ+

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1+
j (ηα), (7.22)

T ∗
βE

l+
i (η)Tβ =

∑
α∈Σ+

m(l+1)∑
j=1

A−
l,l+1(i, β, j)E

l+1+
j (αη). (7.23)

We will prove in the following section that the above operator relations among the generators of the 
C∗-algebras exactly determine the algebraic structure of the C∗-algebras.

8. Structure of the C∗-algebra O+
L−

In what follows, an endomorphism on a unital C∗-algebra means a ∗-endomorphism that is not necessarily 
unital. For a unital C∗-algebra A, let us denote by End(A) the set of endomorphisms on A. In [26], the 
notion of C∗-symbolic dynamical system (A, ρ, Σ) was introduced as a generalization of both a λ-graph 
system and an automorphism on a unital C∗-algebra. Following [26], a finite family ρα ∈ End(A), α ∈ Σ of 
endomorphisms on a unital C∗-algebra A indexed by a finite alphabet Σ is said to be essential if ρα(1) �= 0
for all α ∈ Σ and the ideal of A generated by ρα(1), α ∈ Σ coincides with A. It is said to be faithful if for 
any nonzero a ∈ A, there exists a symbol α ∈ Σ such that ρα(a) �= 0. A C∗-symbolic dynamical system
is defined by a triplet (A, ρ, Σ) consisting on a unital C∗-algebra A and a finite family of endomorphisms 
{ρα}α∈Σ of A, that is essential and faithful ([26], cf. [27], [28]). A C∗-symbolic dynamical system (A, ρ, Σ)
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gives rise to a subshift Λ and a C∗-algebra written A �ρ Λ called the C∗-symbolic crossed product in [26]. 
The C∗-algebra A �ρ Λ is constructed by certain Hilbert C∗-bimodule associated to the endomorphisms 
{ρα}α∈Σ of A (cf. [12], [13], [32], etc.). If (A, ρ, Σ) satisfies condition (I) in the sense of [27], the algebraic 
structure of the C∗-algebra A �ρΛ is uniquely determined by certain operator relations among its canonical 
generators. In this section, we will show that our C∗-algebra O+

L− may be realized as a C∗-symbolic crossed 
product AL− �ρ+ ΛL+ , so that we will know that the operator relations called (L−, L+) in Proposition 7.9
uniquely determine the algebraic structure of the C∗-algebra O+

L− under certain condition called condition 
(I) on the C∗-symbolic dynamical system (AL− , ρ+, Σ+).

Let AL− be the C∗-subalgebra of O+
L− generated by the mutually commuting projections El−

i (ξ) for vli ∈
Vl, ξ ∈ F (vli). The C∗-subalgebra AL+ of O−

L+ is similarly defined. Let us denote by ρ+
α ∈ End(AL−), α ∈ Σ+

the endomorphism on AL− defined by setting

ρ+
α (El−

i (ξ)) =
∑

β∈Σ−

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1−
j (ξβ), ξ ∈ F (vli). (8.1)

Then we have a finite family of endomorphisms ρ+
α , α ∈ Σ+ on AL− . The other endomorphisms ρ−β ∈

End(AL+), β ∈ Σ− are similarly defined.

Lemma 8.1. The triplets (AL− , ρ+, Σ+) and similarly (AL+ , ρ−, Σ−) are both C∗-symbolic dynamical sys-
tems.

Proof. Since we have

∑
α∈Σ+

ρ+
α (1) =

∑
α∈Σ+

m(l)∑
i=1

∑
ξ∈F (vl

i)

ρ+
α (El−

i (ξ))

=
∑

α∈Σ+

m(l)∑
i=1

∑
ξ∈F (vl

i)

∑
β∈Σ−

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1−
j (ξβ) ≥ 1,

the family {ρ+
α}α∈Σ+ is essential. It is easy to see that {ρ+

α}α∈Σ+ is faithful, so that the triplets (AL− , ρ+, Σ+)
and similarly (AL+ , ρ−, Σ−) are both C∗-symbolic dynamical systems. �

We will concentrate on the algebra O+
L− , the other algebra O−

L+ has a symmetric structure. We define a 
C∗-subalgebra D+

L− of O+
L− by

D+
L− = C∗(SμE

l−
i (ξ)S∗

μ | i = 1, 2, . . . ,m(l), ξ ∈ F (vli), μ ∈ B∗(ΛL+)). (8.2)

Let ϕL− : X+
L− −→ ΩL− be the continuous surjection defined by ϕL−(x) = ω0(x), x ∈ X+

L− . It induces an 
embedding C(ΩL−) ↪→ C(X+

L−) corresponding to a natural inclusion AL− ⊂ D+
L− . Recall the condition (I) 

for C∗-symbolic dynamical systems introduced in [28].

Definition 8.2 ([28, Section 3, Definition]). The C∗-symbolic dynamical system (AL− , ρ+, Σ) satisfies con-
dition (I) if there exists a unital increasing sequence

A1 ⊂ A2 ⊂ · · · ⊂ AL−

of C∗-subalgebras of AL− such that ρ+
α (Al) ⊂ Al+1 for all l ∈ N, α ∈ Σ+ and the union 

⋃∞
l=1 Al is dense 

in AL− and for k, l ∈ N with k ≤ l, there exists a projection qlk ∈ D+
L− commuting with all elements of Al

such that
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(1) qlka �= 0 for all nonzero a ∈ Al,
(2) qlkφ

m
L+(qlk) = 0 for all m = 1, 2, . . . , k,

where φm
L+(X) =

∑
μ∈Bm(Λ

L+ ) SμXS∗
μ.

By Proposition 7.9 (ii) and (8.1), we know that our partial isometries Sα, α ∈ Σ+ satisfy the relations∑
α∈Σ+

SαS
∗
α = 1, SαS

∗
αE

l−
i (ξ) = El−

i (ξ)SαS
∗
α, ρ+

α (El−
i (ξ)) = S∗

αE
l−
i (ξ)Sα (8.3)

for α ∈ Σ+, ξ ∈ F (vli). Let sα, α ∈ Σ+ be another family of partial isometries satisfying the relations 
(8.3). We may consider the corresponding C∗-algebra D+

L− , that is generated by projections of the form 
sμE

l−
i (ξ)s∗μ, and the homomorphism φm

L+ on it by using sα, α ∈ Σ+, instead of Sα, α ∈ Σ+. Then [28, 
Lemma 3.2] tells us that the condition (I) does not depend on the choice of such partial isometries satisfying 
the relations (8.3). Hence the condition (I) for (AL− , ρ+, Σ+) is intrinsically determined by (AL− , ρ+, Σ+)
from [28, Lemma 3.2].

Definition 8.3 ([35, p. 19]). The topological dynamical system (X+
L− , σL−) is said to be essentially free if 

the set Xm,n(σL−) = {x ∈ X+
L− | σm

L−(x) = σn
L−(x)} for m, n ∈ Z+ with m �= n does not have non empty 

interior.

A point x ∈ X+
L− is said to be eventually periodic if σm

L−(x) = σn
L−(x) for some m, n ∈ Z+ with m �= n. 

The set of eventually periodic points in X+
L− is denoted by Pev(σL−). Hence we have

Pev(σL−) =
⋃
m,n;
m�=n

Xm,n(σL−). (8.4)

The following lemma is known for more general dynamical system. As the author has not been able to find 
a complete proof in literature, the proof is given for the sake of completeness.

Lemma 8.4 (cf. [35, Proposition 3.1]). The topological dynamical system (X+
L− , σL−) is essentially free if 

and only if the set Pev(σL−)c of non-eventually periodic points is dense in X+
L− .

Proof. Assume that (X+
L− , σL−) is essentially free. Suppose that the set Pev(σL−)c of non-eventually periodic 

points is not dense in X+
L− . Since X+

L− is compact Hausdorff and hence regular, there exists a point x ∈ X+
L−

and an open neighborhood Ux ⊂ X+
L− of x such that

Ux ∩ Pev(σL−)c = ∅.

Hence we have Ux ⊂ Pev(σL−) so that

Ux =
⋃
m,n;
m�=n

(Xm,n(σL−) ∩ Ux).

By the Baire’s category theorem, there exist m, n ∈ Z+ with m �= n such that Xm,n(σL−) ∩Ux contains an 
interior point in the set Ux. Therefore we conclude that Xm,n(σL−) contains an interior, a contradiction to 
the hypothesis that (X+

L− , σL−) is essentially free.
Assume next that the set Pev(σL−)c is dense in X+

L− . By (8.4), we know that if Xm,n(σL−) contains an 
open set V for some m, n with m �= n, then Pev(σL−) contains V , a contradiction to the hypothesis that 
Pev(σL−)c is dense in X+

− . �

L
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The essential freeness of the topological dynamical system (X+
L− , σL−) is equivalent to the condition that 

the étale groupoid G+
L− is essentially principal (see [35, Proposition 3.1]), so that the C∗-subalgebra D+

L− is 
maximal abelian in O+

L− by [34, Proposition 4.7].
Recall that a clopen set UX+

L−
(vli; ξ) for vli ∈ Vl, ξ ∈ F (vli), in X+

L− is defined in (7.1).

Definition 8.5. A λ-graph bisystem (L−, L+) is said to satisfy σL− -condition (I) if for any l, k ∈ N with 
k ≤ l, there exist xl

i(ξ) ∈ UX+
L− (vl

i;ξ)
for each i = 1, 2, . . . , m(l) and ξ ∈ F (vli) such that

σn
L−(xl

i(ξ)) �= xl
j(η) for ξ ∈ F (vli), η ∈ F (vlj), i, j = 1, 2, . . . ,m(l), n = 1, 2, . . . , k (8.5)

(cf. [21, Lemma 5.1]).

Proposition 8.6. Let (L−, L+) be a λ-graph bisystem. Consider the following three conditions:

(i) The λ-graph bisystem (L−, L+) satisfies σL−-condition (I).
(ii) The topological dynamical system (X+

L− , σL−) is essentially free.
(iii) The C∗-symbolic dynamical system (AL− , ρ+, Σ+) satisfies condition (I).

Then we have (i) =⇒ (ii) and (i) =⇒ (iii).

Proof. (i) =⇒ (ii): Assume that the λ-graph bisystem (L−, L+) satisfies σL− -condition (I) and the topo-
logical dynamical system (X+

L− , σL−) is not essentially free. There exist m, n ∈ Z+ with m > n such that 
Xm,n(σL−) = {x ∈ X+

L− | σm
L−(x) = σn

L−(x)} has a nonempty interior. By taking l ∈ N large enough such 
as l > m, we may assume that U(μ, vli; ξ) ⊂ Xm,n(σL−) for some μ = (μ1, . . . , μp) ∈ Bp(ΛL+) and vli ∈ Vl. 
Since the numbers m and p may be taken large enough, we may assume that p = m. Take x ∈ U(μ, vli; ξ)
and let ωp(x) = (ul, β−l)∞l=1 ∈ ΩL− . We put

ξl+1 := β−p−1, ξl+2 := β−p, . . . , ξl+p := β−2, ξl+p+1 := β−1 and vl+p
i0

:= ul+p.

Let ξ̄ = (ξ1, ξ2, . . . , ξl, ξl+1, . . . , ξl+p+1) ∈ Bl+p+1(ΛL−), so that we have

UX+
L− (vl+p

i0
;ξ̄) ⊂ σp

L−(U(μ, vli; ξ)).

As U(μ, vli; ξ) ⊂ Xm,n(σL−), any point of UX+
L− (vl+p

i0
;ξ̄) consists of periodic points with its period m − n. 

Now take k ∈ N such as k > m − n. Then there exists no points xl+p
i0

(ξ̄) ∈ UX+
L− (vl+p

i0
;ξ̄) such that 

σn
L−(xl+p

i0
(ξ̄)) �= xl+p

i0
(ξ̄) for all n = 1, 2, . . . , k. It is a contradiction to σL−-condition (I).

(i) =⇒ (iii): For a fixed l ∈ N, let AL−,l be the C∗-subalgebra of AL− generated by the projections 
El−

i (ξ), ξ ∈ F (vli), i = 1, 2, . . . , m(l). It satisfies the condition

ρ+
α (AL−,l) ⊂ AL−,l+1, l ∈ N, α ∈ Σ+,

and the union 
⋃∞

l=1 AL−,l is dense in AL− . Since the λ-graph bisystem (L−, L+) satisfies σL− -condition (I), 
for any l, k ∈ N with k ≤ l, there exist xl

i(ξ) ∈ UX+
L− (vl

i;ξ)
for each i = 1, 2, . . . , m(l) and ξ ∈ F (vli) satisfying

(8.5). Under fixing l, k ∈ N with k ≤ l, we set

Y = {xl
i(ξ) | i = 1, 2, . . . ,m(l), ξ ∈ F (vli)}.

By (8.5), we have σn
L−(Y ) ∩ Y = ∅ for all n = 1, 2, . . . , k. We may find a clopen set V ⊂ X+

L− such that 
Y ⊂ V and
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σn
L−(V ) ∩ V = ∅ for all n = 1, 2, . . . , k.

Let qlk be the projection of the characteristic function of V on X+
L− . Since σn

L−(V ) ∩ V = ∅ for all n =
1, 2, . . . , k, we know that qlkφn

L+(qlk) = 0 for all n = 1, 2, . . . , k. Any nonzero element a ∈ AL−,l is of the form 

a =
∑m(l)

i=1
∑

ξ∈F (vl
i)
cli(ξ)El−

i (ξ) for some cli(ξ) ∈ C. Since a �= 0, there exists i0, ξ0 such that cli0(ξ0) �= 0. 
Take xl

i0
(ξ0) ∈ Y ⊂ V so that we have

(aqlk)(xl
i0(ξ0)) = a(ϕL−(xl

i0(ξ0)))q
l
k(xl

i0(ξ0)) = cli0(ξ0) �= 0,

and hence aqlk �= 0. �
Theorem 8.7. Suppose that a λ-graph bisystem (L−, L+) satisfies σL−-condition (I). Then the C∗-algebra 
O+

L− is the universal unital unique C∗-algebra generated by partial isometries Sα indexed by symbols α ∈
Σ+ and mutually commuting projections El−

i (ξ) indexed by vertices vli ∈ Vl and admissible words ξ =
(ξ1, . . . , ξl) ∈ F (vli) subject to the following operator relations called (L−, L+):

∑
α∈Σ+

SαS
∗
α =

m(l)∑
i=1

∑
ξ∈F (vl

i)

El−
i (ξ) = 1, (8.6)

SαS
∗
αE

l−
i (ξ) = El−

i (ξ)SαS
∗
α, (8.7)

El−
i (ξ) =

∑
β∈Σ−

m(l+1)∑
j=1

A−
l,l+1(i, β, j)E

l+1−
j (βξ), (8.8)

S∗
αE

l−
i (ξ)Sα =

∑
β∈Σ−

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1−
j (ξβ), (8.9)

where the word βξ in (8.8) and ξβ in (8.9) are defined by βξ = (β, ξ1, . . . , ξl) and ξβ = (ξ1, . . . , ξl, β) for 
β ∈ Σ−, ξ = (ξ1, . . . , ξl) ∈ F (vli) and i = 1, 2, . . . , m(l), respectively.

Proof. The uniqueness of the C∗-algebra O+
L− among the generators Sα, α ∈ Σ+ and El−

i (ξ), vli ∈ Vl, ξ ∈
F (vli) subject to the operator relations (L−, L+) means that if there exist another family of nonzero partial 
isometries Ŝα, α ∈ Σ+ and nonzero mutually commuting projections Êl−

i (ξ), vli ∈ Vl, ξ ∈ F (vli) satisfying 
the above operator relations (L−, L+), then the correspondence

Sα −→ Ŝα, El−
i (ξ) −→ Êl−

i (ξ)

yield an isomorphism from O+
L− onto the C∗-algebra Ô+

L− generated by Ŝα, α ∈ Σ+ and Êl−
i (ξ), vli ∈ Vl, ξ ∈

F (vli). We will prove this property. Let us denote by ÂL− the C∗-subalgebra of Ô+
L− generated by the 

projections Êl−
i (ξ), vli ∈ Vl, ξ = (ξ1, . . . , ξl) ∈ F (vli). By the relations below

m(l)∑
i=1

∑
ξ∈F (vl

i)

Êl−
i (ξ) = 1, Êl−

i (ξ) =
∑

β∈Σ−

m(l+1)∑
j=1

A−
l,l+1(i, β, j)Ê

l+1−
j (βξ)

and commutativity of the projections El−
i (ξ), we know that the correspondence

Êl−
i (ξ) ∈ ÂL− −→ χU l

∈ C(ΩL−)

Ω
L− (vi;ξ)
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gives rise to an isomorphism of C∗-algebras between ÂL− and C(ΩL−). Hence by Lemma 7.3 (ii), the C∗-
algebras AL− and ÂL− are canonically isomorphic through the correspondence El−

i (ξ) ∈ AL− −→ Êl−
i (ξ) ∈

ÂL− . Now we are assuming that the λ-graph bisystem (L−, L+) satisfies σL− -condition (I), so that the C∗-
symbolic dynamical system (AL− , ρ+, Σ+) satisfies condition (I). By [28, Theorem 3.9], we know that the 
correspondence

El−
i (ξ) ∈ AL− −→ Êl−

i (ξ) ∈ ÂL− ,

Sα ∈ O+
L− −→ Ŝα ∈ Ô+

L− ,

extends to an isomorphism of C∗-algebras between O+
L− and Ô+

L− . Therefore the C∗-algebra O+
L− is the 

universal C∗-algebra subject to the operator relations (L−, L+). The above discussion shows that O+
L− is 

the unique C∗-algebra subject to the operator relations (L−, L+). �
For the other C∗-algebra O−

L+ , we may similarly define the topological dynamical system (X−
L+ , σL+)

to be essentially free and the λ-graph bisystem (L−, L+) to satisfy σL+-condition (I). We may show a 
symmetric statement to Proposition 8.6 to lead the following theorem.

Theorem 8.8. Suppose that a λ-graph bisystem (L−, L+) satisfies σL+-condition (I). The C∗-algebra O−
L+

is realized as the universal unital unique C∗-algebra generated by partial isometries Tβ indexed by symbols 
β ∈ Σ− and mutually commuting projections El+

i (μ) indexed by vertices vli ∈ Vl and admissible words 
μ = (μ1, . . . , μl) ∈ P (vli) subject to the following operator relations called (L+, L−):

∑
β∈Σ−

TβT
∗
β =

m(l)∑
i=1

∑
μ∈P (vl

i)

El+
i (μ) = 1, (8.10)

TβT
∗
βE

l+
i (μ) = El+

i (μ)TβT
∗
β , (8.11)

El+
i (μ) =

∑
α∈Σ+

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1+
j (μα), (8.12)

T ∗
βE

l+
i (μ)Tβ =

∑
α∈Σ+

m(l+1)∑
j=1

A−
l,l+1(i, β, j)E

l+1+
j (αμ) (8.13)

for β ∈ Σ−, μ ∈ P (vli), where μα = (μ1, . . . , μl, α) and αμ = (α, μ1, . . . , μl).

We will next present the operator relations (L−, L+) in Theorem 8.7 as well as Theorem 8.8 into a simpler 
form than the above relations in Theorem 8.7 as well as Theorem 8.8. For l ∈ N, vli ∈ Vl and β ∈ Σ−, we 
put

Fβ(vli) = {(ξ1, . . . , ξl) ∈ F (vli) | ξ1 = β} ⊂ Bl(ΛL−),

Σ−
1 (vli) = {λ−(e−) ∈ Σ− | e− ∈ E−

l,l−1, s(e
−) = vli}.

We then see Σ−
1 (vli) = {β ∈ Σ− | Fβ(vli) �= ∅}. We define a projection for β ∈ Σ−

1 (vli) in AL− by

El
i(β) :=

∑
ξ∈Fβ(vl

i)

El−
i (ξ) for β ∈ Σ−

1 (vli).

In case of Fβ(vli) = ∅, we define El
i(β) = 0. We have the following lemma.
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Lemma 8.9.

(i)
m(l)∑
i=1

∑
β∈Σ−

1 (vl
i)

El
i(β) = 1.

(ii) SαS
∗
αE

l
i(β) = El

i(β)SαS
∗
α.

(iii)
∑

β∈Σ−
1 (vl

i)

El
i(β) =

m(l+1)∑
j=1

∑
γ∈Σ−

1 (vl+1
j )

A−
l,l+1(i, γ, j)E

l+1
j (γ).

(iv) S∗
αE

l
i(β)Sα =

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1
j (β).

Proof. (i) Since F (vli) = �β∈Σ−
1 (vl

i)
Fβ(vli), we have

∑
ξ∈F (vl

i)

El−
i (ξ) =

∑
β∈Σ−

1 (vl
i)

∑
ξ∈Fβ(vl

i)

El−
i (ξ) =

∑
β∈Σ−

1 (vl
i)

El
i(β),

so that 1 =
∑m(l)

i=1
∑

ξ∈F (vl
i)
El−

i (ξ) implies 1 =
∑m(l)

i=1
∑

β∈Σ−
1 (vl

i)
El

i(β).
(ii) The desired equality is direct from (8.7).
(iii) We have ∑

β∈Σ−
1 (vl

i)

El
i(β) =

∑
ξ∈F (vl

i)

El−
i (ξ)

=
∑

ξ∈F (vl
i)

∑
γ∈Σ−

m(l+1)∑
j=1

A−
l,l+1(i, γ, j)E

l+1−
j (γξ)

=
m(l+1)∑
j=1

∑
γ∈Σ−

1 (vl+1
j )

∑
ξ∈F (vl

i)

A−
l,l+1(i, γ, j)E

l+1−
j (γξ).

Now ∑
ξ∈F (vl

i)

A−
l,l+1(i, γ, j)E

l+1−
j (γξ) = A−

l,l+1(i, γ, j)
∑

ζ∈Fγ(vl+1
j )

El+1−
j (ζ) = A−

l,l+1(i, γ, j)E
l+1
j (γ),

so that we have

∑
β∈Σ−

1 (vl
i)

El
i(β) =

m(l+1)∑
j=1

∑
γ∈Σ−

1 (vl+1
j )

A−
l,l+1(i, γ, j)E

l+1
j (γ).

(iv) By (8.9), we have

S∗
αE

l
i(β)Sα =

∑
ξ∈Fβ(vl

i)

S∗
αE

l−
i (ξ)Sα

=
∑

l

⎛⎝ ∑
−

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1−
j (ξγ)

⎞⎠

ξ∈Fβ(vi) γ∈Σ
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=
m(l+1)∑
j=1

A+
l,l+1(i, α, j)

∑
γ∈Σ−

∑
ξ∈Fβ(vl

i)

El+1−
j (ξγ)

=
m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1
j (β). �

The following lemma is obvious.

Lemma 8.10. For l ∈ N and ξ = (ξ1, . . . , ξl) ∈ F (vli), let e−n ∈ E−
n,n−1, n = 1, 2, . . . , l be a finite sequence of 

edges satisfying

ξ1 = λ−(e−l ), ξ2 = λ−(e−l−1), . . . , ξl = λ−(e−1 ), s(e−l ) = vli, s(e−n ) = t(e−n+1)

for n = 1, 2, . . . , l − 1 that are figured as

vli
ξ1−→
e−l

vl−1
il−1

ξ2−→
e−l−1

· · · −→ v1
i1

ξl−→
e−1

.

Put vnin = s(e−n ) ∈ Vn for n = 1, 2, . . . , l − 1. Then we have

El−
i (ξ) = El

i(ξ1)El−1
il−1

(ξ2) · · ·E1
i1(ξl).

Now we reach the following theorem that is one of the main results of the paper

Theorem 8.11. Suppose that a λ-graph bisystem (L−, L+) satisfies σL−-condition (I). Then the C∗-algebra 
O+

L− is the universal unital unique C∗-algebra generated by partial isometries Sα indexed by symbols α ∈ Σ+

and mutually commuting projections El
i(β) indexed by β ∈ Σ−

1 (vli) with vertices vli ∈ Vl, l ∈ N subject to the 
following operator relations:

∑
α∈Σ+

SαS
∗
α =

m(l)∑
i=1

∑
β∈Σ−

1 (vl
i)

El
i(β) = 1, (8.14)

SαS
∗
αE

l
i(β) = El

i(β)SαS
∗
α, (8.15)

∑
β∈Σ−

1 (vl
i)

El
i(β) =

m(l+1)∑
j=1

∑
γ∈Σ−

1 (vl+1
j )

A−
l,l+1(i, γ, j)E

l+1
j (γ), (8.16)

S∗
αE

l
i(β)Sα =

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1
j (β). (8.17)

The above four operator relations are also called the relations (L−, L+).

Proof. Let Sα, α ∈ Σ+ be partial isometries and El
i(β), β ∈ Σ−

1 (vli) be mutually commuting projections 
satisfying the relations (8.14), (8.15), (8.16) and (8.17). For ξ = (ξ1, . . . , ξl) ∈ F (vli), let e−n ∈ E−

n,n−1, n =
1, 2, . . . , l and vnin ∈ Vn, n = 1, 2, . . . , l − 1 be as in Lemma 8.10, so that vnin = s(e−n ) for n = 1, 2, . . . , l − 1. 
Define

Ẽl−
i (ξ) := El

i(ξ1)El−1
i (ξ2) · · ·E1

i (ξl). (8.18)

l−1 1
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Since El
i(ξ1), E

l−1
il−1

(ξ2), · · · , E1
i1

(ξl) mutually commute, one sees that Ẽl−
i (ξ) is a projection. We will hence-

forth show that the projections Ẽl−
i (ξ) satisfy the equalities (8.8) and (8.9). For βξ ∈ F (vl+1

j ) with 
A−

l,l+1(i, β, j) = 1, we know

Ẽl+1−
j (βξ) = El+1

j (β)Ẽl−
i (ξ).

It then follows that

∑
β∈Σ−

m(l+1)∑
j=1

A−
l,l+1(i, β, j)Ẽ

l+1−
j (βξ) =

m(l+1)∑
j=1

∑
γ∈Σ−

1 (vl+1
j )

A−
l,l+1(i, γ, j)E

l+1
j (γ)Ẽl−

i (ξ)

=
∑

β∈Σ−
1 (vl

i)

El
i(β) · Ẽl−

i (ξ) = Ẽl−
i (ξ),

because of the equality (8.16). Hence we obtain the equality (8.8). By using the preceding lemma, we have

S∗
αẼ

l−
i (ξ)Sα

=S∗
αE

l
i(ξ1)El−1

il−1
(ξ2) · · ·E1

i1(ξl)Sα

=S∗
αE

l
i(ξ1)Sα · S∗

αE
l−1
il−1

(ξ2)Sα · · ·S∗
αE

1
i1(ξl)Sα

=

⎛⎝m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1
j (ξ1)

⎞⎠ ·

⎛⎝m(l)∑
jl=1

A+
l−1,l(il−1, α, jl)El

jl
(ξ2)

⎞⎠ · · ·

· · ·

⎛⎝m(2)∑
j2=1

A+
1,2(i1, α, j2)E2

j2(ξl)

⎞⎠ .

Let e−l ∈ E−
l+1,l be the unique edge such that ξ1 = λ−(e−l ), s(e−l ) = vl+1

j . By (8.14) and (8.15), we know 

that El+1
j (ξ1) ·El

jl
(ξ2) �= 0 if and only if vljl = t(e−l ), and in this case A+

l−1,l(il−1, α, jl) = 1. Hence we have

⎛⎝m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1
j (ξ1)

⎞⎠ ·

⎛⎝m(l)∑
jl=1

A+
l−1,l(il−1, α, jl)El

jl
(ξ2)

⎞⎠
=

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1
j (ξ1) · El

jl
(ξ2).

We inductively know that⎛⎝m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1
j (ξ1)

⎞⎠ ·

⎛⎝m(l)∑
jl=1

A+
l−1,l(il−1, α, jl)El

jl
(ξ2)

⎞⎠ · · ·

· · ·

⎛⎝m(2)∑
j2=1

A+
1,2(i1, α, j2)E2

j2(ξl)

⎞⎠
=

m(l+1)∑
j=1

A+
l,l+1(i, α, j)E

l+1
j (ξ1) ·El

jl
(ξ2) · · ·E2

j2(ξl).
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As El+1
j (ξ1) ·El

jl
(ξ2) · · ·E2

j2
(ξl) =

∑
β∈Σ− Ẽl+1−

j (ξβ), by (8.14), we conclude that

S∗
αẼ

l−
i (ξ)Sα =

m(l+1)∑
j=1

A+
l,l+1(i, α, j)Ẽ

l+1−
j (ξβ).

Since it is direct to see that the equality

SαS
∗
αẼ

l
i(ξ) = Ẽl

i(ξ)SαS
∗
α

holds, the family Sα, α ∈ Σ+, Ẽl−
i (ξ), ξ ∈ F (vli) of operators satisfy the relations (L−, L+) of Theorem 8.7. 

By the universal property and the uniqueness of the relations (L−, L+) in Theorem 8.7, the family Sα, α ∈
Σ+, El−

i (β), β ∈ Σ−
1 (vli) of operators satisfying the relations (8.14), (8.15), (8.16) and (8.17) completely 

determine the algebraic structure of the C∗-algebra O+
L− . �

Remark 8.12. If a λ-graph bisystem (L−, L+) comes from a λ-graph system L as in Example 3.2(i), then the 
set Σ−

1 (vli) is a singleton {ι} for every vertex vli ∈ V . Hence the operator relations (L−, L+) of Theorem 8.11
coincides with the operator relations of Theorem 2.1.

Similarly we have

Theorem 8.13. Suppose that a λ-graph bisystem (L−, L+) satisfies σL+-condition (I). The C∗-algebra O−
L+

is realized as the universal unital unique C∗-algebra generated by partial isometries Tβ indexed by symbols 
β ∈ Σ− and mutually commuting projections F l

i (α) indexed by vertices vli ∈ Vl and symbols α ∈ Σ+
1 (vli)

subject to the following operator relations:

∑
β∈Σ−

TβT
∗
β =

m(l)∑
i=1

∑
α∈Σ+

1 (vl
i)

F l
i (α) = 1, (8.19)

TβT
∗
βF

l
i (α) = F l

i (α)TβT
∗
β , (8.20)

∑
α∈Σ+

1 (vl
i)

F l
i (α) =

m(l+1)∑
j=1

∑
δ∈Σ+

1 (vl+1
j )

A+
l,l+1(i, δ, j)F

l+1
j (δ), (8.21)

T ∗
βF

l
i (α)Tβ =

m(l+1)∑
j=1

A−
l,l+1(i, β, j)F

l+1
j (α), (8.22)

where Σ+
1 (vli) = {λ+(e+) ∈ Σ+ | e+ ∈ E+

l−1,l, t(e+) = vli}.

The above operator relations are called (L+, L−).
For a λ-graph bisystem (L−, L+), denote by L−t (resp. L+t) the labeled Bratteli diagram obtained 

by reversing the directions of all edges in L− (resp. L+). Then the pair (L+t, L−t) becomes a λ-graph 
bisystem. Since the C∗-algebras O+

L− and O−
L+ are both universal C∗-algebras subject to the operator 

relations (L−, L+) and (L+, L−), respectively, we have canonical isomorphisms of C∗-algebras:

O+
−
∼= O−

−t , O−
+
∼= O+

+t .
L L L L
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9. K-groups for O+
L−

In this section we will describe K-theory formulas for our C∗-algebras O+
L− as well as O−

L+ . We will 
then prove that the K-groups are invariant under strong shift equivalence of the associated symbolic matrix 
bisystems.

By Theorem 8.11 and Theorem 8.13 (or Theorem 8.7 and Theorem 8.8), we know that the C∗-algebras 
O+

L− and O−
L+ are nothing but the C∗-symbolic crossed products AL− �ρ− ΛL+ and AL+ �ρ+ ΛL− defined 

in [26], respectively. K-theory formulas for the C∗-algebra A �ρ Λ constructed from a C∗-dynamical system 
(A, ρ, Σ) in general have been presented in [26]. We may apply the formulas to our C∗-algebras O+

L− and 
O−

L+ . We will focus on the former algebra O+
L− , the latter one is symmetric.

The endomorphisms ρ+
α : AL− −→ AL− for α ∈ Σ+ defined in (8.1) yield endomorphisms ρ+

α ∗ :
K∗(AL−) → K∗(AL−) for α ∈ Σ+ on the K-theory groups of AL− . Define an endomorphism

ρ+
∗ : K∗(AL−) −→ K∗(AL−), ∗ = 0, 1

by setting ρ+
∗ (g) =

∑
α∈Σ+ ρ+

α ∗(g), g ∈ K∗(AL−).

Lemma 9.1.

K0(O+
L−) ∼= K0(AL−)/(id−ρ+

∗ )K0(AL−),

K1(O+
L−) ∼= Ker(id−ρ+

∗ ) in K0(AL−).

Proof. Since our C∗-algebra O+
L− is isomorphic to the C∗-symbolic crossed product AL− �ρ+ ΛL+ , one has 

the six term exact sequence of K-theory ([26], cf. [32], [12]):

K0(AL−) id−ρ+
∗−−−−→ K0(AL−) ι∗−−−−→ K0(O+

L−)�⏐⏐ ⏐⏐�
K1(O+

L−) ←−−−−
ι∗

K1(AL−) ←−−−−
id−ρ+

∗
K1(AL−).

As AL− is an AF-algebra, one sees that K1(AL−) = 0, so that we have the desired formulas. �
The K0-group K0(C(ΩL−)) of the commutative C∗-algebra C(ΩL−) is canonically isomorphic to the 

abelian group C(ΩL− , Z) of Z-valued continuous functions on ΩL− . The correspondence ϕ∗([El−
i (ξ)]) =

χUΩ
L− (vl

i;ξ)
induced by (7.5) yields a natural isomorphism

ϕ∗ : K0(AL−) −→ C(ΩL− ,Z)

between K0(AL−) and the abelian group C(ΩL− , Z). For ω ∈ ΩL− , put

r(ω) = {ω′ ∈ ΩL− | (ω, α+, ω′) ∈ E+
L− for some α+ ∈ Σ+}.

We then define an endomorphism on C(ΩL− , Z) by setting

λ+
L−∗(f)(ω) =

∑
ω′∈r(ω)

f(ω′) for f ∈ C(ΩL− ,Z), ω ∈ ΩL− .

We thus have the following K-theory formulas for O+
− .
L
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Theorem 9.2.

K0(O+
L−) ∼=C(ΩL− ,Z)/(id−λ+

L−∗)C(ΩL− ,Z),

K1(O+
L−) ∼= Ker(id−λ+

L−∗) in C(ΩL− ,Z).

Proof. It is easy to see that the diagram

K0(AL−) ρ+
∗−−−−→ K0(AL−)

ϕ∗

⏐⏐� ϕ∗

⏐⏐�
C(ΩL− ,Z)

λ+
L−∗−−−−→ C(ΩL− ,Z)

commutes. Hence by Lemma 9.1, we get the desired K-theory formulas. �
The above K-theory formulas are generalizations of those of the C∗-algebras OL associated with λ-graph 

system L in [23, Theorem 5.5] (cf. [4]) and the crossed products C(ΛA) �σ∗
A
Z of the commutative C∗-

algebra C(ΛA) on the two-sided topological Markov shifts ΛA by the automorphisms σ∗
A induced by the 

homeomorphism of the shift σ∗
A (cf. [33]).

We will next prove that the groups Ki(O+
L−), i = 0, 1 are invariant under properly strong shift equivalence 

of the associated symbolic matrix bisystems of the λ-graph bisystems (L−, L+) satisfying FPCC. To prove 
it we will actually show the following theorem, that was improved by the referee’s kind suggestion. Let K
denote the C∗-algebra of compact operators on a separable infinite dimensional Hilbert space, and C denote 
its diagonal C∗-subalgebra.

Theorem 9.3. Let (M−, M+) and (N−, N+) be symbolic matrix bisystems. Let (L−
M, L+

M) and (L−
N , L+

N ) be 
the associated λ-graph bisystems both of which satisfy FPCC. Suppose that (M−, M+) and (N−, N+) are 
properly strong shift equivalent. Then there exists an isomorphism Φ : O+

L
−
M
⊗K −→ O+

L
−
N
⊗K of C∗-algebras 

such that Φ(D+
L

−
M

⊗ C) = D+
L

−
N
⊗ C. In particular, the C∗-algebras O+

L
−
M

and O+
L

−
N

are Morita equivalent, so 

that their K-groups Ki(O+
L

−
M

) and Ki(O+
L

−
N

) are isomorphic for i = 0, 1.

Proof. We may assume that (L−
M, L+

M) and (L−
N , L+

N ) are properly strong shift equivalent in 1-step. As in 
the discussion in Section 6, there exist an alphabet Σ̂, disjoint subsets C, D ⊂ Σ̂ and a bipartite symbolic 
matrix bisystem (M̂−, M̂+) over Σ̂ such that

(M̂CD−,M̂CD+) = (M−,M+), (M̂DC−,M̂DC+) = (N−,N+).

Let (L̂−, ̂L+) be the associated λ-graph bisystems to (M̂−, M̂+). We also denote by (L̂CD−, ̂LCD+) (resp. 
(L̂DC−, ̂LDC+)) the associated λ-graph bisystems to (M̂CD−, M̂CD+) (resp. (M̂DC−, M̂DC+)). By a com-
pletely similar argument to [26, Theorem 6.1], we know that there exist full projections PC , PD in the 
C∗-algebra O+

L̂− such that both PC , PD belong to D+
L̂− satisfying PC + PD = 1 and

PCO+
L̂−PC

∼= O+
L̂CD− , PCD+

L̂−PC
∼= D+

L̂CD− ,

PDO+
L̂−PD

∼= O+
L̂DC− , PDD+

L̂−PD
∼= D+

L̂DC− .

Hence the pair (O+
L̂CD− , D+

L̂CD−) and (O+
L̂DC− , D+

L̂DC−) is relative Morita equivalent in the sense of [29]. 
By using [29, Theorem 4.7], there exists an isomorphism Φ : O+ ⊗ K −→ O+ ⊗ K such that 
L̂CD− L̂DC−
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Φ(D+
L̂CD− ⊗ C) = D+

L̂DC− ⊗ C. Since (O+
L̂CD− , D+

L̂CD−) = (O+
L̂

−
M
, D+

L̂
−
M

) and (O+
L̂DC− , D+

L̂DC−) = (O+
L̂

−
N
, D+

L̂
−
N

), 
we conclude that there exists an isomorphism Φ : O+

L
−
M

⊗ K −→ O+
L

−
N

⊗ K such that Φ(D+
L

−
M

⊗ C) =
D+

L
−
N
⊗ C. �

Corollary 9.4. The K-groups Ki(O+
L

−
Λ
), i = 0, 1 of the C∗-algebra O+

L
−
Λ

of the canonical λ-graph bisystem 

(L−
Λ , L

+
Λ) of a subshift Λ is invariant under topological conjugacy of subshifts.

10. A duality: λ-graph systems as λ-graph bisystems

Let L = (V, E, λ, ι) be a λ-graph system over Σ. We will construct a λ-graph bisystem (L−, L+) from 
L as in Example 3.2 (i). Let us recognize the map ι : V −→ V as a new symbol written ι, and define 
a new alphabet Σ− = {ι}. The original alphabet Σ is written Σ+. Let E+

l,l+1 := El,l+1 for l ∈ Z+ and 
λ+ = λ : E+ −→ Σ+. We then have a labeled Bratteli diagram L+ = (V, E+, λ+) over alphabet Σ+, 
that is the original labeled Bratteli diagram L without the map ι : V −→ V . The other labeled Bratteli 
diagram L− = (V, E−, λ−) over alphabet Σ− is defined in the following way. Define an edge e− ∈ E−

l+1,l
if ι(vl+1

j ) = vli so that s(e−) = vl+1
j , t(e−) = vli and λ−(e−) = ι ∈ Σ−. Then we have a labeled Bratteli 

diagram L− = (V, E−, λ−) over alphabet Σ−. Then the local property of the λ-graph system L makes the 
pair (L−, L+) a λ-graph bisystem. This λ-graph bisystem does not satisfy FPCC. Let (Il,l+1, Al,l+1)l∈Z+

be the transition matrix system for the λ-graph system L defined in (2.2) and (2.3). The transition matrix 
bisystem (A−, A+) for the λ-graph bisystem (L−, L+) defined in Section 8 satisfies

A−
l,l+1(i, ι, j) = Il,l+1(i, j), A+

l,l+1(i, α, j) = Al,l+1(i, α, j) (10.1)

for α ∈ Σ+ and i = 1, 2, . . . , m(l), j = 1, 2, . . . , m(l + 1).
Let Sα, α ∈ Σ+ and El

i(β), β ∈ Σ−
1 (vli) be the canonical generating family of the C∗-algebra O+

L−

satisfying the relations (L−, L+) in Theorem 8.11. Since Σ−
1 (vli) = {ι} for all vertices vli ∈ Vl, the projection 

El
i(β), β ∈ Σ−

1 (vli) may be written El
i without the symbol β. The equalities (10.1) tell us that the relations 

(L−, L+) in Theorem 8.11 is exactly the same as the relations (L) in Theorem 2.1. Hence the C∗-algebra 
O+

L− coincides with the C∗-algebra OL of the λ-graph system L by their universal properties.
Let us consider the other C∗-algebra O−

L+ . Then by Theorem 8.8 together with (10.1), the C∗-algebra 
is generated by one coisometry Tι and a family of mutually commuting projections El+

i (μ), μ ∈ P (vli), i =
1, 2, . . . , m(l), l ∈ Z+ satisfying the following relations:

TιT
∗
ι =

m(l)∑
i=1

∑
μ∈P (vl

i)

El+
i (μ) = 1, (10.2)

El+
i (μ) =

∑
α∈Σ

m(l+1)∑
j=1

Al,l+1(i, α, j)El+1+
j (μα), (10.3)

T ∗
ι E

l+
i (μ)Tι =

∑
α∈Σ

m(l+1)∑
j=1

Il,l+1(i, j)El+1+
j (αμ). (10.4)

By (10.4) with (10.2), we have

T ∗
ι Tι =

m(l)∑
i=1

∑
l

T ∗
ι E

l+
i (μ)Tι =

m(l+1)∑
j=1

m(l)∑
i=1

Il,l+1(i, j)
∑
α∈Σ

∑
l

El+1+
j (αμ)
μ∈P (vi) μ∈P (vi)
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Under the condition Il,l+1(i, j) = 1, the local property of λ-graph bisystem ensures us

{αμ ∈ Bl+1(ΛL+) | μ ∈ P (vli), α ∈ Σ} = P (vl+1
j ),

so that the equality

Il,l+1(i, j)
∑
α∈Σ

∑
μ∈P (vl

i)

El+1+
j (αμ) = Il,l+1(i, j)

∑
ν∈P (vl+1

j )

El+1+
j (ν)

holds. As for each j = 1, 2, . . . , m(l+ 1), there uniquely exists i = 1, 2, . . . , m(l) such that Il,l+1(i, j) = 1, so 
that 

∑m(l)
i=1 Il,l+1(i, j) = 1. Hence we have

m(l+1)∑
j=1

m(l)∑
i=1

Il,l+1(i, j)
∑
α∈Σ

∑
μ∈P (vl

i)

El+1+
j (αμ) =

m(l+1)∑
j=1

∑
ν∈P (vl+1

j )

El+1+
j (ν) = 1,

so that Tι is a unitary.
Recall that the C∗-subalgebra D−

L+ of O−
L+ is generated by the projections of the form

Tn
ι E

l+
i (μ)T ∗n

ι , μ ∈ P (vli), n = 0, 1, 2, . . . , i = 1, 2, . . . ,m(l), l ∈ Z+.

It is canonically isomorphic to the commutative C∗-algebra C(X−
L+) of continuous functions on X−

L+ through 
the correspondence

ϕL+ : Tn
ι E

l+
i (μ)T ∗n

ι ∈ D−
L+ −→ χU

X
−
L+

(ιn,vl
i;μ) ∈ C(X−

L+)

as in Lemma 7.6 for X−
L+ (Note that Lemma 7.6 treats X+

L−). Hence we know the following lemma.

Lemma 10.1. The isomorphism ϕL+ : D−
L+ −→ C(X−

L+) satisfies ϕL+ ◦ Ad(T ∗
ι ) = σ∗

L+ ◦ ϕL+ where σ∗
L+ :

C(X−
L+) −→ C(X−

L+) is defined by σ∗
L+(f) = f ◦ σL+ for f ∈ C(X−

L+).

Proof. The C∗-subalgebra AL+ of O−
L+ generated by mutually commuting projections El+

i (μ), μ ∈ P (vli) is 
isomorphic to the commutative C∗-algebra C(ΩL+) of continuous functions on the compact Hausdorff space 
ΩL+ defined in Section 7. Now the λ-graph bisystem (L−, L+) comes from a λ-graph system L. Hence the 
compact Hausdorff space X−

L+ is given by in this case

X−
L+ ={(ι, ωi)∞i=1 ∈

∞∏
i=1

(Σ− × ΩL+) | ωi = (α−i+l, u
i
l)∞l=1 ∈ ΩL+ , i = 1, 2, . . . ,

(ωi, ι, ωi+1) ∈ E−
L+ , i = 1, 2, . . . , (ω0, ι, ω1) ∈ E−

L+ for some ω0 ∈ ΩL+}.

Let σL+ : X−
L+ −→ X−

L+ be the shift map defined by σL+((ι, ωi)∞i=1) = (ι, ωi+1)∞i=1. As ωi = (α−i+l, ui
l)∞l=1 ∈

ΩL+ , i = 0, 1, 2, . . . and ι(ui+1
l+1) = ui

l, l = 0, 1, . . . , i = 1, 2, . . . , we know that (ι, ωi+1)∞i=1 uniquely determines 
(ι, ωi)∞i=1 as in the diagram below, so that the shift map σL+ : X−

L+ −→ X−
L+ is actually a homeomorphism 

on X−
+ .
L
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u0
0

α1−−−−→ u0
1

α2−−−−→ u0
2

α3−−−−→ · · ·ω0�⏐⏐ι �⏐⏐ι �⏐⏐ι
u1

0
α0−−−−→ u1

1
α1−−−−→ u1

2
α2−−−−→ u1

3
α3−−−−→ · · ·ω1�⏐⏐ι �⏐⏐ι �⏐⏐ι �⏐⏐ι

u2
0

α−1−−−−→ u2
1

α0−−−−→ u2
2

α1−−−−→ u2
3

α2−−−−→ u2
4

α3−−−−→ · · ·ω2�⏐⏐ι �⏐⏐ι �⏐⏐ι �⏐⏐ι �⏐⏐ι
u3

0
α−2−−−−→ u3

1
α−1−−−−→ u3

2
α0−−−−→ u3

3
α1−−−−→ u3

4
α2−−−−→ u3

5
α3−−−−→ · · ·ω3�⏐⏐ι �⏐⏐ι �⏐⏐ι �⏐⏐ι �⏐⏐ι �⏐⏐ι

As

σ∗
L+(χU

X
−
L+

(ιn,vl
i;μ)) = χU

X
−
L+

(ιn−1,vl
i;μ) for n ≥ 1

and

σ∗
L+(χU

X
−
L+

(vl
i;μ)) =

∑
α∈Σ

m(l+1)∑
j=1

χU
X

−
L+

(ι,vl+1
j ;αμ),

we conclude that ϕL+ ◦ Ad(T ∗
ι ) = σ∗

L+ ◦ ϕL+ because of the relation (10.4). �
By their universal properties of both the algebra O−

L+ and the crossed product C(X−
L+) �σ∗

L+ Z by the 
automorphism σ∗

L+ of C(X−
L+), we know that O−

L+ is isomorphic to C(X−
L+) �σ∗

L+ Z. Thus we have the 
following proposition.

Proposition 10.2. Let L be a left-resolving λ-graph system over Σ. Let (L−, L+) be the associated λ-graph 
bisystem. Then we have

(i) The C∗-algebra O+
L− is canonically isomorphic to the C∗-algebra OL of the original λ-graph system L.

(ii) The C∗-algebra O−
L+ is canonically isomorphic to the crossed product C(X−

L+) �σ∗
L+ Z.

Let A be an N × N irreducible non-permutation matrix over {0, 1}, and ΛA denotes the shift space of 
the two-sided topological Markov shift (ΛA, σA) defined by the matrix A as in (2.1). Let IN be the N ×N

identity matrix. Then the pair (IN , A) naturally yields a symbolic matrix system and hence a symbolic 
matrix bisystem whose λ-graph bisystem is denoted by (L−

A, L
+
A). Then we have

Corollary 10.3. The C∗-algebra O+
L

−
A

is isomorphic to the Cuntz–Krieger algebra OA, whereas the other 
C∗-algebra O−

L
+
A

is isomorphic to the C∗-algebra of the crossed product C(ΛA) �σ∗
A
Z of the commutative C∗-

algebra C(ΛA) of complex valued continuous functions on the two-sided shift space ΛA by the automorphism 
induced by the homeomorphism σA of the shift on ΛA.

Let (L−, L+) be a λ-graph bisystem. As seen in the construction of the C∗-algebra O+
L− , the C∗-subalgebra 

AL− generated by the projections El−
i (ξ), ξ ∈ F (vli) is isomorphic to the commutative C∗-algebra C(ΩL−)

whose character space ΩL− consists of infinite labeled paths of the labeled Bratteli diagram L−. Since the 
matrix A+ (i, α, j) for vli ∈ Vl, v

l+1
j ∈ Vl+1, α ∈ Σ+ in the operator relation (8.9) is the structure matrix 
l,l+1
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of the other Bratteli diagram L+, the operator relation (8.9) of O+
L− tells us that the Bratteli diagram L+

“acts” on ΩL− . We actually see that ρα for α ∈ Σ+ defined in (8.1) gives rise to an endomorphism on 
C(ΩL−). This means that the C∗-algebra O+

L− may be regarded as the one constructed from an action of 
L+ onto L−. From this view point, the other C∗-algebra O−

L+ may be regarded as the one constructed from 
an action of L− onto L+. This observation says that the two C∗-algebras O+

L− and O−
L+ are obtained from 

the labeled Bratteli diagrams L− and L+ by exchanging its roles of the action and the space, respectively. 
In this sense, one may consider that the two C∗-algebras O+

L− and O−
L+ have a “duality” to each other. 

Therefore Corollary 10.3 shows us that the pair of the Cuntz–Krieger algebra OA and the crossed product 
C∗-algebra C(ΛA) �σ∗

A
Z is regarded as a “duality” pair.

More precisely, our definition of “duality” in this setting is the following.

Definition 10.4. Let G1, G2 be amenable and étale groupoids such that their unit spaces G(0)
1 , G(0)

2 are totally 
disconnected compact Hausdorff spaces. The pair (C∗(G1), C(G(0)

1 )) and (C∗(G2), C(G(0)
2 )) of the C∗-algebras 

of the étale groupoids G1, G2 and their commutative C∗-subalgebras of its diagonals C(G(0)
1 ) and C(G(0)

2 ) is 
said to be a duality pair if there exists a λ-graph bisystem (L−, L+) such that there exist isomorphisms Φ1 :
C∗(G1) −→ O+

L− and Φ2 : C∗(G2) −→ O−
L+ such that Φ1(C(G(0)

1 )) = C(X+
L−) and Φ2(C(G(0)

2 )) = C(X−
L+), 

that is

(C∗(G1), C(G(0)
1 )) = (O+

L− ,D+
L−), (C∗(G2), C(G(0)

2 )) = (O−
L+ ,D−

L+). (10.5)

In other words, the condition (10.5) is equivalent to the condition that the groupoids G1, G2 are isomorphic 
to G+

L− , G−
L+ as étale groupoids, respectively when the groupoids G1, G2, G+

L− , G−
L+ are all essentially principal 

(Renault [35, Proposition 4.11]).

Let A be an N × N irreducible non-permutation matrix over {0, 1}. Let DA be the commutative C∗-
subalgebra of diagonal elements of the canonical AF-algebra inside the Cuntz–Krieger algebra OA. The 
subalgebra DA is isomorphic to the commutative C∗-algebra C(Λ+

A) of the right one-sided shift space Λ+
A

of ΛA. As a result, we have the following corollary of Proposition 10.2 by the discussion of this section.

Corollary 10.5. The pair (OA, DA) and (C(ΛA) �σ∗
A
Z, C(ΛA)) is a duality pair in the above sense.
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