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A partially hyperbolic dynamical system is said to have the quasi-shadowing 
property if every pseudotrajectory can be shadowed by a sequence of points (xn)n∈Z

such that xn+1 is obtained from the image of xn by moving it by a small factor 
in the central direction. In the present paper, we prove that a small nonlinear 
perturbation of a partially dichotomic sequence of (not necessarily invertible) linear 
operators acting on an arbitrary Banach space has the quasi-shadowing property. 
We also obtain a continuous time version of this result. As an application of our 
main result, we prove that a certain class of partially dichotomic sequences of linear 
operators is stable up to the movement in the central direction.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let M = (M, d) be a metric space and let (Fn)n∈Z be a sequence of maps acting on M . Given δ > 0, a 
sequence of points (yn)n∈Z of M satisfying

d(yn+1, Fn(yn)) < δ for every n ∈ Z, (1)

is said to be a δ-pseudotrajectory for the nonautonomous dynamics given by

xn+1 = Fn(xn), n ∈ Z. (2)

We say that the system (2) has the shadowing property if for every ε > 0 there exists δ > 0 such that for 
any δ-pseudotrajectory (yn)n∈Z of (2), there exists a sequence of points (xn)n∈Z in M satisfying (2) such 
that
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d(xn, yn) < ε for every n ∈ Z. (3)

In other words, any pseudotrajectory can be approximated (in the sense of (3)) by a true trajectory.
The shadowing property has proved to be a very powerful tool in many situations as, for instance, when 

dealing with problems concerned with topological stability and construction of symbolic dynamics (see [8]). 
Consequently, the problem of describing classes of systems that exhibit this property turned out to an 
important direction of the research in the field of dynamical systems.

Based on works of Poincaré and its predecessors, Smale [24] introduced in the 60’s the notion of (uniform) 
hyperbolicity in order to provide a mathematical framework for the rigorous study of dynamical systems that 
exhibit sensitive dependence on initial conditions. It turns out that uniformly hyperbolic dynamical systems 
(both with discrete and continuous time) have the shadowing property [2,8]. In fact, it was shown that in 
certain settings, the notions of hyperbolicity and (Lipschitz) shadowing are actually (almost) equivalent. 
Indeed, Pilyugin and Tikhomirov [22] proved that a diffeomorphism on a compact Riemannian manifold 
M has the so-called Lipschitz shadowing property if and only if it is structurally stable. While structurally 
stable diffeomorphisms are not necessarily Anosov (i.e. uniformly hyperbolic on entire M), it should be 
noted that they exhibit uniform hyperbolicity on the set of nonwandering points. A similar result to that 
in [22] but dealing with the nonautonomous linear dynamics was established in [4, Proposition 3]. Indeed, 
it was proved in [4] that if M is a finite-dimensional Banach space and if maps Fn are linear then (2) has 
the Lipschitz shadowing property if and only if it admits an exponential trichotomy (which means that it is 
hyperbolic on both Z+ and Z−, although not necessarily on entire line Z). It turns out that the situation in 
the infinite-dimensional setting is much more complicated. Indeed, in [5] the authors deal with the situation 
when M is an infinite-dimensional Banach space and consider the autonomous setting when Fn = A for 
n ∈ Z, where A is some invertible bounded linear operator on M . They give explicit examples in which A
is not hyperbolic but (2) nevertheless has the shadowing property.

Our objective in this paper is study the shadowing property beyond (uniform) hyperbolicity in the 
nonautonomous context. To this end, we look at partially hyperbolic systems. A first observation is that one 
cannot expect to recover the shadowing property, at least in its full strength, for general partially hyperbolic 
systems. In fact, it was observed in [7] that the shadowing property is not verified (not even generically) for 
partially hyperbolic diffeomorphisms which are robustly transitive (see also [1,25] for examples of some large 
classes of non-uniformly hyperbolic systems that do not satisfy the shadowing property). On the other hand, 
as we are going to see in the sequel, it is possible to get a weaker version of the shadowing property called 
quasi-shadowing. In the terminology of the above paragraphs, we say that (2) has the quasi-shadowing 
property if for every ε > 0 there exists δ > 0 so that for any δ-pseudotrajectory (yn)n∈Z there exists a 
“quasi-trajectory” (xn)n∈Z of (2) satisfying (3). By (xn)n∈Z being a quasi-trajectory of (2) we mean that it 
is a trajectory of the system up to moving it by a small factor in the central direction, i.e. xn+1 is obtained 
from Fn(xn) by shifting it by a small factor in the central direction (precise definitions are postponed to 
Section 3.1).

The notion of quasi-shadowing has already been explored for some classes of partially hyperbolic systems. 
For instance, in [6,10,15,16,26] versions of the quasi-shadowing property were established for partially hy-
perbolic diffeomorphisms acting on compact manifolds. More recently some of these results were extended to 
partially hyperbolic flows [17]. In this work, we deal with not necessarily invertible nonautonomous dynamics
acting on infinite dimensional spaces. More precisely, starting with a linear dynamics

xm+1 = Amxm m ∈ Z, (4)

where the sequence (Am)m∈Z admits a partial dichotomy, we prove that a small nonlinear perturbation 
of (4) has the quasi-shadowing property. We also obtain a continuous time version of this result. Moreover, 
our general approach using Banach sequence spaces allows us to get various versions of the quasi-shadowing 
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property, meaning that the error allowed in the pseudotrajectory (1) and in the “shadowing” given by (3)
can be taken to be small according to various norms (such as lp norm or the c0 norm), simply by taking the 
appropriate sequence space (see Remark 5). As an application of our main result we prove that a certain 
class of partial dichotomic sequence of linear maps is stable up to moving it in the central direction (see 
Section 4). The proof of our main result has an analytic flavor and consists basically of showing that a 
certain operator is a contraction when acting in an appropriate space. Then, using the fixed point of this 
operator we are able to construct the quasi-trajectory we are looking for. These arguments are inspired by 
our previous work on nonautonomous shadowing [3,4], which in turn are inspired by some classical analytic 
approaches to shadowing [11,18].

2. Preliminaries

2.1. Banach sequence spaces

In this subsection we recall some basic definitions and properties from the theory of Banach sequence 
spaces. The material is taken from [12,23], where the reader can also find more details.

Let S(Z) be the set of all sequences s = (sn)n∈Z of real numbers. We say that a linear subspace B ⊂ S(Z)
is a normed sequence space (over Z) if there exists a norm ‖·‖B : B → R+

0 such that if s′ = (s′n)n∈Z ∈ B

and |sn| ≤ |s′n| for n ∈ Z, then s = (sn)n∈Z ∈ B and ‖s‖B ≤ ‖s′‖B . If in addition (B, ‖·‖B) is complete, we 
say that B is a Banach sequence space.

Let B be a Banach sequence space over Z. We say that B is admissible if:

1. χ{n} ∈ B and ‖χ{n}‖B > 0 for n ∈ Z, where χA denotes the characteristic function of the set A ⊂ Z;
2. for each s = (sn)n∈Z ∈ B and m ∈ Z, the sequence sm = (smn )n∈Z defined by smn = sn+m belongs to B

and ‖sm‖B = ‖s‖B .

Note that it follows from the definition that for each admissible Banach space B over Z, we have that 
‖χ{n}‖B = ‖χ{0}‖B for each n ∈ Z. Throughout this paper we will assume for the sake of simplicity that 
‖χ{0}‖B = 1.

We recall some explicit examples of admissible Banach sequence spaces over Z (see [12,23]).

Example 1. The set

l∞ =
{
s = (sn)n∈Z ∈ S(Z) : sup

n∈Z
|sn| < ∞

}

is an admissible Banach sequence space when equipped with the norm ‖s‖ = supn∈Z|sn|.

Example 2. The set

c0 =
{
s = (sn)n∈Z ∈ S(Z) : lim

|n|→∞
|sn| = 0

}

is an admissible Banach sequence space when equipped with the norm ‖·‖ from Example 1.

Example 3. For each p ∈ [1, ∞), the set

lp =
{
s = (sn)n∈Z ∈ S(Z) :

∑
|sn|p < ∞

}

n∈Z
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is an admissible Banach sequence space when equipped with the norm

‖s‖ =
(∑

n∈Z
|sn|p

)1/p

.

Example 4 (Orlicz sequence spaces). Let ϕ : (0, +∞) → (0, +∞] be a nondecreasing nonconstant left-
continuous function. We set ψ(t) =

∫ t

0 ϕ(s) ds for t ≥ 0. Moreover, for each s = (sn)n∈Z ∈ S(Z), let 
Mϕ(s) =

∑
n∈Z ψ(|sn|). Then

B =
{
s ∈ S(Z) : Mϕ(cs) < +∞ for some c > 0

}

is an admissible Banach sequence space when equipped with the norm

‖s‖ = inf
{
c > 0 : Mϕ(s/c) ≤ 1

}
.

2.2. Banach spaces associated to Banach sequence spaces

Let us now introduce sequence spaces that will play important role in our arguments. Let X be an 
arbitrary Banach space and B any Banach sequence space over Z with norm ‖·‖B . Set

XB :=
{
x = (xn)n∈Z ⊂ X : (‖xn‖)n∈Z ∈ B

}
.

Finally, for x = (xn)n∈Z ∈ XB we define

‖x‖B := ‖(‖xn‖)n∈Z‖B . (5)

Remark 1. We emphasize that in (5) we slightly abuse the notation since norms on B and XB are denoted 
in the same way. However, this will cause no confusion since in the rest of the paper we will deal with spaces 
XB .

Example 5. Let B = l∞ (see Example 1). Then,

XB =
{
x = (xn)n∈Z ⊂ X : sup

n∈Z
‖xn‖ < ∞

}
.

The proof of the following result is straightforward (see [12,23]).

Proposition 1. (XB, ‖·‖B) is a Banach space.

2.3. Partial dichotomy

In this subsection we introduce the concept of partial dichotomy as well as some related notation.
Let (Am)m∈Z be a sequence of bounded linear operators on X. For m, n ∈ Z, set

A(m,n) =
{
Am−1 · · ·An if m > n,
Id if m = n.
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We say that the sequence (Am)m∈Z admits a partial exponential dichotomy if there exist projections P i
n for 

n ∈ Z and i ∈ {1, 2, 3} satisfying

P 1
n + P 2

n + P 3
n = Id, AnP

i
n = P i

n+1An, (6)

for n ∈ Z and i ∈ {1, 2, 3} such that the operator

An|ImP 2
n
: ImP 2

n → ImP 2
n+1

is invertible for n ∈ Z and there exist constants D, b, d > 0 such that

‖A(m,n)P 1
n‖ ≤ De−d(m−n) for m ≥ n (7)

and

‖A(m,n)P 2
n‖ ≤ De−b(n−m) for m ≤ n, (8)

where

A(m,n) = (A(n,m)|ImPm
)−1 : ImP 2

n → ImP 2
m,

for m < n.

Remark 2. We note that the classical notion of an exponential dichotomy is a special case of the notion of 
partial exponential dichotomy and corresponds to the case when P 3

n = 0 for n ∈ Z.

Remark 3. The above introduced notion of a partial exponential dichotomy is inspired by the classical 
notion of a partial hyperbolicity introduced by Brin and Pesin [9]. However, we stress that in contrast to 
the notion of the partial hyperbolicity, we don’t require that the rate of the contraction/expansion of vectors 
in ImP 3

n by the action of the dynamics forward in time is dominated by the contraction along ImP 1
n or by 

the expansion along ImP 2
n . In fact, we made no assumption about the asymptotic behavior of the dynamics 

along ImP 3
n .

Given a partially dichotomic sequence (Am)m∈Z, for n ∈ Z we set

Es
n := ImP 1

n , Eu
n := ImP 2

n and Ec
n := ImP 3

n .

Moreover, we also introduce Xs,u
B as a subspace of XB that consists of all x = (xn)n∈Z ∈ XB such that 

xn ∈ Es,u
n := Es

n ⊕Eu
n for each n ∈ Z. Obviously, Xs,u

B is closed. Similarly, we consider

Xc
B := {x = (xn)n∈Z ∈ XB : xn ∈ Ec

n for n ∈ Z}.

Again, Xc
B is a closed subspace of XB . Observe that each x = (xn)n∈Z ∈ XB can be written uniquely as

x = xc + xs,u,

where xc ∈ Xc
B and xs,u ∈ Xs,u

B . Indeed, xc = (xc
n)n∈Z and xs,u = (xs,u

n )n∈Z are given by

xc
n = P 3

nxn and xs,u
n = xn − xc

n, for n ∈ Z.
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We also introduce an adapted norm ‖·‖′B on XB defined by

‖x‖′B = max{‖xc‖B , ‖xs,u‖B}, for x ∈ XB .

Lemma 1. We have that

1
1 + 2D‖x‖′B ≤ ‖x‖B ≤ 2‖x‖′B , for x ∈ XB. (9)

Thus, the norms ‖·‖B and ‖·‖′B are equivalent.

Proof. Observe that

‖x‖B = ‖xc + xs,u‖B ≤ ‖xc‖B + ‖xs,u‖B ≤ 2‖x‖′B .

On the other hand, we first note that it follows from (7) and (8) that ‖P i
n‖ ≤ D for n ∈ Z and i = 1, 2. 

Thus,

‖P 3
n‖ = ‖Id − P 1

n − P 2
n‖ ≤ 1 + 2D for n ∈ Z,

and consequently

‖xc
n‖ ≤ (1 + 2D)‖xn‖ and ‖xs,u

n ‖ ≤ 2D‖xn‖,

for n ∈ Z and x = (xn)n∈Z ∈ XB . It follows that

‖xc‖B ≤ (1 + 2D)‖x‖B and ‖xs,u‖B ≤ 2D‖x‖B .

Therefore

‖x‖′B ≤ (1 + 2D)‖x‖B ,

and the proof of the lemma is completed. �
3. Main result

3.1. Setup

Let B be an admissible Banach sequence space, X a Banach space and (Am)m∈Z a sequence of bounded 
linear operators on X that admits a partial exponential dichotomy. Furthermore, let fn : X → X, n ∈ Z, 
be a sequence of maps such that there exists c > 0 satisfying

‖fn(x) − fn(y)‖ ≤ c‖x− y‖, (10)

for each n ∈ Z and x, y ∈ X.
We consider a nonautonomous and nonlinear dynamics given by

xn+1 = Fn(xn), n ∈ Z, (11)

where
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Fn := An + fn.

Let us now recall some notation introduced in [3]. Given δ > 0, a sequence (yn)n∈Z ⊂ X is said to be an 
(δ, B)-pseudotrajectory for (11) if (yn+1 − Fn(yn))n∈Z ∈ XB and

‖(yn+1 − Fn(yn))n∈Z‖B ≤ δ. (12)

Remark 4. When B = l∞ (see Example 1), condition (12) reduces to

sup
n∈Z

‖yn+1 − Fn(yn)‖ ≤ δ.

The above requirement represents a usual definition of a pseudotrajectory in the context of smooth dynamics 
(see [20,21]).

We say that (11) has an B-quasi-shadowing property if for every ε > 0 there exists δ > 0 so that for every 
(δ, B)-pseudotrajectory (yn)n∈Z, there is a sequence z = (zn)n∈Z ∈ XB with ‖z‖′B ≤ ε such that for every 
n ∈ Z,

xn+1 = Fn(xn) + zcn+1, (13)

where xn = yn + zs,un . Observe that, in particular, xn+1 is obtained from Fn(xn) by moving it by a factor 
smaller than ε in the central direction and, moreover, ‖(xn)n∈Z − (yn)n∈Z‖B ≤ ε. Informally, (xn)n∈Z is a 
“quasi-trajectory” of (11) that “shadows” (yn)n∈Z. Furthermore, if there exists L > 0 such that δ can be 
chosen as δ = Lε, we say that (11) has the B-Lipschitz quasi-shadowing property.

3.2. Quasi-shadowing for perturbations of partial dichotomic sequences

We start with an auxiliary result which is a straightforward consequence of Theorems 1 and 2 of [4].

Theorem 1. Assume that a sequence (Am)m∈Z is partially dichotomic and let B be an arbitrary admissible 
Banach sequence space. Then, there exists an operator As,u : Xs,u

B → Xs,u
B with the property that for x =

(xn)n∈Z, y = (yn)n∈Z ∈ Xs,u
B , the following properties are equivalent:

1. As,uy = x;
2. for each n ∈ Z,

xn −An−1xn−1 = yn.

In fact, As,u is given by

(As,uy)n =
n∑

m=−∞
A(n,m)P 1

mym −
∞∑

m=n+1
A(n,m)P 2

mym,

for n ∈ Z and y = (yn)n∈Z ∈ Xs,u
B .

Let us consider the operator G : XB → XB given by

Gx = −xc + As,uxs,u.

By ‖G‖ we will denote the operator norm of G induced by the norm ‖·‖′B on XB .
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Theorem 2. Assume that

4cD(1 + 2D)‖G‖ < 1. (14)

Then, the system (11) has the B-Lipschitz quasi-shadowing property.

Proof. Set

(S(x))n = gn−1(xs,u
n−1),

for n ∈ Z and x = (xn)n∈Z ∈ XB , where gn : X → X is given by

gn(x) = fn(x + yn) − fn(yn) + Fn(yn) − yn+1.

Furthermore, let

Φ(x) = GS(x), x ∈ XB .

It follows from (10) that for x = (xn)n∈Z and z = (zn)n∈Z in XB and n ∈ Z, we have

‖fn(yn + xs,u
n ) − fn(yn + zs,un )‖ ≤ c‖xs,u

n − zs,un ‖
= c‖(P 1

n + P 2
n)(xn − zn)‖

≤ 2cD‖xn − zn‖,

and hence

‖S(x) − S(z)‖B ≤ 2cD‖x − z‖B .

Consequently, (9) implies that

‖S(x) − S(z)‖′B ≤ 4cD(1 + 2D)‖x − z‖′B ,

and therefore

‖Φ(x) − Φ(z)‖′B ≤ 4cD(1 + 2D)‖G‖ · ‖x − z‖′B , for x, z ∈ XB . (15)

On the other hand, observe that

‖S(0)‖′B ≤ (1 + 2D)‖S(0)‖B ≤ (1 + 2D)δ,

and therefore using (15) we have that

‖Φ(x)‖′B ≤ ‖Φ(0)‖′B + ‖Φ(x) − Φ(0)‖′B
≤ (1 + 2D)δ‖G‖ + 4cD(1 + 2D)‖G‖ · ‖x‖′B .

We conclude that by setting

δ = 1 − 4cD(1 + 2D)‖G‖
ε
(1 + 2D)‖G‖
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and

D(0, ε) := {x ∈ XB : ‖x‖′B ≤ ε},

we have that

Φ(D(0, ε)) ⊂ D(0, ε).

This together with (14) and (15) implies that Φ is a contraction on D(0, ε). Hence, there exists a unique 
z ∈ D(0, ε) such that Φ(z) = z, that is, GS(z) = z. Letting w = S(z), we have that

−wc + As,uws,u = z.

This in particular implies that −wc = zc. Moreover, Theorem 1 implies that for each n ∈ Z,

zn + wc
n −An−1(zn−1 + wc

n−1) = zn − zcn −An−1(zn−1 − zcn−1)

= ws,u
n

= wn − wc
n

= wn + zcn,

which easily implies that

yn + zs,un = zcn + Fn−1(yn−1 + zs,un−1), (16)

for each n ∈ Z. We define x = (xn)n∈Z by

xn = yn + zs,un , n ∈ Z.

Then, it follows from (16) that (13) holds. Consequently, since ‖z‖′B ≤ ε, we conclude that (11) has the 
B-Lipschitz quasi-shadowing property. �

In the sequel, we will also need the following lemma.

Lemma 2. Assume that (14) holds and let L > 0 be the constant given by the B-Lipschitz quasi-shadowing 
property. Given ε > 0, take δ = Lε and fix a (δ, B)-pseudotrajectory (yn)n∈Z of (11). Suppose that z =
(zn)n∈Z ∈ XB is a sequence with ‖z‖′B ≤ ε which satisfies

xn+1 = Fn(xn) + zcn+1,

for every n ∈ Z, where xn = yn + zs,un . Then, z = (zn)n∈Z is a fixed point of the operator Φ introduced in 
the proof of Theorem 2.

Proof. We start observing that

Φ(z) = GS(z)

= −S(z)c + As,u(S(z)s,u)

and
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(S(z))n = gn−1(zs,un−1)

= fn−1(zs,un−1 + yn−1) − fn−1(yn−1) + Fn−1(yn−1) − yn

= fn−1(xn−1) + An−1yn−1 − yn

= fn−1(xn−1) + An−1xn−1 −An−1z
s,u
n−1 − yn

= xn − zcn −An−1z
s,u
n−1 − yn

= zs,un − zcn −An−1z
s,u
n−1.

Consequently,

(−S(z)c)n = −
(
zs,un − zcn −An−1z

s,u
n−1

)c
= zcn,

for n ∈ Z. Hence, by using Theorem 1, we have that

(As,u(S(z)s,u))n

=
n∑

m=−∞
A(n,m)P 1

m(S(z)s,u)m −
∞∑

m=n+1
A(n,m)P 2

m(S(z)s,u)m

=
n∑

m=−∞
A(n,m)(zsm −Am−1z

s
m−1) −

∞∑
m=n+1

A(n,m)(zum −Am−1z
u
m−1)

= zsn + zun

= zs,un ,

for n ∈ Z. Therefore, Φ(z) = z and the proof of the lemma is completed. �
Corollary 1. Suppose that (14) holds. Then, the sequence z = (zn)n∈Z given by the quasi-shadowing property 
is unique.

Proof. From Lemma 2 we know that any sequence z = (zn)n∈Z given by the quasi-shadowing property is a 
fixed point of the operator Φ. Consequently, since Φ is a contraction on D(0, ε) = {x ∈ XB : ‖x‖′B ≤ ε} its 
fixed point is unique in D(0, ε), and the desired conclusion follows. �

In the case when the sequence (Am)m∈Z admits an exponential dichotomy we can say more. More 
precisely, we have the following result first established in [4, Theorem 4.].

Corollary 2. Assume that the sequence (Am)m∈Z admits an exponential dichotomy and that (14) holds. Then, 
there exists L > 0 with the property that for each ε > 0 and every (δ, B)-pseudotrajectory y = (yn)n∈Z with 
δ = Lε, there exists a solution x = (xn)n∈Z of (11) such that ‖x − y‖′B ≤ ε. Moreover, x is unique.

Proof. The desired conclusion follows directly from Theorem 2 and Corollary 1 taking into account that 
Ec

n = {0} for n ∈ Z. �
Remark 5. Observe that our general approach allows us to get various versions of the quasi-shadowing 
property simply by considering different types of Banach sequence spaces. For instance, by taking B = l∞

as in Example 1 we get a quasi-shadowing version of the usual shadowing property. By taking B = lp

as in Example 3 we get a quasi-shadowing version of the lp-shadowing property. By taking B = c0 as in 
Example 2 we get a quasi-shadowing version of the asymptotic shadowing property and so on.
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4. Quasi-stability of partially dichotomic sequences

As an application of our results in this section we prove that, up to moving it in the central direction, 
a class of partially dichotomic sequences of linear operators acting on an arbitrary Banach space is stable 
under nonlinear perturbations.

We say that a sequence (Am)m∈Z of bounded and invertible linear operators on X admits a strong partial 
exponential dichotomy if there exist projections P i

n for n ∈ Z and i ∈ {1, 2, 3} satisfying (6) and there exist 
constants

D > 0, 0 ≤ a < b, and 0 ≤ c < d,

such that (7) and (8) hold and, in addition,

‖A(m,n)P 3
n‖ ≤ Dea(m−n) for m ≥ n, (17)

and

‖A(m,n)P 3
n‖ ≤ Dec(n−m) for m ≤ n,

where

A(m,n) = (A(n,m))−1, for m < n.

Let (Am)m∈Z be a sequence of bounded and invertible linear operators on X that admits a strong partial 
exponential dichotomy. Furthermore, assume that

sup
m∈Z

{‖Am‖, ‖A−1
m ‖} < ∞.

Associated to these parameters by Theorem 2 (applied to B = l∞ and fn ≡ 0), consider ε > 0 sufficiently 
small and δ = Lε > 0. Let (fn)n∈Z be a sequence of maps fn : X → X satisfying (10) with c sufficiently 
small and such that

‖fn‖sup ≤ δ for each n ∈ Z,

where for a map g : X → X we set

‖g‖sup := sup{‖g(x)‖ : x ∈ X}.

We consider the difference equation

yn+1 = Fn(yn), n ∈ Z, (18)

where Fn := An + fn. By decreasing c (if necessary), we have that Fn is a homeomorphism for each n ∈ Z

(see [3]). Then, we have the following result.

Theorem 3. There are continuous maps hm : X → X and τm : X → Ec
m, m ∈ Z, such that for each m ∈ Z,

hm+1 ◦ Fm = Am ◦ hm + τm+1 ◦ Fm (19)

with
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‖hm − Id‖sup ≤ ε and ‖τm‖sup ≤ ε. (20)

Moreover, hm(x) − x ∈ Es,u
m for all m ∈ Z and x ∈ X.

Recall that the nonautonomous systems xm+1 = Amxm, m ∈ Z, and xm+1 = Fm(xm), m ∈ Z, are said 
to be topologically conjugated if there exists a sequence of homeomorphisms (hm)m∈Z such that

hm+1 ◦ Fm = Am ◦ hm for every m ∈ Z.

Moreover, a system is said to be stable if it is topologically conjugated to any small (according to some 
appropriate topology) perturbation of itself. So, what Theorem 3 is saying is that, under the previous 
assumptions, the system xm+1 = Amxm, m ∈ Z, is quasi-stable: it is stable except for a small deviation in 
the central direction (the “τm+1 ◦ Fm” part in (19)) and the fact that the maps hm are only continuous.

Proof. Let us fix m ∈ Z. Given y ∈ X, we consider the sequence y = (yn)n∈Z given by yn = F(n, m)y for 
n ∈ Z, where

F(n,m) =

⎧⎪⎪⎨
⎪⎪⎩
Fn−1 ◦ . . . ◦ Fm if n > m,
Id if n = m,
F−1
n ◦ . . . ◦ F−1

m−1 if n < m.

Then, y is a solution of (18). Moreover,

sup
n∈Z

‖yn+1 −Anyn‖ = sup
n∈Z

‖fn(yn)‖ ≤ δ.

In particular, y = (yn)n∈Z is a (δ, l∞)-pseudotrajectory for the difference equation

xn+1 = Anxn, n ∈ Z.

Hence, it follows from Theorem 2 (applied to the case when B = l∞ and fn ≡ 0) and Corollary 1 that there 
is a unique sequence z = (zn)n∈Z with ‖z‖′B ≤ ε such that

xn+1 = Anxn + zcn+1 for n ∈ Z,

where xn = yn + zs,un . Set

hm(y) = hm(ym) := xm

and

τm(y) = τm(ym) := zcm.

It is easy to verify that (19) holds. Since ‖z‖′B ≤ ε, we conclude that (20) holds. Moreover, by definition, 
hm(y) − y = zs,um ∈ Es,u

m for every y ∈ X.
It remains to show that hm and τm are continuous maps for every m ∈ Z. For the sake of simplicity we 

deal with the case when m = 0. The argument for m �= 0 is completely analogous. Let Φ : XB → XB be 
the operator introduced in the proof of Theorem 2 associated to the sequence y = (yn)n∈Z. We recall that

Φ(z) = z.
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By recalling the definition of hm and τm, the above equality can be rewritten as

Φ((hm(ym) − ym + τm(ym))m∈Z) = (hm(ym) − ym + τm(ym))m∈Z.

Consequently, from the definition of Φ and Theorem 1 we obtain that

(hm(ym) − ym + τm(ym))m∈Z

= Φ((hm(ym) − ym + τm(ym))m∈Z)

= GS((hm(ym) − ym + τm(ym))m∈Z)

=
(

− (gm−1(hm−1(ym−1) − ym−1))c

+
m∑

k=−∞
A(m, k)P 1

k gk−1(hk−1(yk−1) − yk−1)

−
∞∑

k=m+1

A(m, k)P 2
k gk−1(hk−1(yk−1) − yk−1)

)
m∈Z

.

In particular, since hm(ym) − ym ∈ Es,u
m and τm(ym) ∈ Ec

m, it follows that

τm(ym) = −(gm−1(hm−1(ym−1) − ym−1))c

and consequently, τm is continuous whenever hm−1 is. So, all we have to do is to prove that h0 is continuous.
Let (wj

0)j∈N be an arbitrary sequence in X converging to y0 ∈ X with ‖wj
0 − y0‖ < ε for every j ∈ N. 

If h0(wj
0) 

j→∞−−−→ h0(y0) then we are done. So, let us assume that h0(wj
0) � h0(y0). In particular, restricting 

ourselves to a subsequence, if necessary, we may assume that ‖h0(wj
0) − h0(y0)‖ > 4γ for every j ∈ N and 

some γ > 0. Thus,

‖(h0(y0) − y0) − (h0(wj
0) − wj

0)‖ = ‖(h0(y0) − h0(wj
0)) + (wj

0 − y0)‖ > 3γ

for every j 
 0. Consequently, recalling that h0(y0) − y0 ∈ Es,u
0 and h0(wj

0) − wj
0 ∈ Es,u

0 for every j, it 
follows that

‖(h0(y0) − h0(wj
0))s,u + (wj

0 − y0)s,u‖

= ‖
(
(h0(y0) − h0(wj

0)) + (wj
0 − y0)

)s,u

‖

= ‖(h0(y0) − h0(wj
0)) + (wj

0 − y0)‖ > 3γ

for every j 
 0 and thus, since ‖wj
0 − y0‖ → 0 when j → +∞, we have that

‖(h0(y0) − h0(wj
0))s,u‖ > 2γ

for every j 
 0. In particular, restricting our selves to a subsequence, if necessary, we may assume that

‖(h0(y0) − h0(wj
0))s‖ > γ or ‖(h0(y0) − h0(wj

0))u‖ > γ

for every j ∈ N. Suppose we are in the second case.
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For every j ∈ N, let (wj
m)m∈Z be the sequence given by wj

m = F(m, 0)wj
0. From the continuity of Fm it 

follows that for every j ∈ N there exists Nj ∈ N so that ‖ym − wj
m‖ < ε for every |m| ≤ Nj . Moreover, Nj

can be taken so that Nj → ∞ when j → ∞.
Now, on the one hand, using (19) we have that for every m ∈ N,

‖hm(ym) − hm(wj
m)‖ =

∥∥∥∥A(m, 0)(h0(y0) − h0(wj
0)) +

m∑
i=1

A(m, i)(τi(yi) − τi(wj
i ))

∥∥∥∥.
Consequently, for every m ∈ N, we have that (using (7), (8) and (17))

‖hm(ym) − hm(wj
m)‖

≥ ‖A(m, 0)(h0(y0) − h0(wj
0))‖ −

∥∥∥∥
m∑
i=1

A(m, i)(τi(yi) − τi(wj
i ))

∥∥∥∥
≥ ‖A(m, 0)(h0(y0) − h0(wj

0))u‖ − ‖A(m, 0)(h0(y0) − h0(wj
0))s‖

− ‖A(m, 0)(h0(y0) − h0(wj
0))c‖ −

∥∥∥∥
m∑
i=1

A(m, i)(τi(yi) − τi(wj
i ))

∥∥∥∥
≥ 1

D
ebm‖(h0(y0) − h0(wj

0))u‖ −De−dm‖(h0(y0) − h0(wj
0))s‖

−Deam‖(h0(y0) − h0(wj
0))c‖ −

m∑
i=1

Dea(m−i)‖τi(yi) − τi(wj
i )‖.

Recalling that h0(wj
0) = wj

0 + (zj0)s,u with ‖(zj0)s,u‖ ≤ ε for every j ∈ N and that (wj
0)j∈N converges to 

y0, we conclude that ‖h0(y0) − h0(wj
0)‖ is uniformly bounded. In particular, there exists C > 0 so that 

‖(h0(y0) − h0(wj
0))s‖ < C and ‖(h0(y0) − h0(wj

0))c‖ < C for every j ∈ N. Moreover, since ‖(h0(y0) −
h0(wj

0))u‖ > γ and ‖τi(yi) −τi(wj
i )‖ ≤ ‖τi(yi)‖ +‖τi(wj

i )‖ ≤ 2ε, it follows from the previous expression that

‖hm(ym) − hm(wj
m)‖ ≥ 1

D
ebmγ −De−dmC −DeamC −mDeam2ε,

for every m ∈ N and j ∈ N. Thus, since b > a, there exists m0 ∈ N so that for every m ≥ m0,

‖hm(ym) − hm(wj
m)‖ ≥ 10ε

for every j ∈ N. Fix j 
 0 such that Nj ≥ m0. In particular,

‖hNj
(yNj

) − hNj
(wj

Nj
)‖ ≥ 10ε. (21)

On the other hand, by the choice of Nj we have that

‖hm(ym) − hm(wj
m)‖ ≤ ‖hm(ym) − ym‖ + ‖ym − wj

m‖
+ ‖wj

m − hm(wj
m)‖

≤ ε + ε + ε

= 3ε,

for every |m| ≤ Nj . This together with (21) yields a contradiction. The case when ‖(h0(y0) −h0(wj
0))s‖ > γ

for every j ∈ N can be treated analogously by taking backward iterates. Consequently, h0(wj
0) 

j→∞−−−→ h0(y0)
and h0 is continuous as claimed. �
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Remark 6. Assuming X is finite dimensional one can easily see that the maps hm given by the previous 
theorem are surjective. In fact, in this setting, any bounded continuous perturbation of the identity is 
surjective. Indeed, let h : X → X be a continuous map so that ‖h‖sup ≤ N , where N > 0. We are going 
to observe that Id + h is surjective. Given y ∈ X let us consider the continuous map H : X → X given by 
H(x) = y−h(x). Since h is bounded by N , it follows that H maps the closed ball of radius N around y into 
itself. Consequently, by Brouwer’s fixed point theorem, H has a fixed point inside that ball. In particular, 
there is x ∈ X so that H(x) = x which is equivalent to x + h(x) = y proving that Id + h is surjective.

Remark 7. In the case when P 3
n = 0 for n ∈ Z (i.e. when (Am)m∈Z admits an exponential dichotomy), 

we have that τm = 0 and that hm is a homeomorphism for each m ∈ Z (see [3, Theorem 5]). Hence, in 
this setting, Theorem 3 essentially reduces to the so-called nonautonomous Grobman-Hartman theorem 
first established (for finite-dimensional and continuous time dynamics) by Palmer [19]. For some new re-
sults related to nonautonomous linearization devoted to the situations when conjugacies hm exhibit higher 
regularity, we refer to [13,14] together with the discussion and references therein.

5. The case of continuous time

We consider a nonlinear differential equation

x′ = A(t)x + f(t, x), (22)

where A is a continuous map from R to the space of all bounded linear operators on X satisfying

N := sup
t∈R

‖A(t)‖ < ∞,

and f : R ×X → X is a continuous map. We assume that f(·, 0) = 0 and that there exists c > 0 such that

‖f(t, x) − f(t, y)‖ ≤ c‖x− y‖ for t ∈ R and x, y ∈ X.

We consider the associated linear equation

x′ = A(t)x. (23)

Let T (t, s) be the (linear) evolution family associated to (23). We will assume that (23) admits a partial 
exponential dichotomy, i.e. that there exists a family of projections P i(s), i ∈ {1, 2, 3}, s ∈ R on X satisfying

P 1(s) + P 2(s) + P 3(s) = Id, T (t, s)P i(s) = P i(t)T (t, s),

for t, s ∈ R, i ∈ {1, 2, 3} and there exist constants D, b, d > 0 such that

‖T (t, s)P 1(s)‖ ≤ De−d(t−s) for t ≥ s

and

‖T (t, s)P 2(s)‖ ≤ De−b(s−t) for t ≤ s.

We recall that the nonlinear evolution family associated with (22) is given by

U(t, s)x = T (t, s)x +
t∫
T (t, τ)f(τ, U(τ, s)x) dτ,
s
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for x ∈ X and t, s ∈ R. Furthermore, set

fn(x) =
n+1∫
n

T (n + 1, τ)f(τ, U(τ, n)x) dτ, for x ∈ X and n ∈ Z.

Finally, let

An = T (n + 1, n) and Fn = An + fn = U(n + 1, n), (24)

for n ∈ Z. We observe that the sequence (An)n∈Z admits a partial exponential dichotomy. Finally, we recall 
the adapted norm ‖·‖′∞ that corresponds to B = l∞ (see Example 1). In addition, in this case we will denote 
XB by X∞.

The following is the main result of this section.

Theorem 4. For a sufficiently small c > 0, there exists L > 0 with the following property: for any ε > 0 and 
a differentiable function y : R → X such that

sup
t∈R

‖y′(t) −A(t)y(t) − f(t, y(t))‖ ≤ δ := Lε,

there exist x : R → X such that:

1. x|(n,n+1) is a solution of (22) on (n, n + 1) for each n ∈ Z;
2.

sup
t∈R

‖x(t) − y(t)‖ ≤ ε;

3. there exists z = (zn)n∈Z ∈ X∞ satisfying ‖z‖′∞ ≤ ε such that (13) holds with xn = x(n), n ∈ Z, where 
Fn is given by (24).

Proof. By arguing as in the proof of [4, Theorem 6.] and using Theorem 2, one can easily show that for a 
sufficiently small c > 0, (11) has an l∞-Lipschitz quasi-shadowing property. Let us denote the associated 
constant by L′. Furthermore, it is also proved in the proof of [4, Theorem 6.] that there exists t > 0 such 
that for any differentiable y : R → X such that

sup
t∈R

‖y′(t) −A(t)y(t) − f(t, y(t))‖ ≤ δ, (25)

we have that the sequence (yn)n∈Z given by yn = y(n), n ∈ Z is an (tδ, l∞)-pseudotrajectory for (11). Set

L := 1
(1 + t/L′)eN+c

> 0.

For ε > 0, set δ = Lε and fix a differentiable map y : R → X satisfying (25). By the preceding discussion, 
the sequence (yn)n∈Z given by yn = y(n), n ∈ Z is an (tδ, l∞)-pseudotrajectory for (11). Hence, Theorem 2
implies that there exists z = (zn)n∈Z ∈ X∞ satisfying ‖z‖′∞ ≤ tδ

L′ ≤ ε such that (13) holds, where 
xn = yn + zs,un , n ∈ Z. We define x : R → X by

x(t) = U(t, n)xn, for t ∈ [n, n + 1), n ∈ Z.
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Then, x satisfies the first and the third assertion in the statement of the theorem. Define h : R → X by

h(t) = y′(t) −A(t)y(t) − f(t, y(t)), t ∈ R.

Observe that for n ∈ Z and t ∈ [n, n + 1) we have that

‖x(t) − y(t)‖ ≤ ‖xn − yn‖

+
∥∥∥∥

t∫
n

(A(s)(x(s) − y(s)) + f(s, x(s)) − f(s, y(s)) − h(s)) ds
∥∥∥∥

≤ δ

(
1 + t

L′

)
+ (N + c)

n∫
t

‖x(s) − y(s)‖ ds.

Hence, Gronwall’s lemma implies that

sup
t∈R

‖x(t) − y(t)‖ ≤ δ

(
1 + t

L′

)
eN+c = ε.

The proof of the theorem is completed. �
Acknowledgments

We would like to thank the anonymous referee for his/hers constructive comments that helped us improve 
our paper. D.D would like to thank Ken Palmer for useful discussion. L.B. was partially supported by a 
CNPq-Brazil PQ fellowship under Grant No. 306484/2018-8. D.D. was supported in part by Croatian 
Science Foundation under the project IP-2019-04-1239 and by the University of Rijeka under the projects 
uniri-prirod-18-9 and uniri-pr-prirod-19-16.

References

[1] F. Abdenur, L. Díaz, Pseudo-orbit shadowing in the C1 topology, Discrete Contin. Dyn. Syst. 17 (2007) 223–245.
[2] D. Anosov, On a class of invariant sets of smooth dynamical systems, in: Proc. 5th Int. Conf. on Nonl. Oscill. 2, Kiev, 

1970, pp. 39–45 [in Russian].
[3] L. Backes, D. Dragičević, Shadowing for nonautonomous dynamics, Adv. Nonlinear Stud. 19 (2019) 425–436.
[4] L. Backes, D. Dragičević, Shadowing for infinite dimensional dynamics and exponential trichotomies, Proc. R. Soc. Edinb., 

Sect. A (2020), https://doi .org /10 .1017 /prm .2020 .42, in press.
[5] N. Bernardes Jr., P.R. Cirilo, U.B. Darji, A. Messaoudi, E.R. Pujals, Expansivity and shadowing in linear dynamics, J. 

Math. Anal. Appl. 461 (2018) 796–816.
[6] D. Bohnet, C. Bonatti, Partially hyperbolic diffeomorphisms with uniformly center foliation: the quotient dynamics, Ergod. 

Theory Dyn. Syst. 36 (2016) 1067–1105.
[7] Ch. Bonatti, L. Diaz, G. Turcat, There is no shadowing lemma for partially hyperbolic dynamics, C. R. Acad. Sci. Paris 

Ser. I Math. 330 (2000) 587.
[8] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes in Math., vol. 470, Springer-

Verlag, 1975.
[9] M. Brin, Ya. Pesin, Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR, Ser. Mat. 38 (1974) 170–212.

[10] A. Castro, F. Rodrigues, P. Varandas, Leafwise shadowing property for partially hyperbolic diffeomorphisms, Dyn. Syst. 
35 (2020) 306–314.

[11] S.N. Chow, X.B. Lin, K.J. Palmer, A shadowing lemma with applications to semilinear parabolic equations, SIAM J. 
Math. Anal. 20 (1989) 547–557.

[12] D. Dragičević, Admissibility, a general type of Lipschitz shadowing and structural stability, Commun. Pure Appl. Anal. 
14 (2015) 861–880.

[13] D. Dragičević, W. Zhang, W. Zhang, Smooth linearization of nonautonomous difference equations with a nonuniform 
dichotomy, Math. Z. 292 (2019) 1175–1193.

[14] D. Dragičević, W. Zhang, W. Zhang, Smooth linearization of nonautonomous differential equations with a nonuniform 
dichotomy, Proc. Lond. Math. Soc. 121 (2020) 32–50.

http://refhub.elsevier.com/S0022-247X(20)30607-7/bib3409F5B544D4C9A060EEBCCF2E71D149s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibADD5703F3DC7B2F2F19A3ECE915008DDs1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibADD5703F3DC7B2F2F19A3ECE915008DDs1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib5769D2B77378362F50643C31A25B500Ds1
https://doi.org/10.1017/prm.2020.42
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib958023B8BE71C03AEE24E9EF16E65B09s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib958023B8BE71C03AEE24E9EF16E65B09s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibFD029D9482D10D6E074D1B163CF211ACs1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibFD029D9482D10D6E074D1B163CF211ACs1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibD87492E57553DD834EBE968AB2CC8107s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibD87492E57553DD834EBE968AB2CC8107s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib20BC669EE8ACC619A4B1E4DAF22DAAEFs1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib20BC669EE8ACC619A4B1E4DAF22DAAEFs1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib96D4CDFF8ED57E93E3B3D843CFFE3AF7s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib1BE86AAB82DAAD48B8AF85DCE5611DFDs1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib1BE86AAB82DAAD48B8AF85DCE5611DFDs1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib5A8D0CFAADD7EFD6C44C000085157DA7s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib5A8D0CFAADD7EFD6C44C000085157DA7s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib350BFCB1E3CFB28DDFF48CE525D4F139s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib350BFCB1E3CFB28DDFF48CE525D4F139s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibCC7BBCE5073DECCB814EA3AEC5156F41s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibCC7BBCE5073DECCB814EA3AEC5156F41s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibB01F3B7C4D18F4421B067542E4EF2DDDs1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibB01F3B7C4D18F4421B067542E4EF2DDDs1


18 L. Backes, D. Dragičević / J. Math. Anal. Appl. 492 (2020) 124445
[15] H. Hu, Y. Zhou, Y. Zhu, Quasi-shadowing for partially hyperbolic diffeomorphisms, Ergod. Theory Dyn. Syst. 35 (2015) 
412–430.

[16] S. Kryzhevich, S. Tikhomirov, Partial hyperbolicity and central shadowing, Discrete Contin. Dyn. Syst. 33 (2013) 
2901–2909.

[17] Z. Li, Y. Zhou, Quasi-shadowing for partially hyperbolic flows, Discrete Contin. Dyn. Syst. A 40 (2020) 2089–2103.
[18] K.R. Meyer, G.R. Sell, An analytic proof of the shadowing lemma, Funkc. Ekvacioj 30 (1987) 127–133.
[19] K. Palmer, A generalization of Hartman’s linearization theorem, J. Math. Anal. Appl. 41 (1973) 753–758.
[20] K. Palmer, Shadowing in Dynamical Systems. Theory and Applications, Kluwer, Dordrecht, 2000.
[21] S.Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Mathematics, vol. 1706, Springer-Verlag, Berlin, 1999.
[22] S.Yu. Pilyugin, S.B. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity 23 (2010) 2509–2515.
[23] A.L. Sasu, Exponential dichotomy and dichotomy radius for difference equations, J. Math. Anal. Appl. 344 (2008) 906–920.
[24] S. Smale, Differentiable dynamical systems, Bull. Am. Math. Soc. 73 (1967) 747–817.
[25] G.-C. Yuan, J.A. Yorke, An open set of maps for which every point is absolutely non-shadowable, Proc. Am. Math. Soc. 

128 (2000) 909–919.
[26] F. Zhang, Y.H. Zhou, On the limit quasi-shadowing property, Discrete Contin. Dyn. Syst. 37 (2017) 2861–2879.

http://refhub.elsevier.com/S0022-247X(20)30607-7/bibD8DB77A1A852959F699F6BB8B74347E8s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibD8DB77A1A852959F699F6BB8B74347E8s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibECEB609DC4685F1089FCA0FE318E01E6s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibECEB609DC4685F1089FCA0FE318E01E6s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib86F1F8BEC4C00C73AEADE7CBAA40277Cs1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib7A663CAEA1B722A63DC2868158ED584Ds1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibFFF45ED691D2690C433E98DAD047A484s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib95C9CC8E3262F7050841FB01A2EFA916s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib5C465EA0859E77E8AABD2194C778373Fs1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bibE85ED81A65C4DA11F96A9EA6010C9532s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib362AFD3677767F3AB38721A692A593A6s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib87DF1A55F48A3FEB732359A9804482C0s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib87DF1A55F48A3FEB732359A9804482C0s1
http://refhub.elsevier.com/S0022-247X(20)30607-7/bib81BE2ED502216D99867C76CCA502A3EAs1

	Quasi-shadowing for partially hyperbolic dynamics on Banach spaces
	1 Introduction
	2 Preliminaries
	2.1 Banach sequence spaces
	2.2 Banach spaces associated to Banach sequence spaces
	2.3 Partial dichotomy

	3 Main result
	3.1 Setup
	3.2 Quasi-shadowing for perturbations of partial dichotomic sequences

	4 Quasi-stability of partially dichotomic sequences
	5 The case of continuous time
	Acknowledgments
	References


